1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 68 #include "audit.h" 69 70 /* flags stating the success for a syscall */ 71 #define AUDITSC_INVALID 0 72 #define AUDITSC_SUCCESS 1 73 #define AUDITSC_FAILURE 2 74 75 /* no execve audit message should be longer than this (userspace limits), 76 * see the note near the top of audit_log_execve_info() about this value */ 77 #define MAX_EXECVE_AUDIT_LEN 7500 78 79 /* max length to print of cmdline/proctitle value during audit */ 80 #define MAX_PROCTITLE_AUDIT_LEN 128 81 82 /* number of audit rules */ 83 int audit_n_rules; 84 85 /* determines whether we collect data for signals sent */ 86 int audit_signals; 87 88 struct audit_aux_data { 89 struct audit_aux_data *next; 90 int type; 91 }; 92 93 /* Number of target pids per aux struct. */ 94 #define AUDIT_AUX_PIDS 16 95 96 struct audit_aux_data_pids { 97 struct audit_aux_data d; 98 pid_t target_pid[AUDIT_AUX_PIDS]; 99 kuid_t target_auid[AUDIT_AUX_PIDS]; 100 kuid_t target_uid[AUDIT_AUX_PIDS]; 101 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 102 u32 target_sid[AUDIT_AUX_PIDS]; 103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 104 int pid_count; 105 }; 106 107 struct audit_aux_data_bprm_fcaps { 108 struct audit_aux_data d; 109 struct audit_cap_data fcap; 110 unsigned int fcap_ver; 111 struct audit_cap_data old_pcap; 112 struct audit_cap_data new_pcap; 113 }; 114 115 struct audit_tree_refs { 116 struct audit_tree_refs *next; 117 struct audit_chunk *c[31]; 118 }; 119 120 struct audit_nfcfgop_tab { 121 enum audit_nfcfgop op; 122 const char *s; 123 }; 124 125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 126 { AUDIT_XT_OP_REGISTER, "xt_register" }, 127 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 145 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 146 }; 147 148 static int audit_match_perm(struct audit_context *ctx, int mask) 149 { 150 unsigned n; 151 152 if (unlikely(!ctx)) 153 return 0; 154 n = ctx->major; 155 156 switch (audit_classify_syscall(ctx->arch, n)) { 157 case AUDITSC_NATIVE: 158 if ((mask & AUDIT_PERM_WRITE) && 159 audit_match_class(AUDIT_CLASS_WRITE, n)) 160 return 1; 161 if ((mask & AUDIT_PERM_READ) && 162 audit_match_class(AUDIT_CLASS_READ, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_ATTR) && 165 audit_match_class(AUDIT_CLASS_CHATTR, n)) 166 return 1; 167 return 0; 168 case AUDITSC_COMPAT: /* 32bit on biarch */ 169 if ((mask & AUDIT_PERM_WRITE) && 170 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 171 return 1; 172 if ((mask & AUDIT_PERM_READ) && 173 audit_match_class(AUDIT_CLASS_READ_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_ATTR) && 176 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 177 return 1; 178 return 0; 179 case AUDITSC_OPEN: 180 return mask & ACC_MODE(ctx->argv[1]); 181 case AUDITSC_OPENAT: 182 return mask & ACC_MODE(ctx->argv[2]); 183 case AUDITSC_SOCKETCALL: 184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 185 case AUDITSC_EXECVE: 186 return mask & AUDIT_PERM_EXEC; 187 case AUDITSC_OPENAT2: 188 return mask & ACC_MODE((u32)ctx->openat2.flags); 189 default: 190 return 0; 191 } 192 } 193 194 static int audit_match_filetype(struct audit_context *ctx, int val) 195 { 196 struct audit_names *n; 197 umode_t mode = (umode_t)val; 198 199 if (unlikely(!ctx)) 200 return 0; 201 202 list_for_each_entry(n, &ctx->names_list, list) { 203 if ((n->ino != AUDIT_INO_UNSET) && 204 ((n->mode & S_IFMT) == mode)) 205 return 1; 206 } 207 208 return 0; 209 } 210 211 /* 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 213 * ->first_trees points to its beginning, ->trees - to the current end of data. 214 * ->tree_count is the number of free entries in array pointed to by ->trees. 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 217 * it's going to remain 1-element for almost any setup) until we free context itself. 218 * References in it _are_ dropped - at the same time we free/drop aux stuff. 219 */ 220 221 static void audit_set_auditable(struct audit_context *ctx) 222 { 223 if (!ctx->prio) { 224 ctx->prio = 1; 225 ctx->current_state = AUDIT_STATE_RECORD; 226 } 227 } 228 229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 230 { 231 struct audit_tree_refs *p = ctx->trees; 232 int left = ctx->tree_count; 233 234 if (likely(left)) { 235 p->c[--left] = chunk; 236 ctx->tree_count = left; 237 return 1; 238 } 239 if (!p) 240 return 0; 241 p = p->next; 242 if (p) { 243 p->c[30] = chunk; 244 ctx->trees = p; 245 ctx->tree_count = 30; 246 return 1; 247 } 248 return 0; 249 } 250 251 static int grow_tree_refs(struct audit_context *ctx) 252 { 253 struct audit_tree_refs *p = ctx->trees; 254 255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 256 if (!ctx->trees) { 257 ctx->trees = p; 258 return 0; 259 } 260 if (p) 261 p->next = ctx->trees; 262 else 263 ctx->first_trees = ctx->trees; 264 ctx->tree_count = 31; 265 return 1; 266 } 267 268 static void unroll_tree_refs(struct audit_context *ctx, 269 struct audit_tree_refs *p, int count) 270 { 271 struct audit_tree_refs *q; 272 int n; 273 274 if (!p) { 275 /* we started with empty chain */ 276 p = ctx->first_trees; 277 count = 31; 278 /* if the very first allocation has failed, nothing to do */ 279 if (!p) 280 return; 281 } 282 n = count; 283 for (q = p; q != ctx->trees; q = q->next, n = 31) { 284 while (n--) { 285 audit_put_chunk(q->c[n]); 286 q->c[n] = NULL; 287 } 288 } 289 while (n-- > ctx->tree_count) { 290 audit_put_chunk(q->c[n]); 291 q->c[n] = NULL; 292 } 293 ctx->trees = p; 294 ctx->tree_count = count; 295 } 296 297 static void free_tree_refs(struct audit_context *ctx) 298 { 299 struct audit_tree_refs *p, *q; 300 301 for (p = ctx->first_trees; p; p = q) { 302 q = p->next; 303 kfree(p); 304 } 305 } 306 307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 308 { 309 struct audit_tree_refs *p; 310 int n; 311 312 if (!tree) 313 return 0; 314 /* full ones */ 315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 316 for (n = 0; n < 31; n++) 317 if (audit_tree_match(p->c[n], tree)) 318 return 1; 319 } 320 /* partial */ 321 if (p) { 322 for (n = ctx->tree_count; n < 31; n++) 323 if (audit_tree_match(p->c[n], tree)) 324 return 1; 325 } 326 return 0; 327 } 328 329 static int audit_compare_uid(kuid_t uid, 330 struct audit_names *name, 331 struct audit_field *f, 332 struct audit_context *ctx) 333 { 334 struct audit_names *n; 335 int rc; 336 337 if (name) { 338 rc = audit_uid_comparator(uid, f->op, name->uid); 339 if (rc) 340 return rc; 341 } 342 343 if (ctx) { 344 list_for_each_entry(n, &ctx->names_list, list) { 345 rc = audit_uid_comparator(uid, f->op, n->uid); 346 if (rc) 347 return rc; 348 } 349 } 350 return 0; 351 } 352 353 static int audit_compare_gid(kgid_t gid, 354 struct audit_names *name, 355 struct audit_field *f, 356 struct audit_context *ctx) 357 { 358 struct audit_names *n; 359 int rc; 360 361 if (name) { 362 rc = audit_gid_comparator(gid, f->op, name->gid); 363 if (rc) 364 return rc; 365 } 366 367 if (ctx) { 368 list_for_each_entry(n, &ctx->names_list, list) { 369 rc = audit_gid_comparator(gid, f->op, n->gid); 370 if (rc) 371 return rc; 372 } 373 } 374 return 0; 375 } 376 377 static int audit_field_compare(struct task_struct *tsk, 378 const struct cred *cred, 379 struct audit_field *f, 380 struct audit_context *ctx, 381 struct audit_names *name) 382 { 383 switch (f->val) { 384 /* process to file object comparisons */ 385 case AUDIT_COMPARE_UID_TO_OBJ_UID: 386 return audit_compare_uid(cred->uid, name, f, ctx); 387 case AUDIT_COMPARE_GID_TO_OBJ_GID: 388 return audit_compare_gid(cred->gid, name, f, ctx); 389 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 390 return audit_compare_uid(cred->euid, name, f, ctx); 391 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 392 return audit_compare_gid(cred->egid, name, f, ctx); 393 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 395 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 396 return audit_compare_uid(cred->suid, name, f, ctx); 397 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 398 return audit_compare_gid(cred->sgid, name, f, ctx); 399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 400 return audit_compare_uid(cred->fsuid, name, f, ctx); 401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 402 return audit_compare_gid(cred->fsgid, name, f, ctx); 403 /* uid comparisons */ 404 case AUDIT_COMPARE_UID_TO_AUID: 405 return audit_uid_comparator(cred->uid, f->op, 406 audit_get_loginuid(tsk)); 407 case AUDIT_COMPARE_UID_TO_EUID: 408 return audit_uid_comparator(cred->uid, f->op, cred->euid); 409 case AUDIT_COMPARE_UID_TO_SUID: 410 return audit_uid_comparator(cred->uid, f->op, cred->suid); 411 case AUDIT_COMPARE_UID_TO_FSUID: 412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 413 /* auid comparisons */ 414 case AUDIT_COMPARE_AUID_TO_EUID: 415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 416 cred->euid); 417 case AUDIT_COMPARE_AUID_TO_SUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->suid); 420 case AUDIT_COMPARE_AUID_TO_FSUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->fsuid); 423 /* euid comparisons */ 424 case AUDIT_COMPARE_EUID_TO_SUID: 425 return audit_uid_comparator(cred->euid, f->op, cred->suid); 426 case AUDIT_COMPARE_EUID_TO_FSUID: 427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 428 /* suid comparisons */ 429 case AUDIT_COMPARE_SUID_TO_FSUID: 430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 431 /* gid comparisons */ 432 case AUDIT_COMPARE_GID_TO_EGID: 433 return audit_gid_comparator(cred->gid, f->op, cred->egid); 434 case AUDIT_COMPARE_GID_TO_SGID: 435 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 436 case AUDIT_COMPARE_GID_TO_FSGID: 437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 438 /* egid comparisons */ 439 case AUDIT_COMPARE_EGID_TO_SGID: 440 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 441 case AUDIT_COMPARE_EGID_TO_FSGID: 442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 443 /* sgid comparison */ 444 case AUDIT_COMPARE_SGID_TO_FSGID: 445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 446 default: 447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 448 return 0; 449 } 450 return 0; 451 } 452 453 /* Determine if any context name data matches a rule's watch data */ 454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 455 * otherwise. 456 * 457 * If task_creation is true, this is an explicit indication that we are 458 * filtering a task rule at task creation time. This and tsk == current are 459 * the only situations where tsk->cred may be accessed without an rcu read lock. 460 */ 461 static int audit_filter_rules(struct task_struct *tsk, 462 struct audit_krule *rule, 463 struct audit_context *ctx, 464 struct audit_names *name, 465 enum audit_state *state, 466 bool task_creation) 467 { 468 const struct cred *cred; 469 int i, need_sid = 1; 470 u32 sid; 471 unsigned int sessionid; 472 473 if (ctx && rule->prio <= ctx->prio) 474 return 0; 475 476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 477 478 for (i = 0; i < rule->field_count; i++) { 479 struct audit_field *f = &rule->fields[i]; 480 struct audit_names *n; 481 int result = 0; 482 pid_t pid; 483 484 switch (f->type) { 485 case AUDIT_PID: 486 pid = task_tgid_nr(tsk); 487 result = audit_comparator(pid, f->op, f->val); 488 break; 489 case AUDIT_PPID: 490 if (ctx) { 491 if (!ctx->ppid) 492 ctx->ppid = task_ppid_nr(tsk); 493 result = audit_comparator(ctx->ppid, f->op, f->val); 494 } 495 break; 496 case AUDIT_EXE: 497 result = audit_exe_compare(tsk, rule->exe); 498 if (f->op == Audit_not_equal) 499 result = !result; 500 break; 501 case AUDIT_UID: 502 result = audit_uid_comparator(cred->uid, f->op, f->uid); 503 break; 504 case AUDIT_EUID: 505 result = audit_uid_comparator(cred->euid, f->op, f->uid); 506 break; 507 case AUDIT_SUID: 508 result = audit_uid_comparator(cred->suid, f->op, f->uid); 509 break; 510 case AUDIT_FSUID: 511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 512 break; 513 case AUDIT_GID: 514 result = audit_gid_comparator(cred->gid, f->op, f->gid); 515 if (f->op == Audit_equal) { 516 if (!result) 517 result = groups_search(cred->group_info, f->gid); 518 } else if (f->op == Audit_not_equal) { 519 if (result) 520 result = !groups_search(cred->group_info, f->gid); 521 } 522 break; 523 case AUDIT_EGID: 524 result = audit_gid_comparator(cred->egid, f->op, f->gid); 525 if (f->op == Audit_equal) { 526 if (!result) 527 result = groups_search(cred->group_info, f->gid); 528 } else if (f->op == Audit_not_equal) { 529 if (result) 530 result = !groups_search(cred->group_info, f->gid); 531 } 532 break; 533 case AUDIT_SGID: 534 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 535 break; 536 case AUDIT_FSGID: 537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 538 break; 539 case AUDIT_SESSIONID: 540 sessionid = audit_get_sessionid(tsk); 541 result = audit_comparator(sessionid, f->op, f->val); 542 break; 543 case AUDIT_PERS: 544 result = audit_comparator(tsk->personality, f->op, f->val); 545 break; 546 case AUDIT_ARCH: 547 if (ctx) 548 result = audit_comparator(ctx->arch, f->op, f->val); 549 break; 550 551 case AUDIT_EXIT: 552 if (ctx && ctx->return_valid != AUDITSC_INVALID) 553 result = audit_comparator(ctx->return_code, f->op, f->val); 554 break; 555 case AUDIT_SUCCESS: 556 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 557 if (f->val) 558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 559 else 560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 561 } 562 break; 563 case AUDIT_DEVMAJOR: 564 if (name) { 565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 566 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 567 ++result; 568 } else if (ctx) { 569 list_for_each_entry(n, &ctx->names_list, list) { 570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 572 ++result; 573 break; 574 } 575 } 576 } 577 break; 578 case AUDIT_DEVMINOR: 579 if (name) { 580 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 581 audit_comparator(MINOR(name->rdev), f->op, f->val)) 582 ++result; 583 } else if (ctx) { 584 list_for_each_entry(n, &ctx->names_list, list) { 585 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 586 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 587 ++result; 588 break; 589 } 590 } 591 } 592 break; 593 case AUDIT_INODE: 594 if (name) 595 result = audit_comparator(name->ino, f->op, f->val); 596 else if (ctx) { 597 list_for_each_entry(n, &ctx->names_list, list) { 598 if (audit_comparator(n->ino, f->op, f->val)) { 599 ++result; 600 break; 601 } 602 } 603 } 604 break; 605 case AUDIT_OBJ_UID: 606 if (name) { 607 result = audit_uid_comparator(name->uid, f->op, f->uid); 608 } else if (ctx) { 609 list_for_each_entry(n, &ctx->names_list, list) { 610 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 611 ++result; 612 break; 613 } 614 } 615 } 616 break; 617 case AUDIT_OBJ_GID: 618 if (name) { 619 result = audit_gid_comparator(name->gid, f->op, f->gid); 620 } else if (ctx) { 621 list_for_each_entry(n, &ctx->names_list, list) { 622 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 623 ++result; 624 break; 625 } 626 } 627 } 628 break; 629 case AUDIT_WATCH: 630 if (name) { 631 result = audit_watch_compare(rule->watch, 632 name->ino, 633 name->dev); 634 if (f->op == Audit_not_equal) 635 result = !result; 636 } 637 break; 638 case AUDIT_DIR: 639 if (ctx) { 640 result = match_tree_refs(ctx, rule->tree); 641 if (f->op == Audit_not_equal) 642 result = !result; 643 } 644 break; 645 case AUDIT_LOGINUID: 646 result = audit_uid_comparator(audit_get_loginuid(tsk), 647 f->op, f->uid); 648 break; 649 case AUDIT_LOGINUID_SET: 650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 651 break; 652 case AUDIT_SADDR_FAM: 653 if (ctx && ctx->sockaddr) 654 result = audit_comparator(ctx->sockaddr->ss_family, 655 f->op, f->val); 656 break; 657 case AUDIT_SUBJ_USER: 658 case AUDIT_SUBJ_ROLE: 659 case AUDIT_SUBJ_TYPE: 660 case AUDIT_SUBJ_SEN: 661 case AUDIT_SUBJ_CLR: 662 /* NOTE: this may return negative values indicating 663 a temporary error. We simply treat this as a 664 match for now to avoid losing information that 665 may be wanted. An error message will also be 666 logged upon error */ 667 if (f->lsm_rule) { 668 if (need_sid) { 669 /* @tsk should always be equal to 670 * @current with the exception of 671 * fork()/copy_process() in which case 672 * the new @tsk creds are still a dup 673 * of @current's creds so we can still 674 * use security_current_getsecid_subj() 675 * here even though it always refs 676 * @current's creds 677 */ 678 security_current_getsecid_subj(&sid); 679 need_sid = 0; 680 } 681 result = security_audit_rule_match(sid, f->type, 682 f->op, 683 f->lsm_rule); 684 } 685 break; 686 case AUDIT_OBJ_USER: 687 case AUDIT_OBJ_ROLE: 688 case AUDIT_OBJ_TYPE: 689 case AUDIT_OBJ_LEV_LOW: 690 case AUDIT_OBJ_LEV_HIGH: 691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 692 also applies here */ 693 if (f->lsm_rule) { 694 /* Find files that match */ 695 if (name) { 696 result = security_audit_rule_match( 697 name->osid, 698 f->type, 699 f->op, 700 f->lsm_rule); 701 } else if (ctx) { 702 list_for_each_entry(n, &ctx->names_list, list) { 703 if (security_audit_rule_match( 704 n->osid, 705 f->type, 706 f->op, 707 f->lsm_rule)) { 708 ++result; 709 break; 710 } 711 } 712 } 713 /* Find ipc objects that match */ 714 if (!ctx || ctx->type != AUDIT_IPC) 715 break; 716 if (security_audit_rule_match(ctx->ipc.osid, 717 f->type, f->op, 718 f->lsm_rule)) 719 ++result; 720 } 721 break; 722 case AUDIT_ARG0: 723 case AUDIT_ARG1: 724 case AUDIT_ARG2: 725 case AUDIT_ARG3: 726 if (ctx) 727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 728 break; 729 case AUDIT_FILTERKEY: 730 /* ignore this field for filtering */ 731 result = 1; 732 break; 733 case AUDIT_PERM: 734 result = audit_match_perm(ctx, f->val); 735 if (f->op == Audit_not_equal) 736 result = !result; 737 break; 738 case AUDIT_FILETYPE: 739 result = audit_match_filetype(ctx, f->val); 740 if (f->op == Audit_not_equal) 741 result = !result; 742 break; 743 case AUDIT_FIELD_COMPARE: 744 result = audit_field_compare(tsk, cred, f, ctx, name); 745 break; 746 } 747 if (!result) 748 return 0; 749 } 750 751 if (ctx) { 752 if (rule->filterkey) { 753 kfree(ctx->filterkey); 754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 755 } 756 ctx->prio = rule->prio; 757 } 758 switch (rule->action) { 759 case AUDIT_NEVER: 760 *state = AUDIT_STATE_DISABLED; 761 break; 762 case AUDIT_ALWAYS: 763 *state = AUDIT_STATE_RECORD; 764 break; 765 } 766 return 1; 767 } 768 769 /* At process creation time, we can determine if system-call auditing is 770 * completely disabled for this task. Since we only have the task 771 * structure at this point, we can only check uid and gid. 772 */ 773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 774 { 775 struct audit_entry *e; 776 enum audit_state state; 777 778 rcu_read_lock(); 779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 781 &state, true)) { 782 if (state == AUDIT_STATE_RECORD) 783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 784 rcu_read_unlock(); 785 return state; 786 } 787 } 788 rcu_read_unlock(); 789 return AUDIT_STATE_BUILD; 790 } 791 792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 793 { 794 int word, bit; 795 796 if (val > 0xffffffff) 797 return false; 798 799 word = AUDIT_WORD(val); 800 if (word >= AUDIT_BITMASK_SIZE) 801 return false; 802 803 bit = AUDIT_BIT(val); 804 805 return rule->mask[word] & bit; 806 } 807 808 /** 809 * audit_filter_uring - apply filters to an io_uring operation 810 * @tsk: associated task 811 * @ctx: audit context 812 */ 813 static void audit_filter_uring(struct task_struct *tsk, 814 struct audit_context *ctx) 815 { 816 struct audit_entry *e; 817 enum audit_state state; 818 819 if (auditd_test_task(tsk)) 820 return; 821 822 rcu_read_lock(); 823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 824 list) { 825 if (audit_in_mask(&e->rule, ctx->uring_op) && 826 audit_filter_rules(tsk, &e->rule, ctx, NULL, &state, 827 false)) { 828 rcu_read_unlock(); 829 ctx->current_state = state; 830 return; 831 } 832 } 833 rcu_read_unlock(); 834 } 835 836 /* At syscall exit time, this filter is called if the audit_state is 837 * not low enough that auditing cannot take place, but is also not 838 * high enough that we already know we have to write an audit record 839 * (i.e., the state is AUDIT_STATE_BUILD). 840 */ 841 static void audit_filter_syscall(struct task_struct *tsk, 842 struct audit_context *ctx) 843 { 844 struct audit_entry *e; 845 enum audit_state state; 846 847 if (auditd_test_task(tsk)) 848 return; 849 850 rcu_read_lock(); 851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) { 852 if (audit_in_mask(&e->rule, ctx->major) && 853 audit_filter_rules(tsk, &e->rule, ctx, NULL, 854 &state, false)) { 855 rcu_read_unlock(); 856 ctx->current_state = state; 857 return; 858 } 859 } 860 rcu_read_unlock(); 861 return; 862 } 863 864 /* 865 * Given an audit_name check the inode hash table to see if they match. 866 * Called holding the rcu read lock to protect the use of audit_inode_hash 867 */ 868 static int audit_filter_inode_name(struct task_struct *tsk, 869 struct audit_names *n, 870 struct audit_context *ctx) { 871 int h = audit_hash_ino((u32)n->ino); 872 struct list_head *list = &audit_inode_hash[h]; 873 struct audit_entry *e; 874 enum audit_state state; 875 876 list_for_each_entry_rcu(e, list, list) { 877 if (audit_in_mask(&e->rule, ctx->major) && 878 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 879 ctx->current_state = state; 880 return 1; 881 } 882 } 883 return 0; 884 } 885 886 /* At syscall exit time, this filter is called if any audit_names have been 887 * collected during syscall processing. We only check rules in sublists at hash 888 * buckets applicable to the inode numbers in audit_names. 889 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 890 */ 891 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 892 { 893 struct audit_names *n; 894 895 if (auditd_test_task(tsk)) 896 return; 897 898 rcu_read_lock(); 899 900 list_for_each_entry(n, &ctx->names_list, list) { 901 if (audit_filter_inode_name(tsk, n, ctx)) 902 break; 903 } 904 rcu_read_unlock(); 905 } 906 907 static inline void audit_proctitle_free(struct audit_context *context) 908 { 909 kfree(context->proctitle.value); 910 context->proctitle.value = NULL; 911 context->proctitle.len = 0; 912 } 913 914 static inline void audit_free_module(struct audit_context *context) 915 { 916 if (context->type == AUDIT_KERN_MODULE) { 917 kfree(context->module.name); 918 context->module.name = NULL; 919 } 920 } 921 static inline void audit_free_names(struct audit_context *context) 922 { 923 struct audit_names *n, *next; 924 925 list_for_each_entry_safe(n, next, &context->names_list, list) { 926 list_del(&n->list); 927 if (n->name) 928 putname(n->name); 929 if (n->should_free) 930 kfree(n); 931 } 932 context->name_count = 0; 933 path_put(&context->pwd); 934 context->pwd.dentry = NULL; 935 context->pwd.mnt = NULL; 936 } 937 938 static inline void audit_free_aux(struct audit_context *context) 939 { 940 struct audit_aux_data *aux; 941 942 while ((aux = context->aux)) { 943 context->aux = aux->next; 944 kfree(aux); 945 } 946 context->aux = NULL; 947 while ((aux = context->aux_pids)) { 948 context->aux_pids = aux->next; 949 kfree(aux); 950 } 951 context->aux_pids = NULL; 952 } 953 954 /** 955 * audit_reset_context - reset a audit_context structure 956 * @ctx: the audit_context to reset 957 * 958 * All fields in the audit_context will be reset to an initial state, all 959 * references held by fields will be dropped, and private memory will be 960 * released. When this function returns the audit_context will be suitable 961 * for reuse, so long as the passed context is not NULL or a dummy context. 962 */ 963 static void audit_reset_context(struct audit_context *ctx) 964 { 965 if (!ctx) 966 return; 967 968 /* if ctx is non-null, reset the "ctx->state" regardless */ 969 ctx->context = AUDIT_CTX_UNUSED; 970 if (ctx->dummy) 971 return; 972 973 /* 974 * NOTE: It shouldn't matter in what order we release the fields, so 975 * release them in the order in which they appear in the struct; 976 * this gives us some hope of quickly making sure we are 977 * resetting the audit_context properly. 978 * 979 * Other things worth mentioning: 980 * - we don't reset "dummy" 981 * - we don't reset "state", we do reset "current_state" 982 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 983 * - much of this is likely overkill, but play it safe for now 984 * - we really need to work on improving the audit_context struct 985 */ 986 987 ctx->current_state = ctx->state; 988 ctx->serial = 0; 989 ctx->major = 0; 990 ctx->uring_op = 0; 991 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 992 memset(ctx->argv, 0, sizeof(ctx->argv)); 993 ctx->return_code = 0; 994 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 995 ctx->return_valid = AUDITSC_INVALID; 996 audit_free_names(ctx); 997 if (ctx->state != AUDIT_STATE_RECORD) { 998 kfree(ctx->filterkey); 999 ctx->filterkey = NULL; 1000 } 1001 audit_free_aux(ctx); 1002 kfree(ctx->sockaddr); 1003 ctx->sockaddr = NULL; 1004 ctx->sockaddr_len = 0; 1005 ctx->pid = ctx->ppid = 0; 1006 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1007 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1008 ctx->personality = 0; 1009 ctx->arch = 0; 1010 ctx->target_pid = 0; 1011 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1012 ctx->target_sessionid = 0; 1013 ctx->target_sid = 0; 1014 ctx->target_comm[0] = '\0'; 1015 unroll_tree_refs(ctx, NULL, 0); 1016 WARN_ON(!list_empty(&ctx->killed_trees)); 1017 ctx->type = 0; 1018 audit_free_module(ctx); 1019 ctx->fds[0] = -1; 1020 audit_proctitle_free(ctx); 1021 } 1022 1023 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1024 { 1025 struct audit_context *context; 1026 1027 context = kzalloc(sizeof(*context), GFP_KERNEL); 1028 if (!context) 1029 return NULL; 1030 context->context = AUDIT_CTX_UNUSED; 1031 context->state = state; 1032 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1033 INIT_LIST_HEAD(&context->killed_trees); 1034 INIT_LIST_HEAD(&context->names_list); 1035 context->fds[0] = -1; 1036 context->return_valid = AUDITSC_INVALID; 1037 return context; 1038 } 1039 1040 /** 1041 * audit_alloc - allocate an audit context block for a task 1042 * @tsk: task 1043 * 1044 * Filter on the task information and allocate a per-task audit context 1045 * if necessary. Doing so turns on system call auditing for the 1046 * specified task. This is called from copy_process, so no lock is 1047 * needed. 1048 */ 1049 int audit_alloc(struct task_struct *tsk) 1050 { 1051 struct audit_context *context; 1052 enum audit_state state; 1053 char *key = NULL; 1054 1055 if (likely(!audit_ever_enabled)) 1056 return 0; 1057 1058 state = audit_filter_task(tsk, &key); 1059 if (state == AUDIT_STATE_DISABLED) { 1060 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1061 return 0; 1062 } 1063 1064 if (!(context = audit_alloc_context(state))) { 1065 kfree(key); 1066 audit_log_lost("out of memory in audit_alloc"); 1067 return -ENOMEM; 1068 } 1069 context->filterkey = key; 1070 1071 audit_set_context(tsk, context); 1072 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1073 return 0; 1074 } 1075 1076 /** 1077 * audit_alloc_kernel - allocate an audit_context for a kernel task 1078 * @tsk: the kernel task 1079 * 1080 * Similar to the audit_alloc() function, but intended for kernel private 1081 * threads. Returns zero on success, negative values on failure. 1082 */ 1083 int audit_alloc_kernel(struct task_struct *tsk) 1084 { 1085 /* 1086 * At the moment we are just going to call into audit_alloc() to 1087 * simplify the code, but there two things to keep in mind with this 1088 * approach: 1089 * 1090 * 1. Filtering internal kernel tasks is a bit laughable in almost all 1091 * cases, but there is at least one case where there is a benefit: 1092 * the '-a task,never' case allows the admin to effectively disable 1093 * task auditing at runtime. 1094 * 1095 * 2. The {set,clear}_task_syscall_work() ops likely have zero effect 1096 * on these internal kernel tasks, but they probably don't hurt either. 1097 */ 1098 return audit_alloc(tsk); 1099 } 1100 1101 static inline void audit_free_context(struct audit_context *context) 1102 { 1103 /* resetting is extra work, but it is likely just noise */ 1104 audit_reset_context(context); 1105 free_tree_refs(context); 1106 kfree(context->filterkey); 1107 kfree(context); 1108 } 1109 1110 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1111 kuid_t auid, kuid_t uid, unsigned int sessionid, 1112 u32 sid, char *comm) 1113 { 1114 struct audit_buffer *ab; 1115 char *ctx = NULL; 1116 u32 len; 1117 int rc = 0; 1118 1119 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1120 if (!ab) 1121 return rc; 1122 1123 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1124 from_kuid(&init_user_ns, auid), 1125 from_kuid(&init_user_ns, uid), sessionid); 1126 if (sid) { 1127 if (security_secid_to_secctx(sid, &ctx, &len)) { 1128 audit_log_format(ab, " obj=(none)"); 1129 rc = 1; 1130 } else { 1131 audit_log_format(ab, " obj=%s", ctx); 1132 security_release_secctx(ctx, len); 1133 } 1134 } 1135 audit_log_format(ab, " ocomm="); 1136 audit_log_untrustedstring(ab, comm); 1137 audit_log_end(ab); 1138 1139 return rc; 1140 } 1141 1142 static void audit_log_execve_info(struct audit_context *context, 1143 struct audit_buffer **ab) 1144 { 1145 long len_max; 1146 long len_rem; 1147 long len_full; 1148 long len_buf; 1149 long len_abuf = 0; 1150 long len_tmp; 1151 bool require_data; 1152 bool encode; 1153 unsigned int iter; 1154 unsigned int arg; 1155 char *buf_head; 1156 char *buf; 1157 const char __user *p = (const char __user *)current->mm->arg_start; 1158 1159 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1160 * data we put in the audit record for this argument (see the 1161 * code below) ... at this point in time 96 is plenty */ 1162 char abuf[96]; 1163 1164 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1165 * current value of 7500 is not as important as the fact that it 1166 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1167 * room if we go over a little bit in the logging below */ 1168 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1169 len_max = MAX_EXECVE_AUDIT_LEN; 1170 1171 /* scratch buffer to hold the userspace args */ 1172 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1173 if (!buf_head) { 1174 audit_panic("out of memory for argv string"); 1175 return; 1176 } 1177 buf = buf_head; 1178 1179 audit_log_format(*ab, "argc=%d", context->execve.argc); 1180 1181 len_rem = len_max; 1182 len_buf = 0; 1183 len_full = 0; 1184 require_data = true; 1185 encode = false; 1186 iter = 0; 1187 arg = 0; 1188 do { 1189 /* NOTE: we don't ever want to trust this value for anything 1190 * serious, but the audit record format insists we 1191 * provide an argument length for really long arguments, 1192 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1193 * to use strncpy_from_user() to obtain this value for 1194 * recording in the log, although we don't use it 1195 * anywhere here to avoid a double-fetch problem */ 1196 if (len_full == 0) 1197 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1198 1199 /* read more data from userspace */ 1200 if (require_data) { 1201 /* can we make more room in the buffer? */ 1202 if (buf != buf_head) { 1203 memmove(buf_head, buf, len_buf); 1204 buf = buf_head; 1205 } 1206 1207 /* fetch as much as we can of the argument */ 1208 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1209 len_max - len_buf); 1210 if (len_tmp == -EFAULT) { 1211 /* unable to copy from userspace */ 1212 send_sig(SIGKILL, current, 0); 1213 goto out; 1214 } else if (len_tmp == (len_max - len_buf)) { 1215 /* buffer is not large enough */ 1216 require_data = true; 1217 /* NOTE: if we are going to span multiple 1218 * buffers force the encoding so we stand 1219 * a chance at a sane len_full value and 1220 * consistent record encoding */ 1221 encode = true; 1222 len_full = len_full * 2; 1223 p += len_tmp; 1224 } else { 1225 require_data = false; 1226 if (!encode) 1227 encode = audit_string_contains_control( 1228 buf, len_tmp); 1229 /* try to use a trusted value for len_full */ 1230 if (len_full < len_max) 1231 len_full = (encode ? 1232 len_tmp * 2 : len_tmp); 1233 p += len_tmp + 1; 1234 } 1235 len_buf += len_tmp; 1236 buf_head[len_buf] = '\0'; 1237 1238 /* length of the buffer in the audit record? */ 1239 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1240 } 1241 1242 /* write as much as we can to the audit log */ 1243 if (len_buf >= 0) { 1244 /* NOTE: some magic numbers here - basically if we 1245 * can't fit a reasonable amount of data into the 1246 * existing audit buffer, flush it and start with 1247 * a new buffer */ 1248 if ((sizeof(abuf) + 8) > len_rem) { 1249 len_rem = len_max; 1250 audit_log_end(*ab); 1251 *ab = audit_log_start(context, 1252 GFP_KERNEL, AUDIT_EXECVE); 1253 if (!*ab) 1254 goto out; 1255 } 1256 1257 /* create the non-arg portion of the arg record */ 1258 len_tmp = 0; 1259 if (require_data || (iter > 0) || 1260 ((len_abuf + sizeof(abuf)) > len_rem)) { 1261 if (iter == 0) { 1262 len_tmp += snprintf(&abuf[len_tmp], 1263 sizeof(abuf) - len_tmp, 1264 " a%d_len=%lu", 1265 arg, len_full); 1266 } 1267 len_tmp += snprintf(&abuf[len_tmp], 1268 sizeof(abuf) - len_tmp, 1269 " a%d[%d]=", arg, iter++); 1270 } else 1271 len_tmp += snprintf(&abuf[len_tmp], 1272 sizeof(abuf) - len_tmp, 1273 " a%d=", arg); 1274 WARN_ON(len_tmp >= sizeof(abuf)); 1275 abuf[sizeof(abuf) - 1] = '\0'; 1276 1277 /* log the arg in the audit record */ 1278 audit_log_format(*ab, "%s", abuf); 1279 len_rem -= len_tmp; 1280 len_tmp = len_buf; 1281 if (encode) { 1282 if (len_abuf > len_rem) 1283 len_tmp = len_rem / 2; /* encoding */ 1284 audit_log_n_hex(*ab, buf, len_tmp); 1285 len_rem -= len_tmp * 2; 1286 len_abuf -= len_tmp * 2; 1287 } else { 1288 if (len_abuf > len_rem) 1289 len_tmp = len_rem - 2; /* quotes */ 1290 audit_log_n_string(*ab, buf, len_tmp); 1291 len_rem -= len_tmp + 2; 1292 /* don't subtract the "2" because we still need 1293 * to add quotes to the remaining string */ 1294 len_abuf -= len_tmp; 1295 } 1296 len_buf -= len_tmp; 1297 buf += len_tmp; 1298 } 1299 1300 /* ready to move to the next argument? */ 1301 if ((len_buf == 0) && !require_data) { 1302 arg++; 1303 iter = 0; 1304 len_full = 0; 1305 require_data = true; 1306 encode = false; 1307 } 1308 } while (arg < context->execve.argc); 1309 1310 /* NOTE: the caller handles the final audit_log_end() call */ 1311 1312 out: 1313 kfree(buf_head); 1314 } 1315 1316 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1317 kernel_cap_t *cap) 1318 { 1319 int i; 1320 1321 if (cap_isclear(*cap)) { 1322 audit_log_format(ab, " %s=0", prefix); 1323 return; 1324 } 1325 audit_log_format(ab, " %s=", prefix); 1326 CAP_FOR_EACH_U32(i) 1327 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1328 } 1329 1330 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1331 { 1332 if (name->fcap_ver == -1) { 1333 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1334 return; 1335 } 1336 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1337 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1338 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1339 name->fcap.fE, name->fcap_ver, 1340 from_kuid(&init_user_ns, name->fcap.rootid)); 1341 } 1342 1343 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1344 { 1345 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1346 const struct timespec64 *tk = &context->time.tk_injoffset; 1347 static const char * const ntp_name[] = { 1348 "offset", 1349 "freq", 1350 "status", 1351 "tai", 1352 "tick", 1353 "adjust", 1354 }; 1355 int type; 1356 1357 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1358 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1359 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1360 if (!*ab) { 1361 *ab = audit_log_start(context, 1362 GFP_KERNEL, 1363 AUDIT_TIME_ADJNTPVAL); 1364 if (!*ab) 1365 return; 1366 } 1367 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1368 ntp_name[type], 1369 ntp->vals[type].oldval, 1370 ntp->vals[type].newval); 1371 audit_log_end(*ab); 1372 *ab = NULL; 1373 } 1374 } 1375 } 1376 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1377 if (!*ab) { 1378 *ab = audit_log_start(context, GFP_KERNEL, 1379 AUDIT_TIME_INJOFFSET); 1380 if (!*ab) 1381 return; 1382 } 1383 audit_log_format(*ab, "sec=%lli nsec=%li", 1384 (long long)tk->tv_sec, tk->tv_nsec); 1385 audit_log_end(*ab); 1386 *ab = NULL; 1387 } 1388 } 1389 1390 static void show_special(struct audit_context *context, int *call_panic) 1391 { 1392 struct audit_buffer *ab; 1393 int i; 1394 1395 ab = audit_log_start(context, GFP_KERNEL, context->type); 1396 if (!ab) 1397 return; 1398 1399 switch (context->type) { 1400 case AUDIT_SOCKETCALL: { 1401 int nargs = context->socketcall.nargs; 1402 1403 audit_log_format(ab, "nargs=%d", nargs); 1404 for (i = 0; i < nargs; i++) 1405 audit_log_format(ab, " a%d=%lx", i, 1406 context->socketcall.args[i]); 1407 break; } 1408 case AUDIT_IPC: { 1409 u32 osid = context->ipc.osid; 1410 1411 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1412 from_kuid(&init_user_ns, context->ipc.uid), 1413 from_kgid(&init_user_ns, context->ipc.gid), 1414 context->ipc.mode); 1415 if (osid) { 1416 char *ctx = NULL; 1417 u32 len; 1418 1419 if (security_secid_to_secctx(osid, &ctx, &len)) { 1420 audit_log_format(ab, " osid=%u", osid); 1421 *call_panic = 1; 1422 } else { 1423 audit_log_format(ab, " obj=%s", ctx); 1424 security_release_secctx(ctx, len); 1425 } 1426 } 1427 if (context->ipc.has_perm) { 1428 audit_log_end(ab); 1429 ab = audit_log_start(context, GFP_KERNEL, 1430 AUDIT_IPC_SET_PERM); 1431 if (unlikely(!ab)) 1432 return; 1433 audit_log_format(ab, 1434 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1435 context->ipc.qbytes, 1436 context->ipc.perm_uid, 1437 context->ipc.perm_gid, 1438 context->ipc.perm_mode); 1439 } 1440 break; } 1441 case AUDIT_MQ_OPEN: 1442 audit_log_format(ab, 1443 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1444 "mq_msgsize=%ld mq_curmsgs=%ld", 1445 context->mq_open.oflag, context->mq_open.mode, 1446 context->mq_open.attr.mq_flags, 1447 context->mq_open.attr.mq_maxmsg, 1448 context->mq_open.attr.mq_msgsize, 1449 context->mq_open.attr.mq_curmsgs); 1450 break; 1451 case AUDIT_MQ_SENDRECV: 1452 audit_log_format(ab, 1453 "mqdes=%d msg_len=%zd msg_prio=%u " 1454 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1455 context->mq_sendrecv.mqdes, 1456 context->mq_sendrecv.msg_len, 1457 context->mq_sendrecv.msg_prio, 1458 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1459 context->mq_sendrecv.abs_timeout.tv_nsec); 1460 break; 1461 case AUDIT_MQ_NOTIFY: 1462 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1463 context->mq_notify.mqdes, 1464 context->mq_notify.sigev_signo); 1465 break; 1466 case AUDIT_MQ_GETSETATTR: { 1467 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1468 1469 audit_log_format(ab, 1470 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1471 "mq_curmsgs=%ld ", 1472 context->mq_getsetattr.mqdes, 1473 attr->mq_flags, attr->mq_maxmsg, 1474 attr->mq_msgsize, attr->mq_curmsgs); 1475 break; } 1476 case AUDIT_CAPSET: 1477 audit_log_format(ab, "pid=%d", context->capset.pid); 1478 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1479 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1480 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1481 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1482 break; 1483 case AUDIT_MMAP: 1484 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1485 context->mmap.flags); 1486 break; 1487 case AUDIT_OPENAT2: 1488 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1489 context->openat2.flags, 1490 context->openat2.mode, 1491 context->openat2.resolve); 1492 break; 1493 case AUDIT_EXECVE: 1494 audit_log_execve_info(context, &ab); 1495 break; 1496 case AUDIT_KERN_MODULE: 1497 audit_log_format(ab, "name="); 1498 if (context->module.name) { 1499 audit_log_untrustedstring(ab, context->module.name); 1500 } else 1501 audit_log_format(ab, "(null)"); 1502 1503 break; 1504 case AUDIT_TIME_ADJNTPVAL: 1505 case AUDIT_TIME_INJOFFSET: 1506 /* this call deviates from the rest, eating the buffer */ 1507 audit_log_time(context, &ab); 1508 break; 1509 } 1510 audit_log_end(ab); 1511 } 1512 1513 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1514 { 1515 char *end = proctitle + len - 1; 1516 1517 while (end > proctitle && !isprint(*end)) 1518 end--; 1519 1520 /* catch the case where proctitle is only 1 non-print character */ 1521 len = end - proctitle + 1; 1522 len -= isprint(proctitle[len-1]) == 0; 1523 return len; 1524 } 1525 1526 /* 1527 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1528 * @context: audit_context for the task 1529 * @n: audit_names structure with reportable details 1530 * @path: optional path to report instead of audit_names->name 1531 * @record_num: record number to report when handling a list of names 1532 * @call_panic: optional pointer to int that will be updated if secid fails 1533 */ 1534 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1535 const struct path *path, int record_num, int *call_panic) 1536 { 1537 struct audit_buffer *ab; 1538 1539 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1540 if (!ab) 1541 return; 1542 1543 audit_log_format(ab, "item=%d", record_num); 1544 1545 if (path) 1546 audit_log_d_path(ab, " name=", path); 1547 else if (n->name) { 1548 switch (n->name_len) { 1549 case AUDIT_NAME_FULL: 1550 /* log the full path */ 1551 audit_log_format(ab, " name="); 1552 audit_log_untrustedstring(ab, n->name->name); 1553 break; 1554 case 0: 1555 /* name was specified as a relative path and the 1556 * directory component is the cwd 1557 */ 1558 if (context->pwd.dentry && context->pwd.mnt) 1559 audit_log_d_path(ab, " name=", &context->pwd); 1560 else 1561 audit_log_format(ab, " name=(null)"); 1562 break; 1563 default: 1564 /* log the name's directory component */ 1565 audit_log_format(ab, " name="); 1566 audit_log_n_untrustedstring(ab, n->name->name, 1567 n->name_len); 1568 } 1569 } else 1570 audit_log_format(ab, " name=(null)"); 1571 1572 if (n->ino != AUDIT_INO_UNSET) 1573 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1574 n->ino, 1575 MAJOR(n->dev), 1576 MINOR(n->dev), 1577 n->mode, 1578 from_kuid(&init_user_ns, n->uid), 1579 from_kgid(&init_user_ns, n->gid), 1580 MAJOR(n->rdev), 1581 MINOR(n->rdev)); 1582 if (n->osid != 0) { 1583 char *ctx = NULL; 1584 u32 len; 1585 1586 if (security_secid_to_secctx( 1587 n->osid, &ctx, &len)) { 1588 audit_log_format(ab, " osid=%u", n->osid); 1589 if (call_panic) 1590 *call_panic = 2; 1591 } else { 1592 audit_log_format(ab, " obj=%s", ctx); 1593 security_release_secctx(ctx, len); 1594 } 1595 } 1596 1597 /* log the audit_names record type */ 1598 switch (n->type) { 1599 case AUDIT_TYPE_NORMAL: 1600 audit_log_format(ab, " nametype=NORMAL"); 1601 break; 1602 case AUDIT_TYPE_PARENT: 1603 audit_log_format(ab, " nametype=PARENT"); 1604 break; 1605 case AUDIT_TYPE_CHILD_DELETE: 1606 audit_log_format(ab, " nametype=DELETE"); 1607 break; 1608 case AUDIT_TYPE_CHILD_CREATE: 1609 audit_log_format(ab, " nametype=CREATE"); 1610 break; 1611 default: 1612 audit_log_format(ab, " nametype=UNKNOWN"); 1613 break; 1614 } 1615 1616 audit_log_fcaps(ab, n); 1617 audit_log_end(ab); 1618 } 1619 1620 static void audit_log_proctitle(void) 1621 { 1622 int res; 1623 char *buf; 1624 char *msg = "(null)"; 1625 int len = strlen(msg); 1626 struct audit_context *context = audit_context(); 1627 struct audit_buffer *ab; 1628 1629 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1630 if (!ab) 1631 return; /* audit_panic or being filtered */ 1632 1633 audit_log_format(ab, "proctitle="); 1634 1635 /* Not cached */ 1636 if (!context->proctitle.value) { 1637 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1638 if (!buf) 1639 goto out; 1640 /* Historically called this from procfs naming */ 1641 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1642 if (res == 0) { 1643 kfree(buf); 1644 goto out; 1645 } 1646 res = audit_proctitle_rtrim(buf, res); 1647 if (res == 0) { 1648 kfree(buf); 1649 goto out; 1650 } 1651 context->proctitle.value = buf; 1652 context->proctitle.len = res; 1653 } 1654 msg = context->proctitle.value; 1655 len = context->proctitle.len; 1656 out: 1657 audit_log_n_untrustedstring(ab, msg, len); 1658 audit_log_end(ab); 1659 } 1660 1661 /** 1662 * audit_log_uring - generate a AUDIT_URINGOP record 1663 * @ctx: the audit context 1664 */ 1665 static void audit_log_uring(struct audit_context *ctx) 1666 { 1667 struct audit_buffer *ab; 1668 const struct cred *cred; 1669 1670 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1671 if (!ab) 1672 return; 1673 cred = current_cred(); 1674 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1675 if (ctx->return_valid != AUDITSC_INVALID) 1676 audit_log_format(ab, " success=%s exit=%ld", 1677 (ctx->return_valid == AUDITSC_SUCCESS ? 1678 "yes" : "no"), 1679 ctx->return_code); 1680 audit_log_format(ab, 1681 " items=%d" 1682 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1683 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1684 ctx->name_count, 1685 task_ppid_nr(current), task_tgid_nr(current), 1686 from_kuid(&init_user_ns, cred->uid), 1687 from_kgid(&init_user_ns, cred->gid), 1688 from_kuid(&init_user_ns, cred->euid), 1689 from_kuid(&init_user_ns, cred->suid), 1690 from_kuid(&init_user_ns, cred->fsuid), 1691 from_kgid(&init_user_ns, cred->egid), 1692 from_kgid(&init_user_ns, cred->sgid), 1693 from_kgid(&init_user_ns, cred->fsgid)); 1694 audit_log_task_context(ab); 1695 audit_log_key(ab, ctx->filterkey); 1696 audit_log_end(ab); 1697 } 1698 1699 static void audit_log_exit(void) 1700 { 1701 int i, call_panic = 0; 1702 struct audit_context *context = audit_context(); 1703 struct audit_buffer *ab; 1704 struct audit_aux_data *aux; 1705 struct audit_names *n; 1706 1707 context->personality = current->personality; 1708 1709 switch (context->context) { 1710 case AUDIT_CTX_SYSCALL: 1711 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1712 if (!ab) 1713 return; 1714 audit_log_format(ab, "arch=%x syscall=%d", 1715 context->arch, context->major); 1716 if (context->personality != PER_LINUX) 1717 audit_log_format(ab, " per=%lx", context->personality); 1718 if (context->return_valid != AUDITSC_INVALID) 1719 audit_log_format(ab, " success=%s exit=%ld", 1720 (context->return_valid == AUDITSC_SUCCESS ? 1721 "yes" : "no"), 1722 context->return_code); 1723 audit_log_format(ab, 1724 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1725 context->argv[0], 1726 context->argv[1], 1727 context->argv[2], 1728 context->argv[3], 1729 context->name_count); 1730 audit_log_task_info(ab); 1731 audit_log_key(ab, context->filterkey); 1732 audit_log_end(ab); 1733 break; 1734 case AUDIT_CTX_URING: 1735 audit_log_uring(context); 1736 break; 1737 default: 1738 BUG(); 1739 break; 1740 } 1741 1742 for (aux = context->aux; aux; aux = aux->next) { 1743 1744 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1745 if (!ab) 1746 continue; /* audit_panic has been called */ 1747 1748 switch (aux->type) { 1749 1750 case AUDIT_BPRM_FCAPS: { 1751 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1752 1753 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1754 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1755 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1756 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1757 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1758 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1759 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1760 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1761 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1762 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1763 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1764 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1765 audit_log_format(ab, " frootid=%d", 1766 from_kuid(&init_user_ns, 1767 axs->fcap.rootid)); 1768 break; } 1769 1770 } 1771 audit_log_end(ab); 1772 } 1773 1774 if (context->type) 1775 show_special(context, &call_panic); 1776 1777 if (context->fds[0] >= 0) { 1778 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1779 if (ab) { 1780 audit_log_format(ab, "fd0=%d fd1=%d", 1781 context->fds[0], context->fds[1]); 1782 audit_log_end(ab); 1783 } 1784 } 1785 1786 if (context->sockaddr_len) { 1787 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1788 if (ab) { 1789 audit_log_format(ab, "saddr="); 1790 audit_log_n_hex(ab, (void *)context->sockaddr, 1791 context->sockaddr_len); 1792 audit_log_end(ab); 1793 } 1794 } 1795 1796 for (aux = context->aux_pids; aux; aux = aux->next) { 1797 struct audit_aux_data_pids *axs = (void *)aux; 1798 1799 for (i = 0; i < axs->pid_count; i++) 1800 if (audit_log_pid_context(context, axs->target_pid[i], 1801 axs->target_auid[i], 1802 axs->target_uid[i], 1803 axs->target_sessionid[i], 1804 axs->target_sid[i], 1805 axs->target_comm[i])) 1806 call_panic = 1; 1807 } 1808 1809 if (context->target_pid && 1810 audit_log_pid_context(context, context->target_pid, 1811 context->target_auid, context->target_uid, 1812 context->target_sessionid, 1813 context->target_sid, context->target_comm)) 1814 call_panic = 1; 1815 1816 if (context->pwd.dentry && context->pwd.mnt) { 1817 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1818 if (ab) { 1819 audit_log_d_path(ab, "cwd=", &context->pwd); 1820 audit_log_end(ab); 1821 } 1822 } 1823 1824 i = 0; 1825 list_for_each_entry(n, &context->names_list, list) { 1826 if (n->hidden) 1827 continue; 1828 audit_log_name(context, n, NULL, i++, &call_panic); 1829 } 1830 1831 if (context->context == AUDIT_CTX_SYSCALL) 1832 audit_log_proctitle(); 1833 1834 /* Send end of event record to help user space know we are finished */ 1835 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1836 if (ab) 1837 audit_log_end(ab); 1838 if (call_panic) 1839 audit_panic("error in audit_log_exit()"); 1840 } 1841 1842 /** 1843 * __audit_free - free a per-task audit context 1844 * @tsk: task whose audit context block to free 1845 * 1846 * Called from copy_process, do_exit, and the io_uring code 1847 */ 1848 void __audit_free(struct task_struct *tsk) 1849 { 1850 struct audit_context *context = tsk->audit_context; 1851 1852 if (!context) 1853 return; 1854 1855 /* this may generate CONFIG_CHANGE records */ 1856 if (!list_empty(&context->killed_trees)) 1857 audit_kill_trees(context); 1858 1859 /* We are called either by do_exit() or the fork() error handling code; 1860 * in the former case tsk == current and in the latter tsk is a 1861 * random task_struct that doesn't doesn't have any meaningful data we 1862 * need to log via audit_log_exit(). 1863 */ 1864 if (tsk == current && !context->dummy) { 1865 context->return_valid = AUDITSC_INVALID; 1866 context->return_code = 0; 1867 if (context->context == AUDIT_CTX_SYSCALL) { 1868 audit_filter_syscall(tsk, context); 1869 audit_filter_inodes(tsk, context); 1870 if (context->current_state == AUDIT_STATE_RECORD) 1871 audit_log_exit(); 1872 } else if (context->context == AUDIT_CTX_URING) { 1873 /* TODO: verify this case is real and valid */ 1874 audit_filter_uring(tsk, context); 1875 audit_filter_inodes(tsk, context); 1876 if (context->current_state == AUDIT_STATE_RECORD) 1877 audit_log_uring(context); 1878 } 1879 } 1880 1881 audit_set_context(tsk, NULL); 1882 audit_free_context(context); 1883 } 1884 1885 /** 1886 * audit_return_fixup - fixup the return codes in the audit_context 1887 * @ctx: the audit_context 1888 * @success: true/false value to indicate if the operation succeeded or not 1889 * @code: operation return code 1890 * 1891 * We need to fixup the return code in the audit logs if the actual return 1892 * codes are later going to be fixed by the arch specific signal handlers. 1893 */ 1894 static void audit_return_fixup(struct audit_context *ctx, 1895 int success, long code) 1896 { 1897 /* 1898 * This is actually a test for: 1899 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1900 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1901 * 1902 * but is faster than a bunch of || 1903 */ 1904 if (unlikely(code <= -ERESTARTSYS) && 1905 (code >= -ERESTART_RESTARTBLOCK) && 1906 (code != -ENOIOCTLCMD)) 1907 ctx->return_code = -EINTR; 1908 else 1909 ctx->return_code = code; 1910 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1911 } 1912 1913 /** 1914 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1915 * @op: the io_uring opcode 1916 * 1917 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1918 * operations. This function should only ever be called from 1919 * audit_uring_entry() as we rely on the audit context checking present in that 1920 * function. 1921 */ 1922 void __audit_uring_entry(u8 op) 1923 { 1924 struct audit_context *ctx = audit_context(); 1925 1926 if (ctx->state == AUDIT_STATE_DISABLED) 1927 return; 1928 1929 /* 1930 * NOTE: It's possible that we can be called from the process' context 1931 * before it returns to userspace, and before audit_syscall_exit() 1932 * is called. In this case there is not much to do, just record 1933 * the io_uring details and return. 1934 */ 1935 ctx->uring_op = op; 1936 if (ctx->context == AUDIT_CTX_SYSCALL) 1937 return; 1938 1939 ctx->dummy = !audit_n_rules; 1940 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1941 ctx->prio = 0; 1942 1943 ctx->context = AUDIT_CTX_URING; 1944 ctx->current_state = ctx->state; 1945 ktime_get_coarse_real_ts64(&ctx->ctime); 1946 } 1947 1948 /** 1949 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1950 * @success: true/false value to indicate if the operation succeeded or not 1951 * @code: operation return code 1952 * 1953 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1954 * operations. This function should only ever be called from 1955 * audit_uring_exit() as we rely on the audit context checking present in that 1956 * function. 1957 */ 1958 void __audit_uring_exit(int success, long code) 1959 { 1960 struct audit_context *ctx = audit_context(); 1961 1962 if (ctx->context == AUDIT_CTX_SYSCALL) { 1963 /* 1964 * NOTE: See the note in __audit_uring_entry() about the case 1965 * where we may be called from process context before we 1966 * return to userspace via audit_syscall_exit(). In this 1967 * case we simply emit a URINGOP record and bail, the 1968 * normal syscall exit handling will take care of 1969 * everything else. 1970 * It is also worth mentioning that when we are called, 1971 * the current process creds may differ from the creds 1972 * used during the normal syscall processing; keep that 1973 * in mind if/when we move the record generation code. 1974 */ 1975 1976 /* 1977 * We need to filter on the syscall info here to decide if we 1978 * should emit a URINGOP record. I know it seems odd but this 1979 * solves the problem where users have a filter to block *all* 1980 * syscall records in the "exit" filter; we want to preserve 1981 * the behavior here. 1982 */ 1983 audit_filter_syscall(current, ctx); 1984 if (ctx->current_state != AUDIT_STATE_RECORD) 1985 audit_filter_uring(current, ctx); 1986 audit_filter_inodes(current, ctx); 1987 if (ctx->current_state != AUDIT_STATE_RECORD) 1988 return; 1989 1990 audit_log_uring(ctx); 1991 return; 1992 } 1993 1994 /* this may generate CONFIG_CHANGE records */ 1995 if (!list_empty(&ctx->killed_trees)) 1996 audit_kill_trees(ctx); 1997 1998 /* run through both filters to ensure we set the filterkey properly */ 1999 audit_filter_uring(current, ctx); 2000 audit_filter_inodes(current, ctx); 2001 if (ctx->current_state != AUDIT_STATE_RECORD) 2002 goto out; 2003 audit_return_fixup(ctx, success, code); 2004 audit_log_exit(); 2005 2006 out: 2007 audit_reset_context(ctx); 2008 } 2009 2010 /** 2011 * __audit_syscall_entry - fill in an audit record at syscall entry 2012 * @major: major syscall type (function) 2013 * @a1: additional syscall register 1 2014 * @a2: additional syscall register 2 2015 * @a3: additional syscall register 3 2016 * @a4: additional syscall register 4 2017 * 2018 * Fill in audit context at syscall entry. This only happens if the 2019 * audit context was created when the task was created and the state or 2020 * filters demand the audit context be built. If the state from the 2021 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2022 * then the record will be written at syscall exit time (otherwise, it 2023 * will only be written if another part of the kernel requests that it 2024 * be written). 2025 */ 2026 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2027 unsigned long a3, unsigned long a4) 2028 { 2029 struct audit_context *context = audit_context(); 2030 enum audit_state state; 2031 2032 if (!audit_enabled || !context) 2033 return; 2034 2035 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2036 WARN_ON(context->name_count); 2037 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2038 audit_panic("unrecoverable error in audit_syscall_entry()"); 2039 return; 2040 } 2041 2042 state = context->state; 2043 if (state == AUDIT_STATE_DISABLED) 2044 return; 2045 2046 context->dummy = !audit_n_rules; 2047 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2048 context->prio = 0; 2049 if (auditd_test_task(current)) 2050 return; 2051 } 2052 2053 context->arch = syscall_get_arch(current); 2054 context->major = major; 2055 context->argv[0] = a1; 2056 context->argv[1] = a2; 2057 context->argv[2] = a3; 2058 context->argv[3] = a4; 2059 context->context = AUDIT_CTX_SYSCALL; 2060 context->current_state = state; 2061 ktime_get_coarse_real_ts64(&context->ctime); 2062 } 2063 2064 /** 2065 * __audit_syscall_exit - deallocate audit context after a system call 2066 * @success: success value of the syscall 2067 * @return_code: return value of the syscall 2068 * 2069 * Tear down after system call. If the audit context has been marked as 2070 * auditable (either because of the AUDIT_STATE_RECORD state from 2071 * filtering, or because some other part of the kernel wrote an audit 2072 * message), then write out the syscall information. In call cases, 2073 * free the names stored from getname(). 2074 */ 2075 void __audit_syscall_exit(int success, long return_code) 2076 { 2077 struct audit_context *context = audit_context(); 2078 2079 if (!context || context->dummy || 2080 context->context != AUDIT_CTX_SYSCALL) 2081 goto out; 2082 2083 /* this may generate CONFIG_CHANGE records */ 2084 if (!list_empty(&context->killed_trees)) 2085 audit_kill_trees(context); 2086 2087 /* run through both filters to ensure we set the filterkey properly */ 2088 audit_filter_syscall(current, context); 2089 audit_filter_inodes(current, context); 2090 if (context->current_state < AUDIT_STATE_RECORD) 2091 goto out; 2092 2093 audit_return_fixup(context, success, return_code); 2094 audit_log_exit(); 2095 2096 out: 2097 audit_reset_context(context); 2098 } 2099 2100 static inline void handle_one(const struct inode *inode) 2101 { 2102 struct audit_context *context; 2103 struct audit_tree_refs *p; 2104 struct audit_chunk *chunk; 2105 int count; 2106 2107 if (likely(!inode->i_fsnotify_marks)) 2108 return; 2109 context = audit_context(); 2110 p = context->trees; 2111 count = context->tree_count; 2112 rcu_read_lock(); 2113 chunk = audit_tree_lookup(inode); 2114 rcu_read_unlock(); 2115 if (!chunk) 2116 return; 2117 if (likely(put_tree_ref(context, chunk))) 2118 return; 2119 if (unlikely(!grow_tree_refs(context))) { 2120 pr_warn("out of memory, audit has lost a tree reference\n"); 2121 audit_set_auditable(context); 2122 audit_put_chunk(chunk); 2123 unroll_tree_refs(context, p, count); 2124 return; 2125 } 2126 put_tree_ref(context, chunk); 2127 } 2128 2129 static void handle_path(const struct dentry *dentry) 2130 { 2131 struct audit_context *context; 2132 struct audit_tree_refs *p; 2133 const struct dentry *d, *parent; 2134 struct audit_chunk *drop; 2135 unsigned long seq; 2136 int count; 2137 2138 context = audit_context(); 2139 p = context->trees; 2140 count = context->tree_count; 2141 retry: 2142 drop = NULL; 2143 d = dentry; 2144 rcu_read_lock(); 2145 seq = read_seqbegin(&rename_lock); 2146 for(;;) { 2147 struct inode *inode = d_backing_inode(d); 2148 2149 if (inode && unlikely(inode->i_fsnotify_marks)) { 2150 struct audit_chunk *chunk; 2151 2152 chunk = audit_tree_lookup(inode); 2153 if (chunk) { 2154 if (unlikely(!put_tree_ref(context, chunk))) { 2155 drop = chunk; 2156 break; 2157 } 2158 } 2159 } 2160 parent = d->d_parent; 2161 if (parent == d) 2162 break; 2163 d = parent; 2164 } 2165 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2166 rcu_read_unlock(); 2167 if (!drop) { 2168 /* just a race with rename */ 2169 unroll_tree_refs(context, p, count); 2170 goto retry; 2171 } 2172 audit_put_chunk(drop); 2173 if (grow_tree_refs(context)) { 2174 /* OK, got more space */ 2175 unroll_tree_refs(context, p, count); 2176 goto retry; 2177 } 2178 /* too bad */ 2179 pr_warn("out of memory, audit has lost a tree reference\n"); 2180 unroll_tree_refs(context, p, count); 2181 audit_set_auditable(context); 2182 return; 2183 } 2184 rcu_read_unlock(); 2185 } 2186 2187 static struct audit_names *audit_alloc_name(struct audit_context *context, 2188 unsigned char type) 2189 { 2190 struct audit_names *aname; 2191 2192 if (context->name_count < AUDIT_NAMES) { 2193 aname = &context->preallocated_names[context->name_count]; 2194 memset(aname, 0, sizeof(*aname)); 2195 } else { 2196 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2197 if (!aname) 2198 return NULL; 2199 aname->should_free = true; 2200 } 2201 2202 aname->ino = AUDIT_INO_UNSET; 2203 aname->type = type; 2204 list_add_tail(&aname->list, &context->names_list); 2205 2206 context->name_count++; 2207 if (!context->pwd.dentry) 2208 get_fs_pwd(current->fs, &context->pwd); 2209 return aname; 2210 } 2211 2212 /** 2213 * __audit_reusename - fill out filename with info from existing entry 2214 * @uptr: userland ptr to pathname 2215 * 2216 * Search the audit_names list for the current audit context. If there is an 2217 * existing entry with a matching "uptr" then return the filename 2218 * associated with that audit_name. If not, return NULL. 2219 */ 2220 struct filename * 2221 __audit_reusename(const __user char *uptr) 2222 { 2223 struct audit_context *context = audit_context(); 2224 struct audit_names *n; 2225 2226 list_for_each_entry(n, &context->names_list, list) { 2227 if (!n->name) 2228 continue; 2229 if (n->name->uptr == uptr) { 2230 n->name->refcnt++; 2231 return n->name; 2232 } 2233 } 2234 return NULL; 2235 } 2236 2237 /** 2238 * __audit_getname - add a name to the list 2239 * @name: name to add 2240 * 2241 * Add a name to the list of audit names for this context. 2242 * Called from fs/namei.c:getname(). 2243 */ 2244 void __audit_getname(struct filename *name) 2245 { 2246 struct audit_context *context = audit_context(); 2247 struct audit_names *n; 2248 2249 if (context->context == AUDIT_CTX_UNUSED) 2250 return; 2251 2252 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2253 if (!n) 2254 return; 2255 2256 n->name = name; 2257 n->name_len = AUDIT_NAME_FULL; 2258 name->aname = n; 2259 name->refcnt++; 2260 } 2261 2262 static inline int audit_copy_fcaps(struct audit_names *name, 2263 const struct dentry *dentry) 2264 { 2265 struct cpu_vfs_cap_data caps; 2266 int rc; 2267 2268 if (!dentry) 2269 return 0; 2270 2271 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); 2272 if (rc) 2273 return rc; 2274 2275 name->fcap.permitted = caps.permitted; 2276 name->fcap.inheritable = caps.inheritable; 2277 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2278 name->fcap.rootid = caps.rootid; 2279 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2280 VFS_CAP_REVISION_SHIFT; 2281 2282 return 0; 2283 } 2284 2285 /* Copy inode data into an audit_names. */ 2286 static void audit_copy_inode(struct audit_names *name, 2287 const struct dentry *dentry, 2288 struct inode *inode, unsigned int flags) 2289 { 2290 name->ino = inode->i_ino; 2291 name->dev = inode->i_sb->s_dev; 2292 name->mode = inode->i_mode; 2293 name->uid = inode->i_uid; 2294 name->gid = inode->i_gid; 2295 name->rdev = inode->i_rdev; 2296 security_inode_getsecid(inode, &name->osid); 2297 if (flags & AUDIT_INODE_NOEVAL) { 2298 name->fcap_ver = -1; 2299 return; 2300 } 2301 audit_copy_fcaps(name, dentry); 2302 } 2303 2304 /** 2305 * __audit_inode - store the inode and device from a lookup 2306 * @name: name being audited 2307 * @dentry: dentry being audited 2308 * @flags: attributes for this particular entry 2309 */ 2310 void __audit_inode(struct filename *name, const struct dentry *dentry, 2311 unsigned int flags) 2312 { 2313 struct audit_context *context = audit_context(); 2314 struct inode *inode = d_backing_inode(dentry); 2315 struct audit_names *n; 2316 bool parent = flags & AUDIT_INODE_PARENT; 2317 struct audit_entry *e; 2318 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2319 int i; 2320 2321 if (context->context == AUDIT_CTX_UNUSED) 2322 return; 2323 2324 rcu_read_lock(); 2325 list_for_each_entry_rcu(e, list, list) { 2326 for (i = 0; i < e->rule.field_count; i++) { 2327 struct audit_field *f = &e->rule.fields[i]; 2328 2329 if (f->type == AUDIT_FSTYPE 2330 && audit_comparator(inode->i_sb->s_magic, 2331 f->op, f->val) 2332 && e->rule.action == AUDIT_NEVER) { 2333 rcu_read_unlock(); 2334 return; 2335 } 2336 } 2337 } 2338 rcu_read_unlock(); 2339 2340 if (!name) 2341 goto out_alloc; 2342 2343 /* 2344 * If we have a pointer to an audit_names entry already, then we can 2345 * just use it directly if the type is correct. 2346 */ 2347 n = name->aname; 2348 if (n) { 2349 if (parent) { 2350 if (n->type == AUDIT_TYPE_PARENT || 2351 n->type == AUDIT_TYPE_UNKNOWN) 2352 goto out; 2353 } else { 2354 if (n->type != AUDIT_TYPE_PARENT) 2355 goto out; 2356 } 2357 } 2358 2359 list_for_each_entry_reverse(n, &context->names_list, list) { 2360 if (n->ino) { 2361 /* valid inode number, use that for the comparison */ 2362 if (n->ino != inode->i_ino || 2363 n->dev != inode->i_sb->s_dev) 2364 continue; 2365 } else if (n->name) { 2366 /* inode number has not been set, check the name */ 2367 if (strcmp(n->name->name, name->name)) 2368 continue; 2369 } else 2370 /* no inode and no name (?!) ... this is odd ... */ 2371 continue; 2372 2373 /* match the correct record type */ 2374 if (parent) { 2375 if (n->type == AUDIT_TYPE_PARENT || 2376 n->type == AUDIT_TYPE_UNKNOWN) 2377 goto out; 2378 } else { 2379 if (n->type != AUDIT_TYPE_PARENT) 2380 goto out; 2381 } 2382 } 2383 2384 out_alloc: 2385 /* unable to find an entry with both a matching name and type */ 2386 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2387 if (!n) 2388 return; 2389 if (name) { 2390 n->name = name; 2391 name->refcnt++; 2392 } 2393 2394 out: 2395 if (parent) { 2396 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2397 n->type = AUDIT_TYPE_PARENT; 2398 if (flags & AUDIT_INODE_HIDDEN) 2399 n->hidden = true; 2400 } else { 2401 n->name_len = AUDIT_NAME_FULL; 2402 n->type = AUDIT_TYPE_NORMAL; 2403 } 2404 handle_path(dentry); 2405 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2406 } 2407 2408 void __audit_file(const struct file *file) 2409 { 2410 __audit_inode(NULL, file->f_path.dentry, 0); 2411 } 2412 2413 /** 2414 * __audit_inode_child - collect inode info for created/removed objects 2415 * @parent: inode of dentry parent 2416 * @dentry: dentry being audited 2417 * @type: AUDIT_TYPE_* value that we're looking for 2418 * 2419 * For syscalls that create or remove filesystem objects, audit_inode 2420 * can only collect information for the filesystem object's parent. 2421 * This call updates the audit context with the child's information. 2422 * Syscalls that create a new filesystem object must be hooked after 2423 * the object is created. Syscalls that remove a filesystem object 2424 * must be hooked prior, in order to capture the target inode during 2425 * unsuccessful attempts. 2426 */ 2427 void __audit_inode_child(struct inode *parent, 2428 const struct dentry *dentry, 2429 const unsigned char type) 2430 { 2431 struct audit_context *context = audit_context(); 2432 struct inode *inode = d_backing_inode(dentry); 2433 const struct qstr *dname = &dentry->d_name; 2434 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2435 struct audit_entry *e; 2436 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2437 int i; 2438 2439 if (context->context == AUDIT_CTX_UNUSED) 2440 return; 2441 2442 rcu_read_lock(); 2443 list_for_each_entry_rcu(e, list, list) { 2444 for (i = 0; i < e->rule.field_count; i++) { 2445 struct audit_field *f = &e->rule.fields[i]; 2446 2447 if (f->type == AUDIT_FSTYPE 2448 && audit_comparator(parent->i_sb->s_magic, 2449 f->op, f->val) 2450 && e->rule.action == AUDIT_NEVER) { 2451 rcu_read_unlock(); 2452 return; 2453 } 2454 } 2455 } 2456 rcu_read_unlock(); 2457 2458 if (inode) 2459 handle_one(inode); 2460 2461 /* look for a parent entry first */ 2462 list_for_each_entry(n, &context->names_list, list) { 2463 if (!n->name || 2464 (n->type != AUDIT_TYPE_PARENT && 2465 n->type != AUDIT_TYPE_UNKNOWN)) 2466 continue; 2467 2468 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2469 !audit_compare_dname_path(dname, 2470 n->name->name, n->name_len)) { 2471 if (n->type == AUDIT_TYPE_UNKNOWN) 2472 n->type = AUDIT_TYPE_PARENT; 2473 found_parent = n; 2474 break; 2475 } 2476 } 2477 2478 /* is there a matching child entry? */ 2479 list_for_each_entry(n, &context->names_list, list) { 2480 /* can only match entries that have a name */ 2481 if (!n->name || 2482 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2483 continue; 2484 2485 if (!strcmp(dname->name, n->name->name) || 2486 !audit_compare_dname_path(dname, n->name->name, 2487 found_parent ? 2488 found_parent->name_len : 2489 AUDIT_NAME_FULL)) { 2490 if (n->type == AUDIT_TYPE_UNKNOWN) 2491 n->type = type; 2492 found_child = n; 2493 break; 2494 } 2495 } 2496 2497 if (!found_parent) { 2498 /* create a new, "anonymous" parent record */ 2499 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2500 if (!n) 2501 return; 2502 audit_copy_inode(n, NULL, parent, 0); 2503 } 2504 2505 if (!found_child) { 2506 found_child = audit_alloc_name(context, type); 2507 if (!found_child) 2508 return; 2509 2510 /* Re-use the name belonging to the slot for a matching parent 2511 * directory. All names for this context are relinquished in 2512 * audit_free_names() */ 2513 if (found_parent) { 2514 found_child->name = found_parent->name; 2515 found_child->name_len = AUDIT_NAME_FULL; 2516 found_child->name->refcnt++; 2517 } 2518 } 2519 2520 if (inode) 2521 audit_copy_inode(found_child, dentry, inode, 0); 2522 else 2523 found_child->ino = AUDIT_INO_UNSET; 2524 } 2525 EXPORT_SYMBOL_GPL(__audit_inode_child); 2526 2527 /** 2528 * auditsc_get_stamp - get local copies of audit_context values 2529 * @ctx: audit_context for the task 2530 * @t: timespec64 to store time recorded in the audit_context 2531 * @serial: serial value that is recorded in the audit_context 2532 * 2533 * Also sets the context as auditable. 2534 */ 2535 int auditsc_get_stamp(struct audit_context *ctx, 2536 struct timespec64 *t, unsigned int *serial) 2537 { 2538 if (ctx->context == AUDIT_CTX_UNUSED) 2539 return 0; 2540 if (!ctx->serial) 2541 ctx->serial = audit_serial(); 2542 t->tv_sec = ctx->ctime.tv_sec; 2543 t->tv_nsec = ctx->ctime.tv_nsec; 2544 *serial = ctx->serial; 2545 if (!ctx->prio) { 2546 ctx->prio = 1; 2547 ctx->current_state = AUDIT_STATE_RECORD; 2548 } 2549 return 1; 2550 } 2551 2552 /** 2553 * __audit_mq_open - record audit data for a POSIX MQ open 2554 * @oflag: open flag 2555 * @mode: mode bits 2556 * @attr: queue attributes 2557 * 2558 */ 2559 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2560 { 2561 struct audit_context *context = audit_context(); 2562 2563 if (attr) 2564 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2565 else 2566 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2567 2568 context->mq_open.oflag = oflag; 2569 context->mq_open.mode = mode; 2570 2571 context->type = AUDIT_MQ_OPEN; 2572 } 2573 2574 /** 2575 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2576 * @mqdes: MQ descriptor 2577 * @msg_len: Message length 2578 * @msg_prio: Message priority 2579 * @abs_timeout: Message timeout in absolute time 2580 * 2581 */ 2582 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2583 const struct timespec64 *abs_timeout) 2584 { 2585 struct audit_context *context = audit_context(); 2586 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2587 2588 if (abs_timeout) 2589 memcpy(p, abs_timeout, sizeof(*p)); 2590 else 2591 memset(p, 0, sizeof(*p)); 2592 2593 context->mq_sendrecv.mqdes = mqdes; 2594 context->mq_sendrecv.msg_len = msg_len; 2595 context->mq_sendrecv.msg_prio = msg_prio; 2596 2597 context->type = AUDIT_MQ_SENDRECV; 2598 } 2599 2600 /** 2601 * __audit_mq_notify - record audit data for a POSIX MQ notify 2602 * @mqdes: MQ descriptor 2603 * @notification: Notification event 2604 * 2605 */ 2606 2607 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2608 { 2609 struct audit_context *context = audit_context(); 2610 2611 if (notification) 2612 context->mq_notify.sigev_signo = notification->sigev_signo; 2613 else 2614 context->mq_notify.sigev_signo = 0; 2615 2616 context->mq_notify.mqdes = mqdes; 2617 context->type = AUDIT_MQ_NOTIFY; 2618 } 2619 2620 /** 2621 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2622 * @mqdes: MQ descriptor 2623 * @mqstat: MQ flags 2624 * 2625 */ 2626 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2627 { 2628 struct audit_context *context = audit_context(); 2629 2630 context->mq_getsetattr.mqdes = mqdes; 2631 context->mq_getsetattr.mqstat = *mqstat; 2632 context->type = AUDIT_MQ_GETSETATTR; 2633 } 2634 2635 /** 2636 * __audit_ipc_obj - record audit data for ipc object 2637 * @ipcp: ipc permissions 2638 * 2639 */ 2640 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2641 { 2642 struct audit_context *context = audit_context(); 2643 2644 context->ipc.uid = ipcp->uid; 2645 context->ipc.gid = ipcp->gid; 2646 context->ipc.mode = ipcp->mode; 2647 context->ipc.has_perm = 0; 2648 security_ipc_getsecid(ipcp, &context->ipc.osid); 2649 context->type = AUDIT_IPC; 2650 } 2651 2652 /** 2653 * __audit_ipc_set_perm - record audit data for new ipc permissions 2654 * @qbytes: msgq bytes 2655 * @uid: msgq user id 2656 * @gid: msgq group id 2657 * @mode: msgq mode (permissions) 2658 * 2659 * Called only after audit_ipc_obj(). 2660 */ 2661 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2662 { 2663 struct audit_context *context = audit_context(); 2664 2665 context->ipc.qbytes = qbytes; 2666 context->ipc.perm_uid = uid; 2667 context->ipc.perm_gid = gid; 2668 context->ipc.perm_mode = mode; 2669 context->ipc.has_perm = 1; 2670 } 2671 2672 void __audit_bprm(struct linux_binprm *bprm) 2673 { 2674 struct audit_context *context = audit_context(); 2675 2676 context->type = AUDIT_EXECVE; 2677 context->execve.argc = bprm->argc; 2678 } 2679 2680 2681 /** 2682 * __audit_socketcall - record audit data for sys_socketcall 2683 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2684 * @args: args array 2685 * 2686 */ 2687 int __audit_socketcall(int nargs, unsigned long *args) 2688 { 2689 struct audit_context *context = audit_context(); 2690 2691 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2692 return -EINVAL; 2693 context->type = AUDIT_SOCKETCALL; 2694 context->socketcall.nargs = nargs; 2695 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2696 return 0; 2697 } 2698 2699 /** 2700 * __audit_fd_pair - record audit data for pipe and socketpair 2701 * @fd1: the first file descriptor 2702 * @fd2: the second file descriptor 2703 * 2704 */ 2705 void __audit_fd_pair(int fd1, int fd2) 2706 { 2707 struct audit_context *context = audit_context(); 2708 2709 context->fds[0] = fd1; 2710 context->fds[1] = fd2; 2711 } 2712 2713 /** 2714 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2715 * @len: data length in user space 2716 * @a: data address in kernel space 2717 * 2718 * Returns 0 for success or NULL context or < 0 on error. 2719 */ 2720 int __audit_sockaddr(int len, void *a) 2721 { 2722 struct audit_context *context = audit_context(); 2723 2724 if (!context->sockaddr) { 2725 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2726 2727 if (!p) 2728 return -ENOMEM; 2729 context->sockaddr = p; 2730 } 2731 2732 context->sockaddr_len = len; 2733 memcpy(context->sockaddr, a, len); 2734 return 0; 2735 } 2736 2737 void __audit_ptrace(struct task_struct *t) 2738 { 2739 struct audit_context *context = audit_context(); 2740 2741 context->target_pid = task_tgid_nr(t); 2742 context->target_auid = audit_get_loginuid(t); 2743 context->target_uid = task_uid(t); 2744 context->target_sessionid = audit_get_sessionid(t); 2745 security_task_getsecid_obj(t, &context->target_sid); 2746 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2747 } 2748 2749 /** 2750 * audit_signal_info_syscall - record signal info for syscalls 2751 * @t: task being signaled 2752 * 2753 * If the audit subsystem is being terminated, record the task (pid) 2754 * and uid that is doing that. 2755 */ 2756 int audit_signal_info_syscall(struct task_struct *t) 2757 { 2758 struct audit_aux_data_pids *axp; 2759 struct audit_context *ctx = audit_context(); 2760 kuid_t t_uid = task_uid(t); 2761 2762 if (!audit_signals || audit_dummy_context()) 2763 return 0; 2764 2765 /* optimize the common case by putting first signal recipient directly 2766 * in audit_context */ 2767 if (!ctx->target_pid) { 2768 ctx->target_pid = task_tgid_nr(t); 2769 ctx->target_auid = audit_get_loginuid(t); 2770 ctx->target_uid = t_uid; 2771 ctx->target_sessionid = audit_get_sessionid(t); 2772 security_task_getsecid_obj(t, &ctx->target_sid); 2773 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2774 return 0; 2775 } 2776 2777 axp = (void *)ctx->aux_pids; 2778 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2779 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2780 if (!axp) 2781 return -ENOMEM; 2782 2783 axp->d.type = AUDIT_OBJ_PID; 2784 axp->d.next = ctx->aux_pids; 2785 ctx->aux_pids = (void *)axp; 2786 } 2787 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2788 2789 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2790 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2791 axp->target_uid[axp->pid_count] = t_uid; 2792 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2793 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2794 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2795 axp->pid_count++; 2796 2797 return 0; 2798 } 2799 2800 /** 2801 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2802 * @bprm: pointer to the bprm being processed 2803 * @new: the proposed new credentials 2804 * @old: the old credentials 2805 * 2806 * Simply check if the proc already has the caps given by the file and if not 2807 * store the priv escalation info for later auditing at the end of the syscall 2808 * 2809 * -Eric 2810 */ 2811 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2812 const struct cred *new, const struct cred *old) 2813 { 2814 struct audit_aux_data_bprm_fcaps *ax; 2815 struct audit_context *context = audit_context(); 2816 struct cpu_vfs_cap_data vcaps; 2817 2818 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2819 if (!ax) 2820 return -ENOMEM; 2821 2822 ax->d.type = AUDIT_BPRM_FCAPS; 2823 ax->d.next = context->aux; 2824 context->aux = (void *)ax; 2825 2826 get_vfs_caps_from_disk(&init_user_ns, 2827 bprm->file->f_path.dentry, &vcaps); 2828 2829 ax->fcap.permitted = vcaps.permitted; 2830 ax->fcap.inheritable = vcaps.inheritable; 2831 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2832 ax->fcap.rootid = vcaps.rootid; 2833 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2834 2835 ax->old_pcap.permitted = old->cap_permitted; 2836 ax->old_pcap.inheritable = old->cap_inheritable; 2837 ax->old_pcap.effective = old->cap_effective; 2838 ax->old_pcap.ambient = old->cap_ambient; 2839 2840 ax->new_pcap.permitted = new->cap_permitted; 2841 ax->new_pcap.inheritable = new->cap_inheritable; 2842 ax->new_pcap.effective = new->cap_effective; 2843 ax->new_pcap.ambient = new->cap_ambient; 2844 return 0; 2845 } 2846 2847 /** 2848 * __audit_log_capset - store information about the arguments to the capset syscall 2849 * @new: the new credentials 2850 * @old: the old (current) credentials 2851 * 2852 * Record the arguments userspace sent to sys_capset for later printing by the 2853 * audit system if applicable 2854 */ 2855 void __audit_log_capset(const struct cred *new, const struct cred *old) 2856 { 2857 struct audit_context *context = audit_context(); 2858 2859 context->capset.pid = task_tgid_nr(current); 2860 context->capset.cap.effective = new->cap_effective; 2861 context->capset.cap.inheritable = new->cap_effective; 2862 context->capset.cap.permitted = new->cap_permitted; 2863 context->capset.cap.ambient = new->cap_ambient; 2864 context->type = AUDIT_CAPSET; 2865 } 2866 2867 void __audit_mmap_fd(int fd, int flags) 2868 { 2869 struct audit_context *context = audit_context(); 2870 2871 context->mmap.fd = fd; 2872 context->mmap.flags = flags; 2873 context->type = AUDIT_MMAP; 2874 } 2875 2876 void __audit_openat2_how(struct open_how *how) 2877 { 2878 struct audit_context *context = audit_context(); 2879 2880 context->openat2.flags = how->flags; 2881 context->openat2.mode = how->mode; 2882 context->openat2.resolve = how->resolve; 2883 context->type = AUDIT_OPENAT2; 2884 } 2885 2886 void __audit_log_kern_module(char *name) 2887 { 2888 struct audit_context *context = audit_context(); 2889 2890 context->module.name = kstrdup(name, GFP_KERNEL); 2891 if (!context->module.name) 2892 audit_log_lost("out of memory in __audit_log_kern_module"); 2893 context->type = AUDIT_KERN_MODULE; 2894 } 2895 2896 void __audit_fanotify(unsigned int response) 2897 { 2898 audit_log(audit_context(), GFP_KERNEL, 2899 AUDIT_FANOTIFY, "resp=%u", response); 2900 } 2901 2902 void __audit_tk_injoffset(struct timespec64 offset) 2903 { 2904 struct audit_context *context = audit_context(); 2905 2906 /* only set type if not already set by NTP */ 2907 if (!context->type) 2908 context->type = AUDIT_TIME_INJOFFSET; 2909 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2910 } 2911 2912 void __audit_ntp_log(const struct audit_ntp_data *ad) 2913 { 2914 struct audit_context *context = audit_context(); 2915 int type; 2916 2917 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2918 if (ad->vals[type].newval != ad->vals[type].oldval) { 2919 /* unconditionally set type, overwriting TK */ 2920 context->type = AUDIT_TIME_ADJNTPVAL; 2921 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2922 break; 2923 } 2924 } 2925 2926 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2927 enum audit_nfcfgop op, gfp_t gfp) 2928 { 2929 struct audit_buffer *ab; 2930 char comm[sizeof(current->comm)]; 2931 2932 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2933 if (!ab) 2934 return; 2935 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2936 name, af, nentries, audit_nfcfgs[op].s); 2937 2938 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2939 audit_log_task_context(ab); /* subj= */ 2940 audit_log_format(ab, " comm="); 2941 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2942 audit_log_end(ab); 2943 } 2944 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2945 2946 static void audit_log_task(struct audit_buffer *ab) 2947 { 2948 kuid_t auid, uid; 2949 kgid_t gid; 2950 unsigned int sessionid; 2951 char comm[sizeof(current->comm)]; 2952 2953 auid = audit_get_loginuid(current); 2954 sessionid = audit_get_sessionid(current); 2955 current_uid_gid(&uid, &gid); 2956 2957 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2958 from_kuid(&init_user_ns, auid), 2959 from_kuid(&init_user_ns, uid), 2960 from_kgid(&init_user_ns, gid), 2961 sessionid); 2962 audit_log_task_context(ab); 2963 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2964 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2965 audit_log_d_path_exe(ab, current->mm); 2966 } 2967 2968 /** 2969 * audit_core_dumps - record information about processes that end abnormally 2970 * @signr: signal value 2971 * 2972 * If a process ends with a core dump, something fishy is going on and we 2973 * should record the event for investigation. 2974 */ 2975 void audit_core_dumps(long signr) 2976 { 2977 struct audit_buffer *ab; 2978 2979 if (!audit_enabled) 2980 return; 2981 2982 if (signr == SIGQUIT) /* don't care for those */ 2983 return; 2984 2985 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2986 if (unlikely(!ab)) 2987 return; 2988 audit_log_task(ab); 2989 audit_log_format(ab, " sig=%ld res=1", signr); 2990 audit_log_end(ab); 2991 } 2992 2993 /** 2994 * audit_seccomp - record information about a seccomp action 2995 * @syscall: syscall number 2996 * @signr: signal value 2997 * @code: the seccomp action 2998 * 2999 * Record the information associated with a seccomp action. Event filtering for 3000 * seccomp actions that are not to be logged is done in seccomp_log(). 3001 * Therefore, this function forces auditing independent of the audit_enabled 3002 * and dummy context state because seccomp actions should be logged even when 3003 * audit is not in use. 3004 */ 3005 void audit_seccomp(unsigned long syscall, long signr, int code) 3006 { 3007 struct audit_buffer *ab; 3008 3009 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3010 if (unlikely(!ab)) 3011 return; 3012 audit_log_task(ab); 3013 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3014 signr, syscall_get_arch(current), syscall, 3015 in_compat_syscall(), KSTK_EIP(current), code); 3016 audit_log_end(ab); 3017 } 3018 3019 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3020 int res) 3021 { 3022 struct audit_buffer *ab; 3023 3024 if (!audit_enabled) 3025 return; 3026 3027 ab = audit_log_start(audit_context(), GFP_KERNEL, 3028 AUDIT_CONFIG_CHANGE); 3029 if (unlikely(!ab)) 3030 return; 3031 3032 audit_log_format(ab, 3033 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3034 names, old_names, res); 3035 audit_log_end(ab); 3036 } 3037 3038 struct list_head *audit_killed_trees(void) 3039 { 3040 struct audit_context *ctx = audit_context(); 3041 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3042 return NULL; 3043 return &ctx->killed_trees; 3044 } 3045