1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 16 #include "map_in_map.h" 17 18 #define ARRAY_CREATE_FLAG_MASK \ 19 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ 20 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) 21 22 static void bpf_array_free_percpu(struct bpf_array *array) 23 { 24 int i; 25 26 for (i = 0; i < array->map.max_entries; i++) { 27 free_percpu(array->pptrs[i]); 28 cond_resched(); 29 } 30 } 31 32 static int bpf_array_alloc_percpu(struct bpf_array *array) 33 { 34 void __percpu *ptr; 35 int i; 36 37 for (i = 0; i < array->map.max_entries; i++) { 38 ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, 39 GFP_USER | __GFP_NOWARN); 40 if (!ptr) { 41 bpf_array_free_percpu(array); 42 return -ENOMEM; 43 } 44 array->pptrs[i] = ptr; 45 cond_resched(); 46 } 47 48 return 0; 49 } 50 51 /* Called from syscall */ 52 int array_map_alloc_check(union bpf_attr *attr) 53 { 54 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 55 int numa_node = bpf_map_attr_numa_node(attr); 56 57 /* check sanity of attributes */ 58 if (attr->max_entries == 0 || attr->key_size != 4 || 59 attr->value_size == 0 || 60 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 61 !bpf_map_flags_access_ok(attr->map_flags) || 62 (percpu && numa_node != NUMA_NO_NODE)) 63 return -EINVAL; 64 65 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 66 attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) 67 return -EINVAL; 68 69 if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && 70 attr->map_flags & BPF_F_PRESERVE_ELEMS) 71 return -EINVAL; 72 73 /* avoid overflow on round_up(map->value_size) */ 74 if (attr->value_size > INT_MAX) 75 return -E2BIG; 76 77 return 0; 78 } 79 80 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 81 { 82 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 83 int numa_node = bpf_map_attr_numa_node(attr); 84 u32 elem_size, index_mask, max_entries; 85 bool bypass_spec_v1 = bpf_bypass_spec_v1(NULL); 86 u64 array_size, mask64; 87 struct bpf_array *array; 88 89 elem_size = round_up(attr->value_size, 8); 90 91 max_entries = attr->max_entries; 92 93 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 94 * upper most bit set in u32 space is undefined behavior due to 95 * resulting 1U << 32, so do it manually here in u64 space. 96 */ 97 mask64 = fls_long(max_entries - 1); 98 mask64 = 1ULL << mask64; 99 mask64 -= 1; 100 101 index_mask = mask64; 102 if (!bypass_spec_v1) { 103 /* round up array size to nearest power of 2, 104 * since cpu will speculate within index_mask limits 105 */ 106 max_entries = index_mask + 1; 107 /* Check for overflows. */ 108 if (max_entries < attr->max_entries) 109 return ERR_PTR(-E2BIG); 110 } 111 112 array_size = sizeof(*array); 113 if (percpu) { 114 array_size += (u64) max_entries * sizeof(void *); 115 } else { 116 /* rely on vmalloc() to return page-aligned memory and 117 * ensure array->value is exactly page-aligned 118 */ 119 if (attr->map_flags & BPF_F_MMAPABLE) { 120 array_size = PAGE_ALIGN(array_size); 121 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 122 } else { 123 array_size += (u64) max_entries * elem_size; 124 } 125 } 126 127 /* allocate all map elements and zero-initialize them */ 128 if (attr->map_flags & BPF_F_MMAPABLE) { 129 void *data; 130 131 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 132 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 133 if (!data) 134 return ERR_PTR(-ENOMEM); 135 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 136 - offsetof(struct bpf_array, value); 137 } else { 138 array = bpf_map_area_alloc(array_size, numa_node); 139 } 140 if (!array) 141 return ERR_PTR(-ENOMEM); 142 array->index_mask = index_mask; 143 array->map.bypass_spec_v1 = bypass_spec_v1; 144 145 /* copy mandatory map attributes */ 146 bpf_map_init_from_attr(&array->map, attr); 147 array->elem_size = elem_size; 148 149 if (percpu && bpf_array_alloc_percpu(array)) { 150 bpf_map_area_free(array); 151 return ERR_PTR(-ENOMEM); 152 } 153 154 return &array->map; 155 } 156 157 static void *array_map_elem_ptr(struct bpf_array* array, u32 index) 158 { 159 return array->value + (u64)array->elem_size * index; 160 } 161 162 /* Called from syscall or from eBPF program */ 163 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 164 { 165 struct bpf_array *array = container_of(map, struct bpf_array, map); 166 u32 index = *(u32 *)key; 167 168 if (unlikely(index >= array->map.max_entries)) 169 return NULL; 170 171 return array->value + (u64)array->elem_size * (index & array->index_mask); 172 } 173 174 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 175 u32 off) 176 { 177 struct bpf_array *array = container_of(map, struct bpf_array, map); 178 179 if (map->max_entries != 1) 180 return -ENOTSUPP; 181 if (off >= map->value_size) 182 return -EINVAL; 183 184 *imm = (unsigned long)array->value; 185 return 0; 186 } 187 188 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 189 u32 *off) 190 { 191 struct bpf_array *array = container_of(map, struct bpf_array, map); 192 u64 base = (unsigned long)array->value; 193 u64 range = array->elem_size; 194 195 if (map->max_entries != 1) 196 return -ENOTSUPP; 197 if (imm < base || imm >= base + range) 198 return -ENOENT; 199 200 *off = imm - base; 201 return 0; 202 } 203 204 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 205 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 206 { 207 struct bpf_array *array = container_of(map, struct bpf_array, map); 208 struct bpf_insn *insn = insn_buf; 209 u32 elem_size = array->elem_size; 210 const int ret = BPF_REG_0; 211 const int map_ptr = BPF_REG_1; 212 const int index = BPF_REG_2; 213 214 if (map->map_flags & BPF_F_INNER_MAP) 215 return -EOPNOTSUPP; 216 217 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 218 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 219 if (!map->bypass_spec_v1) { 220 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 221 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 222 } else { 223 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 224 } 225 226 if (is_power_of_2(elem_size)) { 227 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 228 } else { 229 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 230 } 231 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 232 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 233 *insn++ = BPF_MOV64_IMM(ret, 0); 234 return insn - insn_buf; 235 } 236 237 /* Called from eBPF program */ 238 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 239 { 240 struct bpf_array *array = container_of(map, struct bpf_array, map); 241 u32 index = *(u32 *)key; 242 243 if (unlikely(index >= array->map.max_entries)) 244 return NULL; 245 246 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 247 } 248 249 /* emit BPF instructions equivalent to C code of percpu_array_map_lookup_elem() */ 250 static int percpu_array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 251 { 252 struct bpf_array *array = container_of(map, struct bpf_array, map); 253 struct bpf_insn *insn = insn_buf; 254 255 if (!bpf_jit_supports_percpu_insn()) 256 return -EOPNOTSUPP; 257 258 if (map->map_flags & BPF_F_INNER_MAP) 259 return -EOPNOTSUPP; 260 261 BUILD_BUG_ON(offsetof(struct bpf_array, map) != 0); 262 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct bpf_array, pptrs)); 263 264 *insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0); 265 if (!map->bypass_spec_v1) { 266 *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 6); 267 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_0, array->index_mask); 268 } else { 269 *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 5); 270 } 271 272 *insn++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 273 *insn++ = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 274 *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); 275 *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 276 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 277 *insn++ = BPF_MOV64_IMM(BPF_REG_0, 0); 278 return insn - insn_buf; 279 } 280 281 static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 282 { 283 struct bpf_array *array = container_of(map, struct bpf_array, map); 284 u32 index = *(u32 *)key; 285 286 if (cpu >= nr_cpu_ids) 287 return NULL; 288 289 if (unlikely(index >= array->map.max_entries)) 290 return NULL; 291 292 return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); 293 } 294 295 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 296 { 297 struct bpf_array *array = container_of(map, struct bpf_array, map); 298 u32 index = *(u32 *)key; 299 void __percpu *pptr; 300 int cpu, off = 0; 301 u32 size; 302 303 if (unlikely(index >= array->map.max_entries)) 304 return -ENOENT; 305 306 /* per_cpu areas are zero-filled and bpf programs can only 307 * access 'value_size' of them, so copying rounded areas 308 * will not leak any kernel data 309 */ 310 size = array->elem_size; 311 rcu_read_lock(); 312 pptr = array->pptrs[index & array->index_mask]; 313 for_each_possible_cpu(cpu) { 314 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 315 check_and_init_map_value(map, value + off); 316 off += size; 317 } 318 rcu_read_unlock(); 319 return 0; 320 } 321 322 /* Called from syscall */ 323 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 324 { 325 struct bpf_array *array = container_of(map, struct bpf_array, map); 326 u32 index = key ? *(u32 *)key : U32_MAX; 327 u32 *next = (u32 *)next_key; 328 329 if (index >= array->map.max_entries) { 330 *next = 0; 331 return 0; 332 } 333 334 if (index == array->map.max_entries - 1) 335 return -ENOENT; 336 337 *next = index + 1; 338 return 0; 339 } 340 341 /* Called from syscall or from eBPF program */ 342 static long array_map_update_elem(struct bpf_map *map, void *key, void *value, 343 u64 map_flags) 344 { 345 struct bpf_array *array = container_of(map, struct bpf_array, map); 346 u32 index = *(u32 *)key; 347 char *val; 348 349 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 350 /* unknown flags */ 351 return -EINVAL; 352 353 if (unlikely(index >= array->map.max_entries)) 354 /* all elements were pre-allocated, cannot insert a new one */ 355 return -E2BIG; 356 357 if (unlikely(map_flags & BPF_NOEXIST)) 358 /* all elements already exist */ 359 return -EEXIST; 360 361 if (unlikely((map_flags & BPF_F_LOCK) && 362 !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 363 return -EINVAL; 364 365 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 366 val = this_cpu_ptr(array->pptrs[index & array->index_mask]); 367 copy_map_value(map, val, value); 368 bpf_obj_free_fields(array->map.record, val); 369 } else { 370 val = array->value + 371 (u64)array->elem_size * (index & array->index_mask); 372 if (map_flags & BPF_F_LOCK) 373 copy_map_value_locked(map, val, value, false); 374 else 375 copy_map_value(map, val, value); 376 bpf_obj_free_fields(array->map.record, val); 377 } 378 return 0; 379 } 380 381 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 382 u64 map_flags) 383 { 384 struct bpf_array *array = container_of(map, struct bpf_array, map); 385 u32 index = *(u32 *)key; 386 void __percpu *pptr; 387 int cpu, off = 0; 388 u32 size; 389 390 if (unlikely(map_flags > BPF_EXIST)) 391 /* unknown flags */ 392 return -EINVAL; 393 394 if (unlikely(index >= array->map.max_entries)) 395 /* all elements were pre-allocated, cannot insert a new one */ 396 return -E2BIG; 397 398 if (unlikely(map_flags == BPF_NOEXIST)) 399 /* all elements already exist */ 400 return -EEXIST; 401 402 /* the user space will provide round_up(value_size, 8) bytes that 403 * will be copied into per-cpu area. bpf programs can only access 404 * value_size of it. During lookup the same extra bytes will be 405 * returned or zeros which were zero-filled by percpu_alloc, 406 * so no kernel data leaks possible 407 */ 408 size = array->elem_size; 409 rcu_read_lock(); 410 pptr = array->pptrs[index & array->index_mask]; 411 for_each_possible_cpu(cpu) { 412 copy_map_value_long(map, per_cpu_ptr(pptr, cpu), value + off); 413 bpf_obj_free_fields(array->map.record, per_cpu_ptr(pptr, cpu)); 414 off += size; 415 } 416 rcu_read_unlock(); 417 return 0; 418 } 419 420 /* Called from syscall or from eBPF program */ 421 static long array_map_delete_elem(struct bpf_map *map, void *key) 422 { 423 return -EINVAL; 424 } 425 426 static void *array_map_vmalloc_addr(struct bpf_array *array) 427 { 428 return (void *)round_down((unsigned long)array, PAGE_SIZE); 429 } 430 431 static void array_map_free_timers_wq(struct bpf_map *map) 432 { 433 struct bpf_array *array = container_of(map, struct bpf_array, map); 434 int i; 435 436 /* We don't reset or free fields other than timer and workqueue 437 * on uref dropping to zero. 438 */ 439 if (btf_record_has_field(map->record, BPF_TIMER)) 440 for (i = 0; i < array->map.max_entries; i++) 441 bpf_obj_free_timer(map->record, array_map_elem_ptr(array, i)); 442 443 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) 444 for (i = 0; i < array->map.max_entries; i++) 445 bpf_obj_free_workqueue(map->record, array_map_elem_ptr(array, i)); 446 } 447 448 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 449 static void array_map_free(struct bpf_map *map) 450 { 451 struct bpf_array *array = container_of(map, struct bpf_array, map); 452 int i; 453 454 if (!IS_ERR_OR_NULL(map->record)) { 455 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 456 for (i = 0; i < array->map.max_entries; i++) { 457 void __percpu *pptr = array->pptrs[i & array->index_mask]; 458 int cpu; 459 460 for_each_possible_cpu(cpu) { 461 bpf_obj_free_fields(map->record, per_cpu_ptr(pptr, cpu)); 462 cond_resched(); 463 } 464 } 465 } else { 466 for (i = 0; i < array->map.max_entries; i++) 467 bpf_obj_free_fields(map->record, array_map_elem_ptr(array, i)); 468 } 469 } 470 471 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 472 bpf_array_free_percpu(array); 473 474 if (array->map.map_flags & BPF_F_MMAPABLE) 475 bpf_map_area_free(array_map_vmalloc_addr(array)); 476 else 477 bpf_map_area_free(array); 478 } 479 480 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 481 struct seq_file *m) 482 { 483 void *value; 484 485 rcu_read_lock(); 486 487 value = array_map_lookup_elem(map, key); 488 if (!value) { 489 rcu_read_unlock(); 490 return; 491 } 492 493 if (map->btf_key_type_id) 494 seq_printf(m, "%u: ", *(u32 *)key); 495 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 496 seq_puts(m, "\n"); 497 498 rcu_read_unlock(); 499 } 500 501 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 502 struct seq_file *m) 503 { 504 struct bpf_array *array = container_of(map, struct bpf_array, map); 505 u32 index = *(u32 *)key; 506 void __percpu *pptr; 507 int cpu; 508 509 rcu_read_lock(); 510 511 seq_printf(m, "%u: {\n", *(u32 *)key); 512 pptr = array->pptrs[index & array->index_mask]; 513 for_each_possible_cpu(cpu) { 514 seq_printf(m, "\tcpu%d: ", cpu); 515 btf_type_seq_show(map->btf, map->btf_value_type_id, 516 per_cpu_ptr(pptr, cpu), m); 517 seq_puts(m, "\n"); 518 } 519 seq_puts(m, "}\n"); 520 521 rcu_read_unlock(); 522 } 523 524 static int array_map_check_btf(const struct bpf_map *map, 525 const struct btf *btf, 526 const struct btf_type *key_type, 527 const struct btf_type *value_type) 528 { 529 u32 int_data; 530 531 /* One exception for keyless BTF: .bss/.data/.rodata map */ 532 if (btf_type_is_void(key_type)) { 533 if (map->map_type != BPF_MAP_TYPE_ARRAY || 534 map->max_entries != 1) 535 return -EINVAL; 536 537 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 538 return -EINVAL; 539 540 return 0; 541 } 542 543 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 544 return -EINVAL; 545 546 int_data = *(u32 *)(key_type + 1); 547 /* bpf array can only take a u32 key. This check makes sure 548 * that the btf matches the attr used during map_create. 549 */ 550 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 551 return -EINVAL; 552 553 return 0; 554 } 555 556 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 557 { 558 struct bpf_array *array = container_of(map, struct bpf_array, map); 559 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 560 561 if (!(map->map_flags & BPF_F_MMAPABLE)) 562 return -EINVAL; 563 564 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 565 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 566 return -EINVAL; 567 568 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 569 vma->vm_pgoff + pgoff); 570 } 571 572 static bool array_map_meta_equal(const struct bpf_map *meta0, 573 const struct bpf_map *meta1) 574 { 575 if (!bpf_map_meta_equal(meta0, meta1)) 576 return false; 577 return meta0->map_flags & BPF_F_INNER_MAP ? true : 578 meta0->max_entries == meta1->max_entries; 579 } 580 581 struct bpf_iter_seq_array_map_info { 582 struct bpf_map *map; 583 void *percpu_value_buf; 584 u32 index; 585 }; 586 587 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) 588 { 589 struct bpf_iter_seq_array_map_info *info = seq->private; 590 struct bpf_map *map = info->map; 591 struct bpf_array *array; 592 u32 index; 593 594 if (info->index >= map->max_entries) 595 return NULL; 596 597 if (*pos == 0) 598 ++*pos; 599 array = container_of(map, struct bpf_array, map); 600 index = info->index & array->index_mask; 601 if (info->percpu_value_buf) 602 return array->pptrs[index]; 603 return array_map_elem_ptr(array, index); 604 } 605 606 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 607 { 608 struct bpf_iter_seq_array_map_info *info = seq->private; 609 struct bpf_map *map = info->map; 610 struct bpf_array *array; 611 u32 index; 612 613 ++*pos; 614 ++info->index; 615 if (info->index >= map->max_entries) 616 return NULL; 617 618 array = container_of(map, struct bpf_array, map); 619 index = info->index & array->index_mask; 620 if (info->percpu_value_buf) 621 return array->pptrs[index]; 622 return array_map_elem_ptr(array, index); 623 } 624 625 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) 626 { 627 struct bpf_iter_seq_array_map_info *info = seq->private; 628 struct bpf_iter__bpf_map_elem ctx = {}; 629 struct bpf_map *map = info->map; 630 struct bpf_array *array = container_of(map, struct bpf_array, map); 631 struct bpf_iter_meta meta; 632 struct bpf_prog *prog; 633 int off = 0, cpu = 0; 634 void __percpu **pptr; 635 u32 size; 636 637 meta.seq = seq; 638 prog = bpf_iter_get_info(&meta, v == NULL); 639 if (!prog) 640 return 0; 641 642 ctx.meta = &meta; 643 ctx.map = info->map; 644 if (v) { 645 ctx.key = &info->index; 646 647 if (!info->percpu_value_buf) { 648 ctx.value = v; 649 } else { 650 pptr = v; 651 size = array->elem_size; 652 for_each_possible_cpu(cpu) { 653 copy_map_value_long(map, info->percpu_value_buf + off, 654 per_cpu_ptr(pptr, cpu)); 655 check_and_init_map_value(map, info->percpu_value_buf + off); 656 off += size; 657 } 658 ctx.value = info->percpu_value_buf; 659 } 660 } 661 662 return bpf_iter_run_prog(prog, &ctx); 663 } 664 665 static int bpf_array_map_seq_show(struct seq_file *seq, void *v) 666 { 667 return __bpf_array_map_seq_show(seq, v); 668 } 669 670 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) 671 { 672 if (!v) 673 (void)__bpf_array_map_seq_show(seq, NULL); 674 } 675 676 static int bpf_iter_init_array_map(void *priv_data, 677 struct bpf_iter_aux_info *aux) 678 { 679 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 680 struct bpf_map *map = aux->map; 681 struct bpf_array *array = container_of(map, struct bpf_array, map); 682 void *value_buf; 683 u32 buf_size; 684 685 if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 686 buf_size = array->elem_size * num_possible_cpus(); 687 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 688 if (!value_buf) 689 return -ENOMEM; 690 691 seq_info->percpu_value_buf = value_buf; 692 } 693 694 /* bpf_iter_attach_map() acquires a map uref, and the uref may be 695 * released before or in the middle of iterating map elements, so 696 * acquire an extra map uref for iterator. 697 */ 698 bpf_map_inc_with_uref(map); 699 seq_info->map = map; 700 return 0; 701 } 702 703 static void bpf_iter_fini_array_map(void *priv_data) 704 { 705 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 706 707 bpf_map_put_with_uref(seq_info->map); 708 kfree(seq_info->percpu_value_buf); 709 } 710 711 static const struct seq_operations bpf_array_map_seq_ops = { 712 .start = bpf_array_map_seq_start, 713 .next = bpf_array_map_seq_next, 714 .stop = bpf_array_map_seq_stop, 715 .show = bpf_array_map_seq_show, 716 }; 717 718 static const struct bpf_iter_seq_info iter_seq_info = { 719 .seq_ops = &bpf_array_map_seq_ops, 720 .init_seq_private = bpf_iter_init_array_map, 721 .fini_seq_private = bpf_iter_fini_array_map, 722 .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), 723 }; 724 725 static long bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, 726 void *callback_ctx, u64 flags) 727 { 728 u32 i, key, num_elems = 0; 729 struct bpf_array *array; 730 bool is_percpu; 731 u64 ret = 0; 732 void *val; 733 734 if (flags != 0) 735 return -EINVAL; 736 737 is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 738 array = container_of(map, struct bpf_array, map); 739 if (is_percpu) 740 migrate_disable(); 741 for (i = 0; i < map->max_entries; i++) { 742 if (is_percpu) 743 val = this_cpu_ptr(array->pptrs[i]); 744 else 745 val = array_map_elem_ptr(array, i); 746 num_elems++; 747 key = i; 748 ret = callback_fn((u64)(long)map, (u64)(long)&key, 749 (u64)(long)val, (u64)(long)callback_ctx, 0); 750 /* return value: 0 - continue, 1 - stop and return */ 751 if (ret) 752 break; 753 } 754 755 if (is_percpu) 756 migrate_enable(); 757 return num_elems; 758 } 759 760 static u64 array_map_mem_usage(const struct bpf_map *map) 761 { 762 struct bpf_array *array = container_of(map, struct bpf_array, map); 763 bool percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 764 u32 elem_size = array->elem_size; 765 u64 entries = map->max_entries; 766 u64 usage = sizeof(*array); 767 768 if (percpu) { 769 usage += entries * sizeof(void *); 770 usage += entries * elem_size * num_possible_cpus(); 771 } else { 772 if (map->map_flags & BPF_F_MMAPABLE) { 773 usage = PAGE_ALIGN(usage); 774 usage += PAGE_ALIGN(entries * elem_size); 775 } else { 776 usage += entries * elem_size; 777 } 778 } 779 return usage; 780 } 781 782 BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) 783 const struct bpf_map_ops array_map_ops = { 784 .map_meta_equal = array_map_meta_equal, 785 .map_alloc_check = array_map_alloc_check, 786 .map_alloc = array_map_alloc, 787 .map_free = array_map_free, 788 .map_get_next_key = array_map_get_next_key, 789 .map_release_uref = array_map_free_timers_wq, 790 .map_lookup_elem = array_map_lookup_elem, 791 .map_update_elem = array_map_update_elem, 792 .map_delete_elem = array_map_delete_elem, 793 .map_gen_lookup = array_map_gen_lookup, 794 .map_direct_value_addr = array_map_direct_value_addr, 795 .map_direct_value_meta = array_map_direct_value_meta, 796 .map_mmap = array_map_mmap, 797 .map_seq_show_elem = array_map_seq_show_elem, 798 .map_check_btf = array_map_check_btf, 799 .map_lookup_batch = generic_map_lookup_batch, 800 .map_update_batch = generic_map_update_batch, 801 .map_set_for_each_callback_args = map_set_for_each_callback_args, 802 .map_for_each_callback = bpf_for_each_array_elem, 803 .map_mem_usage = array_map_mem_usage, 804 .map_btf_id = &array_map_btf_ids[0], 805 .iter_seq_info = &iter_seq_info, 806 }; 807 808 const struct bpf_map_ops percpu_array_map_ops = { 809 .map_meta_equal = bpf_map_meta_equal, 810 .map_alloc_check = array_map_alloc_check, 811 .map_alloc = array_map_alloc, 812 .map_free = array_map_free, 813 .map_get_next_key = array_map_get_next_key, 814 .map_lookup_elem = percpu_array_map_lookup_elem, 815 .map_gen_lookup = percpu_array_map_gen_lookup, 816 .map_update_elem = array_map_update_elem, 817 .map_delete_elem = array_map_delete_elem, 818 .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, 819 .map_seq_show_elem = percpu_array_map_seq_show_elem, 820 .map_check_btf = array_map_check_btf, 821 .map_lookup_batch = generic_map_lookup_batch, 822 .map_update_batch = generic_map_update_batch, 823 .map_set_for_each_callback_args = map_set_for_each_callback_args, 824 .map_for_each_callback = bpf_for_each_array_elem, 825 .map_mem_usage = array_map_mem_usage, 826 .map_btf_id = &array_map_btf_ids[0], 827 .iter_seq_info = &iter_seq_info, 828 }; 829 830 static int fd_array_map_alloc_check(union bpf_attr *attr) 831 { 832 /* only file descriptors can be stored in this type of map */ 833 if (attr->value_size != sizeof(u32)) 834 return -EINVAL; 835 /* Program read-only/write-only not supported for special maps yet. */ 836 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 837 return -EINVAL; 838 return array_map_alloc_check(attr); 839 } 840 841 static void fd_array_map_free(struct bpf_map *map) 842 { 843 struct bpf_array *array = container_of(map, struct bpf_array, map); 844 int i; 845 846 /* make sure it's empty */ 847 for (i = 0; i < array->map.max_entries; i++) 848 BUG_ON(array->ptrs[i] != NULL); 849 850 bpf_map_area_free(array); 851 } 852 853 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 854 { 855 return ERR_PTR(-EOPNOTSUPP); 856 } 857 858 /* only called from syscall */ 859 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 860 { 861 void **elem, *ptr; 862 int ret = 0; 863 864 if (!map->ops->map_fd_sys_lookup_elem) 865 return -ENOTSUPP; 866 867 rcu_read_lock(); 868 elem = array_map_lookup_elem(map, key); 869 if (elem && (ptr = READ_ONCE(*elem))) 870 *value = map->ops->map_fd_sys_lookup_elem(ptr); 871 else 872 ret = -ENOENT; 873 rcu_read_unlock(); 874 875 return ret; 876 } 877 878 /* only called from syscall */ 879 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 880 void *key, void *value, u64 map_flags) 881 { 882 struct bpf_array *array = container_of(map, struct bpf_array, map); 883 void *new_ptr, *old_ptr; 884 u32 index = *(u32 *)key, ufd; 885 886 if (map_flags != BPF_ANY) 887 return -EINVAL; 888 889 if (index >= array->map.max_entries) 890 return -E2BIG; 891 892 ufd = *(u32 *)value; 893 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 894 if (IS_ERR(new_ptr)) 895 return PTR_ERR(new_ptr); 896 897 if (map->ops->map_poke_run) { 898 mutex_lock(&array->aux->poke_mutex); 899 old_ptr = xchg(array->ptrs + index, new_ptr); 900 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 901 mutex_unlock(&array->aux->poke_mutex); 902 } else { 903 old_ptr = xchg(array->ptrs + index, new_ptr); 904 } 905 906 if (old_ptr) 907 map->ops->map_fd_put_ptr(map, old_ptr, true); 908 return 0; 909 } 910 911 static long __fd_array_map_delete_elem(struct bpf_map *map, void *key, bool need_defer) 912 { 913 struct bpf_array *array = container_of(map, struct bpf_array, map); 914 void *old_ptr; 915 u32 index = *(u32 *)key; 916 917 if (index >= array->map.max_entries) 918 return -E2BIG; 919 920 if (map->ops->map_poke_run) { 921 mutex_lock(&array->aux->poke_mutex); 922 old_ptr = xchg(array->ptrs + index, NULL); 923 map->ops->map_poke_run(map, index, old_ptr, NULL); 924 mutex_unlock(&array->aux->poke_mutex); 925 } else { 926 old_ptr = xchg(array->ptrs + index, NULL); 927 } 928 929 if (old_ptr) { 930 map->ops->map_fd_put_ptr(map, old_ptr, need_defer); 931 return 0; 932 } else { 933 return -ENOENT; 934 } 935 } 936 937 static long fd_array_map_delete_elem(struct bpf_map *map, void *key) 938 { 939 return __fd_array_map_delete_elem(map, key, true); 940 } 941 942 static void *prog_fd_array_get_ptr(struct bpf_map *map, 943 struct file *map_file, int fd) 944 { 945 struct bpf_prog *prog = bpf_prog_get(fd); 946 947 if (IS_ERR(prog)) 948 return prog; 949 950 if (!bpf_prog_map_compatible(map, prog)) { 951 bpf_prog_put(prog); 952 return ERR_PTR(-EINVAL); 953 } 954 955 return prog; 956 } 957 958 static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 959 { 960 /* bpf_prog is freed after one RCU or tasks trace grace period */ 961 bpf_prog_put(ptr); 962 } 963 964 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 965 { 966 return ((struct bpf_prog *)ptr)->aux->id; 967 } 968 969 /* decrement refcnt of all bpf_progs that are stored in this map */ 970 static void bpf_fd_array_map_clear(struct bpf_map *map, bool need_defer) 971 { 972 struct bpf_array *array = container_of(map, struct bpf_array, map); 973 int i; 974 975 for (i = 0; i < array->map.max_entries; i++) 976 __fd_array_map_delete_elem(map, &i, need_defer); 977 } 978 979 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 980 struct seq_file *m) 981 { 982 void **elem, *ptr; 983 u32 prog_id; 984 985 rcu_read_lock(); 986 987 elem = array_map_lookup_elem(map, key); 988 if (elem) { 989 ptr = READ_ONCE(*elem); 990 if (ptr) { 991 seq_printf(m, "%u: ", *(u32 *)key); 992 prog_id = prog_fd_array_sys_lookup_elem(ptr); 993 btf_type_seq_show(map->btf, map->btf_value_type_id, 994 &prog_id, m); 995 seq_puts(m, "\n"); 996 } 997 } 998 999 rcu_read_unlock(); 1000 } 1001 1002 struct prog_poke_elem { 1003 struct list_head list; 1004 struct bpf_prog_aux *aux; 1005 }; 1006 1007 static int prog_array_map_poke_track(struct bpf_map *map, 1008 struct bpf_prog_aux *prog_aux) 1009 { 1010 struct prog_poke_elem *elem; 1011 struct bpf_array_aux *aux; 1012 int ret = 0; 1013 1014 aux = container_of(map, struct bpf_array, map)->aux; 1015 mutex_lock(&aux->poke_mutex); 1016 list_for_each_entry(elem, &aux->poke_progs, list) { 1017 if (elem->aux == prog_aux) 1018 goto out; 1019 } 1020 1021 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 1022 if (!elem) { 1023 ret = -ENOMEM; 1024 goto out; 1025 } 1026 1027 INIT_LIST_HEAD(&elem->list); 1028 /* We must track the program's aux info at this point in time 1029 * since the program pointer itself may not be stable yet, see 1030 * also comment in prog_array_map_poke_run(). 1031 */ 1032 elem->aux = prog_aux; 1033 1034 list_add_tail(&elem->list, &aux->poke_progs); 1035 out: 1036 mutex_unlock(&aux->poke_mutex); 1037 return ret; 1038 } 1039 1040 static void prog_array_map_poke_untrack(struct bpf_map *map, 1041 struct bpf_prog_aux *prog_aux) 1042 { 1043 struct prog_poke_elem *elem, *tmp; 1044 struct bpf_array_aux *aux; 1045 1046 aux = container_of(map, struct bpf_array, map)->aux; 1047 mutex_lock(&aux->poke_mutex); 1048 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1049 if (elem->aux == prog_aux) { 1050 list_del_init(&elem->list); 1051 kfree(elem); 1052 break; 1053 } 1054 } 1055 mutex_unlock(&aux->poke_mutex); 1056 } 1057 1058 void __weak bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 1059 struct bpf_prog *new, struct bpf_prog *old) 1060 { 1061 WARN_ON_ONCE(1); 1062 } 1063 1064 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 1065 struct bpf_prog *old, 1066 struct bpf_prog *new) 1067 { 1068 struct prog_poke_elem *elem; 1069 struct bpf_array_aux *aux; 1070 1071 aux = container_of(map, struct bpf_array, map)->aux; 1072 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 1073 1074 list_for_each_entry(elem, &aux->poke_progs, list) { 1075 struct bpf_jit_poke_descriptor *poke; 1076 int i; 1077 1078 for (i = 0; i < elem->aux->size_poke_tab; i++) { 1079 poke = &elem->aux->poke_tab[i]; 1080 1081 /* Few things to be aware of: 1082 * 1083 * 1) We can only ever access aux in this context, but 1084 * not aux->prog since it might not be stable yet and 1085 * there could be danger of use after free otherwise. 1086 * 2) Initially when we start tracking aux, the program 1087 * is not JITed yet and also does not have a kallsyms 1088 * entry. We skip these as poke->tailcall_target_stable 1089 * is not active yet. The JIT will do the final fixup 1090 * before setting it stable. The various 1091 * poke->tailcall_target_stable are successively 1092 * activated, so tail call updates can arrive from here 1093 * while JIT is still finishing its final fixup for 1094 * non-activated poke entries. 1095 * 3) Also programs reaching refcount of zero while patching 1096 * is in progress is okay since we're protected under 1097 * poke_mutex and untrack the programs before the JIT 1098 * buffer is freed. 1099 */ 1100 if (!READ_ONCE(poke->tailcall_target_stable)) 1101 continue; 1102 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 1103 continue; 1104 if (poke->tail_call.map != map || 1105 poke->tail_call.key != key) 1106 continue; 1107 1108 bpf_arch_poke_desc_update(poke, new, old); 1109 } 1110 } 1111 } 1112 1113 static void prog_array_map_clear_deferred(struct work_struct *work) 1114 { 1115 struct bpf_map *map = container_of(work, struct bpf_array_aux, 1116 work)->map; 1117 bpf_fd_array_map_clear(map, true); 1118 bpf_map_put(map); 1119 } 1120 1121 static void prog_array_map_clear(struct bpf_map *map) 1122 { 1123 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 1124 map)->aux; 1125 bpf_map_inc(map); 1126 schedule_work(&aux->work); 1127 } 1128 1129 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 1130 { 1131 struct bpf_array_aux *aux; 1132 struct bpf_map *map; 1133 1134 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); 1135 if (!aux) 1136 return ERR_PTR(-ENOMEM); 1137 1138 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 1139 INIT_LIST_HEAD(&aux->poke_progs); 1140 mutex_init(&aux->poke_mutex); 1141 1142 map = array_map_alloc(attr); 1143 if (IS_ERR(map)) { 1144 kfree(aux); 1145 return map; 1146 } 1147 1148 container_of(map, struct bpf_array, map)->aux = aux; 1149 aux->map = map; 1150 1151 return map; 1152 } 1153 1154 static void prog_array_map_free(struct bpf_map *map) 1155 { 1156 struct prog_poke_elem *elem, *tmp; 1157 struct bpf_array_aux *aux; 1158 1159 aux = container_of(map, struct bpf_array, map)->aux; 1160 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1161 list_del_init(&elem->list); 1162 kfree(elem); 1163 } 1164 kfree(aux); 1165 fd_array_map_free(map); 1166 } 1167 1168 /* prog_array->aux->{type,jited} is a runtime binding. 1169 * Doing static check alone in the verifier is not enough. 1170 * Thus, prog_array_map cannot be used as an inner_map 1171 * and map_meta_equal is not implemented. 1172 */ 1173 const struct bpf_map_ops prog_array_map_ops = { 1174 .map_alloc_check = fd_array_map_alloc_check, 1175 .map_alloc = prog_array_map_alloc, 1176 .map_free = prog_array_map_free, 1177 .map_poke_track = prog_array_map_poke_track, 1178 .map_poke_untrack = prog_array_map_poke_untrack, 1179 .map_poke_run = prog_array_map_poke_run, 1180 .map_get_next_key = array_map_get_next_key, 1181 .map_lookup_elem = fd_array_map_lookup_elem, 1182 .map_delete_elem = fd_array_map_delete_elem, 1183 .map_fd_get_ptr = prog_fd_array_get_ptr, 1184 .map_fd_put_ptr = prog_fd_array_put_ptr, 1185 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 1186 .map_release_uref = prog_array_map_clear, 1187 .map_seq_show_elem = prog_array_map_seq_show_elem, 1188 .map_mem_usage = array_map_mem_usage, 1189 .map_btf_id = &array_map_btf_ids[0], 1190 }; 1191 1192 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 1193 struct file *map_file) 1194 { 1195 struct bpf_event_entry *ee; 1196 1197 ee = kzalloc(sizeof(*ee), GFP_KERNEL); 1198 if (ee) { 1199 ee->event = perf_file->private_data; 1200 ee->perf_file = perf_file; 1201 ee->map_file = map_file; 1202 } 1203 1204 return ee; 1205 } 1206 1207 static void __bpf_event_entry_free(struct rcu_head *rcu) 1208 { 1209 struct bpf_event_entry *ee; 1210 1211 ee = container_of(rcu, struct bpf_event_entry, rcu); 1212 fput(ee->perf_file); 1213 kfree(ee); 1214 } 1215 1216 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 1217 { 1218 call_rcu(&ee->rcu, __bpf_event_entry_free); 1219 } 1220 1221 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 1222 struct file *map_file, int fd) 1223 { 1224 struct bpf_event_entry *ee; 1225 struct perf_event *event; 1226 struct file *perf_file; 1227 u64 value; 1228 1229 perf_file = perf_event_get(fd); 1230 if (IS_ERR(perf_file)) 1231 return perf_file; 1232 1233 ee = ERR_PTR(-EOPNOTSUPP); 1234 event = perf_file->private_data; 1235 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 1236 goto err_out; 1237 1238 ee = bpf_event_entry_gen(perf_file, map_file); 1239 if (ee) 1240 return ee; 1241 ee = ERR_PTR(-ENOMEM); 1242 err_out: 1243 fput(perf_file); 1244 return ee; 1245 } 1246 1247 static void perf_event_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 1248 { 1249 /* bpf_perf_event is freed after one RCU grace period */ 1250 bpf_event_entry_free_rcu(ptr); 1251 } 1252 1253 static void perf_event_fd_array_release(struct bpf_map *map, 1254 struct file *map_file) 1255 { 1256 struct bpf_array *array = container_of(map, struct bpf_array, map); 1257 struct bpf_event_entry *ee; 1258 int i; 1259 1260 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1261 return; 1262 1263 rcu_read_lock(); 1264 for (i = 0; i < array->map.max_entries; i++) { 1265 ee = READ_ONCE(array->ptrs[i]); 1266 if (ee && ee->map_file == map_file) 1267 __fd_array_map_delete_elem(map, &i, true); 1268 } 1269 rcu_read_unlock(); 1270 } 1271 1272 static void perf_event_fd_array_map_free(struct bpf_map *map) 1273 { 1274 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1275 bpf_fd_array_map_clear(map, false); 1276 fd_array_map_free(map); 1277 } 1278 1279 const struct bpf_map_ops perf_event_array_map_ops = { 1280 .map_meta_equal = bpf_map_meta_equal, 1281 .map_alloc_check = fd_array_map_alloc_check, 1282 .map_alloc = array_map_alloc, 1283 .map_free = perf_event_fd_array_map_free, 1284 .map_get_next_key = array_map_get_next_key, 1285 .map_lookup_elem = fd_array_map_lookup_elem, 1286 .map_delete_elem = fd_array_map_delete_elem, 1287 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 1288 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 1289 .map_release = perf_event_fd_array_release, 1290 .map_check_btf = map_check_no_btf, 1291 .map_mem_usage = array_map_mem_usage, 1292 .map_btf_id = &array_map_btf_ids[0], 1293 }; 1294 1295 #ifdef CONFIG_CGROUPS 1296 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 1297 struct file *map_file /* not used */, 1298 int fd) 1299 { 1300 return cgroup_get_from_fd(fd); 1301 } 1302 1303 static void cgroup_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) 1304 { 1305 /* cgroup_put free cgrp after a rcu grace period */ 1306 cgroup_put(ptr); 1307 } 1308 1309 static void cgroup_fd_array_free(struct bpf_map *map) 1310 { 1311 bpf_fd_array_map_clear(map, false); 1312 fd_array_map_free(map); 1313 } 1314 1315 const struct bpf_map_ops cgroup_array_map_ops = { 1316 .map_meta_equal = bpf_map_meta_equal, 1317 .map_alloc_check = fd_array_map_alloc_check, 1318 .map_alloc = array_map_alloc, 1319 .map_free = cgroup_fd_array_free, 1320 .map_get_next_key = array_map_get_next_key, 1321 .map_lookup_elem = fd_array_map_lookup_elem, 1322 .map_delete_elem = fd_array_map_delete_elem, 1323 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1324 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1325 .map_check_btf = map_check_no_btf, 1326 .map_mem_usage = array_map_mem_usage, 1327 .map_btf_id = &array_map_btf_ids[0], 1328 }; 1329 #endif 1330 1331 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1332 { 1333 struct bpf_map *map, *inner_map_meta; 1334 1335 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1336 if (IS_ERR(inner_map_meta)) 1337 return inner_map_meta; 1338 1339 map = array_map_alloc(attr); 1340 if (IS_ERR(map)) { 1341 bpf_map_meta_free(inner_map_meta); 1342 return map; 1343 } 1344 1345 map->inner_map_meta = inner_map_meta; 1346 1347 return map; 1348 } 1349 1350 static void array_of_map_free(struct bpf_map *map) 1351 { 1352 /* map->inner_map_meta is only accessed by syscall which 1353 * is protected by fdget/fdput. 1354 */ 1355 bpf_map_meta_free(map->inner_map_meta); 1356 bpf_fd_array_map_clear(map, false); 1357 fd_array_map_free(map); 1358 } 1359 1360 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1361 { 1362 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1363 1364 if (!inner_map) 1365 return NULL; 1366 1367 return READ_ONCE(*inner_map); 1368 } 1369 1370 static int array_of_map_gen_lookup(struct bpf_map *map, 1371 struct bpf_insn *insn_buf) 1372 { 1373 struct bpf_array *array = container_of(map, struct bpf_array, map); 1374 u32 elem_size = array->elem_size; 1375 struct bpf_insn *insn = insn_buf; 1376 const int ret = BPF_REG_0; 1377 const int map_ptr = BPF_REG_1; 1378 const int index = BPF_REG_2; 1379 1380 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1381 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1382 if (!map->bypass_spec_v1) { 1383 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1384 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1385 } else { 1386 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1387 } 1388 if (is_power_of_2(elem_size)) 1389 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1390 else 1391 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1392 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1393 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1394 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1395 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1396 *insn++ = BPF_MOV64_IMM(ret, 0); 1397 1398 return insn - insn_buf; 1399 } 1400 1401 const struct bpf_map_ops array_of_maps_map_ops = { 1402 .map_alloc_check = fd_array_map_alloc_check, 1403 .map_alloc = array_of_map_alloc, 1404 .map_free = array_of_map_free, 1405 .map_get_next_key = array_map_get_next_key, 1406 .map_lookup_elem = array_of_map_lookup_elem, 1407 .map_delete_elem = fd_array_map_delete_elem, 1408 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1409 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1410 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1411 .map_gen_lookup = array_of_map_gen_lookup, 1412 .map_lookup_batch = generic_map_lookup_batch, 1413 .map_update_batch = generic_map_update_batch, 1414 .map_check_btf = map_check_no_btf, 1415 .map_mem_usage = array_map_mem_usage, 1416 .map_btf_id = &array_map_btf_ids[0], 1417 }; 1418