1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <asm/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/module.h> 52 #include <linux/slab.h> 53 #include <linux/mount.h> 54 #include <linux/socket.h> 55 #include <linux/mqueue.h> 56 #include <linux/audit.h> 57 #include <linux/personality.h> 58 #include <linux/time.h> 59 #include <linux/netlink.h> 60 #include <linux/compiler.h> 61 #include <asm/unistd.h> 62 #include <linux/security.h> 63 #include <linux/list.h> 64 #include <linux/tty.h> 65 #include <linux/binfmts.h> 66 #include <linux/highmem.h> 67 #include <linux/syscalls.h> 68 #include <linux/capability.h> 69 #include <linux/fs_struct.h> 70 71 #include "audit.h" 72 73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 74 * for saving names from getname(). */ 75 #define AUDIT_NAMES 20 76 77 /* Indicates that audit should log the full pathname. */ 78 #define AUDIT_NAME_FULL -1 79 80 /* no execve audit message should be longer than this (userspace limits) */ 81 #define MAX_EXECVE_AUDIT_LEN 7500 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_cap_data { 90 kernel_cap_t permitted; 91 kernel_cap_t inheritable; 92 union { 93 unsigned int fE; /* effective bit of a file capability */ 94 kernel_cap_t effective; /* effective set of a process */ 95 }; 96 }; 97 98 /* When fs/namei.c:getname() is called, we store the pointer in name and 99 * we don't let putname() free it (instead we free all of the saved 100 * pointers at syscall exit time). 101 * 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 103 struct audit_names { 104 const char *name; 105 int name_len; /* number of name's characters to log */ 106 unsigned name_put; /* call __putname() for this name */ 107 unsigned long ino; 108 dev_t dev; 109 umode_t mode; 110 uid_t uid; 111 gid_t gid; 112 dev_t rdev; 113 u32 osid; 114 struct audit_cap_data fcap; 115 unsigned int fcap_ver; 116 }; 117 118 struct audit_aux_data { 119 struct audit_aux_data *next; 120 int type; 121 }; 122 123 #define AUDIT_AUX_IPCPERM 0 124 125 /* Number of target pids per aux struct. */ 126 #define AUDIT_AUX_PIDS 16 127 128 struct audit_aux_data_execve { 129 struct audit_aux_data d; 130 int argc; 131 int envc; 132 struct mm_struct *mm; 133 }; 134 135 struct audit_aux_data_pids { 136 struct audit_aux_data d; 137 pid_t target_pid[AUDIT_AUX_PIDS]; 138 uid_t target_auid[AUDIT_AUX_PIDS]; 139 uid_t target_uid[AUDIT_AUX_PIDS]; 140 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 141 u32 target_sid[AUDIT_AUX_PIDS]; 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 143 int pid_count; 144 }; 145 146 struct audit_aux_data_bprm_fcaps { 147 struct audit_aux_data d; 148 struct audit_cap_data fcap; 149 unsigned int fcap_ver; 150 struct audit_cap_data old_pcap; 151 struct audit_cap_data new_pcap; 152 }; 153 154 struct audit_aux_data_capset { 155 struct audit_aux_data d; 156 pid_t pid; 157 struct audit_cap_data cap; 158 }; 159 160 struct audit_tree_refs { 161 struct audit_tree_refs *next; 162 struct audit_chunk *c[31]; 163 }; 164 165 /* The per-task audit context. */ 166 struct audit_context { 167 int dummy; /* must be the first element */ 168 int in_syscall; /* 1 if task is in a syscall */ 169 enum audit_state state, current_state; 170 unsigned int serial; /* serial number for record */ 171 int major; /* syscall number */ 172 struct timespec ctime; /* time of syscall entry */ 173 unsigned long argv[4]; /* syscall arguments */ 174 long return_code;/* syscall return code */ 175 u64 prio; 176 int return_valid; /* return code is valid */ 177 int name_count; 178 struct audit_names names[AUDIT_NAMES]; 179 char * filterkey; /* key for rule that triggered record */ 180 struct path pwd; 181 struct audit_context *previous; /* For nested syscalls */ 182 struct audit_aux_data *aux; 183 struct audit_aux_data *aux_pids; 184 struct sockaddr_storage *sockaddr; 185 size_t sockaddr_len; 186 /* Save things to print about task_struct */ 187 pid_t pid, ppid; 188 uid_t uid, euid, suid, fsuid; 189 gid_t gid, egid, sgid, fsgid; 190 unsigned long personality; 191 int arch; 192 193 pid_t target_pid; 194 uid_t target_auid; 195 uid_t target_uid; 196 unsigned int target_sessionid; 197 u32 target_sid; 198 char target_comm[TASK_COMM_LEN]; 199 200 struct audit_tree_refs *trees, *first_trees; 201 struct list_head killed_trees; 202 int tree_count; 203 204 int type; 205 union { 206 struct { 207 int nargs; 208 long args[6]; 209 } socketcall; 210 struct { 211 uid_t uid; 212 gid_t gid; 213 mode_t mode; 214 u32 osid; 215 int has_perm; 216 uid_t perm_uid; 217 gid_t perm_gid; 218 mode_t perm_mode; 219 unsigned long qbytes; 220 } ipc; 221 struct { 222 mqd_t mqdes; 223 struct mq_attr mqstat; 224 } mq_getsetattr; 225 struct { 226 mqd_t mqdes; 227 int sigev_signo; 228 } mq_notify; 229 struct { 230 mqd_t mqdes; 231 size_t msg_len; 232 unsigned int msg_prio; 233 struct timespec abs_timeout; 234 } mq_sendrecv; 235 struct { 236 int oflag; 237 mode_t mode; 238 struct mq_attr attr; 239 } mq_open; 240 struct { 241 pid_t pid; 242 struct audit_cap_data cap; 243 } capset; 244 }; 245 int fds[2]; 246 247 #if AUDIT_DEBUG 248 int put_count; 249 int ino_count; 250 #endif 251 }; 252 253 static inline int open_arg(int flags, int mask) 254 { 255 int n = ACC_MODE(flags); 256 if (flags & (O_TRUNC | O_CREAT)) 257 n |= AUDIT_PERM_WRITE; 258 return n & mask; 259 } 260 261 static int audit_match_perm(struct audit_context *ctx, int mask) 262 { 263 unsigned n; 264 if (unlikely(!ctx)) 265 return 0; 266 n = ctx->major; 267 268 switch (audit_classify_syscall(ctx->arch, n)) { 269 case 0: /* native */ 270 if ((mask & AUDIT_PERM_WRITE) && 271 audit_match_class(AUDIT_CLASS_WRITE, n)) 272 return 1; 273 if ((mask & AUDIT_PERM_READ) && 274 audit_match_class(AUDIT_CLASS_READ, n)) 275 return 1; 276 if ((mask & AUDIT_PERM_ATTR) && 277 audit_match_class(AUDIT_CLASS_CHATTR, n)) 278 return 1; 279 return 0; 280 case 1: /* 32bit on biarch */ 281 if ((mask & AUDIT_PERM_WRITE) && 282 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 283 return 1; 284 if ((mask & AUDIT_PERM_READ) && 285 audit_match_class(AUDIT_CLASS_READ_32, n)) 286 return 1; 287 if ((mask & AUDIT_PERM_ATTR) && 288 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 289 return 1; 290 return 0; 291 case 2: /* open */ 292 return mask & ACC_MODE(ctx->argv[1]); 293 case 3: /* openat */ 294 return mask & ACC_MODE(ctx->argv[2]); 295 case 4: /* socketcall */ 296 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 297 case 5: /* execve */ 298 return mask & AUDIT_PERM_EXEC; 299 default: 300 return 0; 301 } 302 } 303 304 static int audit_match_filetype(struct audit_context *ctx, int which) 305 { 306 unsigned index = which & ~S_IFMT; 307 mode_t mode = which & S_IFMT; 308 309 if (unlikely(!ctx)) 310 return 0; 311 312 if (index >= ctx->name_count) 313 return 0; 314 if (ctx->names[index].ino == -1) 315 return 0; 316 if ((ctx->names[index].mode ^ mode) & S_IFMT) 317 return 0; 318 return 1; 319 } 320 321 /* 322 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 323 * ->first_trees points to its beginning, ->trees - to the current end of data. 324 * ->tree_count is the number of free entries in array pointed to by ->trees. 325 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 326 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 327 * it's going to remain 1-element for almost any setup) until we free context itself. 328 * References in it _are_ dropped - at the same time we free/drop aux stuff. 329 */ 330 331 #ifdef CONFIG_AUDIT_TREE 332 static void audit_set_auditable(struct audit_context *ctx) 333 { 334 if (!ctx->prio) { 335 ctx->prio = 1; 336 ctx->current_state = AUDIT_RECORD_CONTEXT; 337 } 338 } 339 340 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 341 { 342 struct audit_tree_refs *p = ctx->trees; 343 int left = ctx->tree_count; 344 if (likely(left)) { 345 p->c[--left] = chunk; 346 ctx->tree_count = left; 347 return 1; 348 } 349 if (!p) 350 return 0; 351 p = p->next; 352 if (p) { 353 p->c[30] = chunk; 354 ctx->trees = p; 355 ctx->tree_count = 30; 356 return 1; 357 } 358 return 0; 359 } 360 361 static int grow_tree_refs(struct audit_context *ctx) 362 { 363 struct audit_tree_refs *p = ctx->trees; 364 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 365 if (!ctx->trees) { 366 ctx->trees = p; 367 return 0; 368 } 369 if (p) 370 p->next = ctx->trees; 371 else 372 ctx->first_trees = ctx->trees; 373 ctx->tree_count = 31; 374 return 1; 375 } 376 #endif 377 378 static void unroll_tree_refs(struct audit_context *ctx, 379 struct audit_tree_refs *p, int count) 380 { 381 #ifdef CONFIG_AUDIT_TREE 382 struct audit_tree_refs *q; 383 int n; 384 if (!p) { 385 /* we started with empty chain */ 386 p = ctx->first_trees; 387 count = 31; 388 /* if the very first allocation has failed, nothing to do */ 389 if (!p) 390 return; 391 } 392 n = count; 393 for (q = p; q != ctx->trees; q = q->next, n = 31) { 394 while (n--) { 395 audit_put_chunk(q->c[n]); 396 q->c[n] = NULL; 397 } 398 } 399 while (n-- > ctx->tree_count) { 400 audit_put_chunk(q->c[n]); 401 q->c[n] = NULL; 402 } 403 ctx->trees = p; 404 ctx->tree_count = count; 405 #endif 406 } 407 408 static void free_tree_refs(struct audit_context *ctx) 409 { 410 struct audit_tree_refs *p, *q; 411 for (p = ctx->first_trees; p; p = q) { 412 q = p->next; 413 kfree(p); 414 } 415 } 416 417 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 418 { 419 #ifdef CONFIG_AUDIT_TREE 420 struct audit_tree_refs *p; 421 int n; 422 if (!tree) 423 return 0; 424 /* full ones */ 425 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 426 for (n = 0; n < 31; n++) 427 if (audit_tree_match(p->c[n], tree)) 428 return 1; 429 } 430 /* partial */ 431 if (p) { 432 for (n = ctx->tree_count; n < 31; n++) 433 if (audit_tree_match(p->c[n], tree)) 434 return 1; 435 } 436 #endif 437 return 0; 438 } 439 440 /* Determine if any context name data matches a rule's watch data */ 441 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 442 * otherwise. */ 443 static int audit_filter_rules(struct task_struct *tsk, 444 struct audit_krule *rule, 445 struct audit_context *ctx, 446 struct audit_names *name, 447 enum audit_state *state) 448 { 449 const struct cred *cred = get_task_cred(tsk); 450 int i, j, need_sid = 1; 451 u32 sid; 452 453 for (i = 0; i < rule->field_count; i++) { 454 struct audit_field *f = &rule->fields[i]; 455 int result = 0; 456 457 switch (f->type) { 458 case AUDIT_PID: 459 result = audit_comparator(tsk->pid, f->op, f->val); 460 break; 461 case AUDIT_PPID: 462 if (ctx) { 463 if (!ctx->ppid) 464 ctx->ppid = sys_getppid(); 465 result = audit_comparator(ctx->ppid, f->op, f->val); 466 } 467 break; 468 case AUDIT_UID: 469 result = audit_comparator(cred->uid, f->op, f->val); 470 break; 471 case AUDIT_EUID: 472 result = audit_comparator(cred->euid, f->op, f->val); 473 break; 474 case AUDIT_SUID: 475 result = audit_comparator(cred->suid, f->op, f->val); 476 break; 477 case AUDIT_FSUID: 478 result = audit_comparator(cred->fsuid, f->op, f->val); 479 break; 480 case AUDIT_GID: 481 result = audit_comparator(cred->gid, f->op, f->val); 482 break; 483 case AUDIT_EGID: 484 result = audit_comparator(cred->egid, f->op, f->val); 485 break; 486 case AUDIT_SGID: 487 result = audit_comparator(cred->sgid, f->op, f->val); 488 break; 489 case AUDIT_FSGID: 490 result = audit_comparator(cred->fsgid, f->op, f->val); 491 break; 492 case AUDIT_PERS: 493 result = audit_comparator(tsk->personality, f->op, f->val); 494 break; 495 case AUDIT_ARCH: 496 if (ctx) 497 result = audit_comparator(ctx->arch, f->op, f->val); 498 break; 499 500 case AUDIT_EXIT: 501 if (ctx && ctx->return_valid) 502 result = audit_comparator(ctx->return_code, f->op, f->val); 503 break; 504 case AUDIT_SUCCESS: 505 if (ctx && ctx->return_valid) { 506 if (f->val) 507 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 508 else 509 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 510 } 511 break; 512 case AUDIT_DEVMAJOR: 513 if (name) 514 result = audit_comparator(MAJOR(name->dev), 515 f->op, f->val); 516 else if (ctx) { 517 for (j = 0; j < ctx->name_count; j++) { 518 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { 519 ++result; 520 break; 521 } 522 } 523 } 524 break; 525 case AUDIT_DEVMINOR: 526 if (name) 527 result = audit_comparator(MINOR(name->dev), 528 f->op, f->val); 529 else if (ctx) { 530 for (j = 0; j < ctx->name_count; j++) { 531 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { 532 ++result; 533 break; 534 } 535 } 536 } 537 break; 538 case AUDIT_INODE: 539 if (name) 540 result = (name->ino == f->val); 541 else if (ctx) { 542 for (j = 0; j < ctx->name_count; j++) { 543 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) { 544 ++result; 545 break; 546 } 547 } 548 } 549 break; 550 case AUDIT_WATCH: 551 if (name) 552 result = audit_watch_compare(rule->watch, name->ino, name->dev); 553 break; 554 case AUDIT_DIR: 555 if (ctx) 556 result = match_tree_refs(ctx, rule->tree); 557 break; 558 case AUDIT_LOGINUID: 559 result = 0; 560 if (ctx) 561 result = audit_comparator(tsk->loginuid, f->op, f->val); 562 break; 563 case AUDIT_SUBJ_USER: 564 case AUDIT_SUBJ_ROLE: 565 case AUDIT_SUBJ_TYPE: 566 case AUDIT_SUBJ_SEN: 567 case AUDIT_SUBJ_CLR: 568 /* NOTE: this may return negative values indicating 569 a temporary error. We simply treat this as a 570 match for now to avoid losing information that 571 may be wanted. An error message will also be 572 logged upon error */ 573 if (f->lsm_rule) { 574 if (need_sid) { 575 security_task_getsecid(tsk, &sid); 576 need_sid = 0; 577 } 578 result = security_audit_rule_match(sid, f->type, 579 f->op, 580 f->lsm_rule, 581 ctx); 582 } 583 break; 584 case AUDIT_OBJ_USER: 585 case AUDIT_OBJ_ROLE: 586 case AUDIT_OBJ_TYPE: 587 case AUDIT_OBJ_LEV_LOW: 588 case AUDIT_OBJ_LEV_HIGH: 589 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 590 also applies here */ 591 if (f->lsm_rule) { 592 /* Find files that match */ 593 if (name) { 594 result = security_audit_rule_match( 595 name->osid, f->type, f->op, 596 f->lsm_rule, ctx); 597 } else if (ctx) { 598 for (j = 0; j < ctx->name_count; j++) { 599 if (security_audit_rule_match( 600 ctx->names[j].osid, 601 f->type, f->op, 602 f->lsm_rule, ctx)) { 603 ++result; 604 break; 605 } 606 } 607 } 608 /* Find ipc objects that match */ 609 if (!ctx || ctx->type != AUDIT_IPC) 610 break; 611 if (security_audit_rule_match(ctx->ipc.osid, 612 f->type, f->op, 613 f->lsm_rule, ctx)) 614 ++result; 615 } 616 break; 617 case AUDIT_ARG0: 618 case AUDIT_ARG1: 619 case AUDIT_ARG2: 620 case AUDIT_ARG3: 621 if (ctx) 622 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 623 break; 624 case AUDIT_FILTERKEY: 625 /* ignore this field for filtering */ 626 result = 1; 627 break; 628 case AUDIT_PERM: 629 result = audit_match_perm(ctx, f->val); 630 break; 631 case AUDIT_FILETYPE: 632 result = audit_match_filetype(ctx, f->val); 633 break; 634 } 635 636 if (!result) { 637 put_cred(cred); 638 return 0; 639 } 640 } 641 642 if (ctx) { 643 if (rule->prio <= ctx->prio) 644 return 0; 645 if (rule->filterkey) { 646 kfree(ctx->filterkey); 647 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 648 } 649 ctx->prio = rule->prio; 650 } 651 switch (rule->action) { 652 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 653 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 654 } 655 put_cred(cred); 656 return 1; 657 } 658 659 /* At process creation time, we can determine if system-call auditing is 660 * completely disabled for this task. Since we only have the task 661 * structure at this point, we can only check uid and gid. 662 */ 663 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 664 { 665 struct audit_entry *e; 666 enum audit_state state; 667 668 rcu_read_lock(); 669 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 670 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) { 671 if (state == AUDIT_RECORD_CONTEXT) 672 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 673 rcu_read_unlock(); 674 return state; 675 } 676 } 677 rcu_read_unlock(); 678 return AUDIT_BUILD_CONTEXT; 679 } 680 681 /* At syscall entry and exit time, this filter is called if the 682 * audit_state is not low enough that auditing cannot take place, but is 683 * also not high enough that we already know we have to write an audit 684 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 685 */ 686 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 687 struct audit_context *ctx, 688 struct list_head *list) 689 { 690 struct audit_entry *e; 691 enum audit_state state; 692 693 if (audit_pid && tsk->tgid == audit_pid) 694 return AUDIT_DISABLED; 695 696 rcu_read_lock(); 697 if (!list_empty(list)) { 698 int word = AUDIT_WORD(ctx->major); 699 int bit = AUDIT_BIT(ctx->major); 700 701 list_for_each_entry_rcu(e, list, list) { 702 if ((e->rule.mask[word] & bit) == bit && 703 audit_filter_rules(tsk, &e->rule, ctx, NULL, 704 &state)) { 705 rcu_read_unlock(); 706 ctx->current_state = state; 707 return state; 708 } 709 } 710 } 711 rcu_read_unlock(); 712 return AUDIT_BUILD_CONTEXT; 713 } 714 715 /* At syscall exit time, this filter is called if any audit_names[] have been 716 * collected during syscall processing. We only check rules in sublists at hash 717 * buckets applicable to the inode numbers in audit_names[]. 718 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 719 */ 720 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 721 { 722 int i; 723 struct audit_entry *e; 724 enum audit_state state; 725 726 if (audit_pid && tsk->tgid == audit_pid) 727 return; 728 729 rcu_read_lock(); 730 for (i = 0; i < ctx->name_count; i++) { 731 int word = AUDIT_WORD(ctx->major); 732 int bit = AUDIT_BIT(ctx->major); 733 struct audit_names *n = &ctx->names[i]; 734 int h = audit_hash_ino((u32)n->ino); 735 struct list_head *list = &audit_inode_hash[h]; 736 737 if (list_empty(list)) 738 continue; 739 740 list_for_each_entry_rcu(e, list, list) { 741 if ((e->rule.mask[word] & bit) == bit && 742 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) { 743 rcu_read_unlock(); 744 ctx->current_state = state; 745 return; 746 } 747 } 748 } 749 rcu_read_unlock(); 750 } 751 752 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 753 int return_valid, 754 long return_code) 755 { 756 struct audit_context *context = tsk->audit_context; 757 758 if (likely(!context)) 759 return NULL; 760 context->return_valid = return_valid; 761 762 /* 763 * we need to fix up the return code in the audit logs if the actual 764 * return codes are later going to be fixed up by the arch specific 765 * signal handlers 766 * 767 * This is actually a test for: 768 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 769 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 770 * 771 * but is faster than a bunch of || 772 */ 773 if (unlikely(return_code <= -ERESTARTSYS) && 774 (return_code >= -ERESTART_RESTARTBLOCK) && 775 (return_code != -ENOIOCTLCMD)) 776 context->return_code = -EINTR; 777 else 778 context->return_code = return_code; 779 780 if (context->in_syscall && !context->dummy) { 781 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 782 audit_filter_inodes(tsk, context); 783 } 784 785 tsk->audit_context = NULL; 786 return context; 787 } 788 789 static inline void audit_free_names(struct audit_context *context) 790 { 791 int i; 792 793 #if AUDIT_DEBUG == 2 794 if (context->put_count + context->ino_count != context->name_count) { 795 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 796 " name_count=%d put_count=%d" 797 " ino_count=%d [NOT freeing]\n", 798 __FILE__, __LINE__, 799 context->serial, context->major, context->in_syscall, 800 context->name_count, context->put_count, 801 context->ino_count); 802 for (i = 0; i < context->name_count; i++) { 803 printk(KERN_ERR "names[%d] = %p = %s\n", i, 804 context->names[i].name, 805 context->names[i].name ?: "(null)"); 806 } 807 dump_stack(); 808 return; 809 } 810 #endif 811 #if AUDIT_DEBUG 812 context->put_count = 0; 813 context->ino_count = 0; 814 #endif 815 816 for (i = 0; i < context->name_count; i++) { 817 if (context->names[i].name && context->names[i].name_put) 818 __putname(context->names[i].name); 819 } 820 context->name_count = 0; 821 path_put(&context->pwd); 822 context->pwd.dentry = NULL; 823 context->pwd.mnt = NULL; 824 } 825 826 static inline void audit_free_aux(struct audit_context *context) 827 { 828 struct audit_aux_data *aux; 829 830 while ((aux = context->aux)) { 831 context->aux = aux->next; 832 kfree(aux); 833 } 834 while ((aux = context->aux_pids)) { 835 context->aux_pids = aux->next; 836 kfree(aux); 837 } 838 } 839 840 static inline void audit_zero_context(struct audit_context *context, 841 enum audit_state state) 842 { 843 memset(context, 0, sizeof(*context)); 844 context->state = state; 845 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 846 } 847 848 static inline struct audit_context *audit_alloc_context(enum audit_state state) 849 { 850 struct audit_context *context; 851 852 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 853 return NULL; 854 audit_zero_context(context, state); 855 INIT_LIST_HEAD(&context->killed_trees); 856 return context; 857 } 858 859 /** 860 * audit_alloc - allocate an audit context block for a task 861 * @tsk: task 862 * 863 * Filter on the task information and allocate a per-task audit context 864 * if necessary. Doing so turns on system call auditing for the 865 * specified task. This is called from copy_process, so no lock is 866 * needed. 867 */ 868 int audit_alloc(struct task_struct *tsk) 869 { 870 struct audit_context *context; 871 enum audit_state state; 872 char *key = NULL; 873 874 if (likely(!audit_ever_enabled)) 875 return 0; /* Return if not auditing. */ 876 877 state = audit_filter_task(tsk, &key); 878 if (likely(state == AUDIT_DISABLED)) 879 return 0; 880 881 if (!(context = audit_alloc_context(state))) { 882 kfree(key); 883 audit_log_lost("out of memory in audit_alloc"); 884 return -ENOMEM; 885 } 886 context->filterkey = key; 887 888 tsk->audit_context = context; 889 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 890 return 0; 891 } 892 893 static inline void audit_free_context(struct audit_context *context) 894 { 895 struct audit_context *previous; 896 int count = 0; 897 898 do { 899 previous = context->previous; 900 if (previous || (count && count < 10)) { 901 ++count; 902 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 903 " freeing multiple contexts (%d)\n", 904 context->serial, context->major, 905 context->name_count, count); 906 } 907 audit_free_names(context); 908 unroll_tree_refs(context, NULL, 0); 909 free_tree_refs(context); 910 audit_free_aux(context); 911 kfree(context->filterkey); 912 kfree(context->sockaddr); 913 kfree(context); 914 context = previous; 915 } while (context); 916 if (count >= 10) 917 printk(KERN_ERR "audit: freed %d contexts\n", count); 918 } 919 920 void audit_log_task_context(struct audit_buffer *ab) 921 { 922 char *ctx = NULL; 923 unsigned len; 924 int error; 925 u32 sid; 926 927 security_task_getsecid(current, &sid); 928 if (!sid) 929 return; 930 931 error = security_secid_to_secctx(sid, &ctx, &len); 932 if (error) { 933 if (error != -EINVAL) 934 goto error_path; 935 return; 936 } 937 938 audit_log_format(ab, " subj=%s", ctx); 939 security_release_secctx(ctx, len); 940 return; 941 942 error_path: 943 audit_panic("error in audit_log_task_context"); 944 return; 945 } 946 947 EXPORT_SYMBOL(audit_log_task_context); 948 949 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 950 { 951 char name[sizeof(tsk->comm)]; 952 struct mm_struct *mm = tsk->mm; 953 struct vm_area_struct *vma; 954 955 /* tsk == current */ 956 957 get_task_comm(name, tsk); 958 audit_log_format(ab, " comm="); 959 audit_log_untrustedstring(ab, name); 960 961 if (mm) { 962 down_read(&mm->mmap_sem); 963 vma = mm->mmap; 964 while (vma) { 965 if ((vma->vm_flags & VM_EXECUTABLE) && 966 vma->vm_file) { 967 audit_log_d_path(ab, "exe=", 968 &vma->vm_file->f_path); 969 break; 970 } 971 vma = vma->vm_next; 972 } 973 up_read(&mm->mmap_sem); 974 } 975 audit_log_task_context(ab); 976 } 977 978 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 979 uid_t auid, uid_t uid, unsigned int sessionid, 980 u32 sid, char *comm) 981 { 982 struct audit_buffer *ab; 983 char *ctx = NULL; 984 u32 len; 985 int rc = 0; 986 987 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 988 if (!ab) 989 return rc; 990 991 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, 992 uid, sessionid); 993 if (security_secid_to_secctx(sid, &ctx, &len)) { 994 audit_log_format(ab, " obj=(none)"); 995 rc = 1; 996 } else { 997 audit_log_format(ab, " obj=%s", ctx); 998 security_release_secctx(ctx, len); 999 } 1000 audit_log_format(ab, " ocomm="); 1001 audit_log_untrustedstring(ab, comm); 1002 audit_log_end(ab); 1003 1004 return rc; 1005 } 1006 1007 /* 1008 * to_send and len_sent accounting are very loose estimates. We aren't 1009 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1010 * within about 500 bytes (next page boundry) 1011 * 1012 * why snprintf? an int is up to 12 digits long. if we just assumed when 1013 * logging that a[%d]= was going to be 16 characters long we would be wasting 1014 * space in every audit message. In one 7500 byte message we can log up to 1015 * about 1000 min size arguments. That comes down to about 50% waste of space 1016 * if we didn't do the snprintf to find out how long arg_num_len was. 1017 */ 1018 static int audit_log_single_execve_arg(struct audit_context *context, 1019 struct audit_buffer **ab, 1020 int arg_num, 1021 size_t *len_sent, 1022 const char __user *p, 1023 char *buf) 1024 { 1025 char arg_num_len_buf[12]; 1026 const char __user *tmp_p = p; 1027 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1028 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1029 size_t len, len_left, to_send; 1030 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1031 unsigned int i, has_cntl = 0, too_long = 0; 1032 int ret; 1033 1034 /* strnlen_user includes the null we don't want to send */ 1035 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1036 1037 /* 1038 * We just created this mm, if we can't find the strings 1039 * we just copied into it something is _very_ wrong. Similar 1040 * for strings that are too long, we should not have created 1041 * any. 1042 */ 1043 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1044 WARN_ON(1); 1045 send_sig(SIGKILL, current, 0); 1046 return -1; 1047 } 1048 1049 /* walk the whole argument looking for non-ascii chars */ 1050 do { 1051 if (len_left > MAX_EXECVE_AUDIT_LEN) 1052 to_send = MAX_EXECVE_AUDIT_LEN; 1053 else 1054 to_send = len_left; 1055 ret = copy_from_user(buf, tmp_p, to_send); 1056 /* 1057 * There is no reason for this copy to be short. We just 1058 * copied them here, and the mm hasn't been exposed to user- 1059 * space yet. 1060 */ 1061 if (ret) { 1062 WARN_ON(1); 1063 send_sig(SIGKILL, current, 0); 1064 return -1; 1065 } 1066 buf[to_send] = '\0'; 1067 has_cntl = audit_string_contains_control(buf, to_send); 1068 if (has_cntl) { 1069 /* 1070 * hex messages get logged as 2 bytes, so we can only 1071 * send half as much in each message 1072 */ 1073 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1074 break; 1075 } 1076 len_left -= to_send; 1077 tmp_p += to_send; 1078 } while (len_left > 0); 1079 1080 len_left = len; 1081 1082 if (len > max_execve_audit_len) 1083 too_long = 1; 1084 1085 /* rewalk the argument actually logging the message */ 1086 for (i = 0; len_left > 0; i++) { 1087 int room_left; 1088 1089 if (len_left > max_execve_audit_len) 1090 to_send = max_execve_audit_len; 1091 else 1092 to_send = len_left; 1093 1094 /* do we have space left to send this argument in this ab? */ 1095 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1096 if (has_cntl) 1097 room_left -= (to_send * 2); 1098 else 1099 room_left -= to_send; 1100 if (room_left < 0) { 1101 *len_sent = 0; 1102 audit_log_end(*ab); 1103 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1104 if (!*ab) 1105 return 0; 1106 } 1107 1108 /* 1109 * first record needs to say how long the original string was 1110 * so we can be sure nothing was lost. 1111 */ 1112 if ((i == 0) && (too_long)) 1113 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1114 has_cntl ? 2*len : len); 1115 1116 /* 1117 * normally arguments are small enough to fit and we already 1118 * filled buf above when we checked for control characters 1119 * so don't bother with another copy_from_user 1120 */ 1121 if (len >= max_execve_audit_len) 1122 ret = copy_from_user(buf, p, to_send); 1123 else 1124 ret = 0; 1125 if (ret) { 1126 WARN_ON(1); 1127 send_sig(SIGKILL, current, 0); 1128 return -1; 1129 } 1130 buf[to_send] = '\0'; 1131 1132 /* actually log it */ 1133 audit_log_format(*ab, " a%d", arg_num); 1134 if (too_long) 1135 audit_log_format(*ab, "[%d]", i); 1136 audit_log_format(*ab, "="); 1137 if (has_cntl) 1138 audit_log_n_hex(*ab, buf, to_send); 1139 else 1140 audit_log_string(*ab, buf); 1141 1142 p += to_send; 1143 len_left -= to_send; 1144 *len_sent += arg_num_len; 1145 if (has_cntl) 1146 *len_sent += to_send * 2; 1147 else 1148 *len_sent += to_send; 1149 } 1150 /* include the null we didn't log */ 1151 return len + 1; 1152 } 1153 1154 static void audit_log_execve_info(struct audit_context *context, 1155 struct audit_buffer **ab, 1156 struct audit_aux_data_execve *axi) 1157 { 1158 int i; 1159 size_t len, len_sent = 0; 1160 const char __user *p; 1161 char *buf; 1162 1163 if (axi->mm != current->mm) 1164 return; /* execve failed, no additional info */ 1165 1166 p = (const char __user *)axi->mm->arg_start; 1167 1168 audit_log_format(*ab, "argc=%d", axi->argc); 1169 1170 /* 1171 * we need some kernel buffer to hold the userspace args. Just 1172 * allocate one big one rather than allocating one of the right size 1173 * for every single argument inside audit_log_single_execve_arg() 1174 * should be <8k allocation so should be pretty safe. 1175 */ 1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1177 if (!buf) { 1178 audit_panic("out of memory for argv string\n"); 1179 return; 1180 } 1181 1182 for (i = 0; i < axi->argc; i++) { 1183 len = audit_log_single_execve_arg(context, ab, i, 1184 &len_sent, p, buf); 1185 if (len <= 0) 1186 break; 1187 p += len; 1188 } 1189 kfree(buf); 1190 } 1191 1192 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1193 { 1194 int i; 1195 1196 audit_log_format(ab, " %s=", prefix); 1197 CAP_FOR_EACH_U32(i) { 1198 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1199 } 1200 } 1201 1202 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1203 { 1204 kernel_cap_t *perm = &name->fcap.permitted; 1205 kernel_cap_t *inh = &name->fcap.inheritable; 1206 int log = 0; 1207 1208 if (!cap_isclear(*perm)) { 1209 audit_log_cap(ab, "cap_fp", perm); 1210 log = 1; 1211 } 1212 if (!cap_isclear(*inh)) { 1213 audit_log_cap(ab, "cap_fi", inh); 1214 log = 1; 1215 } 1216 1217 if (log) 1218 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); 1219 } 1220 1221 static void show_special(struct audit_context *context, int *call_panic) 1222 { 1223 struct audit_buffer *ab; 1224 int i; 1225 1226 ab = audit_log_start(context, GFP_KERNEL, context->type); 1227 if (!ab) 1228 return; 1229 1230 switch (context->type) { 1231 case AUDIT_SOCKETCALL: { 1232 int nargs = context->socketcall.nargs; 1233 audit_log_format(ab, "nargs=%d", nargs); 1234 for (i = 0; i < nargs; i++) 1235 audit_log_format(ab, " a%d=%lx", i, 1236 context->socketcall.args[i]); 1237 break; } 1238 case AUDIT_IPC: { 1239 u32 osid = context->ipc.osid; 1240 1241 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o", 1242 context->ipc.uid, context->ipc.gid, context->ipc.mode); 1243 if (osid) { 1244 char *ctx = NULL; 1245 u32 len; 1246 if (security_secid_to_secctx(osid, &ctx, &len)) { 1247 audit_log_format(ab, " osid=%u", osid); 1248 *call_panic = 1; 1249 } else { 1250 audit_log_format(ab, " obj=%s", ctx); 1251 security_release_secctx(ctx, len); 1252 } 1253 } 1254 if (context->ipc.has_perm) { 1255 audit_log_end(ab); 1256 ab = audit_log_start(context, GFP_KERNEL, 1257 AUDIT_IPC_SET_PERM); 1258 audit_log_format(ab, 1259 "qbytes=%lx ouid=%u ogid=%u mode=%#o", 1260 context->ipc.qbytes, 1261 context->ipc.perm_uid, 1262 context->ipc.perm_gid, 1263 context->ipc.perm_mode); 1264 if (!ab) 1265 return; 1266 } 1267 break; } 1268 case AUDIT_MQ_OPEN: { 1269 audit_log_format(ab, 1270 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld " 1271 "mq_msgsize=%ld mq_curmsgs=%ld", 1272 context->mq_open.oflag, context->mq_open.mode, 1273 context->mq_open.attr.mq_flags, 1274 context->mq_open.attr.mq_maxmsg, 1275 context->mq_open.attr.mq_msgsize, 1276 context->mq_open.attr.mq_curmsgs); 1277 break; } 1278 case AUDIT_MQ_SENDRECV: { 1279 audit_log_format(ab, 1280 "mqdes=%d msg_len=%zd msg_prio=%u " 1281 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1282 context->mq_sendrecv.mqdes, 1283 context->mq_sendrecv.msg_len, 1284 context->mq_sendrecv.msg_prio, 1285 context->mq_sendrecv.abs_timeout.tv_sec, 1286 context->mq_sendrecv.abs_timeout.tv_nsec); 1287 break; } 1288 case AUDIT_MQ_NOTIFY: { 1289 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1290 context->mq_notify.mqdes, 1291 context->mq_notify.sigev_signo); 1292 break; } 1293 case AUDIT_MQ_GETSETATTR: { 1294 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1295 audit_log_format(ab, 1296 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1297 "mq_curmsgs=%ld ", 1298 context->mq_getsetattr.mqdes, 1299 attr->mq_flags, attr->mq_maxmsg, 1300 attr->mq_msgsize, attr->mq_curmsgs); 1301 break; } 1302 case AUDIT_CAPSET: { 1303 audit_log_format(ab, "pid=%d", context->capset.pid); 1304 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1305 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1306 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1307 break; } 1308 } 1309 audit_log_end(ab); 1310 } 1311 1312 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1313 { 1314 const struct cred *cred; 1315 int i, call_panic = 0; 1316 struct audit_buffer *ab; 1317 struct audit_aux_data *aux; 1318 const char *tty; 1319 1320 /* tsk == current */ 1321 context->pid = tsk->pid; 1322 if (!context->ppid) 1323 context->ppid = sys_getppid(); 1324 cred = current_cred(); 1325 context->uid = cred->uid; 1326 context->gid = cred->gid; 1327 context->euid = cred->euid; 1328 context->suid = cred->suid; 1329 context->fsuid = cred->fsuid; 1330 context->egid = cred->egid; 1331 context->sgid = cred->sgid; 1332 context->fsgid = cred->fsgid; 1333 context->personality = tsk->personality; 1334 1335 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1336 if (!ab) 1337 return; /* audit_panic has been called */ 1338 audit_log_format(ab, "arch=%x syscall=%d", 1339 context->arch, context->major); 1340 if (context->personality != PER_LINUX) 1341 audit_log_format(ab, " per=%lx", context->personality); 1342 if (context->return_valid) 1343 audit_log_format(ab, " success=%s exit=%ld", 1344 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1345 context->return_code); 1346 1347 spin_lock_irq(&tsk->sighand->siglock); 1348 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1349 tty = tsk->signal->tty->name; 1350 else 1351 tty = "(none)"; 1352 spin_unlock_irq(&tsk->sighand->siglock); 1353 1354 audit_log_format(ab, 1355 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 1356 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1357 " euid=%u suid=%u fsuid=%u" 1358 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1359 context->argv[0], 1360 context->argv[1], 1361 context->argv[2], 1362 context->argv[3], 1363 context->name_count, 1364 context->ppid, 1365 context->pid, 1366 tsk->loginuid, 1367 context->uid, 1368 context->gid, 1369 context->euid, context->suid, context->fsuid, 1370 context->egid, context->sgid, context->fsgid, tty, 1371 tsk->sessionid); 1372 1373 1374 audit_log_task_info(ab, tsk); 1375 audit_log_key(ab, context->filterkey); 1376 audit_log_end(ab); 1377 1378 for (aux = context->aux; aux; aux = aux->next) { 1379 1380 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1381 if (!ab) 1382 continue; /* audit_panic has been called */ 1383 1384 switch (aux->type) { 1385 1386 case AUDIT_EXECVE: { 1387 struct audit_aux_data_execve *axi = (void *)aux; 1388 audit_log_execve_info(context, &ab, axi); 1389 break; } 1390 1391 case AUDIT_BPRM_FCAPS: { 1392 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1393 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1394 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1395 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1396 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1397 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1398 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1399 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1400 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1401 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1402 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1403 break; } 1404 1405 } 1406 audit_log_end(ab); 1407 } 1408 1409 if (context->type) 1410 show_special(context, &call_panic); 1411 1412 if (context->fds[0] >= 0) { 1413 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1414 if (ab) { 1415 audit_log_format(ab, "fd0=%d fd1=%d", 1416 context->fds[0], context->fds[1]); 1417 audit_log_end(ab); 1418 } 1419 } 1420 1421 if (context->sockaddr_len) { 1422 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1423 if (ab) { 1424 audit_log_format(ab, "saddr="); 1425 audit_log_n_hex(ab, (void *)context->sockaddr, 1426 context->sockaddr_len); 1427 audit_log_end(ab); 1428 } 1429 } 1430 1431 for (aux = context->aux_pids; aux; aux = aux->next) { 1432 struct audit_aux_data_pids *axs = (void *)aux; 1433 1434 for (i = 0; i < axs->pid_count; i++) 1435 if (audit_log_pid_context(context, axs->target_pid[i], 1436 axs->target_auid[i], 1437 axs->target_uid[i], 1438 axs->target_sessionid[i], 1439 axs->target_sid[i], 1440 axs->target_comm[i])) 1441 call_panic = 1; 1442 } 1443 1444 if (context->target_pid && 1445 audit_log_pid_context(context, context->target_pid, 1446 context->target_auid, context->target_uid, 1447 context->target_sessionid, 1448 context->target_sid, context->target_comm)) 1449 call_panic = 1; 1450 1451 if (context->pwd.dentry && context->pwd.mnt) { 1452 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1453 if (ab) { 1454 audit_log_d_path(ab, "cwd=", &context->pwd); 1455 audit_log_end(ab); 1456 } 1457 } 1458 for (i = 0; i < context->name_count; i++) { 1459 struct audit_names *n = &context->names[i]; 1460 1461 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1462 if (!ab) 1463 continue; /* audit_panic has been called */ 1464 1465 audit_log_format(ab, "item=%d", i); 1466 1467 if (n->name) { 1468 switch(n->name_len) { 1469 case AUDIT_NAME_FULL: 1470 /* log the full path */ 1471 audit_log_format(ab, " name="); 1472 audit_log_untrustedstring(ab, n->name); 1473 break; 1474 case 0: 1475 /* name was specified as a relative path and the 1476 * directory component is the cwd */ 1477 audit_log_d_path(ab, "name=", &context->pwd); 1478 break; 1479 default: 1480 /* log the name's directory component */ 1481 audit_log_format(ab, " name="); 1482 audit_log_n_untrustedstring(ab, n->name, 1483 n->name_len); 1484 } 1485 } else 1486 audit_log_format(ab, " name=(null)"); 1487 1488 if (n->ino != (unsigned long)-1) { 1489 audit_log_format(ab, " inode=%lu" 1490 " dev=%02x:%02x mode=%#o" 1491 " ouid=%u ogid=%u rdev=%02x:%02x", 1492 n->ino, 1493 MAJOR(n->dev), 1494 MINOR(n->dev), 1495 n->mode, 1496 n->uid, 1497 n->gid, 1498 MAJOR(n->rdev), 1499 MINOR(n->rdev)); 1500 } 1501 if (n->osid != 0) { 1502 char *ctx = NULL; 1503 u32 len; 1504 if (security_secid_to_secctx( 1505 n->osid, &ctx, &len)) { 1506 audit_log_format(ab, " osid=%u", n->osid); 1507 call_panic = 2; 1508 } else { 1509 audit_log_format(ab, " obj=%s", ctx); 1510 security_release_secctx(ctx, len); 1511 } 1512 } 1513 1514 audit_log_fcaps(ab, n); 1515 1516 audit_log_end(ab); 1517 } 1518 1519 /* Send end of event record to help user space know we are finished */ 1520 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1521 if (ab) 1522 audit_log_end(ab); 1523 if (call_panic) 1524 audit_panic("error converting sid to string"); 1525 } 1526 1527 /** 1528 * audit_free - free a per-task audit context 1529 * @tsk: task whose audit context block to free 1530 * 1531 * Called from copy_process and do_exit 1532 */ 1533 void audit_free(struct task_struct *tsk) 1534 { 1535 struct audit_context *context; 1536 1537 context = audit_get_context(tsk, 0, 0); 1538 if (likely(!context)) 1539 return; 1540 1541 /* Check for system calls that do not go through the exit 1542 * function (e.g., exit_group), then free context block. 1543 * We use GFP_ATOMIC here because we might be doing this 1544 * in the context of the idle thread */ 1545 /* that can happen only if we are called from do_exit() */ 1546 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1547 audit_log_exit(context, tsk); 1548 if (!list_empty(&context->killed_trees)) 1549 audit_kill_trees(&context->killed_trees); 1550 1551 audit_free_context(context); 1552 } 1553 1554 /** 1555 * audit_syscall_entry - fill in an audit record at syscall entry 1556 * @arch: architecture type 1557 * @major: major syscall type (function) 1558 * @a1: additional syscall register 1 1559 * @a2: additional syscall register 2 1560 * @a3: additional syscall register 3 1561 * @a4: additional syscall register 4 1562 * 1563 * Fill in audit context at syscall entry. This only happens if the 1564 * audit context was created when the task was created and the state or 1565 * filters demand the audit context be built. If the state from the 1566 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1567 * then the record will be written at syscall exit time (otherwise, it 1568 * will only be written if another part of the kernel requests that it 1569 * be written). 1570 */ 1571 void audit_syscall_entry(int arch, int major, 1572 unsigned long a1, unsigned long a2, 1573 unsigned long a3, unsigned long a4) 1574 { 1575 struct task_struct *tsk = current; 1576 struct audit_context *context = tsk->audit_context; 1577 enum audit_state state; 1578 1579 if (unlikely(!context)) 1580 return; 1581 1582 /* 1583 * This happens only on certain architectures that make system 1584 * calls in kernel_thread via the entry.S interface, instead of 1585 * with direct calls. (If you are porting to a new 1586 * architecture, hitting this condition can indicate that you 1587 * got the _exit/_leave calls backward in entry.S.) 1588 * 1589 * i386 no 1590 * x86_64 no 1591 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1592 * 1593 * This also happens with vm86 emulation in a non-nested manner 1594 * (entries without exits), so this case must be caught. 1595 */ 1596 if (context->in_syscall) { 1597 struct audit_context *newctx; 1598 1599 #if AUDIT_DEBUG 1600 printk(KERN_ERR 1601 "audit(:%d) pid=%d in syscall=%d;" 1602 " entering syscall=%d\n", 1603 context->serial, tsk->pid, context->major, major); 1604 #endif 1605 newctx = audit_alloc_context(context->state); 1606 if (newctx) { 1607 newctx->previous = context; 1608 context = newctx; 1609 tsk->audit_context = newctx; 1610 } else { 1611 /* If we can't alloc a new context, the best we 1612 * can do is to leak memory (any pending putname 1613 * will be lost). The only other alternative is 1614 * to abandon auditing. */ 1615 audit_zero_context(context, context->state); 1616 } 1617 } 1618 BUG_ON(context->in_syscall || context->name_count); 1619 1620 if (!audit_enabled) 1621 return; 1622 1623 context->arch = arch; 1624 context->major = major; 1625 context->argv[0] = a1; 1626 context->argv[1] = a2; 1627 context->argv[2] = a3; 1628 context->argv[3] = a4; 1629 1630 state = context->state; 1631 context->dummy = !audit_n_rules; 1632 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1633 context->prio = 0; 1634 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1635 } 1636 if (likely(state == AUDIT_DISABLED)) 1637 return; 1638 1639 context->serial = 0; 1640 context->ctime = CURRENT_TIME; 1641 context->in_syscall = 1; 1642 context->current_state = state; 1643 context->ppid = 0; 1644 } 1645 1646 void audit_finish_fork(struct task_struct *child) 1647 { 1648 struct audit_context *ctx = current->audit_context; 1649 struct audit_context *p = child->audit_context; 1650 if (!p || !ctx) 1651 return; 1652 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT) 1653 return; 1654 p->arch = ctx->arch; 1655 p->major = ctx->major; 1656 memcpy(p->argv, ctx->argv, sizeof(ctx->argv)); 1657 p->ctime = ctx->ctime; 1658 p->dummy = ctx->dummy; 1659 p->in_syscall = ctx->in_syscall; 1660 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL); 1661 p->ppid = current->pid; 1662 p->prio = ctx->prio; 1663 p->current_state = ctx->current_state; 1664 } 1665 1666 /** 1667 * audit_syscall_exit - deallocate audit context after a system call 1668 * @valid: success/failure flag 1669 * @return_code: syscall return value 1670 * 1671 * Tear down after system call. If the audit context has been marked as 1672 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1673 * filtering, or because some other part of the kernel write an audit 1674 * message), then write out the syscall information. In call cases, 1675 * free the names stored from getname(). 1676 */ 1677 void audit_syscall_exit(int valid, long return_code) 1678 { 1679 struct task_struct *tsk = current; 1680 struct audit_context *context; 1681 1682 context = audit_get_context(tsk, valid, return_code); 1683 1684 if (likely(!context)) 1685 return; 1686 1687 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1688 audit_log_exit(context, tsk); 1689 1690 context->in_syscall = 0; 1691 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1692 1693 if (!list_empty(&context->killed_trees)) 1694 audit_kill_trees(&context->killed_trees); 1695 1696 if (context->previous) { 1697 struct audit_context *new_context = context->previous; 1698 context->previous = NULL; 1699 audit_free_context(context); 1700 tsk->audit_context = new_context; 1701 } else { 1702 audit_free_names(context); 1703 unroll_tree_refs(context, NULL, 0); 1704 audit_free_aux(context); 1705 context->aux = NULL; 1706 context->aux_pids = NULL; 1707 context->target_pid = 0; 1708 context->target_sid = 0; 1709 context->sockaddr_len = 0; 1710 context->type = 0; 1711 context->fds[0] = -1; 1712 if (context->state != AUDIT_RECORD_CONTEXT) { 1713 kfree(context->filterkey); 1714 context->filterkey = NULL; 1715 } 1716 tsk->audit_context = context; 1717 } 1718 } 1719 1720 static inline void handle_one(const struct inode *inode) 1721 { 1722 #ifdef CONFIG_AUDIT_TREE 1723 struct audit_context *context; 1724 struct audit_tree_refs *p; 1725 struct audit_chunk *chunk; 1726 int count; 1727 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1728 return; 1729 context = current->audit_context; 1730 p = context->trees; 1731 count = context->tree_count; 1732 rcu_read_lock(); 1733 chunk = audit_tree_lookup(inode); 1734 rcu_read_unlock(); 1735 if (!chunk) 1736 return; 1737 if (likely(put_tree_ref(context, chunk))) 1738 return; 1739 if (unlikely(!grow_tree_refs(context))) { 1740 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); 1741 audit_set_auditable(context); 1742 audit_put_chunk(chunk); 1743 unroll_tree_refs(context, p, count); 1744 return; 1745 } 1746 put_tree_ref(context, chunk); 1747 #endif 1748 } 1749 1750 static void handle_path(const struct dentry *dentry) 1751 { 1752 #ifdef CONFIG_AUDIT_TREE 1753 struct audit_context *context; 1754 struct audit_tree_refs *p; 1755 const struct dentry *d, *parent; 1756 struct audit_chunk *drop; 1757 unsigned long seq; 1758 int count; 1759 1760 context = current->audit_context; 1761 p = context->trees; 1762 count = context->tree_count; 1763 retry: 1764 drop = NULL; 1765 d = dentry; 1766 rcu_read_lock(); 1767 seq = read_seqbegin(&rename_lock); 1768 for(;;) { 1769 struct inode *inode = d->d_inode; 1770 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1771 struct audit_chunk *chunk; 1772 chunk = audit_tree_lookup(inode); 1773 if (chunk) { 1774 if (unlikely(!put_tree_ref(context, chunk))) { 1775 drop = chunk; 1776 break; 1777 } 1778 } 1779 } 1780 parent = d->d_parent; 1781 if (parent == d) 1782 break; 1783 d = parent; 1784 } 1785 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1786 rcu_read_unlock(); 1787 if (!drop) { 1788 /* just a race with rename */ 1789 unroll_tree_refs(context, p, count); 1790 goto retry; 1791 } 1792 audit_put_chunk(drop); 1793 if (grow_tree_refs(context)) { 1794 /* OK, got more space */ 1795 unroll_tree_refs(context, p, count); 1796 goto retry; 1797 } 1798 /* too bad */ 1799 printk(KERN_WARNING 1800 "out of memory, audit has lost a tree reference\n"); 1801 unroll_tree_refs(context, p, count); 1802 audit_set_auditable(context); 1803 return; 1804 } 1805 rcu_read_unlock(); 1806 #endif 1807 } 1808 1809 /** 1810 * audit_getname - add a name to the list 1811 * @name: name to add 1812 * 1813 * Add a name to the list of audit names for this context. 1814 * Called from fs/namei.c:getname(). 1815 */ 1816 void __audit_getname(const char *name) 1817 { 1818 struct audit_context *context = current->audit_context; 1819 1820 if (IS_ERR(name) || !name) 1821 return; 1822 1823 if (!context->in_syscall) { 1824 #if AUDIT_DEBUG == 2 1825 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 1826 __FILE__, __LINE__, context->serial, name); 1827 dump_stack(); 1828 #endif 1829 return; 1830 } 1831 BUG_ON(context->name_count >= AUDIT_NAMES); 1832 context->names[context->name_count].name = name; 1833 context->names[context->name_count].name_len = AUDIT_NAME_FULL; 1834 context->names[context->name_count].name_put = 1; 1835 context->names[context->name_count].ino = (unsigned long)-1; 1836 context->names[context->name_count].osid = 0; 1837 ++context->name_count; 1838 if (!context->pwd.dentry) 1839 get_fs_pwd(current->fs, &context->pwd); 1840 } 1841 1842 /* audit_putname - intercept a putname request 1843 * @name: name to intercept and delay for putname 1844 * 1845 * If we have stored the name from getname in the audit context, 1846 * then we delay the putname until syscall exit. 1847 * Called from include/linux/fs.h:putname(). 1848 */ 1849 void audit_putname(const char *name) 1850 { 1851 struct audit_context *context = current->audit_context; 1852 1853 BUG_ON(!context); 1854 if (!context->in_syscall) { 1855 #if AUDIT_DEBUG == 2 1856 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 1857 __FILE__, __LINE__, context->serial, name); 1858 if (context->name_count) { 1859 int i; 1860 for (i = 0; i < context->name_count; i++) 1861 printk(KERN_ERR "name[%d] = %p = %s\n", i, 1862 context->names[i].name, 1863 context->names[i].name ?: "(null)"); 1864 } 1865 #endif 1866 __putname(name); 1867 } 1868 #if AUDIT_DEBUG 1869 else { 1870 ++context->put_count; 1871 if (context->put_count > context->name_count) { 1872 printk(KERN_ERR "%s:%d(:%d): major=%d" 1873 " in_syscall=%d putname(%p) name_count=%d" 1874 " put_count=%d\n", 1875 __FILE__, __LINE__, 1876 context->serial, context->major, 1877 context->in_syscall, name, context->name_count, 1878 context->put_count); 1879 dump_stack(); 1880 } 1881 } 1882 #endif 1883 } 1884 1885 static int audit_inc_name_count(struct audit_context *context, 1886 const struct inode *inode) 1887 { 1888 if (context->name_count >= AUDIT_NAMES) { 1889 if (inode) 1890 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: " 1891 "dev=%02x:%02x, inode=%lu\n", 1892 MAJOR(inode->i_sb->s_dev), 1893 MINOR(inode->i_sb->s_dev), 1894 inode->i_ino); 1895 1896 else 1897 printk(KERN_DEBUG "name_count maxed, losing inode data\n"); 1898 return 1; 1899 } 1900 context->name_count++; 1901 #if AUDIT_DEBUG 1902 context->ino_count++; 1903 #endif 1904 return 0; 1905 } 1906 1907 1908 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) 1909 { 1910 struct cpu_vfs_cap_data caps; 1911 int rc; 1912 1913 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t)); 1914 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t)); 1915 name->fcap.fE = 0; 1916 name->fcap_ver = 0; 1917 1918 if (!dentry) 1919 return 0; 1920 1921 rc = get_vfs_caps_from_disk(dentry, &caps); 1922 if (rc) 1923 return rc; 1924 1925 name->fcap.permitted = caps.permitted; 1926 name->fcap.inheritable = caps.inheritable; 1927 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1928 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 1929 1930 return 0; 1931 } 1932 1933 1934 /* Copy inode data into an audit_names. */ 1935 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1936 const struct inode *inode) 1937 { 1938 name->ino = inode->i_ino; 1939 name->dev = inode->i_sb->s_dev; 1940 name->mode = inode->i_mode; 1941 name->uid = inode->i_uid; 1942 name->gid = inode->i_gid; 1943 name->rdev = inode->i_rdev; 1944 security_inode_getsecid(inode, &name->osid); 1945 audit_copy_fcaps(name, dentry); 1946 } 1947 1948 /** 1949 * audit_inode - store the inode and device from a lookup 1950 * @name: name being audited 1951 * @dentry: dentry being audited 1952 * 1953 * Called from fs/namei.c:path_lookup(). 1954 */ 1955 void __audit_inode(const char *name, const struct dentry *dentry) 1956 { 1957 int idx; 1958 struct audit_context *context = current->audit_context; 1959 const struct inode *inode = dentry->d_inode; 1960 1961 if (!context->in_syscall) 1962 return; 1963 if (context->name_count 1964 && context->names[context->name_count-1].name 1965 && context->names[context->name_count-1].name == name) 1966 idx = context->name_count - 1; 1967 else if (context->name_count > 1 1968 && context->names[context->name_count-2].name 1969 && context->names[context->name_count-2].name == name) 1970 idx = context->name_count - 2; 1971 else { 1972 /* FIXME: how much do we care about inodes that have no 1973 * associated name? */ 1974 if (audit_inc_name_count(context, inode)) 1975 return; 1976 idx = context->name_count - 1; 1977 context->names[idx].name = NULL; 1978 } 1979 handle_path(dentry); 1980 audit_copy_inode(&context->names[idx], dentry, inode); 1981 } 1982 1983 /** 1984 * audit_inode_child - collect inode info for created/removed objects 1985 * @dentry: dentry being audited 1986 * @parent: inode of dentry parent 1987 * 1988 * For syscalls that create or remove filesystem objects, audit_inode 1989 * can only collect information for the filesystem object's parent. 1990 * This call updates the audit context with the child's information. 1991 * Syscalls that create a new filesystem object must be hooked after 1992 * the object is created. Syscalls that remove a filesystem object 1993 * must be hooked prior, in order to capture the target inode during 1994 * unsuccessful attempts. 1995 */ 1996 void __audit_inode_child(const struct dentry *dentry, 1997 const struct inode *parent) 1998 { 1999 int idx; 2000 struct audit_context *context = current->audit_context; 2001 const char *found_parent = NULL, *found_child = NULL; 2002 const struct inode *inode = dentry->d_inode; 2003 const char *dname = dentry->d_name.name; 2004 int dirlen = 0; 2005 2006 if (!context->in_syscall) 2007 return; 2008 2009 if (inode) 2010 handle_one(inode); 2011 2012 /* parent is more likely, look for it first */ 2013 for (idx = 0; idx < context->name_count; idx++) { 2014 struct audit_names *n = &context->names[idx]; 2015 2016 if (!n->name) 2017 continue; 2018 2019 if (n->ino == parent->i_ino && 2020 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2021 n->name_len = dirlen; /* update parent data in place */ 2022 found_parent = n->name; 2023 goto add_names; 2024 } 2025 } 2026 2027 /* no matching parent, look for matching child */ 2028 for (idx = 0; idx < context->name_count; idx++) { 2029 struct audit_names *n = &context->names[idx]; 2030 2031 if (!n->name) 2032 continue; 2033 2034 /* strcmp() is the more likely scenario */ 2035 if (!strcmp(dname, n->name) || 2036 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2037 if (inode) 2038 audit_copy_inode(n, NULL, inode); 2039 else 2040 n->ino = (unsigned long)-1; 2041 found_child = n->name; 2042 goto add_names; 2043 } 2044 } 2045 2046 add_names: 2047 if (!found_parent) { 2048 if (audit_inc_name_count(context, parent)) 2049 return; 2050 idx = context->name_count - 1; 2051 context->names[idx].name = NULL; 2052 audit_copy_inode(&context->names[idx], NULL, parent); 2053 } 2054 2055 if (!found_child) { 2056 if (audit_inc_name_count(context, inode)) 2057 return; 2058 idx = context->name_count - 1; 2059 2060 /* Re-use the name belonging to the slot for a matching parent 2061 * directory. All names for this context are relinquished in 2062 * audit_free_names() */ 2063 if (found_parent) { 2064 context->names[idx].name = found_parent; 2065 context->names[idx].name_len = AUDIT_NAME_FULL; 2066 /* don't call __putname() */ 2067 context->names[idx].name_put = 0; 2068 } else { 2069 context->names[idx].name = NULL; 2070 } 2071 2072 if (inode) 2073 audit_copy_inode(&context->names[idx], NULL, inode); 2074 else 2075 context->names[idx].ino = (unsigned long)-1; 2076 } 2077 } 2078 EXPORT_SYMBOL_GPL(__audit_inode_child); 2079 2080 /** 2081 * auditsc_get_stamp - get local copies of audit_context values 2082 * @ctx: audit_context for the task 2083 * @t: timespec to store time recorded in the audit_context 2084 * @serial: serial value that is recorded in the audit_context 2085 * 2086 * Also sets the context as auditable. 2087 */ 2088 int auditsc_get_stamp(struct audit_context *ctx, 2089 struct timespec *t, unsigned int *serial) 2090 { 2091 if (!ctx->in_syscall) 2092 return 0; 2093 if (!ctx->serial) 2094 ctx->serial = audit_serial(); 2095 t->tv_sec = ctx->ctime.tv_sec; 2096 t->tv_nsec = ctx->ctime.tv_nsec; 2097 *serial = ctx->serial; 2098 if (!ctx->prio) { 2099 ctx->prio = 1; 2100 ctx->current_state = AUDIT_RECORD_CONTEXT; 2101 } 2102 return 1; 2103 } 2104 2105 /* global counter which is incremented every time something logs in */ 2106 static atomic_t session_id = ATOMIC_INIT(0); 2107 2108 /** 2109 * audit_set_loginuid - set a task's audit_context loginuid 2110 * @task: task whose audit context is being modified 2111 * @loginuid: loginuid value 2112 * 2113 * Returns 0. 2114 * 2115 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2116 */ 2117 int audit_set_loginuid(struct task_struct *task, uid_t loginuid) 2118 { 2119 unsigned int sessionid = atomic_inc_return(&session_id); 2120 struct audit_context *context = task->audit_context; 2121 2122 if (context && context->in_syscall) { 2123 struct audit_buffer *ab; 2124 2125 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2126 if (ab) { 2127 audit_log_format(ab, "login pid=%d uid=%u " 2128 "old auid=%u new auid=%u" 2129 " old ses=%u new ses=%u", 2130 task->pid, task_uid(task), 2131 task->loginuid, loginuid, 2132 task->sessionid, sessionid); 2133 audit_log_end(ab); 2134 } 2135 } 2136 task->sessionid = sessionid; 2137 task->loginuid = loginuid; 2138 return 0; 2139 } 2140 2141 /** 2142 * __audit_mq_open - record audit data for a POSIX MQ open 2143 * @oflag: open flag 2144 * @mode: mode bits 2145 * @attr: queue attributes 2146 * 2147 */ 2148 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr) 2149 { 2150 struct audit_context *context = current->audit_context; 2151 2152 if (attr) 2153 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2154 else 2155 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2156 2157 context->mq_open.oflag = oflag; 2158 context->mq_open.mode = mode; 2159 2160 context->type = AUDIT_MQ_OPEN; 2161 } 2162 2163 /** 2164 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2165 * @mqdes: MQ descriptor 2166 * @msg_len: Message length 2167 * @msg_prio: Message priority 2168 * @abs_timeout: Message timeout in absolute time 2169 * 2170 */ 2171 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2172 const struct timespec *abs_timeout) 2173 { 2174 struct audit_context *context = current->audit_context; 2175 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2176 2177 if (abs_timeout) 2178 memcpy(p, abs_timeout, sizeof(struct timespec)); 2179 else 2180 memset(p, 0, sizeof(struct timespec)); 2181 2182 context->mq_sendrecv.mqdes = mqdes; 2183 context->mq_sendrecv.msg_len = msg_len; 2184 context->mq_sendrecv.msg_prio = msg_prio; 2185 2186 context->type = AUDIT_MQ_SENDRECV; 2187 } 2188 2189 /** 2190 * __audit_mq_notify - record audit data for a POSIX MQ notify 2191 * @mqdes: MQ descriptor 2192 * @notification: Notification event 2193 * 2194 */ 2195 2196 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2197 { 2198 struct audit_context *context = current->audit_context; 2199 2200 if (notification) 2201 context->mq_notify.sigev_signo = notification->sigev_signo; 2202 else 2203 context->mq_notify.sigev_signo = 0; 2204 2205 context->mq_notify.mqdes = mqdes; 2206 context->type = AUDIT_MQ_NOTIFY; 2207 } 2208 2209 /** 2210 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2211 * @mqdes: MQ descriptor 2212 * @mqstat: MQ flags 2213 * 2214 */ 2215 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2216 { 2217 struct audit_context *context = current->audit_context; 2218 context->mq_getsetattr.mqdes = mqdes; 2219 context->mq_getsetattr.mqstat = *mqstat; 2220 context->type = AUDIT_MQ_GETSETATTR; 2221 } 2222 2223 /** 2224 * audit_ipc_obj - record audit data for ipc object 2225 * @ipcp: ipc permissions 2226 * 2227 */ 2228 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2229 { 2230 struct audit_context *context = current->audit_context; 2231 context->ipc.uid = ipcp->uid; 2232 context->ipc.gid = ipcp->gid; 2233 context->ipc.mode = ipcp->mode; 2234 context->ipc.has_perm = 0; 2235 security_ipc_getsecid(ipcp, &context->ipc.osid); 2236 context->type = AUDIT_IPC; 2237 } 2238 2239 /** 2240 * audit_ipc_set_perm - record audit data for new ipc permissions 2241 * @qbytes: msgq bytes 2242 * @uid: msgq user id 2243 * @gid: msgq group id 2244 * @mode: msgq mode (permissions) 2245 * 2246 * Called only after audit_ipc_obj(). 2247 */ 2248 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 2249 { 2250 struct audit_context *context = current->audit_context; 2251 2252 context->ipc.qbytes = qbytes; 2253 context->ipc.perm_uid = uid; 2254 context->ipc.perm_gid = gid; 2255 context->ipc.perm_mode = mode; 2256 context->ipc.has_perm = 1; 2257 } 2258 2259 int audit_bprm(struct linux_binprm *bprm) 2260 { 2261 struct audit_aux_data_execve *ax; 2262 struct audit_context *context = current->audit_context; 2263 2264 if (likely(!audit_enabled || !context || context->dummy)) 2265 return 0; 2266 2267 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2268 if (!ax) 2269 return -ENOMEM; 2270 2271 ax->argc = bprm->argc; 2272 ax->envc = bprm->envc; 2273 ax->mm = bprm->mm; 2274 ax->d.type = AUDIT_EXECVE; 2275 ax->d.next = context->aux; 2276 context->aux = (void *)ax; 2277 return 0; 2278 } 2279 2280 2281 /** 2282 * audit_socketcall - record audit data for sys_socketcall 2283 * @nargs: number of args 2284 * @args: args array 2285 * 2286 */ 2287 void audit_socketcall(int nargs, unsigned long *args) 2288 { 2289 struct audit_context *context = current->audit_context; 2290 2291 if (likely(!context || context->dummy)) 2292 return; 2293 2294 context->type = AUDIT_SOCKETCALL; 2295 context->socketcall.nargs = nargs; 2296 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2297 } 2298 2299 /** 2300 * __audit_fd_pair - record audit data for pipe and socketpair 2301 * @fd1: the first file descriptor 2302 * @fd2: the second file descriptor 2303 * 2304 */ 2305 void __audit_fd_pair(int fd1, int fd2) 2306 { 2307 struct audit_context *context = current->audit_context; 2308 context->fds[0] = fd1; 2309 context->fds[1] = fd2; 2310 } 2311 2312 /** 2313 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2314 * @len: data length in user space 2315 * @a: data address in kernel space 2316 * 2317 * Returns 0 for success or NULL context or < 0 on error. 2318 */ 2319 int audit_sockaddr(int len, void *a) 2320 { 2321 struct audit_context *context = current->audit_context; 2322 2323 if (likely(!context || context->dummy)) 2324 return 0; 2325 2326 if (!context->sockaddr) { 2327 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2328 if (!p) 2329 return -ENOMEM; 2330 context->sockaddr = p; 2331 } 2332 2333 context->sockaddr_len = len; 2334 memcpy(context->sockaddr, a, len); 2335 return 0; 2336 } 2337 2338 void __audit_ptrace(struct task_struct *t) 2339 { 2340 struct audit_context *context = current->audit_context; 2341 2342 context->target_pid = t->pid; 2343 context->target_auid = audit_get_loginuid(t); 2344 context->target_uid = task_uid(t); 2345 context->target_sessionid = audit_get_sessionid(t); 2346 security_task_getsecid(t, &context->target_sid); 2347 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2348 } 2349 2350 /** 2351 * audit_signal_info - record signal info for shutting down audit subsystem 2352 * @sig: signal value 2353 * @t: task being signaled 2354 * 2355 * If the audit subsystem is being terminated, record the task (pid) 2356 * and uid that is doing that. 2357 */ 2358 int __audit_signal_info(int sig, struct task_struct *t) 2359 { 2360 struct audit_aux_data_pids *axp; 2361 struct task_struct *tsk = current; 2362 struct audit_context *ctx = tsk->audit_context; 2363 uid_t uid = current_uid(), t_uid = task_uid(t); 2364 2365 if (audit_pid && t->tgid == audit_pid) { 2366 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2367 audit_sig_pid = tsk->pid; 2368 if (tsk->loginuid != -1) 2369 audit_sig_uid = tsk->loginuid; 2370 else 2371 audit_sig_uid = uid; 2372 security_task_getsecid(tsk, &audit_sig_sid); 2373 } 2374 if (!audit_signals || audit_dummy_context()) 2375 return 0; 2376 } 2377 2378 /* optimize the common case by putting first signal recipient directly 2379 * in audit_context */ 2380 if (!ctx->target_pid) { 2381 ctx->target_pid = t->tgid; 2382 ctx->target_auid = audit_get_loginuid(t); 2383 ctx->target_uid = t_uid; 2384 ctx->target_sessionid = audit_get_sessionid(t); 2385 security_task_getsecid(t, &ctx->target_sid); 2386 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2387 return 0; 2388 } 2389 2390 axp = (void *)ctx->aux_pids; 2391 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2392 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2393 if (!axp) 2394 return -ENOMEM; 2395 2396 axp->d.type = AUDIT_OBJ_PID; 2397 axp->d.next = ctx->aux_pids; 2398 ctx->aux_pids = (void *)axp; 2399 } 2400 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2401 2402 axp->target_pid[axp->pid_count] = t->tgid; 2403 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2404 axp->target_uid[axp->pid_count] = t_uid; 2405 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2406 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2407 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2408 axp->pid_count++; 2409 2410 return 0; 2411 } 2412 2413 /** 2414 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2415 * @bprm: pointer to the bprm being processed 2416 * @new: the proposed new credentials 2417 * @old: the old credentials 2418 * 2419 * Simply check if the proc already has the caps given by the file and if not 2420 * store the priv escalation info for later auditing at the end of the syscall 2421 * 2422 * -Eric 2423 */ 2424 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2425 const struct cred *new, const struct cred *old) 2426 { 2427 struct audit_aux_data_bprm_fcaps *ax; 2428 struct audit_context *context = current->audit_context; 2429 struct cpu_vfs_cap_data vcaps; 2430 struct dentry *dentry; 2431 2432 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2433 if (!ax) 2434 return -ENOMEM; 2435 2436 ax->d.type = AUDIT_BPRM_FCAPS; 2437 ax->d.next = context->aux; 2438 context->aux = (void *)ax; 2439 2440 dentry = dget(bprm->file->f_dentry); 2441 get_vfs_caps_from_disk(dentry, &vcaps); 2442 dput(dentry); 2443 2444 ax->fcap.permitted = vcaps.permitted; 2445 ax->fcap.inheritable = vcaps.inheritable; 2446 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2447 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2448 2449 ax->old_pcap.permitted = old->cap_permitted; 2450 ax->old_pcap.inheritable = old->cap_inheritable; 2451 ax->old_pcap.effective = old->cap_effective; 2452 2453 ax->new_pcap.permitted = new->cap_permitted; 2454 ax->new_pcap.inheritable = new->cap_inheritable; 2455 ax->new_pcap.effective = new->cap_effective; 2456 return 0; 2457 } 2458 2459 /** 2460 * __audit_log_capset - store information about the arguments to the capset syscall 2461 * @pid: target pid of the capset call 2462 * @new: the new credentials 2463 * @old: the old (current) credentials 2464 * 2465 * Record the aguments userspace sent to sys_capset for later printing by the 2466 * audit system if applicable 2467 */ 2468 void __audit_log_capset(pid_t pid, 2469 const struct cred *new, const struct cred *old) 2470 { 2471 struct audit_context *context = current->audit_context; 2472 context->capset.pid = pid; 2473 context->capset.cap.effective = new->cap_effective; 2474 context->capset.cap.inheritable = new->cap_effective; 2475 context->capset.cap.permitted = new->cap_permitted; 2476 context->type = AUDIT_CAPSET; 2477 } 2478 2479 /** 2480 * audit_core_dumps - record information about processes that end abnormally 2481 * @signr: signal value 2482 * 2483 * If a process ends with a core dump, something fishy is going on and we 2484 * should record the event for investigation. 2485 */ 2486 void audit_core_dumps(long signr) 2487 { 2488 struct audit_buffer *ab; 2489 u32 sid; 2490 uid_t auid = audit_get_loginuid(current), uid; 2491 gid_t gid; 2492 unsigned int sessionid = audit_get_sessionid(current); 2493 2494 if (!audit_enabled) 2495 return; 2496 2497 if (signr == SIGQUIT) /* don't care for those */ 2498 return; 2499 2500 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2501 current_uid_gid(&uid, &gid); 2502 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2503 auid, uid, gid, sessionid); 2504 security_task_getsecid(current, &sid); 2505 if (sid) { 2506 char *ctx = NULL; 2507 u32 len; 2508 2509 if (security_secid_to_secctx(sid, &ctx, &len)) 2510 audit_log_format(ab, " ssid=%u", sid); 2511 else { 2512 audit_log_format(ab, " subj=%s", ctx); 2513 security_release_secctx(ctx, len); 2514 } 2515 } 2516 audit_log_format(ab, " pid=%d comm=", current->pid); 2517 audit_log_untrustedstring(ab, current->comm); 2518 audit_log_format(ab, " sig=%ld", signr); 2519 audit_log_end(ab); 2520 } 2521 2522 struct list_head *audit_killed_trees(void) 2523 { 2524 struct audit_context *ctx = current->audit_context; 2525 if (likely(!ctx || !ctx->in_syscall)) 2526 return NULL; 2527 return &ctx->killed_trees; 2528 } 2529