1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ 3 #include <linux/bpf.h> 4 #include <linux/btf.h> 5 #include <linux/err.h> 6 #include <linux/btf_ids.h> 7 #include <linux/vmalloc.h> 8 #include <linux/pagemap.h> 9 10 /* 11 * bpf_arena is a sparsely populated shared memory region between bpf program and 12 * user space process. 13 * 14 * For example on x86-64 the values could be: 15 * user_vm_start 7f7d26200000 // picked by mmap() 16 * kern_vm_start ffffc90001e69000 // picked by get_vm_area() 17 * For user space all pointers within the arena are normal 8-byte addresses. 18 * In this example 7f7d26200000 is the address of the first page (pgoff=0). 19 * The bpf program will access it as: kern_vm_start + lower_32bit_of_user_ptr 20 * (u32)7f7d26200000 -> 26200000 21 * hence 22 * ffffc90001e69000 + 26200000 == ffffc90028069000 is "pgoff=0" within 4Gb 23 * kernel memory region. 24 * 25 * BPF JITs generate the following code to access arena: 26 * mov eax, eax // eax has lower 32-bit of user pointer 27 * mov word ptr [rax + r12 + off], bx 28 * where r12 == kern_vm_start and off is s16. 29 * Hence allocate 4Gb + GUARD_SZ/2 on each side. 30 * 31 * Initially kernel vm_area and user vma are not populated. 32 * User space can fault-in any address which will insert the page 33 * into kernel and user vma. 34 * bpf program can allocate a page via bpf_arena_alloc_pages() kfunc 35 * which will insert it into kernel vm_area. 36 * The later fault-in from user space will populate that page into user vma. 37 */ 38 39 /* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */ 40 #define GUARD_SZ (1ull << sizeof_field(struct bpf_insn, off) * 8) 41 #define KERN_VM_SZ (SZ_4G + GUARD_SZ) 42 43 struct bpf_arena { 44 struct bpf_map map; 45 u64 user_vm_start; 46 u64 user_vm_end; 47 struct vm_struct *kern_vm; 48 struct maple_tree mt; 49 struct list_head vma_list; 50 struct mutex lock; 51 }; 52 53 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) 54 { 55 return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; 56 } 57 58 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) 59 { 60 return arena ? arena->user_vm_start : 0; 61 } 62 63 static long arena_map_peek_elem(struct bpf_map *map, void *value) 64 { 65 return -EOPNOTSUPP; 66 } 67 68 static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) 69 { 70 return -EOPNOTSUPP; 71 } 72 73 static long arena_map_pop_elem(struct bpf_map *map, void *value) 74 { 75 return -EOPNOTSUPP; 76 } 77 78 static long arena_map_delete_elem(struct bpf_map *map, void *value) 79 { 80 return -EOPNOTSUPP; 81 } 82 83 static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 84 { 85 return -EOPNOTSUPP; 86 } 87 88 static long compute_pgoff(struct bpf_arena *arena, long uaddr) 89 { 90 return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; 91 } 92 93 static struct bpf_map *arena_map_alloc(union bpf_attr *attr) 94 { 95 struct vm_struct *kern_vm; 96 int numa_node = bpf_map_attr_numa_node(attr); 97 struct bpf_arena *arena; 98 u64 vm_range; 99 int err = -ENOMEM; 100 101 if (attr->key_size || attr->value_size || attr->max_entries == 0 || 102 /* BPF_F_MMAPABLE must be set */ 103 !(attr->map_flags & BPF_F_MMAPABLE) || 104 /* No unsupported flags present */ 105 (attr->map_flags & ~(BPF_F_SEGV_ON_FAULT | BPF_F_MMAPABLE | BPF_F_NO_USER_CONV))) 106 return ERR_PTR(-EINVAL); 107 108 if (attr->map_extra & ~PAGE_MASK) 109 /* If non-zero the map_extra is an expected user VMA start address */ 110 return ERR_PTR(-EINVAL); 111 112 vm_range = (u64)attr->max_entries * PAGE_SIZE; 113 if (vm_range > SZ_4G) 114 return ERR_PTR(-E2BIG); 115 116 if ((attr->map_extra >> 32) != ((attr->map_extra + vm_range - 1) >> 32)) 117 /* user vma must not cross 32-bit boundary */ 118 return ERR_PTR(-ERANGE); 119 120 kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP); 121 if (!kern_vm) 122 return ERR_PTR(-ENOMEM); 123 124 arena = bpf_map_area_alloc(sizeof(*arena), numa_node); 125 if (!arena) 126 goto err; 127 128 arena->kern_vm = kern_vm; 129 arena->user_vm_start = attr->map_extra; 130 if (arena->user_vm_start) 131 arena->user_vm_end = arena->user_vm_start + vm_range; 132 133 INIT_LIST_HEAD(&arena->vma_list); 134 bpf_map_init_from_attr(&arena->map, attr); 135 mt_init_flags(&arena->mt, MT_FLAGS_ALLOC_RANGE); 136 mutex_init(&arena->lock); 137 138 return &arena->map; 139 err: 140 free_vm_area(kern_vm); 141 return ERR_PTR(err); 142 } 143 144 static int existing_page_cb(pte_t *ptep, unsigned long addr, void *data) 145 { 146 struct page *page; 147 pte_t pte; 148 149 pte = ptep_get(ptep); 150 if (!pte_present(pte)) /* sanity check */ 151 return 0; 152 page = pte_page(pte); 153 /* 154 * We do not update pte here: 155 * 1. Nobody should be accessing bpf_arena's range outside of a kernel bug 156 * 2. TLB flushing is batched or deferred. Even if we clear pte, 157 * the TLB entries can stick around and continue to permit access to 158 * the freed page. So it all relies on 1. 159 */ 160 __free_page(page); 161 return 0; 162 } 163 164 static void arena_map_free(struct bpf_map *map) 165 { 166 struct bpf_arena *arena = container_of(map, struct bpf_arena, map); 167 168 /* 169 * Check that user vma-s are not around when bpf map is freed. 170 * mmap() holds vm_file which holds bpf_map refcnt. 171 * munmap() must have happened on vma followed by arena_vm_close() 172 * which would clear arena->vma_list. 173 */ 174 if (WARN_ON_ONCE(!list_empty(&arena->vma_list))) 175 return; 176 177 /* 178 * free_vm_area() calls remove_vm_area() that calls free_unmap_vmap_area(). 179 * It unmaps everything from vmalloc area and clears pgtables. 180 * Call apply_to_existing_page_range() first to find populated ptes and 181 * free those pages. 182 */ 183 apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena), 184 KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL); 185 free_vm_area(arena->kern_vm); 186 mtree_destroy(&arena->mt); 187 bpf_map_area_free(arena); 188 } 189 190 static void *arena_map_lookup_elem(struct bpf_map *map, void *key) 191 { 192 return ERR_PTR(-EINVAL); 193 } 194 195 static long arena_map_update_elem(struct bpf_map *map, void *key, 196 void *value, u64 flags) 197 { 198 return -EOPNOTSUPP; 199 } 200 201 static int arena_map_check_btf(const struct bpf_map *map, const struct btf *btf, 202 const struct btf_type *key_type, const struct btf_type *value_type) 203 { 204 return 0; 205 } 206 207 static u64 arena_map_mem_usage(const struct bpf_map *map) 208 { 209 return 0; 210 } 211 212 struct vma_list { 213 struct vm_area_struct *vma; 214 struct list_head head; 215 atomic_t mmap_count; 216 }; 217 218 static int remember_vma(struct bpf_arena *arena, struct vm_area_struct *vma) 219 { 220 struct vma_list *vml; 221 222 vml = kmalloc(sizeof(*vml), GFP_KERNEL); 223 if (!vml) 224 return -ENOMEM; 225 atomic_set(&vml->mmap_count, 1); 226 vma->vm_private_data = vml; 227 vml->vma = vma; 228 list_add(&vml->head, &arena->vma_list); 229 return 0; 230 } 231 232 static void arena_vm_open(struct vm_area_struct *vma) 233 { 234 struct vma_list *vml = vma->vm_private_data; 235 236 atomic_inc(&vml->mmap_count); 237 } 238 239 static void arena_vm_close(struct vm_area_struct *vma) 240 { 241 struct bpf_map *map = vma->vm_file->private_data; 242 struct bpf_arena *arena = container_of(map, struct bpf_arena, map); 243 struct vma_list *vml = vma->vm_private_data; 244 245 if (!atomic_dec_and_test(&vml->mmap_count)) 246 return; 247 guard(mutex)(&arena->lock); 248 /* update link list under lock */ 249 list_del(&vml->head); 250 vma->vm_private_data = NULL; 251 kfree(vml); 252 } 253 254 #define MT_ENTRY ((void *)&arena_map_ops) /* unused. has to be valid pointer */ 255 256 static vm_fault_t arena_vm_fault(struct vm_fault *vmf) 257 { 258 struct bpf_map *map = vmf->vma->vm_file->private_data; 259 struct bpf_arena *arena = container_of(map, struct bpf_arena, map); 260 struct page *page; 261 long kbase, kaddr; 262 int ret; 263 264 kbase = bpf_arena_get_kern_vm_start(arena); 265 kaddr = kbase + (u32)(vmf->address); 266 267 guard(mutex)(&arena->lock); 268 page = vmalloc_to_page((void *)kaddr); 269 if (page) 270 /* already have a page vmap-ed */ 271 goto out; 272 273 if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) 274 /* User space requested to segfault when page is not allocated by bpf prog */ 275 return VM_FAULT_SIGSEGV; 276 277 ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL); 278 if (ret) 279 return VM_FAULT_SIGSEGV; 280 281 /* Account into memcg of the process that created bpf_arena */ 282 ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page); 283 if (ret) { 284 mtree_erase(&arena->mt, vmf->pgoff); 285 return VM_FAULT_SIGSEGV; 286 } 287 288 ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); 289 if (ret) { 290 mtree_erase(&arena->mt, vmf->pgoff); 291 __free_page(page); 292 return VM_FAULT_SIGSEGV; 293 } 294 out: 295 page_ref_add(page, 1); 296 vmf->page = page; 297 return 0; 298 } 299 300 static const struct vm_operations_struct arena_vm_ops = { 301 .open = arena_vm_open, 302 .close = arena_vm_close, 303 .fault = arena_vm_fault, 304 }; 305 306 static unsigned long arena_get_unmapped_area(struct file *filp, unsigned long addr, 307 unsigned long len, unsigned long pgoff, 308 unsigned long flags) 309 { 310 struct bpf_map *map = filp->private_data; 311 struct bpf_arena *arena = container_of(map, struct bpf_arena, map); 312 long ret; 313 314 if (pgoff) 315 return -EINVAL; 316 if (len > SZ_4G) 317 return -E2BIG; 318 319 /* if user_vm_start was specified at arena creation time */ 320 if (arena->user_vm_start) { 321 if (len > arena->user_vm_end - arena->user_vm_start) 322 return -E2BIG; 323 if (len != arena->user_vm_end - arena->user_vm_start) 324 return -EINVAL; 325 if (addr != arena->user_vm_start) 326 return -EINVAL; 327 } 328 329 ret = mm_get_unmapped_area(current->mm, filp, addr, len * 2, 0, flags); 330 if (IS_ERR_VALUE(ret)) 331 return ret; 332 if ((ret >> 32) == ((ret + len - 1) >> 32)) 333 return ret; 334 if (WARN_ON_ONCE(arena->user_vm_start)) 335 /* checks at map creation time should prevent this */ 336 return -EFAULT; 337 return round_up(ret, SZ_4G); 338 } 339 340 static int arena_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 341 { 342 struct bpf_arena *arena = container_of(map, struct bpf_arena, map); 343 344 guard(mutex)(&arena->lock); 345 if (arena->user_vm_start && arena->user_vm_start != vma->vm_start) 346 /* 347 * If map_extra was not specified at arena creation time then 348 * 1st user process can do mmap(NULL, ...) to pick user_vm_start 349 * 2nd user process must pass the same addr to mmap(addr, MAP_FIXED..); 350 * or 351 * specify addr in map_extra and 352 * use the same addr later with mmap(addr, MAP_FIXED..); 353 */ 354 return -EBUSY; 355 356 if (arena->user_vm_end && arena->user_vm_end != vma->vm_end) 357 /* all user processes must have the same size of mmap-ed region */ 358 return -EBUSY; 359 360 /* Earlier checks should prevent this */ 361 if (WARN_ON_ONCE(vma->vm_end - vma->vm_start > SZ_4G || vma->vm_pgoff)) 362 return -EFAULT; 363 364 if (remember_vma(arena, vma)) 365 return -ENOMEM; 366 367 arena->user_vm_start = vma->vm_start; 368 arena->user_vm_end = vma->vm_end; 369 /* 370 * bpf_map_mmap() checks that it's being mmaped as VM_SHARED and 371 * clears VM_MAYEXEC. Set VM_DONTEXPAND as well to avoid 372 * potential change of user_vm_start. 373 */ 374 vm_flags_set(vma, VM_DONTEXPAND); 375 vma->vm_ops = &arena_vm_ops; 376 return 0; 377 } 378 379 static int arena_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) 380 { 381 struct bpf_arena *arena = container_of(map, struct bpf_arena, map); 382 383 if ((u64)off > arena->user_vm_end - arena->user_vm_start) 384 return -ERANGE; 385 *imm = (unsigned long)arena->user_vm_start; 386 return 0; 387 } 388 389 BTF_ID_LIST_SINGLE(bpf_arena_map_btf_ids, struct, bpf_arena) 390 const struct bpf_map_ops arena_map_ops = { 391 .map_meta_equal = bpf_map_meta_equal, 392 .map_alloc = arena_map_alloc, 393 .map_free = arena_map_free, 394 .map_direct_value_addr = arena_map_direct_value_addr, 395 .map_mmap = arena_map_mmap, 396 .map_get_unmapped_area = arena_get_unmapped_area, 397 .map_get_next_key = arena_map_get_next_key, 398 .map_push_elem = arena_map_push_elem, 399 .map_peek_elem = arena_map_peek_elem, 400 .map_pop_elem = arena_map_pop_elem, 401 .map_lookup_elem = arena_map_lookup_elem, 402 .map_update_elem = arena_map_update_elem, 403 .map_delete_elem = arena_map_delete_elem, 404 .map_check_btf = arena_map_check_btf, 405 .map_mem_usage = arena_map_mem_usage, 406 .map_btf_id = &bpf_arena_map_btf_ids[0], 407 }; 408 409 static u64 clear_lo32(u64 val) 410 { 411 return val & ~(u64)~0U; 412 } 413 414 /* 415 * Allocate pages and vmap them into kernel vmalloc area. 416 * Later the pages will be mmaped into user space vma. 417 */ 418 static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) 419 { 420 /* user_vm_end/start are fixed before bpf prog runs */ 421 long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; 422 u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); 423 struct page **pages; 424 long pgoff = 0; 425 u32 uaddr32; 426 int ret, i; 427 428 if (page_cnt > page_cnt_max) 429 return 0; 430 431 if (uaddr) { 432 if (uaddr & ~PAGE_MASK) 433 return 0; 434 pgoff = compute_pgoff(arena, uaddr); 435 if (pgoff > page_cnt_max - page_cnt) 436 /* requested address will be outside of user VMA */ 437 return 0; 438 } 439 440 /* zeroing is needed, since alloc_pages_bulk_array() only fills in non-zero entries */ 441 pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); 442 if (!pages) 443 return 0; 444 445 guard(mutex)(&arena->lock); 446 447 if (uaddr) 448 ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1, 449 MT_ENTRY, GFP_KERNEL); 450 else 451 ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY, 452 page_cnt, 0, page_cnt_max - 1, GFP_KERNEL); 453 if (ret) 454 goto out_free_pages; 455 456 ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO, 457 node_id, page_cnt, pages); 458 if (ret) 459 goto out; 460 461 uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); 462 /* Earlier checks made sure that uaddr32 + page_cnt * PAGE_SIZE - 1 463 * will not overflow 32-bit. Lower 32-bit need to represent 464 * contiguous user address range. 465 * Map these pages at kern_vm_start base. 466 * kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE - 1 can overflow 467 * lower 32-bit and it's ok. 468 */ 469 ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, 470 kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); 471 if (ret) { 472 for (i = 0; i < page_cnt; i++) 473 __free_page(pages[i]); 474 goto out; 475 } 476 kvfree(pages); 477 return clear_lo32(arena->user_vm_start) + uaddr32; 478 out: 479 mtree_erase(&arena->mt, pgoff); 480 out_free_pages: 481 kvfree(pages); 482 return 0; 483 } 484 485 /* 486 * If page is present in vmalloc area, unmap it from vmalloc area, 487 * unmap it from all user space vma-s, 488 * and free it. 489 */ 490 static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) 491 { 492 struct vma_list *vml; 493 494 list_for_each_entry(vml, &arena->vma_list, head) 495 zap_page_range_single(vml->vma, uaddr, 496 PAGE_SIZE * page_cnt, NULL); 497 } 498 499 static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) 500 { 501 u64 full_uaddr, uaddr_end; 502 long kaddr, pgoff, i; 503 struct page *page; 504 505 /* only aligned lower 32-bit are relevant */ 506 uaddr = (u32)uaddr; 507 uaddr &= PAGE_MASK; 508 full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; 509 uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); 510 if (full_uaddr >= uaddr_end) 511 return; 512 513 page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; 514 515 guard(mutex)(&arena->lock); 516 517 pgoff = compute_pgoff(arena, uaddr); 518 /* clear range */ 519 mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL); 520 521 if (page_cnt > 1) 522 /* bulk zap if multiple pages being freed */ 523 zap_pages(arena, full_uaddr, page_cnt); 524 525 kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; 526 for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { 527 page = vmalloc_to_page((void *)kaddr); 528 if (!page) 529 continue; 530 if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ 531 /* Optimization for the common case of page_cnt==1: 532 * If page wasn't mapped into some user vma there 533 * is no need to call zap_pages which is slow. When 534 * page_cnt is big it's faster to do the batched zap. 535 */ 536 zap_pages(arena, full_uaddr, 1); 537 vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); 538 __free_page(page); 539 } 540 } 541 542 __bpf_kfunc_start_defs(); 543 544 __bpf_kfunc void *bpf_arena_alloc_pages(void *p__map, void *addr__ign, u32 page_cnt, 545 int node_id, u64 flags) 546 { 547 struct bpf_map *map = p__map; 548 struct bpf_arena *arena = container_of(map, struct bpf_arena, map); 549 550 if (map->map_type != BPF_MAP_TYPE_ARENA || flags || !page_cnt) 551 return NULL; 552 553 return (void *)arena_alloc_pages(arena, (long)addr__ign, page_cnt, node_id); 554 } 555 556 __bpf_kfunc void bpf_arena_free_pages(void *p__map, void *ptr__ign, u32 page_cnt) 557 { 558 struct bpf_map *map = p__map; 559 struct bpf_arena *arena = container_of(map, struct bpf_arena, map); 560 561 if (map->map_type != BPF_MAP_TYPE_ARENA || !page_cnt || !ptr__ign) 562 return; 563 arena_free_pages(arena, (long)ptr__ign, page_cnt); 564 } 565 __bpf_kfunc_end_defs(); 566 567 BTF_KFUNCS_START(arena_kfuncs) 568 BTF_ID_FLAGS(func, bpf_arena_alloc_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) 569 BTF_ID_FLAGS(func, bpf_arena_free_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) 570 BTF_KFUNCS_END(arena_kfuncs) 571 572 static const struct btf_kfunc_id_set common_kfunc_set = { 573 .owner = THIS_MODULE, 574 .set = &arena_kfuncs, 575 }; 576 577 static int __init kfunc_init(void) 578 { 579 return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 580 } 581 late_initcall(kfunc_init); 582