xref: /linux/kernel/auditsc.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/inotify.h>
69 
70 #include "audit.h"
71 
72 extern struct list_head audit_filter_list[];
73 extern int audit_ever_enabled;
74 
75 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
76  * for saving names from getname(). */
77 #define AUDIT_NAMES    20
78 
79 /* Indicates that audit should log the full pathname. */
80 #define AUDIT_NAME_FULL -1
81 
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
84 
85 /* number of audit rules */
86 int audit_n_rules;
87 
88 /* determines whether we collect data for signals sent */
89 int audit_signals;
90 
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92  * we don't let putname() free it (instead we free all of the saved
93  * pointers at syscall exit time).
94  *
95  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
96 struct audit_names {
97 	const char	*name;
98 	int		name_len;	/* number of name's characters to log */
99 	unsigned	name_put;	/* call __putname() for this name */
100 	unsigned long	ino;
101 	dev_t		dev;
102 	umode_t		mode;
103 	uid_t		uid;
104 	gid_t		gid;
105 	dev_t		rdev;
106 	u32		osid;
107 };
108 
109 struct audit_aux_data {
110 	struct audit_aux_data	*next;
111 	int			type;
112 };
113 
114 #define AUDIT_AUX_IPCPERM	0
115 
116 /* Number of target pids per aux struct. */
117 #define AUDIT_AUX_PIDS	16
118 
119 struct audit_aux_data_mq_open {
120 	struct audit_aux_data	d;
121 	int			oflag;
122 	mode_t			mode;
123 	struct mq_attr		attr;
124 };
125 
126 struct audit_aux_data_mq_sendrecv {
127 	struct audit_aux_data	d;
128 	mqd_t			mqdes;
129 	size_t			msg_len;
130 	unsigned int		msg_prio;
131 	struct timespec		abs_timeout;
132 };
133 
134 struct audit_aux_data_mq_notify {
135 	struct audit_aux_data	d;
136 	mqd_t			mqdes;
137 	struct sigevent 	notification;
138 };
139 
140 struct audit_aux_data_mq_getsetattr {
141 	struct audit_aux_data	d;
142 	mqd_t			mqdes;
143 	struct mq_attr 		mqstat;
144 };
145 
146 struct audit_aux_data_ipcctl {
147 	struct audit_aux_data	d;
148 	struct ipc_perm		p;
149 	unsigned long		qbytes;
150 	uid_t			uid;
151 	gid_t			gid;
152 	mode_t			mode;
153 	u32			osid;
154 };
155 
156 struct audit_aux_data_execve {
157 	struct audit_aux_data	d;
158 	int argc;
159 	int envc;
160 	struct mm_struct *mm;
161 };
162 
163 struct audit_aux_data_socketcall {
164 	struct audit_aux_data	d;
165 	int			nargs;
166 	unsigned long		args[0];
167 };
168 
169 struct audit_aux_data_sockaddr {
170 	struct audit_aux_data	d;
171 	int			len;
172 	char			a[0];
173 };
174 
175 struct audit_aux_data_fd_pair {
176 	struct	audit_aux_data d;
177 	int	fd[2];
178 };
179 
180 struct audit_aux_data_pids {
181 	struct audit_aux_data	d;
182 	pid_t			target_pid[AUDIT_AUX_PIDS];
183 	uid_t			target_auid[AUDIT_AUX_PIDS];
184 	uid_t			target_uid[AUDIT_AUX_PIDS];
185 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
186 	u32			target_sid[AUDIT_AUX_PIDS];
187 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
188 	int			pid_count;
189 };
190 
191 struct audit_tree_refs {
192 	struct audit_tree_refs *next;
193 	struct audit_chunk *c[31];
194 };
195 
196 /* The per-task audit context. */
197 struct audit_context {
198 	int		    dummy;	/* must be the first element */
199 	int		    in_syscall;	/* 1 if task is in a syscall */
200 	enum audit_state    state;
201 	unsigned int	    serial;     /* serial number for record */
202 	struct timespec	    ctime;      /* time of syscall entry */
203 	int		    major;      /* syscall number */
204 	unsigned long	    argv[4];    /* syscall arguments */
205 	int		    return_valid; /* return code is valid */
206 	long		    return_code;/* syscall return code */
207 	int		    auditable;  /* 1 if record should be written */
208 	int		    name_count;
209 	struct audit_names  names[AUDIT_NAMES];
210 	char *		    filterkey;	/* key for rule that triggered record */
211 	struct dentry *	    pwd;
212 	struct vfsmount *   pwdmnt;
213 	struct audit_context *previous; /* For nested syscalls */
214 	struct audit_aux_data *aux;
215 	struct audit_aux_data *aux_pids;
216 
217 				/* Save things to print about task_struct */
218 	pid_t		    pid, ppid;
219 	uid_t		    uid, euid, suid, fsuid;
220 	gid_t		    gid, egid, sgid, fsgid;
221 	unsigned long	    personality;
222 	int		    arch;
223 
224 	pid_t		    target_pid;
225 	uid_t		    target_auid;
226 	uid_t		    target_uid;
227 	unsigned int	    target_sessionid;
228 	u32		    target_sid;
229 	char		    target_comm[TASK_COMM_LEN];
230 
231 	struct audit_tree_refs *trees, *first_trees;
232 	int tree_count;
233 
234 #if AUDIT_DEBUG
235 	int		    put_count;
236 	int		    ino_count;
237 #endif
238 };
239 
240 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
241 static inline int open_arg(int flags, int mask)
242 {
243 	int n = ACC_MODE(flags);
244 	if (flags & (O_TRUNC | O_CREAT))
245 		n |= AUDIT_PERM_WRITE;
246 	return n & mask;
247 }
248 
249 static int audit_match_perm(struct audit_context *ctx, int mask)
250 {
251 	unsigned n = ctx->major;
252 	switch (audit_classify_syscall(ctx->arch, n)) {
253 	case 0:	/* native */
254 		if ((mask & AUDIT_PERM_WRITE) &&
255 		     audit_match_class(AUDIT_CLASS_WRITE, n))
256 			return 1;
257 		if ((mask & AUDIT_PERM_READ) &&
258 		     audit_match_class(AUDIT_CLASS_READ, n))
259 			return 1;
260 		if ((mask & AUDIT_PERM_ATTR) &&
261 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
262 			return 1;
263 		return 0;
264 	case 1: /* 32bit on biarch */
265 		if ((mask & AUDIT_PERM_WRITE) &&
266 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
267 			return 1;
268 		if ((mask & AUDIT_PERM_READ) &&
269 		     audit_match_class(AUDIT_CLASS_READ_32, n))
270 			return 1;
271 		if ((mask & AUDIT_PERM_ATTR) &&
272 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
273 			return 1;
274 		return 0;
275 	case 2: /* open */
276 		return mask & ACC_MODE(ctx->argv[1]);
277 	case 3: /* openat */
278 		return mask & ACC_MODE(ctx->argv[2]);
279 	case 4: /* socketcall */
280 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
281 	case 5: /* execve */
282 		return mask & AUDIT_PERM_EXEC;
283 	default:
284 		return 0;
285 	}
286 }
287 
288 /*
289  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
290  * ->first_trees points to its beginning, ->trees - to the current end of data.
291  * ->tree_count is the number of free entries in array pointed to by ->trees.
292  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
293  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
294  * it's going to remain 1-element for almost any setup) until we free context itself.
295  * References in it _are_ dropped - at the same time we free/drop aux stuff.
296  */
297 
298 #ifdef CONFIG_AUDIT_TREE
299 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
300 {
301 	struct audit_tree_refs *p = ctx->trees;
302 	int left = ctx->tree_count;
303 	if (likely(left)) {
304 		p->c[--left] = chunk;
305 		ctx->tree_count = left;
306 		return 1;
307 	}
308 	if (!p)
309 		return 0;
310 	p = p->next;
311 	if (p) {
312 		p->c[30] = chunk;
313 		ctx->trees = p;
314 		ctx->tree_count = 30;
315 		return 1;
316 	}
317 	return 0;
318 }
319 
320 static int grow_tree_refs(struct audit_context *ctx)
321 {
322 	struct audit_tree_refs *p = ctx->trees;
323 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
324 	if (!ctx->trees) {
325 		ctx->trees = p;
326 		return 0;
327 	}
328 	if (p)
329 		p->next = ctx->trees;
330 	else
331 		ctx->first_trees = ctx->trees;
332 	ctx->tree_count = 31;
333 	return 1;
334 }
335 #endif
336 
337 static void unroll_tree_refs(struct audit_context *ctx,
338 		      struct audit_tree_refs *p, int count)
339 {
340 #ifdef CONFIG_AUDIT_TREE
341 	struct audit_tree_refs *q;
342 	int n;
343 	if (!p) {
344 		/* we started with empty chain */
345 		p = ctx->first_trees;
346 		count = 31;
347 		/* if the very first allocation has failed, nothing to do */
348 		if (!p)
349 			return;
350 	}
351 	n = count;
352 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
353 		while (n--) {
354 			audit_put_chunk(q->c[n]);
355 			q->c[n] = NULL;
356 		}
357 	}
358 	while (n-- > ctx->tree_count) {
359 		audit_put_chunk(q->c[n]);
360 		q->c[n] = NULL;
361 	}
362 	ctx->trees = p;
363 	ctx->tree_count = count;
364 #endif
365 }
366 
367 static void free_tree_refs(struct audit_context *ctx)
368 {
369 	struct audit_tree_refs *p, *q;
370 	for (p = ctx->first_trees; p; p = q) {
371 		q = p->next;
372 		kfree(p);
373 	}
374 }
375 
376 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
377 {
378 #ifdef CONFIG_AUDIT_TREE
379 	struct audit_tree_refs *p;
380 	int n;
381 	if (!tree)
382 		return 0;
383 	/* full ones */
384 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
385 		for (n = 0; n < 31; n++)
386 			if (audit_tree_match(p->c[n], tree))
387 				return 1;
388 	}
389 	/* partial */
390 	if (p) {
391 		for (n = ctx->tree_count; n < 31; n++)
392 			if (audit_tree_match(p->c[n], tree))
393 				return 1;
394 	}
395 #endif
396 	return 0;
397 }
398 
399 /* Determine if any context name data matches a rule's watch data */
400 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
401  * otherwise. */
402 static int audit_filter_rules(struct task_struct *tsk,
403 			      struct audit_krule *rule,
404 			      struct audit_context *ctx,
405 			      struct audit_names *name,
406 			      enum audit_state *state)
407 {
408 	int i, j, need_sid = 1;
409 	u32 sid;
410 
411 	for (i = 0; i < rule->field_count; i++) {
412 		struct audit_field *f = &rule->fields[i];
413 		int result = 0;
414 
415 		switch (f->type) {
416 		case AUDIT_PID:
417 			result = audit_comparator(tsk->pid, f->op, f->val);
418 			break;
419 		case AUDIT_PPID:
420 			if (ctx) {
421 				if (!ctx->ppid)
422 					ctx->ppid = sys_getppid();
423 				result = audit_comparator(ctx->ppid, f->op, f->val);
424 			}
425 			break;
426 		case AUDIT_UID:
427 			result = audit_comparator(tsk->uid, f->op, f->val);
428 			break;
429 		case AUDIT_EUID:
430 			result = audit_comparator(tsk->euid, f->op, f->val);
431 			break;
432 		case AUDIT_SUID:
433 			result = audit_comparator(tsk->suid, f->op, f->val);
434 			break;
435 		case AUDIT_FSUID:
436 			result = audit_comparator(tsk->fsuid, f->op, f->val);
437 			break;
438 		case AUDIT_GID:
439 			result = audit_comparator(tsk->gid, f->op, f->val);
440 			break;
441 		case AUDIT_EGID:
442 			result = audit_comparator(tsk->egid, f->op, f->val);
443 			break;
444 		case AUDIT_SGID:
445 			result = audit_comparator(tsk->sgid, f->op, f->val);
446 			break;
447 		case AUDIT_FSGID:
448 			result = audit_comparator(tsk->fsgid, f->op, f->val);
449 			break;
450 		case AUDIT_PERS:
451 			result = audit_comparator(tsk->personality, f->op, f->val);
452 			break;
453 		case AUDIT_ARCH:
454 			if (ctx)
455 				result = audit_comparator(ctx->arch, f->op, f->val);
456 			break;
457 
458 		case AUDIT_EXIT:
459 			if (ctx && ctx->return_valid)
460 				result = audit_comparator(ctx->return_code, f->op, f->val);
461 			break;
462 		case AUDIT_SUCCESS:
463 			if (ctx && ctx->return_valid) {
464 				if (f->val)
465 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
466 				else
467 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
468 			}
469 			break;
470 		case AUDIT_DEVMAJOR:
471 			if (name)
472 				result = audit_comparator(MAJOR(name->dev),
473 							  f->op, f->val);
474 			else if (ctx) {
475 				for (j = 0; j < ctx->name_count; j++) {
476 					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
477 						++result;
478 						break;
479 					}
480 				}
481 			}
482 			break;
483 		case AUDIT_DEVMINOR:
484 			if (name)
485 				result = audit_comparator(MINOR(name->dev),
486 							  f->op, f->val);
487 			else if (ctx) {
488 				for (j = 0; j < ctx->name_count; j++) {
489 					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
490 						++result;
491 						break;
492 					}
493 				}
494 			}
495 			break;
496 		case AUDIT_INODE:
497 			if (name)
498 				result = (name->ino == f->val);
499 			else if (ctx) {
500 				for (j = 0; j < ctx->name_count; j++) {
501 					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
502 						++result;
503 						break;
504 					}
505 				}
506 			}
507 			break;
508 		case AUDIT_WATCH:
509 			if (name && rule->watch->ino != (unsigned long)-1)
510 				result = (name->dev == rule->watch->dev &&
511 					  name->ino == rule->watch->ino);
512 			break;
513 		case AUDIT_DIR:
514 			if (ctx)
515 				result = match_tree_refs(ctx, rule->tree);
516 			break;
517 		case AUDIT_LOGINUID:
518 			result = 0;
519 			if (ctx)
520 				result = audit_comparator(tsk->loginuid, f->op, f->val);
521 			break;
522 		case AUDIT_SUBJ_USER:
523 		case AUDIT_SUBJ_ROLE:
524 		case AUDIT_SUBJ_TYPE:
525 		case AUDIT_SUBJ_SEN:
526 		case AUDIT_SUBJ_CLR:
527 			/* NOTE: this may return negative values indicating
528 			   a temporary error.  We simply treat this as a
529 			   match for now to avoid losing information that
530 			   may be wanted.   An error message will also be
531 			   logged upon error */
532 			if (f->se_rule) {
533 				if (need_sid) {
534 					selinux_get_task_sid(tsk, &sid);
535 					need_sid = 0;
536 				}
537 				result = selinux_audit_rule_match(sid, f->type,
538 				                                  f->op,
539 				                                  f->se_rule,
540 				                                  ctx);
541 			}
542 			break;
543 		case AUDIT_OBJ_USER:
544 		case AUDIT_OBJ_ROLE:
545 		case AUDIT_OBJ_TYPE:
546 		case AUDIT_OBJ_LEV_LOW:
547 		case AUDIT_OBJ_LEV_HIGH:
548 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
549 			   also applies here */
550 			if (f->se_rule) {
551 				/* Find files that match */
552 				if (name) {
553 					result = selinux_audit_rule_match(
554 					           name->osid, f->type, f->op,
555 					           f->se_rule, ctx);
556 				} else if (ctx) {
557 					for (j = 0; j < ctx->name_count; j++) {
558 						if (selinux_audit_rule_match(
559 						      ctx->names[j].osid,
560 						      f->type, f->op,
561 						      f->se_rule, ctx)) {
562 							++result;
563 							break;
564 						}
565 					}
566 				}
567 				/* Find ipc objects that match */
568 				if (ctx) {
569 					struct audit_aux_data *aux;
570 					for (aux = ctx->aux; aux;
571 					     aux = aux->next) {
572 						if (aux->type == AUDIT_IPC) {
573 							struct audit_aux_data_ipcctl *axi = (void *)aux;
574 							if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
575 								++result;
576 								break;
577 							}
578 						}
579 					}
580 				}
581 			}
582 			break;
583 		case AUDIT_ARG0:
584 		case AUDIT_ARG1:
585 		case AUDIT_ARG2:
586 		case AUDIT_ARG3:
587 			if (ctx)
588 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
589 			break;
590 		case AUDIT_FILTERKEY:
591 			/* ignore this field for filtering */
592 			result = 1;
593 			break;
594 		case AUDIT_PERM:
595 			result = audit_match_perm(ctx, f->val);
596 			break;
597 		}
598 
599 		if (!result)
600 			return 0;
601 	}
602 	if (rule->filterkey)
603 		ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
604 	switch (rule->action) {
605 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
606 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
607 	}
608 	return 1;
609 }
610 
611 /* At process creation time, we can determine if system-call auditing is
612  * completely disabled for this task.  Since we only have the task
613  * structure at this point, we can only check uid and gid.
614  */
615 static enum audit_state audit_filter_task(struct task_struct *tsk)
616 {
617 	struct audit_entry *e;
618 	enum audit_state   state;
619 
620 	rcu_read_lock();
621 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
622 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
623 			rcu_read_unlock();
624 			return state;
625 		}
626 	}
627 	rcu_read_unlock();
628 	return AUDIT_BUILD_CONTEXT;
629 }
630 
631 /* At syscall entry and exit time, this filter is called if the
632  * audit_state is not low enough that auditing cannot take place, but is
633  * also not high enough that we already know we have to write an audit
634  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
635  */
636 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
637 					     struct audit_context *ctx,
638 					     struct list_head *list)
639 {
640 	struct audit_entry *e;
641 	enum audit_state state;
642 
643 	if (audit_pid && tsk->tgid == audit_pid)
644 		return AUDIT_DISABLED;
645 
646 	rcu_read_lock();
647 	if (!list_empty(list)) {
648 		int word = AUDIT_WORD(ctx->major);
649 		int bit  = AUDIT_BIT(ctx->major);
650 
651 		list_for_each_entry_rcu(e, list, list) {
652 			if ((e->rule.mask[word] & bit) == bit &&
653 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
654 					       &state)) {
655 				rcu_read_unlock();
656 				return state;
657 			}
658 		}
659 	}
660 	rcu_read_unlock();
661 	return AUDIT_BUILD_CONTEXT;
662 }
663 
664 /* At syscall exit time, this filter is called if any audit_names[] have been
665  * collected during syscall processing.  We only check rules in sublists at hash
666  * buckets applicable to the inode numbers in audit_names[].
667  * Regarding audit_state, same rules apply as for audit_filter_syscall().
668  */
669 enum audit_state audit_filter_inodes(struct task_struct *tsk,
670 				     struct audit_context *ctx)
671 {
672 	int i;
673 	struct audit_entry *e;
674 	enum audit_state state;
675 
676 	if (audit_pid && tsk->tgid == audit_pid)
677 		return AUDIT_DISABLED;
678 
679 	rcu_read_lock();
680 	for (i = 0; i < ctx->name_count; i++) {
681 		int word = AUDIT_WORD(ctx->major);
682 		int bit  = AUDIT_BIT(ctx->major);
683 		struct audit_names *n = &ctx->names[i];
684 		int h = audit_hash_ino((u32)n->ino);
685 		struct list_head *list = &audit_inode_hash[h];
686 
687 		if (list_empty(list))
688 			continue;
689 
690 		list_for_each_entry_rcu(e, list, list) {
691 			if ((e->rule.mask[word] & bit) == bit &&
692 			    audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
693 				rcu_read_unlock();
694 				return state;
695 			}
696 		}
697 	}
698 	rcu_read_unlock();
699 	return AUDIT_BUILD_CONTEXT;
700 }
701 
702 void audit_set_auditable(struct audit_context *ctx)
703 {
704 	ctx->auditable = 1;
705 }
706 
707 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
708 						      int return_valid,
709 						      int return_code)
710 {
711 	struct audit_context *context = tsk->audit_context;
712 
713 	if (likely(!context))
714 		return NULL;
715 	context->return_valid = return_valid;
716 
717 	/*
718 	 * we need to fix up the return code in the audit logs if the actual
719 	 * return codes are later going to be fixed up by the arch specific
720 	 * signal handlers
721 	 *
722 	 * This is actually a test for:
723 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
724 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
725 	 *
726 	 * but is faster than a bunch of ||
727 	 */
728 	if (unlikely(return_code <= -ERESTARTSYS) &&
729 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
730 	    (return_code != -ENOIOCTLCMD))
731 		context->return_code = -EINTR;
732 	else
733 		context->return_code  = return_code;
734 
735 	if (context->in_syscall && !context->dummy && !context->auditable) {
736 		enum audit_state state;
737 
738 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
739 		if (state == AUDIT_RECORD_CONTEXT) {
740 			context->auditable = 1;
741 			goto get_context;
742 		}
743 
744 		state = audit_filter_inodes(tsk, context);
745 		if (state == AUDIT_RECORD_CONTEXT)
746 			context->auditable = 1;
747 
748 	}
749 
750 get_context:
751 
752 	tsk->audit_context = NULL;
753 	return context;
754 }
755 
756 static inline void audit_free_names(struct audit_context *context)
757 {
758 	int i;
759 
760 #if AUDIT_DEBUG == 2
761 	if (context->auditable
762 	    ||context->put_count + context->ino_count != context->name_count) {
763 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
764 		       " name_count=%d put_count=%d"
765 		       " ino_count=%d [NOT freeing]\n",
766 		       __FILE__, __LINE__,
767 		       context->serial, context->major, context->in_syscall,
768 		       context->name_count, context->put_count,
769 		       context->ino_count);
770 		for (i = 0; i < context->name_count; i++) {
771 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
772 			       context->names[i].name,
773 			       context->names[i].name ?: "(null)");
774 		}
775 		dump_stack();
776 		return;
777 	}
778 #endif
779 #if AUDIT_DEBUG
780 	context->put_count  = 0;
781 	context->ino_count  = 0;
782 #endif
783 
784 	for (i = 0; i < context->name_count; i++) {
785 		if (context->names[i].name && context->names[i].name_put)
786 			__putname(context->names[i].name);
787 	}
788 	context->name_count = 0;
789 	if (context->pwd)
790 		dput(context->pwd);
791 	if (context->pwdmnt)
792 		mntput(context->pwdmnt);
793 	context->pwd = NULL;
794 	context->pwdmnt = NULL;
795 }
796 
797 static inline void audit_free_aux(struct audit_context *context)
798 {
799 	struct audit_aux_data *aux;
800 
801 	while ((aux = context->aux)) {
802 		context->aux = aux->next;
803 		kfree(aux);
804 	}
805 	while ((aux = context->aux_pids)) {
806 		context->aux_pids = aux->next;
807 		kfree(aux);
808 	}
809 }
810 
811 static inline void audit_zero_context(struct audit_context *context,
812 				      enum audit_state state)
813 {
814 	memset(context, 0, sizeof(*context));
815 	context->state      = state;
816 }
817 
818 static inline struct audit_context *audit_alloc_context(enum audit_state state)
819 {
820 	struct audit_context *context;
821 
822 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
823 		return NULL;
824 	audit_zero_context(context, state);
825 	return context;
826 }
827 
828 /**
829  * audit_alloc - allocate an audit context block for a task
830  * @tsk: task
831  *
832  * Filter on the task information and allocate a per-task audit context
833  * if necessary.  Doing so turns on system call auditing for the
834  * specified task.  This is called from copy_process, so no lock is
835  * needed.
836  */
837 int audit_alloc(struct task_struct *tsk)
838 {
839 	struct audit_context *context;
840 	enum audit_state     state;
841 
842 	if (likely(!audit_ever_enabled))
843 		return 0; /* Return if not auditing. */
844 
845 	state = audit_filter_task(tsk);
846 	if (likely(state == AUDIT_DISABLED))
847 		return 0;
848 
849 	if (!(context = audit_alloc_context(state))) {
850 		audit_log_lost("out of memory in audit_alloc");
851 		return -ENOMEM;
852 	}
853 
854 	tsk->audit_context  = context;
855 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
856 	return 0;
857 }
858 
859 static inline void audit_free_context(struct audit_context *context)
860 {
861 	struct audit_context *previous;
862 	int		     count = 0;
863 
864 	do {
865 		previous = context->previous;
866 		if (previous || (count &&  count < 10)) {
867 			++count;
868 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
869 			       " freeing multiple contexts (%d)\n",
870 			       context->serial, context->major,
871 			       context->name_count, count);
872 		}
873 		audit_free_names(context);
874 		unroll_tree_refs(context, NULL, 0);
875 		free_tree_refs(context);
876 		audit_free_aux(context);
877 		kfree(context->filterkey);
878 		kfree(context);
879 		context  = previous;
880 	} while (context);
881 	if (count >= 10)
882 		printk(KERN_ERR "audit: freed %d contexts\n", count);
883 }
884 
885 void audit_log_task_context(struct audit_buffer *ab)
886 {
887 	char *ctx = NULL;
888 	unsigned len;
889 	int error;
890 	u32 sid;
891 
892 	selinux_get_task_sid(current, &sid);
893 	if (!sid)
894 		return;
895 
896 	error = selinux_sid_to_string(sid, &ctx, &len);
897 	if (error) {
898 		if (error != -EINVAL)
899 			goto error_path;
900 		return;
901 	}
902 
903 	audit_log_format(ab, " subj=%s", ctx);
904 	kfree(ctx);
905 	return;
906 
907 error_path:
908 	audit_panic("error in audit_log_task_context");
909 	return;
910 }
911 
912 EXPORT_SYMBOL(audit_log_task_context);
913 
914 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
915 {
916 	char name[sizeof(tsk->comm)];
917 	struct mm_struct *mm = tsk->mm;
918 	struct vm_area_struct *vma;
919 
920 	/* tsk == current */
921 
922 	get_task_comm(name, tsk);
923 	audit_log_format(ab, " comm=");
924 	audit_log_untrustedstring(ab, name);
925 
926 	if (mm) {
927 		down_read(&mm->mmap_sem);
928 		vma = mm->mmap;
929 		while (vma) {
930 			if ((vma->vm_flags & VM_EXECUTABLE) &&
931 			    vma->vm_file) {
932 				audit_log_d_path(ab, "exe=",
933 						 vma->vm_file->f_path.dentry,
934 						 vma->vm_file->f_path.mnt);
935 				break;
936 			}
937 			vma = vma->vm_next;
938 		}
939 		up_read(&mm->mmap_sem);
940 	}
941 	audit_log_task_context(ab);
942 }
943 
944 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
945 				 uid_t auid, uid_t uid, unsigned int sessionid,
946 				 u32 sid, char *comm)
947 {
948 	struct audit_buffer *ab;
949 	char *s = NULL;
950 	u32 len;
951 	int rc = 0;
952 
953 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
954 	if (!ab)
955 		return rc;
956 
957 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
958 			 uid, sessionid);
959 	if (selinux_sid_to_string(sid, &s, &len)) {
960 		audit_log_format(ab, " obj=(none)");
961 		rc = 1;
962 	} else
963 		audit_log_format(ab, " obj=%s", s);
964 	audit_log_format(ab, " ocomm=");
965 	audit_log_untrustedstring(ab, comm);
966 	audit_log_end(ab);
967 	kfree(s);
968 
969 	return rc;
970 }
971 
972 /*
973  * to_send and len_sent accounting are very loose estimates.  We aren't
974  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
975  * within about 500 bytes (next page boundry)
976  *
977  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
978  * logging that a[%d]= was going to be 16 characters long we would be wasting
979  * space in every audit message.  In one 7500 byte message we can log up to
980  * about 1000 min size arguments.  That comes down to about 50% waste of space
981  * if we didn't do the snprintf to find out how long arg_num_len was.
982  */
983 static int audit_log_single_execve_arg(struct audit_context *context,
984 					struct audit_buffer **ab,
985 					int arg_num,
986 					size_t *len_sent,
987 					const char __user *p,
988 					char *buf)
989 {
990 	char arg_num_len_buf[12];
991 	const char __user *tmp_p = p;
992 	/* how many digits are in arg_num? 3 is the length of a=\n */
993 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
994 	size_t len, len_left, to_send;
995 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
996 	unsigned int i, has_cntl = 0, too_long = 0;
997 	int ret;
998 
999 	/* strnlen_user includes the null we don't want to send */
1000 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1001 
1002 	/*
1003 	 * We just created this mm, if we can't find the strings
1004 	 * we just copied into it something is _very_ wrong. Similar
1005 	 * for strings that are too long, we should not have created
1006 	 * any.
1007 	 */
1008 	if (unlikely((len  = -1) || len > MAX_ARG_STRLEN - 1)) {
1009 		WARN_ON(1);
1010 		send_sig(SIGKILL, current, 0);
1011 	}
1012 
1013 	/* walk the whole argument looking for non-ascii chars */
1014 	do {
1015 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1016 			to_send = MAX_EXECVE_AUDIT_LEN;
1017 		else
1018 			to_send = len_left;
1019 		ret = copy_from_user(buf, tmp_p, to_send);
1020 		/*
1021 		 * There is no reason for this copy to be short. We just
1022 		 * copied them here, and the mm hasn't been exposed to user-
1023 		 * space yet.
1024 		 */
1025 		if (ret) {
1026 			WARN_ON(1);
1027 			send_sig(SIGKILL, current, 0);
1028 		}
1029 		buf[to_send] = '\0';
1030 		has_cntl = audit_string_contains_control(buf, to_send);
1031 		if (has_cntl) {
1032 			/*
1033 			 * hex messages get logged as 2 bytes, so we can only
1034 			 * send half as much in each message
1035 			 */
1036 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1037 			break;
1038 		}
1039 		len_left -= to_send;
1040 		tmp_p += to_send;
1041 	} while (len_left > 0);
1042 
1043 	len_left = len;
1044 
1045 	if (len > max_execve_audit_len)
1046 		too_long = 1;
1047 
1048 	/* rewalk the argument actually logging the message */
1049 	for (i = 0; len_left > 0; i++) {
1050 		int room_left;
1051 
1052 		if (len_left > max_execve_audit_len)
1053 			to_send = max_execve_audit_len;
1054 		else
1055 			to_send = len_left;
1056 
1057 		/* do we have space left to send this argument in this ab? */
1058 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1059 		if (has_cntl)
1060 			room_left -= (to_send * 2);
1061 		else
1062 			room_left -= to_send;
1063 		if (room_left < 0) {
1064 			*len_sent = 0;
1065 			audit_log_end(*ab);
1066 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1067 			if (!*ab)
1068 				return 0;
1069 		}
1070 
1071 		/*
1072 		 * first record needs to say how long the original string was
1073 		 * so we can be sure nothing was lost.
1074 		 */
1075 		if ((i == 0) && (too_long))
1076 			audit_log_format(*ab, "a%d_len=%ld ", arg_num,
1077 					 has_cntl ? 2*len : len);
1078 
1079 		/*
1080 		 * normally arguments are small enough to fit and we already
1081 		 * filled buf above when we checked for control characters
1082 		 * so don't bother with another copy_from_user
1083 		 */
1084 		if (len >= max_execve_audit_len)
1085 			ret = copy_from_user(buf, p, to_send);
1086 		else
1087 			ret = 0;
1088 		if (ret) {
1089 			WARN_ON(1);
1090 			send_sig(SIGKILL, current, 0);
1091 		}
1092 		buf[to_send] = '\0';
1093 
1094 		/* actually log it */
1095 		audit_log_format(*ab, "a%d", arg_num);
1096 		if (too_long)
1097 			audit_log_format(*ab, "[%d]", i);
1098 		audit_log_format(*ab, "=");
1099 		if (has_cntl)
1100 			audit_log_hex(*ab, buf, to_send);
1101 		else
1102 			audit_log_format(*ab, "\"%s\"", buf);
1103 		audit_log_format(*ab, "\n");
1104 
1105 		p += to_send;
1106 		len_left -= to_send;
1107 		*len_sent += arg_num_len;
1108 		if (has_cntl)
1109 			*len_sent += to_send * 2;
1110 		else
1111 			*len_sent += to_send;
1112 	}
1113 	/* include the null we didn't log */
1114 	return len + 1;
1115 }
1116 
1117 static void audit_log_execve_info(struct audit_context *context,
1118 				  struct audit_buffer **ab,
1119 				  struct audit_aux_data_execve *axi)
1120 {
1121 	int i;
1122 	size_t len, len_sent = 0;
1123 	const char __user *p;
1124 	char *buf;
1125 
1126 	if (axi->mm != current->mm)
1127 		return; /* execve failed, no additional info */
1128 
1129 	p = (const char __user *)axi->mm->arg_start;
1130 
1131 	audit_log_format(*ab, "argc=%d ", axi->argc);
1132 
1133 	/*
1134 	 * we need some kernel buffer to hold the userspace args.  Just
1135 	 * allocate one big one rather than allocating one of the right size
1136 	 * for every single argument inside audit_log_single_execve_arg()
1137 	 * should be <8k allocation so should be pretty safe.
1138 	 */
1139 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1140 	if (!buf) {
1141 		audit_panic("out of memory for argv string\n");
1142 		return;
1143 	}
1144 
1145 	for (i = 0; i < axi->argc; i++) {
1146 		len = audit_log_single_execve_arg(context, ab, i,
1147 						  &len_sent, p, buf);
1148 		if (len <= 0)
1149 			break;
1150 		p += len;
1151 	}
1152 	kfree(buf);
1153 }
1154 
1155 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1156 {
1157 	int i, call_panic = 0;
1158 	struct audit_buffer *ab;
1159 	struct audit_aux_data *aux;
1160 	const char *tty;
1161 
1162 	/* tsk == current */
1163 	context->pid = tsk->pid;
1164 	if (!context->ppid)
1165 		context->ppid = sys_getppid();
1166 	context->uid = tsk->uid;
1167 	context->gid = tsk->gid;
1168 	context->euid = tsk->euid;
1169 	context->suid = tsk->suid;
1170 	context->fsuid = tsk->fsuid;
1171 	context->egid = tsk->egid;
1172 	context->sgid = tsk->sgid;
1173 	context->fsgid = tsk->fsgid;
1174 	context->personality = tsk->personality;
1175 
1176 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1177 	if (!ab)
1178 		return;		/* audit_panic has been called */
1179 	audit_log_format(ab, "arch=%x syscall=%d",
1180 			 context->arch, context->major);
1181 	if (context->personality != PER_LINUX)
1182 		audit_log_format(ab, " per=%lx", context->personality);
1183 	if (context->return_valid)
1184 		audit_log_format(ab, " success=%s exit=%ld",
1185 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1186 				 context->return_code);
1187 
1188 	mutex_lock(&tty_mutex);
1189 	read_lock(&tasklist_lock);
1190 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1191 		tty = tsk->signal->tty->name;
1192 	else
1193 		tty = "(none)";
1194 	read_unlock(&tasklist_lock);
1195 	audit_log_format(ab,
1196 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1197 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1198 		  " euid=%u suid=%u fsuid=%u"
1199 		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1200 		  context->argv[0],
1201 		  context->argv[1],
1202 		  context->argv[2],
1203 		  context->argv[3],
1204 		  context->name_count,
1205 		  context->ppid,
1206 		  context->pid,
1207 		  tsk->loginuid,
1208 		  context->uid,
1209 		  context->gid,
1210 		  context->euid, context->suid, context->fsuid,
1211 		  context->egid, context->sgid, context->fsgid, tty,
1212 		  tsk->sessionid);
1213 
1214 	mutex_unlock(&tty_mutex);
1215 
1216 	audit_log_task_info(ab, tsk);
1217 	if (context->filterkey) {
1218 		audit_log_format(ab, " key=");
1219 		audit_log_untrustedstring(ab, context->filterkey);
1220 	} else
1221 		audit_log_format(ab, " key=(null)");
1222 	audit_log_end(ab);
1223 
1224 	for (aux = context->aux; aux; aux = aux->next) {
1225 
1226 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1227 		if (!ab)
1228 			continue; /* audit_panic has been called */
1229 
1230 		switch (aux->type) {
1231 		case AUDIT_MQ_OPEN: {
1232 			struct audit_aux_data_mq_open *axi = (void *)aux;
1233 			audit_log_format(ab,
1234 				"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1235 				"mq_msgsize=%ld mq_curmsgs=%ld",
1236 				axi->oflag, axi->mode, axi->attr.mq_flags,
1237 				axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1238 				axi->attr.mq_curmsgs);
1239 			break; }
1240 
1241 		case AUDIT_MQ_SENDRECV: {
1242 			struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1243 			audit_log_format(ab,
1244 				"mqdes=%d msg_len=%zd msg_prio=%u "
1245 				"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1246 				axi->mqdes, axi->msg_len, axi->msg_prio,
1247 				axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1248 			break; }
1249 
1250 		case AUDIT_MQ_NOTIFY: {
1251 			struct audit_aux_data_mq_notify *axi = (void *)aux;
1252 			audit_log_format(ab,
1253 				"mqdes=%d sigev_signo=%d",
1254 				axi->mqdes,
1255 				axi->notification.sigev_signo);
1256 			break; }
1257 
1258 		case AUDIT_MQ_GETSETATTR: {
1259 			struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1260 			audit_log_format(ab,
1261 				"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1262 				"mq_curmsgs=%ld ",
1263 				axi->mqdes,
1264 				axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1265 				axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1266 			break; }
1267 
1268 		case AUDIT_IPC: {
1269 			struct audit_aux_data_ipcctl *axi = (void *)aux;
1270 			audit_log_format(ab,
1271 				 "ouid=%u ogid=%u mode=%#o",
1272 				 axi->uid, axi->gid, axi->mode);
1273 			if (axi->osid != 0) {
1274 				char *ctx = NULL;
1275 				u32 len;
1276 				if (selinux_sid_to_string(
1277 						axi->osid, &ctx, &len)) {
1278 					audit_log_format(ab, " osid=%u",
1279 							axi->osid);
1280 					call_panic = 1;
1281 				} else
1282 					audit_log_format(ab, " obj=%s", ctx);
1283 				kfree(ctx);
1284 			}
1285 			break; }
1286 
1287 		case AUDIT_IPC_SET_PERM: {
1288 			struct audit_aux_data_ipcctl *axi = (void *)aux;
1289 			audit_log_format(ab,
1290 				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1291 				axi->qbytes, axi->uid, axi->gid, axi->mode);
1292 			break; }
1293 
1294 		case AUDIT_EXECVE: {
1295 			struct audit_aux_data_execve *axi = (void *)aux;
1296 			audit_log_execve_info(context, &ab, axi);
1297 			break; }
1298 
1299 		case AUDIT_SOCKETCALL: {
1300 			int i;
1301 			struct audit_aux_data_socketcall *axs = (void *)aux;
1302 			audit_log_format(ab, "nargs=%d", axs->nargs);
1303 			for (i=0; i<axs->nargs; i++)
1304 				audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1305 			break; }
1306 
1307 		case AUDIT_SOCKADDR: {
1308 			struct audit_aux_data_sockaddr *axs = (void *)aux;
1309 
1310 			audit_log_format(ab, "saddr=");
1311 			audit_log_hex(ab, axs->a, axs->len);
1312 			break; }
1313 
1314 		case AUDIT_FD_PAIR: {
1315 			struct audit_aux_data_fd_pair *axs = (void *)aux;
1316 			audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1317 			break; }
1318 
1319 		}
1320 		audit_log_end(ab);
1321 	}
1322 
1323 	for (aux = context->aux_pids; aux; aux = aux->next) {
1324 		struct audit_aux_data_pids *axs = (void *)aux;
1325 		int i;
1326 
1327 		for (i = 0; i < axs->pid_count; i++)
1328 			if (audit_log_pid_context(context, axs->target_pid[i],
1329 						  axs->target_auid[i],
1330 						  axs->target_uid[i],
1331 						  axs->target_sessionid[i],
1332 						  axs->target_sid[i],
1333 						  axs->target_comm[i]))
1334 				call_panic = 1;
1335 	}
1336 
1337 	if (context->target_pid &&
1338 	    audit_log_pid_context(context, context->target_pid,
1339 				  context->target_auid, context->target_uid,
1340 				  context->target_sessionid,
1341 				  context->target_sid, context->target_comm))
1342 			call_panic = 1;
1343 
1344 	if (context->pwd && context->pwdmnt) {
1345 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1346 		if (ab) {
1347 			audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1348 			audit_log_end(ab);
1349 		}
1350 	}
1351 	for (i = 0; i < context->name_count; i++) {
1352 		struct audit_names *n = &context->names[i];
1353 
1354 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1355 		if (!ab)
1356 			continue; /* audit_panic has been called */
1357 
1358 		audit_log_format(ab, "item=%d", i);
1359 
1360 		if (n->name) {
1361 			switch(n->name_len) {
1362 			case AUDIT_NAME_FULL:
1363 				/* log the full path */
1364 				audit_log_format(ab, " name=");
1365 				audit_log_untrustedstring(ab, n->name);
1366 				break;
1367 			case 0:
1368 				/* name was specified as a relative path and the
1369 				 * directory component is the cwd */
1370 				audit_log_d_path(ab, " name=", context->pwd,
1371 						 context->pwdmnt);
1372 				break;
1373 			default:
1374 				/* log the name's directory component */
1375 				audit_log_format(ab, " name=");
1376 				audit_log_n_untrustedstring(ab, n->name_len,
1377 							    n->name);
1378 			}
1379 		} else
1380 			audit_log_format(ab, " name=(null)");
1381 
1382 		if (n->ino != (unsigned long)-1) {
1383 			audit_log_format(ab, " inode=%lu"
1384 					 " dev=%02x:%02x mode=%#o"
1385 					 " ouid=%u ogid=%u rdev=%02x:%02x",
1386 					 n->ino,
1387 					 MAJOR(n->dev),
1388 					 MINOR(n->dev),
1389 					 n->mode,
1390 					 n->uid,
1391 					 n->gid,
1392 					 MAJOR(n->rdev),
1393 					 MINOR(n->rdev));
1394 		}
1395 		if (n->osid != 0) {
1396 			char *ctx = NULL;
1397 			u32 len;
1398 			if (selinux_sid_to_string(
1399 				n->osid, &ctx, &len)) {
1400 				audit_log_format(ab, " osid=%u", n->osid);
1401 				call_panic = 2;
1402 			} else
1403 				audit_log_format(ab, " obj=%s", ctx);
1404 			kfree(ctx);
1405 		}
1406 
1407 		audit_log_end(ab);
1408 	}
1409 
1410 	/* Send end of event record to help user space know we are finished */
1411 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1412 	if (ab)
1413 		audit_log_end(ab);
1414 	if (call_panic)
1415 		audit_panic("error converting sid to string");
1416 }
1417 
1418 /**
1419  * audit_free - free a per-task audit context
1420  * @tsk: task whose audit context block to free
1421  *
1422  * Called from copy_process and do_exit
1423  */
1424 void audit_free(struct task_struct *tsk)
1425 {
1426 	struct audit_context *context;
1427 
1428 	context = audit_get_context(tsk, 0, 0);
1429 	if (likely(!context))
1430 		return;
1431 
1432 	/* Check for system calls that do not go through the exit
1433 	 * function (e.g., exit_group), then free context block.
1434 	 * We use GFP_ATOMIC here because we might be doing this
1435 	 * in the context of the idle thread */
1436 	/* that can happen only if we are called from do_exit() */
1437 	if (context->in_syscall && context->auditable)
1438 		audit_log_exit(context, tsk);
1439 
1440 	audit_free_context(context);
1441 }
1442 
1443 /**
1444  * audit_syscall_entry - fill in an audit record at syscall entry
1445  * @tsk: task being audited
1446  * @arch: architecture type
1447  * @major: major syscall type (function)
1448  * @a1: additional syscall register 1
1449  * @a2: additional syscall register 2
1450  * @a3: additional syscall register 3
1451  * @a4: additional syscall register 4
1452  *
1453  * Fill in audit context at syscall entry.  This only happens if the
1454  * audit context was created when the task was created and the state or
1455  * filters demand the audit context be built.  If the state from the
1456  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1457  * then the record will be written at syscall exit time (otherwise, it
1458  * will only be written if another part of the kernel requests that it
1459  * be written).
1460  */
1461 void audit_syscall_entry(int arch, int major,
1462 			 unsigned long a1, unsigned long a2,
1463 			 unsigned long a3, unsigned long a4)
1464 {
1465 	struct task_struct *tsk = current;
1466 	struct audit_context *context = tsk->audit_context;
1467 	enum audit_state     state;
1468 
1469 	BUG_ON(!context);
1470 
1471 	/*
1472 	 * This happens only on certain architectures that make system
1473 	 * calls in kernel_thread via the entry.S interface, instead of
1474 	 * with direct calls.  (If you are porting to a new
1475 	 * architecture, hitting this condition can indicate that you
1476 	 * got the _exit/_leave calls backward in entry.S.)
1477 	 *
1478 	 * i386     no
1479 	 * x86_64   no
1480 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1481 	 *
1482 	 * This also happens with vm86 emulation in a non-nested manner
1483 	 * (entries without exits), so this case must be caught.
1484 	 */
1485 	if (context->in_syscall) {
1486 		struct audit_context *newctx;
1487 
1488 #if AUDIT_DEBUG
1489 		printk(KERN_ERR
1490 		       "audit(:%d) pid=%d in syscall=%d;"
1491 		       " entering syscall=%d\n",
1492 		       context->serial, tsk->pid, context->major, major);
1493 #endif
1494 		newctx = audit_alloc_context(context->state);
1495 		if (newctx) {
1496 			newctx->previous   = context;
1497 			context		   = newctx;
1498 			tsk->audit_context = newctx;
1499 		} else	{
1500 			/* If we can't alloc a new context, the best we
1501 			 * can do is to leak memory (any pending putname
1502 			 * will be lost).  The only other alternative is
1503 			 * to abandon auditing. */
1504 			audit_zero_context(context, context->state);
1505 		}
1506 	}
1507 	BUG_ON(context->in_syscall || context->name_count);
1508 
1509 	if (!audit_enabled)
1510 		return;
1511 
1512 	context->arch	    = arch;
1513 	context->major      = major;
1514 	context->argv[0]    = a1;
1515 	context->argv[1]    = a2;
1516 	context->argv[2]    = a3;
1517 	context->argv[3]    = a4;
1518 
1519 	state = context->state;
1520 	context->dummy = !audit_n_rules;
1521 	if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1522 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1523 	if (likely(state == AUDIT_DISABLED))
1524 		return;
1525 
1526 	context->serial     = 0;
1527 	context->ctime      = CURRENT_TIME;
1528 	context->in_syscall = 1;
1529 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
1530 	context->ppid       = 0;
1531 }
1532 
1533 /**
1534  * audit_syscall_exit - deallocate audit context after a system call
1535  * @tsk: task being audited
1536  * @valid: success/failure flag
1537  * @return_code: syscall return value
1538  *
1539  * Tear down after system call.  If the audit context has been marked as
1540  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1541  * filtering, or because some other part of the kernel write an audit
1542  * message), then write out the syscall information.  In call cases,
1543  * free the names stored from getname().
1544  */
1545 void audit_syscall_exit(int valid, long return_code)
1546 {
1547 	struct task_struct *tsk = current;
1548 	struct audit_context *context;
1549 
1550 	context = audit_get_context(tsk, valid, return_code);
1551 
1552 	if (likely(!context))
1553 		return;
1554 
1555 	if (context->in_syscall && context->auditable)
1556 		audit_log_exit(context, tsk);
1557 
1558 	context->in_syscall = 0;
1559 	context->auditable  = 0;
1560 
1561 	if (context->previous) {
1562 		struct audit_context *new_context = context->previous;
1563 		context->previous  = NULL;
1564 		audit_free_context(context);
1565 		tsk->audit_context = new_context;
1566 	} else {
1567 		audit_free_names(context);
1568 		unroll_tree_refs(context, NULL, 0);
1569 		audit_free_aux(context);
1570 		context->aux = NULL;
1571 		context->aux_pids = NULL;
1572 		context->target_pid = 0;
1573 		context->target_sid = 0;
1574 		kfree(context->filterkey);
1575 		context->filterkey = NULL;
1576 		tsk->audit_context = context;
1577 	}
1578 }
1579 
1580 static inline void handle_one(const struct inode *inode)
1581 {
1582 #ifdef CONFIG_AUDIT_TREE
1583 	struct audit_context *context;
1584 	struct audit_tree_refs *p;
1585 	struct audit_chunk *chunk;
1586 	int count;
1587 	if (likely(list_empty(&inode->inotify_watches)))
1588 		return;
1589 	context = current->audit_context;
1590 	p = context->trees;
1591 	count = context->tree_count;
1592 	rcu_read_lock();
1593 	chunk = audit_tree_lookup(inode);
1594 	rcu_read_unlock();
1595 	if (!chunk)
1596 		return;
1597 	if (likely(put_tree_ref(context, chunk)))
1598 		return;
1599 	if (unlikely(!grow_tree_refs(context))) {
1600 		printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1601 		audit_set_auditable(context);
1602 		audit_put_chunk(chunk);
1603 		unroll_tree_refs(context, p, count);
1604 		return;
1605 	}
1606 	put_tree_ref(context, chunk);
1607 #endif
1608 }
1609 
1610 static void handle_path(const struct dentry *dentry)
1611 {
1612 #ifdef CONFIG_AUDIT_TREE
1613 	struct audit_context *context;
1614 	struct audit_tree_refs *p;
1615 	const struct dentry *d, *parent;
1616 	struct audit_chunk *drop;
1617 	unsigned long seq;
1618 	int count;
1619 
1620 	context = current->audit_context;
1621 	p = context->trees;
1622 	count = context->tree_count;
1623 retry:
1624 	drop = NULL;
1625 	d = dentry;
1626 	rcu_read_lock();
1627 	seq = read_seqbegin(&rename_lock);
1628 	for(;;) {
1629 		struct inode *inode = d->d_inode;
1630 		if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1631 			struct audit_chunk *chunk;
1632 			chunk = audit_tree_lookup(inode);
1633 			if (chunk) {
1634 				if (unlikely(!put_tree_ref(context, chunk))) {
1635 					drop = chunk;
1636 					break;
1637 				}
1638 			}
1639 		}
1640 		parent = d->d_parent;
1641 		if (parent == d)
1642 			break;
1643 		d = parent;
1644 	}
1645 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1646 		rcu_read_unlock();
1647 		if (!drop) {
1648 			/* just a race with rename */
1649 			unroll_tree_refs(context, p, count);
1650 			goto retry;
1651 		}
1652 		audit_put_chunk(drop);
1653 		if (grow_tree_refs(context)) {
1654 			/* OK, got more space */
1655 			unroll_tree_refs(context, p, count);
1656 			goto retry;
1657 		}
1658 		/* too bad */
1659 		printk(KERN_WARNING
1660 			"out of memory, audit has lost a tree reference");
1661 		unroll_tree_refs(context, p, count);
1662 		audit_set_auditable(context);
1663 		return;
1664 	}
1665 	rcu_read_unlock();
1666 #endif
1667 }
1668 
1669 /**
1670  * audit_getname - add a name to the list
1671  * @name: name to add
1672  *
1673  * Add a name to the list of audit names for this context.
1674  * Called from fs/namei.c:getname().
1675  */
1676 void __audit_getname(const char *name)
1677 {
1678 	struct audit_context *context = current->audit_context;
1679 
1680 	if (IS_ERR(name) || !name)
1681 		return;
1682 
1683 	if (!context->in_syscall) {
1684 #if AUDIT_DEBUG == 2
1685 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1686 		       __FILE__, __LINE__, context->serial, name);
1687 		dump_stack();
1688 #endif
1689 		return;
1690 	}
1691 	BUG_ON(context->name_count >= AUDIT_NAMES);
1692 	context->names[context->name_count].name = name;
1693 	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1694 	context->names[context->name_count].name_put = 1;
1695 	context->names[context->name_count].ino  = (unsigned long)-1;
1696 	context->names[context->name_count].osid = 0;
1697 	++context->name_count;
1698 	if (!context->pwd) {
1699 		read_lock(&current->fs->lock);
1700 		context->pwd = dget(current->fs->pwd);
1701 		context->pwdmnt = mntget(current->fs->pwdmnt);
1702 		read_unlock(&current->fs->lock);
1703 	}
1704 
1705 }
1706 
1707 /* audit_putname - intercept a putname request
1708  * @name: name to intercept and delay for putname
1709  *
1710  * If we have stored the name from getname in the audit context,
1711  * then we delay the putname until syscall exit.
1712  * Called from include/linux/fs.h:putname().
1713  */
1714 void audit_putname(const char *name)
1715 {
1716 	struct audit_context *context = current->audit_context;
1717 
1718 	BUG_ON(!context);
1719 	if (!context->in_syscall) {
1720 #if AUDIT_DEBUG == 2
1721 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1722 		       __FILE__, __LINE__, context->serial, name);
1723 		if (context->name_count) {
1724 			int i;
1725 			for (i = 0; i < context->name_count; i++)
1726 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1727 				       context->names[i].name,
1728 				       context->names[i].name ?: "(null)");
1729 		}
1730 #endif
1731 		__putname(name);
1732 	}
1733 #if AUDIT_DEBUG
1734 	else {
1735 		++context->put_count;
1736 		if (context->put_count > context->name_count) {
1737 			printk(KERN_ERR "%s:%d(:%d): major=%d"
1738 			       " in_syscall=%d putname(%p) name_count=%d"
1739 			       " put_count=%d\n",
1740 			       __FILE__, __LINE__,
1741 			       context->serial, context->major,
1742 			       context->in_syscall, name, context->name_count,
1743 			       context->put_count);
1744 			dump_stack();
1745 		}
1746 	}
1747 #endif
1748 }
1749 
1750 static int audit_inc_name_count(struct audit_context *context,
1751 				const struct inode *inode)
1752 {
1753 	if (context->name_count >= AUDIT_NAMES) {
1754 		if (inode)
1755 			printk(KERN_DEBUG "name_count maxed, losing inode data: "
1756 			       "dev=%02x:%02x, inode=%lu",
1757 			       MAJOR(inode->i_sb->s_dev),
1758 			       MINOR(inode->i_sb->s_dev),
1759 			       inode->i_ino);
1760 
1761 		else
1762 			printk(KERN_DEBUG "name_count maxed, losing inode data");
1763 		return 1;
1764 	}
1765 	context->name_count++;
1766 #if AUDIT_DEBUG
1767 	context->ino_count++;
1768 #endif
1769 	return 0;
1770 }
1771 
1772 /* Copy inode data into an audit_names. */
1773 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1774 {
1775 	name->ino   = inode->i_ino;
1776 	name->dev   = inode->i_sb->s_dev;
1777 	name->mode  = inode->i_mode;
1778 	name->uid   = inode->i_uid;
1779 	name->gid   = inode->i_gid;
1780 	name->rdev  = inode->i_rdev;
1781 	selinux_get_inode_sid(inode, &name->osid);
1782 }
1783 
1784 /**
1785  * audit_inode - store the inode and device from a lookup
1786  * @name: name being audited
1787  * @dentry: dentry being audited
1788  *
1789  * Called from fs/namei.c:path_lookup().
1790  */
1791 void __audit_inode(const char *name, const struct dentry *dentry)
1792 {
1793 	int idx;
1794 	struct audit_context *context = current->audit_context;
1795 	const struct inode *inode = dentry->d_inode;
1796 
1797 	if (!context->in_syscall)
1798 		return;
1799 	if (context->name_count
1800 	    && context->names[context->name_count-1].name
1801 	    && context->names[context->name_count-1].name == name)
1802 		idx = context->name_count - 1;
1803 	else if (context->name_count > 1
1804 		 && context->names[context->name_count-2].name
1805 		 && context->names[context->name_count-2].name == name)
1806 		idx = context->name_count - 2;
1807 	else {
1808 		/* FIXME: how much do we care about inodes that have no
1809 		 * associated name? */
1810 		if (audit_inc_name_count(context, inode))
1811 			return;
1812 		idx = context->name_count - 1;
1813 		context->names[idx].name = NULL;
1814 	}
1815 	handle_path(dentry);
1816 	audit_copy_inode(&context->names[idx], inode);
1817 }
1818 
1819 /**
1820  * audit_inode_child - collect inode info for created/removed objects
1821  * @dname: inode's dentry name
1822  * @dentry: dentry being audited
1823  * @parent: inode of dentry parent
1824  *
1825  * For syscalls that create or remove filesystem objects, audit_inode
1826  * can only collect information for the filesystem object's parent.
1827  * This call updates the audit context with the child's information.
1828  * Syscalls that create a new filesystem object must be hooked after
1829  * the object is created.  Syscalls that remove a filesystem object
1830  * must be hooked prior, in order to capture the target inode during
1831  * unsuccessful attempts.
1832  */
1833 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1834 			 const struct inode *parent)
1835 {
1836 	int idx;
1837 	struct audit_context *context = current->audit_context;
1838 	const char *found_parent = NULL, *found_child = NULL;
1839 	const struct inode *inode = dentry->d_inode;
1840 	int dirlen = 0;
1841 
1842 	if (!context->in_syscall)
1843 		return;
1844 
1845 	if (inode)
1846 		handle_one(inode);
1847 	/* determine matching parent */
1848 	if (!dname)
1849 		goto add_names;
1850 
1851 	/* parent is more likely, look for it first */
1852 	for (idx = 0; idx < context->name_count; idx++) {
1853 		struct audit_names *n = &context->names[idx];
1854 
1855 		if (!n->name)
1856 			continue;
1857 
1858 		if (n->ino == parent->i_ino &&
1859 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
1860 			n->name_len = dirlen; /* update parent data in place */
1861 			found_parent = n->name;
1862 			goto add_names;
1863 		}
1864 	}
1865 
1866 	/* no matching parent, look for matching child */
1867 	for (idx = 0; idx < context->name_count; idx++) {
1868 		struct audit_names *n = &context->names[idx];
1869 
1870 		if (!n->name)
1871 			continue;
1872 
1873 		/* strcmp() is the more likely scenario */
1874 		if (!strcmp(dname, n->name) ||
1875 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
1876 			if (inode)
1877 				audit_copy_inode(n, inode);
1878 			else
1879 				n->ino = (unsigned long)-1;
1880 			found_child = n->name;
1881 			goto add_names;
1882 		}
1883 	}
1884 
1885 add_names:
1886 	if (!found_parent) {
1887 		if (audit_inc_name_count(context, parent))
1888 			return;
1889 		idx = context->name_count - 1;
1890 		context->names[idx].name = NULL;
1891 		audit_copy_inode(&context->names[idx], parent);
1892 	}
1893 
1894 	if (!found_child) {
1895 		if (audit_inc_name_count(context, inode))
1896 			return;
1897 		idx = context->name_count - 1;
1898 
1899 		/* Re-use the name belonging to the slot for a matching parent
1900 		 * directory. All names for this context are relinquished in
1901 		 * audit_free_names() */
1902 		if (found_parent) {
1903 			context->names[idx].name = found_parent;
1904 			context->names[idx].name_len = AUDIT_NAME_FULL;
1905 			/* don't call __putname() */
1906 			context->names[idx].name_put = 0;
1907 		} else {
1908 			context->names[idx].name = NULL;
1909 		}
1910 
1911 		if (inode)
1912 			audit_copy_inode(&context->names[idx], inode);
1913 		else
1914 			context->names[idx].ino = (unsigned long)-1;
1915 	}
1916 }
1917 EXPORT_SYMBOL_GPL(__audit_inode_child);
1918 
1919 /**
1920  * auditsc_get_stamp - get local copies of audit_context values
1921  * @ctx: audit_context for the task
1922  * @t: timespec to store time recorded in the audit_context
1923  * @serial: serial value that is recorded in the audit_context
1924  *
1925  * Also sets the context as auditable.
1926  */
1927 void auditsc_get_stamp(struct audit_context *ctx,
1928 		       struct timespec *t, unsigned int *serial)
1929 {
1930 	if (!ctx->serial)
1931 		ctx->serial = audit_serial();
1932 	t->tv_sec  = ctx->ctime.tv_sec;
1933 	t->tv_nsec = ctx->ctime.tv_nsec;
1934 	*serial    = ctx->serial;
1935 	ctx->auditable = 1;
1936 }
1937 
1938 /* global counter which is incremented every time something logs in */
1939 static atomic_t session_id = ATOMIC_INIT(0);
1940 
1941 /**
1942  * audit_set_loginuid - set a task's audit_context loginuid
1943  * @task: task whose audit context is being modified
1944  * @loginuid: loginuid value
1945  *
1946  * Returns 0.
1947  *
1948  * Called (set) from fs/proc/base.c::proc_loginuid_write().
1949  */
1950 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1951 {
1952 	unsigned int sessionid = atomic_inc_return(&session_id);
1953 	struct audit_context *context = task->audit_context;
1954 
1955 	if (context && context->in_syscall) {
1956 		struct audit_buffer *ab;
1957 
1958 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1959 		if (ab) {
1960 			audit_log_format(ab, "login pid=%d uid=%u "
1961 				"old auid=%u new auid=%u"
1962 				" old ses=%u new ses=%u",
1963 				task->pid, task->uid,
1964 				task->loginuid, loginuid,
1965 				task->sessionid, sessionid);
1966 			audit_log_end(ab);
1967 		}
1968 	}
1969 	task->sessionid = sessionid;
1970 	task->loginuid = loginuid;
1971 	return 0;
1972 }
1973 
1974 /**
1975  * __audit_mq_open - record audit data for a POSIX MQ open
1976  * @oflag: open flag
1977  * @mode: mode bits
1978  * @u_attr: queue attributes
1979  *
1980  * Returns 0 for success or NULL context or < 0 on error.
1981  */
1982 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1983 {
1984 	struct audit_aux_data_mq_open *ax;
1985 	struct audit_context *context = current->audit_context;
1986 
1987 	if (!audit_enabled)
1988 		return 0;
1989 
1990 	if (likely(!context))
1991 		return 0;
1992 
1993 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1994 	if (!ax)
1995 		return -ENOMEM;
1996 
1997 	if (u_attr != NULL) {
1998 		if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1999 			kfree(ax);
2000 			return -EFAULT;
2001 		}
2002 	} else
2003 		memset(&ax->attr, 0, sizeof(ax->attr));
2004 
2005 	ax->oflag = oflag;
2006 	ax->mode = mode;
2007 
2008 	ax->d.type = AUDIT_MQ_OPEN;
2009 	ax->d.next = context->aux;
2010 	context->aux = (void *)ax;
2011 	return 0;
2012 }
2013 
2014 /**
2015  * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2016  * @mqdes: MQ descriptor
2017  * @msg_len: Message length
2018  * @msg_prio: Message priority
2019  * @u_abs_timeout: Message timeout in absolute time
2020  *
2021  * Returns 0 for success or NULL context or < 0 on error.
2022  */
2023 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2024 			const struct timespec __user *u_abs_timeout)
2025 {
2026 	struct audit_aux_data_mq_sendrecv *ax;
2027 	struct audit_context *context = current->audit_context;
2028 
2029 	if (!audit_enabled)
2030 		return 0;
2031 
2032 	if (likely(!context))
2033 		return 0;
2034 
2035 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2036 	if (!ax)
2037 		return -ENOMEM;
2038 
2039 	if (u_abs_timeout != NULL) {
2040 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2041 			kfree(ax);
2042 			return -EFAULT;
2043 		}
2044 	} else
2045 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2046 
2047 	ax->mqdes = mqdes;
2048 	ax->msg_len = msg_len;
2049 	ax->msg_prio = msg_prio;
2050 
2051 	ax->d.type = AUDIT_MQ_SENDRECV;
2052 	ax->d.next = context->aux;
2053 	context->aux = (void *)ax;
2054 	return 0;
2055 }
2056 
2057 /**
2058  * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2059  * @mqdes: MQ descriptor
2060  * @msg_len: Message length
2061  * @u_msg_prio: Message priority
2062  * @u_abs_timeout: Message timeout in absolute time
2063  *
2064  * Returns 0 for success or NULL context or < 0 on error.
2065  */
2066 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2067 				unsigned int __user *u_msg_prio,
2068 				const struct timespec __user *u_abs_timeout)
2069 {
2070 	struct audit_aux_data_mq_sendrecv *ax;
2071 	struct audit_context *context = current->audit_context;
2072 
2073 	if (!audit_enabled)
2074 		return 0;
2075 
2076 	if (likely(!context))
2077 		return 0;
2078 
2079 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2080 	if (!ax)
2081 		return -ENOMEM;
2082 
2083 	if (u_msg_prio != NULL) {
2084 		if (get_user(ax->msg_prio, u_msg_prio)) {
2085 			kfree(ax);
2086 			return -EFAULT;
2087 		}
2088 	} else
2089 		ax->msg_prio = 0;
2090 
2091 	if (u_abs_timeout != NULL) {
2092 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2093 			kfree(ax);
2094 			return -EFAULT;
2095 		}
2096 	} else
2097 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2098 
2099 	ax->mqdes = mqdes;
2100 	ax->msg_len = msg_len;
2101 
2102 	ax->d.type = AUDIT_MQ_SENDRECV;
2103 	ax->d.next = context->aux;
2104 	context->aux = (void *)ax;
2105 	return 0;
2106 }
2107 
2108 /**
2109  * __audit_mq_notify - record audit data for a POSIX MQ notify
2110  * @mqdes: MQ descriptor
2111  * @u_notification: Notification event
2112  *
2113  * Returns 0 for success or NULL context or < 0 on error.
2114  */
2115 
2116 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2117 {
2118 	struct audit_aux_data_mq_notify *ax;
2119 	struct audit_context *context = current->audit_context;
2120 
2121 	if (!audit_enabled)
2122 		return 0;
2123 
2124 	if (likely(!context))
2125 		return 0;
2126 
2127 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2128 	if (!ax)
2129 		return -ENOMEM;
2130 
2131 	if (u_notification != NULL) {
2132 		if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2133 			kfree(ax);
2134 			return -EFAULT;
2135 		}
2136 	} else
2137 		memset(&ax->notification, 0, sizeof(ax->notification));
2138 
2139 	ax->mqdes = mqdes;
2140 
2141 	ax->d.type = AUDIT_MQ_NOTIFY;
2142 	ax->d.next = context->aux;
2143 	context->aux = (void *)ax;
2144 	return 0;
2145 }
2146 
2147 /**
2148  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2149  * @mqdes: MQ descriptor
2150  * @mqstat: MQ flags
2151  *
2152  * Returns 0 for success or NULL context or < 0 on error.
2153  */
2154 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2155 {
2156 	struct audit_aux_data_mq_getsetattr *ax;
2157 	struct audit_context *context = current->audit_context;
2158 
2159 	if (!audit_enabled)
2160 		return 0;
2161 
2162 	if (likely(!context))
2163 		return 0;
2164 
2165 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2166 	if (!ax)
2167 		return -ENOMEM;
2168 
2169 	ax->mqdes = mqdes;
2170 	ax->mqstat = *mqstat;
2171 
2172 	ax->d.type = AUDIT_MQ_GETSETATTR;
2173 	ax->d.next = context->aux;
2174 	context->aux = (void *)ax;
2175 	return 0;
2176 }
2177 
2178 /**
2179  * audit_ipc_obj - record audit data for ipc object
2180  * @ipcp: ipc permissions
2181  *
2182  * Returns 0 for success or NULL context or < 0 on error.
2183  */
2184 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2185 {
2186 	struct audit_aux_data_ipcctl *ax;
2187 	struct audit_context *context = current->audit_context;
2188 
2189 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2190 	if (!ax)
2191 		return -ENOMEM;
2192 
2193 	ax->uid = ipcp->uid;
2194 	ax->gid = ipcp->gid;
2195 	ax->mode = ipcp->mode;
2196 	selinux_get_ipc_sid(ipcp, &ax->osid);
2197 
2198 	ax->d.type = AUDIT_IPC;
2199 	ax->d.next = context->aux;
2200 	context->aux = (void *)ax;
2201 	return 0;
2202 }
2203 
2204 /**
2205  * audit_ipc_set_perm - record audit data for new ipc permissions
2206  * @qbytes: msgq bytes
2207  * @uid: msgq user id
2208  * @gid: msgq group id
2209  * @mode: msgq mode (permissions)
2210  *
2211  * Returns 0 for success or NULL context or < 0 on error.
2212  */
2213 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2214 {
2215 	struct audit_aux_data_ipcctl *ax;
2216 	struct audit_context *context = current->audit_context;
2217 
2218 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2219 	if (!ax)
2220 		return -ENOMEM;
2221 
2222 	ax->qbytes = qbytes;
2223 	ax->uid = uid;
2224 	ax->gid = gid;
2225 	ax->mode = mode;
2226 
2227 	ax->d.type = AUDIT_IPC_SET_PERM;
2228 	ax->d.next = context->aux;
2229 	context->aux = (void *)ax;
2230 	return 0;
2231 }
2232 
2233 int audit_bprm(struct linux_binprm *bprm)
2234 {
2235 	struct audit_aux_data_execve *ax;
2236 	struct audit_context *context = current->audit_context;
2237 
2238 	if (likely(!audit_enabled || !context || context->dummy))
2239 		return 0;
2240 
2241 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2242 	if (!ax)
2243 		return -ENOMEM;
2244 
2245 	ax->argc = bprm->argc;
2246 	ax->envc = bprm->envc;
2247 	ax->mm = bprm->mm;
2248 	ax->d.type = AUDIT_EXECVE;
2249 	ax->d.next = context->aux;
2250 	context->aux = (void *)ax;
2251 	return 0;
2252 }
2253 
2254 
2255 /**
2256  * audit_socketcall - record audit data for sys_socketcall
2257  * @nargs: number of args
2258  * @args: args array
2259  *
2260  * Returns 0 for success or NULL context or < 0 on error.
2261  */
2262 int audit_socketcall(int nargs, unsigned long *args)
2263 {
2264 	struct audit_aux_data_socketcall *ax;
2265 	struct audit_context *context = current->audit_context;
2266 
2267 	if (likely(!context || context->dummy))
2268 		return 0;
2269 
2270 	ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2271 	if (!ax)
2272 		return -ENOMEM;
2273 
2274 	ax->nargs = nargs;
2275 	memcpy(ax->args, args, nargs * sizeof(unsigned long));
2276 
2277 	ax->d.type = AUDIT_SOCKETCALL;
2278 	ax->d.next = context->aux;
2279 	context->aux = (void *)ax;
2280 	return 0;
2281 }
2282 
2283 /**
2284  * __audit_fd_pair - record audit data for pipe and socketpair
2285  * @fd1: the first file descriptor
2286  * @fd2: the second file descriptor
2287  *
2288  * Returns 0 for success or NULL context or < 0 on error.
2289  */
2290 int __audit_fd_pair(int fd1, int fd2)
2291 {
2292 	struct audit_context *context = current->audit_context;
2293 	struct audit_aux_data_fd_pair *ax;
2294 
2295 	if (likely(!context)) {
2296 		return 0;
2297 	}
2298 
2299 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2300 	if (!ax) {
2301 		return -ENOMEM;
2302 	}
2303 
2304 	ax->fd[0] = fd1;
2305 	ax->fd[1] = fd2;
2306 
2307 	ax->d.type = AUDIT_FD_PAIR;
2308 	ax->d.next = context->aux;
2309 	context->aux = (void *)ax;
2310 	return 0;
2311 }
2312 
2313 /**
2314  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2315  * @len: data length in user space
2316  * @a: data address in kernel space
2317  *
2318  * Returns 0 for success or NULL context or < 0 on error.
2319  */
2320 int audit_sockaddr(int len, void *a)
2321 {
2322 	struct audit_aux_data_sockaddr *ax;
2323 	struct audit_context *context = current->audit_context;
2324 
2325 	if (likely(!context || context->dummy))
2326 		return 0;
2327 
2328 	ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2329 	if (!ax)
2330 		return -ENOMEM;
2331 
2332 	ax->len = len;
2333 	memcpy(ax->a, a, len);
2334 
2335 	ax->d.type = AUDIT_SOCKADDR;
2336 	ax->d.next = context->aux;
2337 	context->aux = (void *)ax;
2338 	return 0;
2339 }
2340 
2341 void __audit_ptrace(struct task_struct *t)
2342 {
2343 	struct audit_context *context = current->audit_context;
2344 
2345 	context->target_pid = t->pid;
2346 	context->target_auid = audit_get_loginuid(t);
2347 	context->target_uid = t->uid;
2348 	context->target_sessionid = audit_get_sessionid(t);
2349 	selinux_get_task_sid(t, &context->target_sid);
2350 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2351 }
2352 
2353 /**
2354  * audit_signal_info - record signal info for shutting down audit subsystem
2355  * @sig: signal value
2356  * @t: task being signaled
2357  *
2358  * If the audit subsystem is being terminated, record the task (pid)
2359  * and uid that is doing that.
2360  */
2361 int __audit_signal_info(int sig, struct task_struct *t)
2362 {
2363 	struct audit_aux_data_pids *axp;
2364 	struct task_struct *tsk = current;
2365 	struct audit_context *ctx = tsk->audit_context;
2366 	extern pid_t audit_sig_pid;
2367 	extern uid_t audit_sig_uid;
2368 	extern u32 audit_sig_sid;
2369 
2370 	if (audit_pid && t->tgid == audit_pid) {
2371 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2372 			audit_sig_pid = tsk->pid;
2373 			if (tsk->loginuid != -1)
2374 				audit_sig_uid = tsk->loginuid;
2375 			else
2376 				audit_sig_uid = tsk->uid;
2377 			selinux_get_task_sid(tsk, &audit_sig_sid);
2378 		}
2379 		if (!audit_signals || audit_dummy_context())
2380 			return 0;
2381 	}
2382 
2383 	/* optimize the common case by putting first signal recipient directly
2384 	 * in audit_context */
2385 	if (!ctx->target_pid) {
2386 		ctx->target_pid = t->tgid;
2387 		ctx->target_auid = audit_get_loginuid(t);
2388 		ctx->target_uid = t->uid;
2389 		ctx->target_sessionid = audit_get_sessionid(t);
2390 		selinux_get_task_sid(t, &ctx->target_sid);
2391 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2392 		return 0;
2393 	}
2394 
2395 	axp = (void *)ctx->aux_pids;
2396 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2397 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2398 		if (!axp)
2399 			return -ENOMEM;
2400 
2401 		axp->d.type = AUDIT_OBJ_PID;
2402 		axp->d.next = ctx->aux_pids;
2403 		ctx->aux_pids = (void *)axp;
2404 	}
2405 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2406 
2407 	axp->target_pid[axp->pid_count] = t->tgid;
2408 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2409 	axp->target_uid[axp->pid_count] = t->uid;
2410 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2411 	selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2412 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2413 	axp->pid_count++;
2414 
2415 	return 0;
2416 }
2417 
2418 /**
2419  * audit_core_dumps - record information about processes that end abnormally
2420  * @signr: signal value
2421  *
2422  * If a process ends with a core dump, something fishy is going on and we
2423  * should record the event for investigation.
2424  */
2425 void audit_core_dumps(long signr)
2426 {
2427 	struct audit_buffer *ab;
2428 	u32 sid;
2429 	uid_t auid = audit_get_loginuid(current);
2430 	unsigned int sessionid = audit_get_sessionid(current);
2431 
2432 	if (!audit_enabled)
2433 		return;
2434 
2435 	if (signr == SIGQUIT)	/* don't care for those */
2436 		return;
2437 
2438 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2439 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2440 			auid, current->uid, current->gid, sessionid);
2441 	selinux_get_task_sid(current, &sid);
2442 	if (sid) {
2443 		char *ctx = NULL;
2444 		u32 len;
2445 
2446 		if (selinux_sid_to_string(sid, &ctx, &len))
2447 			audit_log_format(ab, " ssid=%u", sid);
2448 		else
2449 			audit_log_format(ab, " subj=%s", ctx);
2450 		kfree(ctx);
2451 	}
2452 	audit_log_format(ab, " pid=%d comm=", current->pid);
2453 	audit_log_untrustedstring(ab, current->comm);
2454 	audit_log_format(ab, " sig=%ld", signr);
2455 	audit_log_end(ab);
2456 }
2457