xref: /linux/kernel/bpf/arraymap.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016,2017 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/err.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/filter.h>
11 #include <linux/perf_event.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/rcupdate_trace.h>
14 #include <linux/btf_ids.h>
15 
16 #include "map_in_map.h"
17 
18 #define ARRAY_CREATE_FLAG_MASK \
19 	(BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \
20 	 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP)
21 
22 static void bpf_array_free_percpu(struct bpf_array *array)
23 {
24 	int i;
25 
26 	for (i = 0; i < array->map.max_entries; i++) {
27 		free_percpu(array->pptrs[i]);
28 		cond_resched();
29 	}
30 }
31 
32 static int bpf_array_alloc_percpu(struct bpf_array *array)
33 {
34 	void __percpu *ptr;
35 	int i;
36 
37 	for (i = 0; i < array->map.max_entries; i++) {
38 		ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8,
39 					   GFP_USER | __GFP_NOWARN);
40 		if (!ptr) {
41 			bpf_array_free_percpu(array);
42 			return -ENOMEM;
43 		}
44 		array->pptrs[i] = ptr;
45 		cond_resched();
46 	}
47 
48 	return 0;
49 }
50 
51 /* Called from syscall */
52 int array_map_alloc_check(union bpf_attr *attr)
53 {
54 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
55 	int numa_node = bpf_map_attr_numa_node(attr);
56 
57 	/* check sanity of attributes */
58 	if (attr->max_entries == 0 || attr->key_size != 4 ||
59 	    attr->value_size == 0 ||
60 	    attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
61 	    !bpf_map_flags_access_ok(attr->map_flags) ||
62 	    (percpu && numa_node != NUMA_NO_NODE))
63 		return -EINVAL;
64 
65 	if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
66 	    attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP))
67 		return -EINVAL;
68 
69 	if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY &&
70 	    attr->map_flags & BPF_F_PRESERVE_ELEMS)
71 		return -EINVAL;
72 
73 	if (attr->value_size > KMALLOC_MAX_SIZE)
74 		/* if value_size is bigger, the user space won't be able to
75 		 * access the elements.
76 		 */
77 		return -E2BIG;
78 
79 	return 0;
80 }
81 
82 static struct bpf_map *array_map_alloc(union bpf_attr *attr)
83 {
84 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
85 	int numa_node = bpf_map_attr_numa_node(attr);
86 	u32 elem_size, index_mask, max_entries;
87 	bool bypass_spec_v1 = bpf_bypass_spec_v1();
88 	u64 array_size, mask64;
89 	struct bpf_array *array;
90 
91 	elem_size = round_up(attr->value_size, 8);
92 
93 	max_entries = attr->max_entries;
94 
95 	/* On 32 bit archs roundup_pow_of_two() with max_entries that has
96 	 * upper most bit set in u32 space is undefined behavior due to
97 	 * resulting 1U << 32, so do it manually here in u64 space.
98 	 */
99 	mask64 = fls_long(max_entries - 1);
100 	mask64 = 1ULL << mask64;
101 	mask64 -= 1;
102 
103 	index_mask = mask64;
104 	if (!bypass_spec_v1) {
105 		/* round up array size to nearest power of 2,
106 		 * since cpu will speculate within index_mask limits
107 		 */
108 		max_entries = index_mask + 1;
109 		/* Check for overflows. */
110 		if (max_entries < attr->max_entries)
111 			return ERR_PTR(-E2BIG);
112 	}
113 
114 	array_size = sizeof(*array);
115 	if (percpu) {
116 		array_size += (u64) max_entries * sizeof(void *);
117 	} else {
118 		/* rely on vmalloc() to return page-aligned memory and
119 		 * ensure array->value is exactly page-aligned
120 		 */
121 		if (attr->map_flags & BPF_F_MMAPABLE) {
122 			array_size = PAGE_ALIGN(array_size);
123 			array_size += PAGE_ALIGN((u64) max_entries * elem_size);
124 		} else {
125 			array_size += (u64) max_entries * elem_size;
126 		}
127 	}
128 
129 	/* allocate all map elements and zero-initialize them */
130 	if (attr->map_flags & BPF_F_MMAPABLE) {
131 		void *data;
132 
133 		/* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
134 		data = bpf_map_area_mmapable_alloc(array_size, numa_node);
135 		if (!data)
136 			return ERR_PTR(-ENOMEM);
137 		array = data + PAGE_ALIGN(sizeof(struct bpf_array))
138 			- offsetof(struct bpf_array, value);
139 	} else {
140 		array = bpf_map_area_alloc(array_size, numa_node);
141 	}
142 	if (!array)
143 		return ERR_PTR(-ENOMEM);
144 	array->index_mask = index_mask;
145 	array->map.bypass_spec_v1 = bypass_spec_v1;
146 
147 	/* copy mandatory map attributes */
148 	bpf_map_init_from_attr(&array->map, attr);
149 	array->elem_size = elem_size;
150 
151 	if (percpu && bpf_array_alloc_percpu(array)) {
152 		bpf_map_area_free(array);
153 		return ERR_PTR(-ENOMEM);
154 	}
155 
156 	return &array->map;
157 }
158 
159 /* Called from syscall or from eBPF program */
160 static void *array_map_lookup_elem(struct bpf_map *map, void *key)
161 {
162 	struct bpf_array *array = container_of(map, struct bpf_array, map);
163 	u32 index = *(u32 *)key;
164 
165 	if (unlikely(index >= array->map.max_entries))
166 		return NULL;
167 
168 	return array->value + array->elem_size * (index & array->index_mask);
169 }
170 
171 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm,
172 				       u32 off)
173 {
174 	struct bpf_array *array = container_of(map, struct bpf_array, map);
175 
176 	if (map->max_entries != 1)
177 		return -ENOTSUPP;
178 	if (off >= map->value_size)
179 		return -EINVAL;
180 
181 	*imm = (unsigned long)array->value;
182 	return 0;
183 }
184 
185 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm,
186 				       u32 *off)
187 {
188 	struct bpf_array *array = container_of(map, struct bpf_array, map);
189 	u64 base = (unsigned long)array->value;
190 	u64 range = array->elem_size;
191 
192 	if (map->max_entries != 1)
193 		return -ENOTSUPP;
194 	if (imm < base || imm >= base + range)
195 		return -ENOENT;
196 
197 	*off = imm - base;
198 	return 0;
199 }
200 
201 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
202 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
203 {
204 	struct bpf_array *array = container_of(map, struct bpf_array, map);
205 	struct bpf_insn *insn = insn_buf;
206 	u32 elem_size = round_up(map->value_size, 8);
207 	const int ret = BPF_REG_0;
208 	const int map_ptr = BPF_REG_1;
209 	const int index = BPF_REG_2;
210 
211 	if (map->map_flags & BPF_F_INNER_MAP)
212 		return -EOPNOTSUPP;
213 
214 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
215 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
216 	if (!map->bypass_spec_v1) {
217 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
218 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
219 	} else {
220 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
221 	}
222 
223 	if (is_power_of_2(elem_size)) {
224 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
225 	} else {
226 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
227 	}
228 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
229 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
230 	*insn++ = BPF_MOV64_IMM(ret, 0);
231 	return insn - insn_buf;
232 }
233 
234 /* Called from eBPF program */
235 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
236 {
237 	struct bpf_array *array = container_of(map, struct bpf_array, map);
238 	u32 index = *(u32 *)key;
239 
240 	if (unlikely(index >= array->map.max_entries))
241 		return NULL;
242 
243 	return this_cpu_ptr(array->pptrs[index & array->index_mask]);
244 }
245 
246 static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
247 {
248 	struct bpf_array *array = container_of(map, struct bpf_array, map);
249 	u32 index = *(u32 *)key;
250 
251 	if (cpu >= nr_cpu_ids)
252 		return NULL;
253 
254 	if (unlikely(index >= array->map.max_entries))
255 		return NULL;
256 
257 	return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu);
258 }
259 
260 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
261 {
262 	struct bpf_array *array = container_of(map, struct bpf_array, map);
263 	u32 index = *(u32 *)key;
264 	void __percpu *pptr;
265 	int cpu, off = 0;
266 	u32 size;
267 
268 	if (unlikely(index >= array->map.max_entries))
269 		return -ENOENT;
270 
271 	/* per_cpu areas are zero-filled and bpf programs can only
272 	 * access 'value_size' of them, so copying rounded areas
273 	 * will not leak any kernel data
274 	 */
275 	size = round_up(map->value_size, 8);
276 	rcu_read_lock();
277 	pptr = array->pptrs[index & array->index_mask];
278 	for_each_possible_cpu(cpu) {
279 		bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size);
280 		off += size;
281 	}
282 	rcu_read_unlock();
283 	return 0;
284 }
285 
286 /* Called from syscall */
287 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
288 {
289 	struct bpf_array *array = container_of(map, struct bpf_array, map);
290 	u32 index = key ? *(u32 *)key : U32_MAX;
291 	u32 *next = (u32 *)next_key;
292 
293 	if (index >= array->map.max_entries) {
294 		*next = 0;
295 		return 0;
296 	}
297 
298 	if (index == array->map.max_entries - 1)
299 		return -ENOENT;
300 
301 	*next = index + 1;
302 	return 0;
303 }
304 
305 static void check_and_free_fields(struct bpf_array *arr, void *val)
306 {
307 	if (map_value_has_timer(&arr->map))
308 		bpf_timer_cancel_and_free(val + arr->map.timer_off);
309 	if (map_value_has_kptrs(&arr->map))
310 		bpf_map_free_kptrs(&arr->map, val);
311 }
312 
313 /* Called from syscall or from eBPF program */
314 static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
315 				 u64 map_flags)
316 {
317 	struct bpf_array *array = container_of(map, struct bpf_array, map);
318 	u32 index = *(u32 *)key;
319 	char *val;
320 
321 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
322 		/* unknown flags */
323 		return -EINVAL;
324 
325 	if (unlikely(index >= array->map.max_entries))
326 		/* all elements were pre-allocated, cannot insert a new one */
327 		return -E2BIG;
328 
329 	if (unlikely(map_flags & BPF_NOEXIST))
330 		/* all elements already exist */
331 		return -EEXIST;
332 
333 	if (unlikely((map_flags & BPF_F_LOCK) &&
334 		     !map_value_has_spin_lock(map)))
335 		return -EINVAL;
336 
337 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
338 		memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]),
339 		       value, map->value_size);
340 	} else {
341 		val = array->value +
342 			array->elem_size * (index & array->index_mask);
343 		if (map_flags & BPF_F_LOCK)
344 			copy_map_value_locked(map, val, value, false);
345 		else
346 			copy_map_value(map, val, value);
347 		check_and_free_fields(array, val);
348 	}
349 	return 0;
350 }
351 
352 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
353 			    u64 map_flags)
354 {
355 	struct bpf_array *array = container_of(map, struct bpf_array, map);
356 	u32 index = *(u32 *)key;
357 	void __percpu *pptr;
358 	int cpu, off = 0;
359 	u32 size;
360 
361 	if (unlikely(map_flags > BPF_EXIST))
362 		/* unknown flags */
363 		return -EINVAL;
364 
365 	if (unlikely(index >= array->map.max_entries))
366 		/* all elements were pre-allocated, cannot insert a new one */
367 		return -E2BIG;
368 
369 	if (unlikely(map_flags == BPF_NOEXIST))
370 		/* all elements already exist */
371 		return -EEXIST;
372 
373 	/* the user space will provide round_up(value_size, 8) bytes that
374 	 * will be copied into per-cpu area. bpf programs can only access
375 	 * value_size of it. During lookup the same extra bytes will be
376 	 * returned or zeros which were zero-filled by percpu_alloc,
377 	 * so no kernel data leaks possible
378 	 */
379 	size = round_up(map->value_size, 8);
380 	rcu_read_lock();
381 	pptr = array->pptrs[index & array->index_mask];
382 	for_each_possible_cpu(cpu) {
383 		bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size);
384 		off += size;
385 	}
386 	rcu_read_unlock();
387 	return 0;
388 }
389 
390 /* Called from syscall or from eBPF program */
391 static int array_map_delete_elem(struct bpf_map *map, void *key)
392 {
393 	return -EINVAL;
394 }
395 
396 static void *array_map_vmalloc_addr(struct bpf_array *array)
397 {
398 	return (void *)round_down((unsigned long)array, PAGE_SIZE);
399 }
400 
401 static void array_map_free_timers(struct bpf_map *map)
402 {
403 	struct bpf_array *array = container_of(map, struct bpf_array, map);
404 	int i;
405 
406 	/* We don't reset or free kptr on uref dropping to zero. */
407 	if (!map_value_has_timer(map))
408 		return;
409 
410 	for (i = 0; i < array->map.max_entries; i++)
411 		bpf_timer_cancel_and_free(array->value + array->elem_size * i +
412 					  map->timer_off);
413 }
414 
415 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
416 static void array_map_free(struct bpf_map *map)
417 {
418 	struct bpf_array *array = container_of(map, struct bpf_array, map);
419 	int i;
420 
421 	if (map_value_has_kptrs(map)) {
422 		for (i = 0; i < array->map.max_entries; i++)
423 			bpf_map_free_kptrs(map, array->value + array->elem_size * i);
424 		bpf_map_free_kptr_off_tab(map);
425 	}
426 
427 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
428 		bpf_array_free_percpu(array);
429 
430 	if (array->map.map_flags & BPF_F_MMAPABLE)
431 		bpf_map_area_free(array_map_vmalloc_addr(array));
432 	else
433 		bpf_map_area_free(array);
434 }
435 
436 static void array_map_seq_show_elem(struct bpf_map *map, void *key,
437 				    struct seq_file *m)
438 {
439 	void *value;
440 
441 	rcu_read_lock();
442 
443 	value = array_map_lookup_elem(map, key);
444 	if (!value) {
445 		rcu_read_unlock();
446 		return;
447 	}
448 
449 	if (map->btf_key_type_id)
450 		seq_printf(m, "%u: ", *(u32 *)key);
451 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
452 	seq_puts(m, "\n");
453 
454 	rcu_read_unlock();
455 }
456 
457 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key,
458 					   struct seq_file *m)
459 {
460 	struct bpf_array *array = container_of(map, struct bpf_array, map);
461 	u32 index = *(u32 *)key;
462 	void __percpu *pptr;
463 	int cpu;
464 
465 	rcu_read_lock();
466 
467 	seq_printf(m, "%u: {\n", *(u32 *)key);
468 	pptr = array->pptrs[index & array->index_mask];
469 	for_each_possible_cpu(cpu) {
470 		seq_printf(m, "\tcpu%d: ", cpu);
471 		btf_type_seq_show(map->btf, map->btf_value_type_id,
472 				  per_cpu_ptr(pptr, cpu), m);
473 		seq_puts(m, "\n");
474 	}
475 	seq_puts(m, "}\n");
476 
477 	rcu_read_unlock();
478 }
479 
480 static int array_map_check_btf(const struct bpf_map *map,
481 			       const struct btf *btf,
482 			       const struct btf_type *key_type,
483 			       const struct btf_type *value_type)
484 {
485 	u32 int_data;
486 
487 	/* One exception for keyless BTF: .bss/.data/.rodata map */
488 	if (btf_type_is_void(key_type)) {
489 		if (map->map_type != BPF_MAP_TYPE_ARRAY ||
490 		    map->max_entries != 1)
491 			return -EINVAL;
492 
493 		if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC)
494 			return -EINVAL;
495 
496 		return 0;
497 	}
498 
499 	if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
500 		return -EINVAL;
501 
502 	int_data = *(u32 *)(key_type + 1);
503 	/* bpf array can only take a u32 key. This check makes sure
504 	 * that the btf matches the attr used during map_create.
505 	 */
506 	if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
507 		return -EINVAL;
508 
509 	return 0;
510 }
511 
512 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
513 {
514 	struct bpf_array *array = container_of(map, struct bpf_array, map);
515 	pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
516 
517 	if (!(map->map_flags & BPF_F_MMAPABLE))
518 		return -EINVAL;
519 
520 	if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) >
521 	    PAGE_ALIGN((u64)array->map.max_entries * array->elem_size))
522 		return -EINVAL;
523 
524 	return remap_vmalloc_range(vma, array_map_vmalloc_addr(array),
525 				   vma->vm_pgoff + pgoff);
526 }
527 
528 static bool array_map_meta_equal(const struct bpf_map *meta0,
529 				 const struct bpf_map *meta1)
530 {
531 	if (!bpf_map_meta_equal(meta0, meta1))
532 		return false;
533 	return meta0->map_flags & BPF_F_INNER_MAP ? true :
534 	       meta0->max_entries == meta1->max_entries;
535 }
536 
537 struct bpf_iter_seq_array_map_info {
538 	struct bpf_map *map;
539 	void *percpu_value_buf;
540 	u32 index;
541 };
542 
543 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos)
544 {
545 	struct bpf_iter_seq_array_map_info *info = seq->private;
546 	struct bpf_map *map = info->map;
547 	struct bpf_array *array;
548 	u32 index;
549 
550 	if (info->index >= map->max_entries)
551 		return NULL;
552 
553 	if (*pos == 0)
554 		++*pos;
555 	array = container_of(map, struct bpf_array, map);
556 	index = info->index & array->index_mask;
557 	if (info->percpu_value_buf)
558 	       return array->pptrs[index];
559 	return array->value + array->elem_size * index;
560 }
561 
562 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
563 {
564 	struct bpf_iter_seq_array_map_info *info = seq->private;
565 	struct bpf_map *map = info->map;
566 	struct bpf_array *array;
567 	u32 index;
568 
569 	++*pos;
570 	++info->index;
571 	if (info->index >= map->max_entries)
572 		return NULL;
573 
574 	array = container_of(map, struct bpf_array, map);
575 	index = info->index & array->index_mask;
576 	if (info->percpu_value_buf)
577 	       return array->pptrs[index];
578 	return array->value + array->elem_size * index;
579 }
580 
581 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v)
582 {
583 	struct bpf_iter_seq_array_map_info *info = seq->private;
584 	struct bpf_iter__bpf_map_elem ctx = {};
585 	struct bpf_map *map = info->map;
586 	struct bpf_iter_meta meta;
587 	struct bpf_prog *prog;
588 	int off = 0, cpu = 0;
589 	void __percpu **pptr;
590 	u32 size;
591 
592 	meta.seq = seq;
593 	prog = bpf_iter_get_info(&meta, v == NULL);
594 	if (!prog)
595 		return 0;
596 
597 	ctx.meta = &meta;
598 	ctx.map = info->map;
599 	if (v) {
600 		ctx.key = &info->index;
601 
602 		if (!info->percpu_value_buf) {
603 			ctx.value = v;
604 		} else {
605 			pptr = v;
606 			size = round_up(map->value_size, 8);
607 			for_each_possible_cpu(cpu) {
608 				bpf_long_memcpy(info->percpu_value_buf + off,
609 						per_cpu_ptr(pptr, cpu),
610 						size);
611 				off += size;
612 			}
613 			ctx.value = info->percpu_value_buf;
614 		}
615 	}
616 
617 	return bpf_iter_run_prog(prog, &ctx);
618 }
619 
620 static int bpf_array_map_seq_show(struct seq_file *seq, void *v)
621 {
622 	return __bpf_array_map_seq_show(seq, v);
623 }
624 
625 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v)
626 {
627 	if (!v)
628 		(void)__bpf_array_map_seq_show(seq, NULL);
629 }
630 
631 static int bpf_iter_init_array_map(void *priv_data,
632 				   struct bpf_iter_aux_info *aux)
633 {
634 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
635 	struct bpf_map *map = aux->map;
636 	void *value_buf;
637 	u32 buf_size;
638 
639 	if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
640 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
641 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
642 		if (!value_buf)
643 			return -ENOMEM;
644 
645 		seq_info->percpu_value_buf = value_buf;
646 	}
647 
648 	seq_info->map = map;
649 	return 0;
650 }
651 
652 static void bpf_iter_fini_array_map(void *priv_data)
653 {
654 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
655 
656 	kfree(seq_info->percpu_value_buf);
657 }
658 
659 static const struct seq_operations bpf_array_map_seq_ops = {
660 	.start	= bpf_array_map_seq_start,
661 	.next	= bpf_array_map_seq_next,
662 	.stop	= bpf_array_map_seq_stop,
663 	.show	= bpf_array_map_seq_show,
664 };
665 
666 static const struct bpf_iter_seq_info iter_seq_info = {
667 	.seq_ops		= &bpf_array_map_seq_ops,
668 	.init_seq_private	= bpf_iter_init_array_map,
669 	.fini_seq_private	= bpf_iter_fini_array_map,
670 	.seq_priv_size		= sizeof(struct bpf_iter_seq_array_map_info),
671 };
672 
673 static int bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn,
674 				   void *callback_ctx, u64 flags)
675 {
676 	u32 i, key, num_elems = 0;
677 	struct bpf_array *array;
678 	bool is_percpu;
679 	u64 ret = 0;
680 	void *val;
681 
682 	if (flags != 0)
683 		return -EINVAL;
684 
685 	is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
686 	array = container_of(map, struct bpf_array, map);
687 	if (is_percpu)
688 		migrate_disable();
689 	for (i = 0; i < map->max_entries; i++) {
690 		if (is_percpu)
691 			val = this_cpu_ptr(array->pptrs[i]);
692 		else
693 			val = array->value + array->elem_size * i;
694 		num_elems++;
695 		key = i;
696 		ret = callback_fn((u64)(long)map, (u64)(long)&key,
697 				  (u64)(long)val, (u64)(long)callback_ctx, 0);
698 		/* return value: 0 - continue, 1 - stop and return */
699 		if (ret)
700 			break;
701 	}
702 
703 	if (is_percpu)
704 		migrate_enable();
705 	return num_elems;
706 }
707 
708 BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array)
709 const struct bpf_map_ops array_map_ops = {
710 	.map_meta_equal = array_map_meta_equal,
711 	.map_alloc_check = array_map_alloc_check,
712 	.map_alloc = array_map_alloc,
713 	.map_free = array_map_free,
714 	.map_get_next_key = array_map_get_next_key,
715 	.map_release_uref = array_map_free_timers,
716 	.map_lookup_elem = array_map_lookup_elem,
717 	.map_update_elem = array_map_update_elem,
718 	.map_delete_elem = array_map_delete_elem,
719 	.map_gen_lookup = array_map_gen_lookup,
720 	.map_direct_value_addr = array_map_direct_value_addr,
721 	.map_direct_value_meta = array_map_direct_value_meta,
722 	.map_mmap = array_map_mmap,
723 	.map_seq_show_elem = array_map_seq_show_elem,
724 	.map_check_btf = array_map_check_btf,
725 	.map_lookup_batch = generic_map_lookup_batch,
726 	.map_update_batch = generic_map_update_batch,
727 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
728 	.map_for_each_callback = bpf_for_each_array_elem,
729 	.map_btf_id = &array_map_btf_ids[0],
730 	.iter_seq_info = &iter_seq_info,
731 };
732 
733 const struct bpf_map_ops percpu_array_map_ops = {
734 	.map_meta_equal = bpf_map_meta_equal,
735 	.map_alloc_check = array_map_alloc_check,
736 	.map_alloc = array_map_alloc,
737 	.map_free = array_map_free,
738 	.map_get_next_key = array_map_get_next_key,
739 	.map_lookup_elem = percpu_array_map_lookup_elem,
740 	.map_update_elem = array_map_update_elem,
741 	.map_delete_elem = array_map_delete_elem,
742 	.map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem,
743 	.map_seq_show_elem = percpu_array_map_seq_show_elem,
744 	.map_check_btf = array_map_check_btf,
745 	.map_lookup_batch = generic_map_lookup_batch,
746 	.map_update_batch = generic_map_update_batch,
747 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
748 	.map_for_each_callback = bpf_for_each_array_elem,
749 	.map_btf_id = &array_map_btf_ids[0],
750 	.iter_seq_info = &iter_seq_info,
751 };
752 
753 static int fd_array_map_alloc_check(union bpf_attr *attr)
754 {
755 	/* only file descriptors can be stored in this type of map */
756 	if (attr->value_size != sizeof(u32))
757 		return -EINVAL;
758 	/* Program read-only/write-only not supported for special maps yet. */
759 	if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG))
760 		return -EINVAL;
761 	return array_map_alloc_check(attr);
762 }
763 
764 static void fd_array_map_free(struct bpf_map *map)
765 {
766 	struct bpf_array *array = container_of(map, struct bpf_array, map);
767 	int i;
768 
769 	/* make sure it's empty */
770 	for (i = 0; i < array->map.max_entries; i++)
771 		BUG_ON(array->ptrs[i] != NULL);
772 
773 	bpf_map_area_free(array);
774 }
775 
776 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
777 {
778 	return ERR_PTR(-EOPNOTSUPP);
779 }
780 
781 /* only called from syscall */
782 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
783 {
784 	void **elem, *ptr;
785 	int ret =  0;
786 
787 	if (!map->ops->map_fd_sys_lookup_elem)
788 		return -ENOTSUPP;
789 
790 	rcu_read_lock();
791 	elem = array_map_lookup_elem(map, key);
792 	if (elem && (ptr = READ_ONCE(*elem)))
793 		*value = map->ops->map_fd_sys_lookup_elem(ptr);
794 	else
795 		ret = -ENOENT;
796 	rcu_read_unlock();
797 
798 	return ret;
799 }
800 
801 /* only called from syscall */
802 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
803 				 void *key, void *value, u64 map_flags)
804 {
805 	struct bpf_array *array = container_of(map, struct bpf_array, map);
806 	void *new_ptr, *old_ptr;
807 	u32 index = *(u32 *)key, ufd;
808 
809 	if (map_flags != BPF_ANY)
810 		return -EINVAL;
811 
812 	if (index >= array->map.max_entries)
813 		return -E2BIG;
814 
815 	ufd = *(u32 *)value;
816 	new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
817 	if (IS_ERR(new_ptr))
818 		return PTR_ERR(new_ptr);
819 
820 	if (map->ops->map_poke_run) {
821 		mutex_lock(&array->aux->poke_mutex);
822 		old_ptr = xchg(array->ptrs + index, new_ptr);
823 		map->ops->map_poke_run(map, index, old_ptr, new_ptr);
824 		mutex_unlock(&array->aux->poke_mutex);
825 	} else {
826 		old_ptr = xchg(array->ptrs + index, new_ptr);
827 	}
828 
829 	if (old_ptr)
830 		map->ops->map_fd_put_ptr(old_ptr);
831 	return 0;
832 }
833 
834 static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
835 {
836 	struct bpf_array *array = container_of(map, struct bpf_array, map);
837 	void *old_ptr;
838 	u32 index = *(u32 *)key;
839 
840 	if (index >= array->map.max_entries)
841 		return -E2BIG;
842 
843 	if (map->ops->map_poke_run) {
844 		mutex_lock(&array->aux->poke_mutex);
845 		old_ptr = xchg(array->ptrs + index, NULL);
846 		map->ops->map_poke_run(map, index, old_ptr, NULL);
847 		mutex_unlock(&array->aux->poke_mutex);
848 	} else {
849 		old_ptr = xchg(array->ptrs + index, NULL);
850 	}
851 
852 	if (old_ptr) {
853 		map->ops->map_fd_put_ptr(old_ptr);
854 		return 0;
855 	} else {
856 		return -ENOENT;
857 	}
858 }
859 
860 static void *prog_fd_array_get_ptr(struct bpf_map *map,
861 				   struct file *map_file, int fd)
862 {
863 	struct bpf_prog *prog = bpf_prog_get(fd);
864 
865 	if (IS_ERR(prog))
866 		return prog;
867 
868 	if (!bpf_prog_map_compatible(map, prog)) {
869 		bpf_prog_put(prog);
870 		return ERR_PTR(-EINVAL);
871 	}
872 
873 	return prog;
874 }
875 
876 static void prog_fd_array_put_ptr(void *ptr)
877 {
878 	bpf_prog_put(ptr);
879 }
880 
881 static u32 prog_fd_array_sys_lookup_elem(void *ptr)
882 {
883 	return ((struct bpf_prog *)ptr)->aux->id;
884 }
885 
886 /* decrement refcnt of all bpf_progs that are stored in this map */
887 static void bpf_fd_array_map_clear(struct bpf_map *map)
888 {
889 	struct bpf_array *array = container_of(map, struct bpf_array, map);
890 	int i;
891 
892 	for (i = 0; i < array->map.max_entries; i++)
893 		fd_array_map_delete_elem(map, &i);
894 }
895 
896 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
897 					 struct seq_file *m)
898 {
899 	void **elem, *ptr;
900 	u32 prog_id;
901 
902 	rcu_read_lock();
903 
904 	elem = array_map_lookup_elem(map, key);
905 	if (elem) {
906 		ptr = READ_ONCE(*elem);
907 		if (ptr) {
908 			seq_printf(m, "%u: ", *(u32 *)key);
909 			prog_id = prog_fd_array_sys_lookup_elem(ptr);
910 			btf_type_seq_show(map->btf, map->btf_value_type_id,
911 					  &prog_id, m);
912 			seq_puts(m, "\n");
913 		}
914 	}
915 
916 	rcu_read_unlock();
917 }
918 
919 struct prog_poke_elem {
920 	struct list_head list;
921 	struct bpf_prog_aux *aux;
922 };
923 
924 static int prog_array_map_poke_track(struct bpf_map *map,
925 				     struct bpf_prog_aux *prog_aux)
926 {
927 	struct prog_poke_elem *elem;
928 	struct bpf_array_aux *aux;
929 	int ret = 0;
930 
931 	aux = container_of(map, struct bpf_array, map)->aux;
932 	mutex_lock(&aux->poke_mutex);
933 	list_for_each_entry(elem, &aux->poke_progs, list) {
934 		if (elem->aux == prog_aux)
935 			goto out;
936 	}
937 
938 	elem = kmalloc(sizeof(*elem), GFP_KERNEL);
939 	if (!elem) {
940 		ret = -ENOMEM;
941 		goto out;
942 	}
943 
944 	INIT_LIST_HEAD(&elem->list);
945 	/* We must track the program's aux info at this point in time
946 	 * since the program pointer itself may not be stable yet, see
947 	 * also comment in prog_array_map_poke_run().
948 	 */
949 	elem->aux = prog_aux;
950 
951 	list_add_tail(&elem->list, &aux->poke_progs);
952 out:
953 	mutex_unlock(&aux->poke_mutex);
954 	return ret;
955 }
956 
957 static void prog_array_map_poke_untrack(struct bpf_map *map,
958 					struct bpf_prog_aux *prog_aux)
959 {
960 	struct prog_poke_elem *elem, *tmp;
961 	struct bpf_array_aux *aux;
962 
963 	aux = container_of(map, struct bpf_array, map)->aux;
964 	mutex_lock(&aux->poke_mutex);
965 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
966 		if (elem->aux == prog_aux) {
967 			list_del_init(&elem->list);
968 			kfree(elem);
969 			break;
970 		}
971 	}
972 	mutex_unlock(&aux->poke_mutex);
973 }
974 
975 static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
976 				    struct bpf_prog *old,
977 				    struct bpf_prog *new)
978 {
979 	u8 *old_addr, *new_addr, *old_bypass_addr;
980 	struct prog_poke_elem *elem;
981 	struct bpf_array_aux *aux;
982 
983 	aux = container_of(map, struct bpf_array, map)->aux;
984 	WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
985 
986 	list_for_each_entry(elem, &aux->poke_progs, list) {
987 		struct bpf_jit_poke_descriptor *poke;
988 		int i, ret;
989 
990 		for (i = 0; i < elem->aux->size_poke_tab; i++) {
991 			poke = &elem->aux->poke_tab[i];
992 
993 			/* Few things to be aware of:
994 			 *
995 			 * 1) We can only ever access aux in this context, but
996 			 *    not aux->prog since it might not be stable yet and
997 			 *    there could be danger of use after free otherwise.
998 			 * 2) Initially when we start tracking aux, the program
999 			 *    is not JITed yet and also does not have a kallsyms
1000 			 *    entry. We skip these as poke->tailcall_target_stable
1001 			 *    is not active yet. The JIT will do the final fixup
1002 			 *    before setting it stable. The various
1003 			 *    poke->tailcall_target_stable are successively
1004 			 *    activated, so tail call updates can arrive from here
1005 			 *    while JIT is still finishing its final fixup for
1006 			 *    non-activated poke entries.
1007 			 * 3) On program teardown, the program's kallsym entry gets
1008 			 *    removed out of RCU callback, but we can only untrack
1009 			 *    from sleepable context, therefore bpf_arch_text_poke()
1010 			 *    might not see that this is in BPF text section and
1011 			 *    bails out with -EINVAL. As these are unreachable since
1012 			 *    RCU grace period already passed, we simply skip them.
1013 			 * 4) Also programs reaching refcount of zero while patching
1014 			 *    is in progress is okay since we're protected under
1015 			 *    poke_mutex and untrack the programs before the JIT
1016 			 *    buffer is freed. When we're still in the middle of
1017 			 *    patching and suddenly kallsyms entry of the program
1018 			 *    gets evicted, we just skip the rest which is fine due
1019 			 *    to point 3).
1020 			 * 5) Any other error happening below from bpf_arch_text_poke()
1021 			 *    is a unexpected bug.
1022 			 */
1023 			if (!READ_ONCE(poke->tailcall_target_stable))
1024 				continue;
1025 			if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
1026 				continue;
1027 			if (poke->tail_call.map != map ||
1028 			    poke->tail_call.key != key)
1029 				continue;
1030 
1031 			old_bypass_addr = old ? NULL : poke->bypass_addr;
1032 			old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
1033 			new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
1034 
1035 			if (new) {
1036 				ret = bpf_arch_text_poke(poke->tailcall_target,
1037 							 BPF_MOD_JUMP,
1038 							 old_addr, new_addr);
1039 				BUG_ON(ret < 0 && ret != -EINVAL);
1040 				if (!old) {
1041 					ret = bpf_arch_text_poke(poke->tailcall_bypass,
1042 								 BPF_MOD_JUMP,
1043 								 poke->bypass_addr,
1044 								 NULL);
1045 					BUG_ON(ret < 0 && ret != -EINVAL);
1046 				}
1047 			} else {
1048 				ret = bpf_arch_text_poke(poke->tailcall_bypass,
1049 							 BPF_MOD_JUMP,
1050 							 old_bypass_addr,
1051 							 poke->bypass_addr);
1052 				BUG_ON(ret < 0 && ret != -EINVAL);
1053 				/* let other CPUs finish the execution of program
1054 				 * so that it will not possible to expose them
1055 				 * to invalid nop, stack unwind, nop state
1056 				 */
1057 				if (!ret)
1058 					synchronize_rcu();
1059 				ret = bpf_arch_text_poke(poke->tailcall_target,
1060 							 BPF_MOD_JUMP,
1061 							 old_addr, NULL);
1062 				BUG_ON(ret < 0 && ret != -EINVAL);
1063 			}
1064 		}
1065 	}
1066 }
1067 
1068 static void prog_array_map_clear_deferred(struct work_struct *work)
1069 {
1070 	struct bpf_map *map = container_of(work, struct bpf_array_aux,
1071 					   work)->map;
1072 	bpf_fd_array_map_clear(map);
1073 	bpf_map_put(map);
1074 }
1075 
1076 static void prog_array_map_clear(struct bpf_map *map)
1077 {
1078 	struct bpf_array_aux *aux = container_of(map, struct bpf_array,
1079 						 map)->aux;
1080 	bpf_map_inc(map);
1081 	schedule_work(&aux->work);
1082 }
1083 
1084 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
1085 {
1086 	struct bpf_array_aux *aux;
1087 	struct bpf_map *map;
1088 
1089 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT);
1090 	if (!aux)
1091 		return ERR_PTR(-ENOMEM);
1092 
1093 	INIT_WORK(&aux->work, prog_array_map_clear_deferred);
1094 	INIT_LIST_HEAD(&aux->poke_progs);
1095 	mutex_init(&aux->poke_mutex);
1096 
1097 	map = array_map_alloc(attr);
1098 	if (IS_ERR(map)) {
1099 		kfree(aux);
1100 		return map;
1101 	}
1102 
1103 	container_of(map, struct bpf_array, map)->aux = aux;
1104 	aux->map = map;
1105 
1106 	return map;
1107 }
1108 
1109 static void prog_array_map_free(struct bpf_map *map)
1110 {
1111 	struct prog_poke_elem *elem, *tmp;
1112 	struct bpf_array_aux *aux;
1113 
1114 	aux = container_of(map, struct bpf_array, map)->aux;
1115 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
1116 		list_del_init(&elem->list);
1117 		kfree(elem);
1118 	}
1119 	kfree(aux);
1120 	fd_array_map_free(map);
1121 }
1122 
1123 /* prog_array->aux->{type,jited} is a runtime binding.
1124  * Doing static check alone in the verifier is not enough.
1125  * Thus, prog_array_map cannot be used as an inner_map
1126  * and map_meta_equal is not implemented.
1127  */
1128 const struct bpf_map_ops prog_array_map_ops = {
1129 	.map_alloc_check = fd_array_map_alloc_check,
1130 	.map_alloc = prog_array_map_alloc,
1131 	.map_free = prog_array_map_free,
1132 	.map_poke_track = prog_array_map_poke_track,
1133 	.map_poke_untrack = prog_array_map_poke_untrack,
1134 	.map_poke_run = prog_array_map_poke_run,
1135 	.map_get_next_key = array_map_get_next_key,
1136 	.map_lookup_elem = fd_array_map_lookup_elem,
1137 	.map_delete_elem = fd_array_map_delete_elem,
1138 	.map_fd_get_ptr = prog_fd_array_get_ptr,
1139 	.map_fd_put_ptr = prog_fd_array_put_ptr,
1140 	.map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
1141 	.map_release_uref = prog_array_map_clear,
1142 	.map_seq_show_elem = prog_array_map_seq_show_elem,
1143 	.map_btf_id = &array_map_btf_ids[0],
1144 };
1145 
1146 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
1147 						   struct file *map_file)
1148 {
1149 	struct bpf_event_entry *ee;
1150 
1151 	ee = kzalloc(sizeof(*ee), GFP_ATOMIC);
1152 	if (ee) {
1153 		ee->event = perf_file->private_data;
1154 		ee->perf_file = perf_file;
1155 		ee->map_file = map_file;
1156 	}
1157 
1158 	return ee;
1159 }
1160 
1161 static void __bpf_event_entry_free(struct rcu_head *rcu)
1162 {
1163 	struct bpf_event_entry *ee;
1164 
1165 	ee = container_of(rcu, struct bpf_event_entry, rcu);
1166 	fput(ee->perf_file);
1167 	kfree(ee);
1168 }
1169 
1170 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
1171 {
1172 	call_rcu(&ee->rcu, __bpf_event_entry_free);
1173 }
1174 
1175 static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
1176 					 struct file *map_file, int fd)
1177 {
1178 	struct bpf_event_entry *ee;
1179 	struct perf_event *event;
1180 	struct file *perf_file;
1181 	u64 value;
1182 
1183 	perf_file = perf_event_get(fd);
1184 	if (IS_ERR(perf_file))
1185 		return perf_file;
1186 
1187 	ee = ERR_PTR(-EOPNOTSUPP);
1188 	event = perf_file->private_data;
1189 	if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
1190 		goto err_out;
1191 
1192 	ee = bpf_event_entry_gen(perf_file, map_file);
1193 	if (ee)
1194 		return ee;
1195 	ee = ERR_PTR(-ENOMEM);
1196 err_out:
1197 	fput(perf_file);
1198 	return ee;
1199 }
1200 
1201 static void perf_event_fd_array_put_ptr(void *ptr)
1202 {
1203 	bpf_event_entry_free_rcu(ptr);
1204 }
1205 
1206 static void perf_event_fd_array_release(struct bpf_map *map,
1207 					struct file *map_file)
1208 {
1209 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1210 	struct bpf_event_entry *ee;
1211 	int i;
1212 
1213 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1214 		return;
1215 
1216 	rcu_read_lock();
1217 	for (i = 0; i < array->map.max_entries; i++) {
1218 		ee = READ_ONCE(array->ptrs[i]);
1219 		if (ee && ee->map_file == map_file)
1220 			fd_array_map_delete_elem(map, &i);
1221 	}
1222 	rcu_read_unlock();
1223 }
1224 
1225 static void perf_event_fd_array_map_free(struct bpf_map *map)
1226 {
1227 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1228 		bpf_fd_array_map_clear(map);
1229 	fd_array_map_free(map);
1230 }
1231 
1232 const struct bpf_map_ops perf_event_array_map_ops = {
1233 	.map_meta_equal = bpf_map_meta_equal,
1234 	.map_alloc_check = fd_array_map_alloc_check,
1235 	.map_alloc = array_map_alloc,
1236 	.map_free = perf_event_fd_array_map_free,
1237 	.map_get_next_key = array_map_get_next_key,
1238 	.map_lookup_elem = fd_array_map_lookup_elem,
1239 	.map_delete_elem = fd_array_map_delete_elem,
1240 	.map_fd_get_ptr = perf_event_fd_array_get_ptr,
1241 	.map_fd_put_ptr = perf_event_fd_array_put_ptr,
1242 	.map_release = perf_event_fd_array_release,
1243 	.map_check_btf = map_check_no_btf,
1244 	.map_btf_id = &array_map_btf_ids[0],
1245 };
1246 
1247 #ifdef CONFIG_CGROUPS
1248 static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
1249 				     struct file *map_file /* not used */,
1250 				     int fd)
1251 {
1252 	return cgroup_get_from_fd(fd);
1253 }
1254 
1255 static void cgroup_fd_array_put_ptr(void *ptr)
1256 {
1257 	/* cgroup_put free cgrp after a rcu grace period */
1258 	cgroup_put(ptr);
1259 }
1260 
1261 static void cgroup_fd_array_free(struct bpf_map *map)
1262 {
1263 	bpf_fd_array_map_clear(map);
1264 	fd_array_map_free(map);
1265 }
1266 
1267 const struct bpf_map_ops cgroup_array_map_ops = {
1268 	.map_meta_equal = bpf_map_meta_equal,
1269 	.map_alloc_check = fd_array_map_alloc_check,
1270 	.map_alloc = array_map_alloc,
1271 	.map_free = cgroup_fd_array_free,
1272 	.map_get_next_key = array_map_get_next_key,
1273 	.map_lookup_elem = fd_array_map_lookup_elem,
1274 	.map_delete_elem = fd_array_map_delete_elem,
1275 	.map_fd_get_ptr = cgroup_fd_array_get_ptr,
1276 	.map_fd_put_ptr = cgroup_fd_array_put_ptr,
1277 	.map_check_btf = map_check_no_btf,
1278 	.map_btf_id = &array_map_btf_ids[0],
1279 };
1280 #endif
1281 
1282 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
1283 {
1284 	struct bpf_map *map, *inner_map_meta;
1285 
1286 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
1287 	if (IS_ERR(inner_map_meta))
1288 		return inner_map_meta;
1289 
1290 	map = array_map_alloc(attr);
1291 	if (IS_ERR(map)) {
1292 		bpf_map_meta_free(inner_map_meta);
1293 		return map;
1294 	}
1295 
1296 	map->inner_map_meta = inner_map_meta;
1297 
1298 	return map;
1299 }
1300 
1301 static void array_of_map_free(struct bpf_map *map)
1302 {
1303 	/* map->inner_map_meta is only accessed by syscall which
1304 	 * is protected by fdget/fdput.
1305 	 */
1306 	bpf_map_meta_free(map->inner_map_meta);
1307 	bpf_fd_array_map_clear(map);
1308 	fd_array_map_free(map);
1309 }
1310 
1311 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
1312 {
1313 	struct bpf_map **inner_map = array_map_lookup_elem(map, key);
1314 
1315 	if (!inner_map)
1316 		return NULL;
1317 
1318 	return READ_ONCE(*inner_map);
1319 }
1320 
1321 static int array_of_map_gen_lookup(struct bpf_map *map,
1322 				   struct bpf_insn *insn_buf)
1323 {
1324 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1325 	u32 elem_size = round_up(map->value_size, 8);
1326 	struct bpf_insn *insn = insn_buf;
1327 	const int ret = BPF_REG_0;
1328 	const int map_ptr = BPF_REG_1;
1329 	const int index = BPF_REG_2;
1330 
1331 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
1332 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
1333 	if (!map->bypass_spec_v1) {
1334 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
1335 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
1336 	} else {
1337 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
1338 	}
1339 	if (is_power_of_2(elem_size))
1340 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
1341 	else
1342 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
1343 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
1344 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
1345 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
1346 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
1347 	*insn++ = BPF_MOV64_IMM(ret, 0);
1348 
1349 	return insn - insn_buf;
1350 }
1351 
1352 const struct bpf_map_ops array_of_maps_map_ops = {
1353 	.map_alloc_check = fd_array_map_alloc_check,
1354 	.map_alloc = array_of_map_alloc,
1355 	.map_free = array_of_map_free,
1356 	.map_get_next_key = array_map_get_next_key,
1357 	.map_lookup_elem = array_of_map_lookup_elem,
1358 	.map_delete_elem = fd_array_map_delete_elem,
1359 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
1360 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
1361 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
1362 	.map_gen_lookup = array_of_map_gen_lookup,
1363 	.map_lookup_batch = generic_map_lookup_batch,
1364 	.map_update_batch = generic_map_update_batch,
1365 	.map_check_btf = map_check_no_btf,
1366 	.map_btf_id = &array_map_btf_ids[0],
1367 };
1368