1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/tty.h> 67 #include <linux/binfmts.h> 68 #include <linux/highmem.h> 69 #include <linux/syscalls.h> 70 #include <asm/syscall.h> 71 #include <linux/capability.h> 72 #include <linux/fs_struct.h> 73 #include <linux/compat.h> 74 #include <linux/ctype.h> 75 #include <linux/string.h> 76 #include <uapi/linux/limits.h> 77 78 #include "audit.h" 79 80 /* flags stating the success for a syscall */ 81 #define AUDITSC_INVALID 0 82 #define AUDITSC_SUCCESS 1 83 #define AUDITSC_FAILURE 2 84 85 /* no execve audit message should be longer than this (userspace limits) */ 86 #define MAX_EXECVE_AUDIT_LEN 7500 87 88 /* max length to print of cmdline/proctitle value during audit */ 89 #define MAX_PROCTITLE_AUDIT_LEN 128 90 91 /* number of audit rules */ 92 int audit_n_rules; 93 94 /* determines whether we collect data for signals sent */ 95 int audit_signals; 96 97 struct audit_aux_data { 98 struct audit_aux_data *next; 99 int type; 100 }; 101 102 #define AUDIT_AUX_IPCPERM 0 103 104 /* Number of target pids per aux struct. */ 105 #define AUDIT_AUX_PIDS 16 106 107 struct audit_aux_data_pids { 108 struct audit_aux_data d; 109 pid_t target_pid[AUDIT_AUX_PIDS]; 110 kuid_t target_auid[AUDIT_AUX_PIDS]; 111 kuid_t target_uid[AUDIT_AUX_PIDS]; 112 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 113 u32 target_sid[AUDIT_AUX_PIDS]; 114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 115 int pid_count; 116 }; 117 118 struct audit_aux_data_bprm_fcaps { 119 struct audit_aux_data d; 120 struct audit_cap_data fcap; 121 unsigned int fcap_ver; 122 struct audit_cap_data old_pcap; 123 struct audit_cap_data new_pcap; 124 }; 125 126 struct audit_tree_refs { 127 struct audit_tree_refs *next; 128 struct audit_chunk *c[31]; 129 }; 130 131 static int audit_match_perm(struct audit_context *ctx, int mask) 132 { 133 unsigned n; 134 if (unlikely(!ctx)) 135 return 0; 136 n = ctx->major; 137 138 switch (audit_classify_syscall(ctx->arch, n)) { 139 case 0: /* native */ 140 if ((mask & AUDIT_PERM_WRITE) && 141 audit_match_class(AUDIT_CLASS_WRITE, n)) 142 return 1; 143 if ((mask & AUDIT_PERM_READ) && 144 audit_match_class(AUDIT_CLASS_READ, n)) 145 return 1; 146 if ((mask & AUDIT_PERM_ATTR) && 147 audit_match_class(AUDIT_CLASS_CHATTR, n)) 148 return 1; 149 return 0; 150 case 1: /* 32bit on biarch */ 151 if ((mask & AUDIT_PERM_WRITE) && 152 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 153 return 1; 154 if ((mask & AUDIT_PERM_READ) && 155 audit_match_class(AUDIT_CLASS_READ_32, n)) 156 return 1; 157 if ((mask & AUDIT_PERM_ATTR) && 158 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 159 return 1; 160 return 0; 161 case 2: /* open */ 162 return mask & ACC_MODE(ctx->argv[1]); 163 case 3: /* openat */ 164 return mask & ACC_MODE(ctx->argv[2]); 165 case 4: /* socketcall */ 166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 167 case 5: /* execve */ 168 return mask & AUDIT_PERM_EXEC; 169 default: 170 return 0; 171 } 172 } 173 174 static int audit_match_filetype(struct audit_context *ctx, int val) 175 { 176 struct audit_names *n; 177 umode_t mode = (umode_t)val; 178 179 if (unlikely(!ctx)) 180 return 0; 181 182 list_for_each_entry(n, &ctx->names_list, list) { 183 if ((n->ino != -1) && 184 ((n->mode & S_IFMT) == mode)) 185 return 1; 186 } 187 188 return 0; 189 } 190 191 /* 192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 193 * ->first_trees points to its beginning, ->trees - to the current end of data. 194 * ->tree_count is the number of free entries in array pointed to by ->trees. 195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 197 * it's going to remain 1-element for almost any setup) until we free context itself. 198 * References in it _are_ dropped - at the same time we free/drop aux stuff. 199 */ 200 201 #ifdef CONFIG_AUDIT_TREE 202 static void audit_set_auditable(struct audit_context *ctx) 203 { 204 if (!ctx->prio) { 205 ctx->prio = 1; 206 ctx->current_state = AUDIT_RECORD_CONTEXT; 207 } 208 } 209 210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 211 { 212 struct audit_tree_refs *p = ctx->trees; 213 int left = ctx->tree_count; 214 if (likely(left)) { 215 p->c[--left] = chunk; 216 ctx->tree_count = left; 217 return 1; 218 } 219 if (!p) 220 return 0; 221 p = p->next; 222 if (p) { 223 p->c[30] = chunk; 224 ctx->trees = p; 225 ctx->tree_count = 30; 226 return 1; 227 } 228 return 0; 229 } 230 231 static int grow_tree_refs(struct audit_context *ctx) 232 { 233 struct audit_tree_refs *p = ctx->trees; 234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 235 if (!ctx->trees) { 236 ctx->trees = p; 237 return 0; 238 } 239 if (p) 240 p->next = ctx->trees; 241 else 242 ctx->first_trees = ctx->trees; 243 ctx->tree_count = 31; 244 return 1; 245 } 246 #endif 247 248 static void unroll_tree_refs(struct audit_context *ctx, 249 struct audit_tree_refs *p, int count) 250 { 251 #ifdef CONFIG_AUDIT_TREE 252 struct audit_tree_refs *q; 253 int n; 254 if (!p) { 255 /* we started with empty chain */ 256 p = ctx->first_trees; 257 count = 31; 258 /* if the very first allocation has failed, nothing to do */ 259 if (!p) 260 return; 261 } 262 n = count; 263 for (q = p; q != ctx->trees; q = q->next, n = 31) { 264 while (n--) { 265 audit_put_chunk(q->c[n]); 266 q->c[n] = NULL; 267 } 268 } 269 while (n-- > ctx->tree_count) { 270 audit_put_chunk(q->c[n]); 271 q->c[n] = NULL; 272 } 273 ctx->trees = p; 274 ctx->tree_count = count; 275 #endif 276 } 277 278 static void free_tree_refs(struct audit_context *ctx) 279 { 280 struct audit_tree_refs *p, *q; 281 for (p = ctx->first_trees; p; p = q) { 282 q = p->next; 283 kfree(p); 284 } 285 } 286 287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 288 { 289 #ifdef CONFIG_AUDIT_TREE 290 struct audit_tree_refs *p; 291 int n; 292 if (!tree) 293 return 0; 294 /* full ones */ 295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 296 for (n = 0; n < 31; n++) 297 if (audit_tree_match(p->c[n], tree)) 298 return 1; 299 } 300 /* partial */ 301 if (p) { 302 for (n = ctx->tree_count; n < 31; n++) 303 if (audit_tree_match(p->c[n], tree)) 304 return 1; 305 } 306 #endif 307 return 0; 308 } 309 310 static int audit_compare_uid(kuid_t uid, 311 struct audit_names *name, 312 struct audit_field *f, 313 struct audit_context *ctx) 314 { 315 struct audit_names *n; 316 int rc; 317 318 if (name) { 319 rc = audit_uid_comparator(uid, f->op, name->uid); 320 if (rc) 321 return rc; 322 } 323 324 if (ctx) { 325 list_for_each_entry(n, &ctx->names_list, list) { 326 rc = audit_uid_comparator(uid, f->op, n->uid); 327 if (rc) 328 return rc; 329 } 330 } 331 return 0; 332 } 333 334 static int audit_compare_gid(kgid_t gid, 335 struct audit_names *name, 336 struct audit_field *f, 337 struct audit_context *ctx) 338 { 339 struct audit_names *n; 340 int rc; 341 342 if (name) { 343 rc = audit_gid_comparator(gid, f->op, name->gid); 344 if (rc) 345 return rc; 346 } 347 348 if (ctx) { 349 list_for_each_entry(n, &ctx->names_list, list) { 350 rc = audit_gid_comparator(gid, f->op, n->gid); 351 if (rc) 352 return rc; 353 } 354 } 355 return 0; 356 } 357 358 static int audit_field_compare(struct task_struct *tsk, 359 const struct cred *cred, 360 struct audit_field *f, 361 struct audit_context *ctx, 362 struct audit_names *name) 363 { 364 switch (f->val) { 365 /* process to file object comparisons */ 366 case AUDIT_COMPARE_UID_TO_OBJ_UID: 367 return audit_compare_uid(cred->uid, name, f, ctx); 368 case AUDIT_COMPARE_GID_TO_OBJ_GID: 369 return audit_compare_gid(cred->gid, name, f, ctx); 370 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 371 return audit_compare_uid(cred->euid, name, f, ctx); 372 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 373 return audit_compare_gid(cred->egid, name, f, ctx); 374 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 375 return audit_compare_uid(tsk->loginuid, name, f, ctx); 376 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 377 return audit_compare_uid(cred->suid, name, f, ctx); 378 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 379 return audit_compare_gid(cred->sgid, name, f, ctx); 380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 381 return audit_compare_uid(cred->fsuid, name, f, ctx); 382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 383 return audit_compare_gid(cred->fsgid, name, f, ctx); 384 /* uid comparisons */ 385 case AUDIT_COMPARE_UID_TO_AUID: 386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 387 case AUDIT_COMPARE_UID_TO_EUID: 388 return audit_uid_comparator(cred->uid, f->op, cred->euid); 389 case AUDIT_COMPARE_UID_TO_SUID: 390 return audit_uid_comparator(cred->uid, f->op, cred->suid); 391 case AUDIT_COMPARE_UID_TO_FSUID: 392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 393 /* auid comparisons */ 394 case AUDIT_COMPARE_AUID_TO_EUID: 395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 396 case AUDIT_COMPARE_AUID_TO_SUID: 397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 398 case AUDIT_COMPARE_AUID_TO_FSUID: 399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 400 /* euid comparisons */ 401 case AUDIT_COMPARE_EUID_TO_SUID: 402 return audit_uid_comparator(cred->euid, f->op, cred->suid); 403 case AUDIT_COMPARE_EUID_TO_FSUID: 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 405 /* suid comparisons */ 406 case AUDIT_COMPARE_SUID_TO_FSUID: 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 408 /* gid comparisons */ 409 case AUDIT_COMPARE_GID_TO_EGID: 410 return audit_gid_comparator(cred->gid, f->op, cred->egid); 411 case AUDIT_COMPARE_GID_TO_SGID: 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 413 case AUDIT_COMPARE_GID_TO_FSGID: 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 415 /* egid comparisons */ 416 case AUDIT_COMPARE_EGID_TO_SGID: 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 418 case AUDIT_COMPARE_EGID_TO_FSGID: 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 420 /* sgid comparison */ 421 case AUDIT_COMPARE_SGID_TO_FSGID: 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 423 default: 424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 425 return 0; 426 } 427 return 0; 428 } 429 430 /* Determine if any context name data matches a rule's watch data */ 431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 432 * otherwise. 433 * 434 * If task_creation is true, this is an explicit indication that we are 435 * filtering a task rule at task creation time. This and tsk == current are 436 * the only situations where tsk->cred may be accessed without an rcu read lock. 437 */ 438 static int audit_filter_rules(struct task_struct *tsk, 439 struct audit_krule *rule, 440 struct audit_context *ctx, 441 struct audit_names *name, 442 enum audit_state *state, 443 bool task_creation) 444 { 445 const struct cred *cred; 446 int i, need_sid = 1; 447 u32 sid; 448 449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 450 451 for (i = 0; i < rule->field_count; i++) { 452 struct audit_field *f = &rule->fields[i]; 453 struct audit_names *n; 454 int result = 0; 455 pid_t pid; 456 457 switch (f->type) { 458 case AUDIT_PID: 459 pid = task_pid_nr(tsk); 460 result = audit_comparator(pid, f->op, f->val); 461 break; 462 case AUDIT_PPID: 463 if (ctx) { 464 if (!ctx->ppid) 465 ctx->ppid = task_ppid_nr(tsk); 466 result = audit_comparator(ctx->ppid, f->op, f->val); 467 } 468 break; 469 case AUDIT_UID: 470 result = audit_uid_comparator(cred->uid, f->op, f->uid); 471 break; 472 case AUDIT_EUID: 473 result = audit_uid_comparator(cred->euid, f->op, f->uid); 474 break; 475 case AUDIT_SUID: 476 result = audit_uid_comparator(cred->suid, f->op, f->uid); 477 break; 478 case AUDIT_FSUID: 479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 480 break; 481 case AUDIT_GID: 482 result = audit_gid_comparator(cred->gid, f->op, f->gid); 483 if (f->op == Audit_equal) { 484 if (!result) 485 result = in_group_p(f->gid); 486 } else if (f->op == Audit_not_equal) { 487 if (result) 488 result = !in_group_p(f->gid); 489 } 490 break; 491 case AUDIT_EGID: 492 result = audit_gid_comparator(cred->egid, f->op, f->gid); 493 if (f->op == Audit_equal) { 494 if (!result) 495 result = in_egroup_p(f->gid); 496 } else if (f->op == Audit_not_equal) { 497 if (result) 498 result = !in_egroup_p(f->gid); 499 } 500 break; 501 case AUDIT_SGID: 502 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 503 break; 504 case AUDIT_FSGID: 505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 506 break; 507 case AUDIT_PERS: 508 result = audit_comparator(tsk->personality, f->op, f->val); 509 break; 510 case AUDIT_ARCH: 511 if (ctx) 512 result = audit_comparator(ctx->arch, f->op, f->val); 513 break; 514 515 case AUDIT_EXIT: 516 if (ctx && ctx->return_valid) 517 result = audit_comparator(ctx->return_code, f->op, f->val); 518 break; 519 case AUDIT_SUCCESS: 520 if (ctx && ctx->return_valid) { 521 if (f->val) 522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 523 else 524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 525 } 526 break; 527 case AUDIT_DEVMAJOR: 528 if (name) { 529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 530 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 531 ++result; 532 } else if (ctx) { 533 list_for_each_entry(n, &ctx->names_list, list) { 534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 536 ++result; 537 break; 538 } 539 } 540 } 541 break; 542 case AUDIT_DEVMINOR: 543 if (name) { 544 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 545 audit_comparator(MINOR(name->rdev), f->op, f->val)) 546 ++result; 547 } else if (ctx) { 548 list_for_each_entry(n, &ctx->names_list, list) { 549 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 550 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 551 ++result; 552 break; 553 } 554 } 555 } 556 break; 557 case AUDIT_INODE: 558 if (name) 559 result = audit_comparator(name->ino, f->op, f->val); 560 else if (ctx) { 561 list_for_each_entry(n, &ctx->names_list, list) { 562 if (audit_comparator(n->ino, f->op, f->val)) { 563 ++result; 564 break; 565 } 566 } 567 } 568 break; 569 case AUDIT_OBJ_UID: 570 if (name) { 571 result = audit_uid_comparator(name->uid, f->op, f->uid); 572 } else if (ctx) { 573 list_for_each_entry(n, &ctx->names_list, list) { 574 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 575 ++result; 576 break; 577 } 578 } 579 } 580 break; 581 case AUDIT_OBJ_GID: 582 if (name) { 583 result = audit_gid_comparator(name->gid, f->op, f->gid); 584 } else if (ctx) { 585 list_for_each_entry(n, &ctx->names_list, list) { 586 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 587 ++result; 588 break; 589 } 590 } 591 } 592 break; 593 case AUDIT_WATCH: 594 if (name) 595 result = audit_watch_compare(rule->watch, name->ino, name->dev); 596 break; 597 case AUDIT_DIR: 598 if (ctx) 599 result = match_tree_refs(ctx, rule->tree); 600 break; 601 case AUDIT_LOGINUID: 602 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 603 break; 604 case AUDIT_LOGINUID_SET: 605 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 606 break; 607 case AUDIT_SUBJ_USER: 608 case AUDIT_SUBJ_ROLE: 609 case AUDIT_SUBJ_TYPE: 610 case AUDIT_SUBJ_SEN: 611 case AUDIT_SUBJ_CLR: 612 /* NOTE: this may return negative values indicating 613 a temporary error. We simply treat this as a 614 match for now to avoid losing information that 615 may be wanted. An error message will also be 616 logged upon error */ 617 if (f->lsm_rule) { 618 if (need_sid) { 619 security_task_getsecid(tsk, &sid); 620 need_sid = 0; 621 } 622 result = security_audit_rule_match(sid, f->type, 623 f->op, 624 f->lsm_rule, 625 ctx); 626 } 627 break; 628 case AUDIT_OBJ_USER: 629 case AUDIT_OBJ_ROLE: 630 case AUDIT_OBJ_TYPE: 631 case AUDIT_OBJ_LEV_LOW: 632 case AUDIT_OBJ_LEV_HIGH: 633 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 634 also applies here */ 635 if (f->lsm_rule) { 636 /* Find files that match */ 637 if (name) { 638 result = security_audit_rule_match( 639 name->osid, f->type, f->op, 640 f->lsm_rule, ctx); 641 } else if (ctx) { 642 list_for_each_entry(n, &ctx->names_list, list) { 643 if (security_audit_rule_match(n->osid, f->type, 644 f->op, f->lsm_rule, 645 ctx)) { 646 ++result; 647 break; 648 } 649 } 650 } 651 /* Find ipc objects that match */ 652 if (!ctx || ctx->type != AUDIT_IPC) 653 break; 654 if (security_audit_rule_match(ctx->ipc.osid, 655 f->type, f->op, 656 f->lsm_rule, ctx)) 657 ++result; 658 } 659 break; 660 case AUDIT_ARG0: 661 case AUDIT_ARG1: 662 case AUDIT_ARG2: 663 case AUDIT_ARG3: 664 if (ctx) 665 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 666 break; 667 case AUDIT_FILTERKEY: 668 /* ignore this field for filtering */ 669 result = 1; 670 break; 671 case AUDIT_PERM: 672 result = audit_match_perm(ctx, f->val); 673 break; 674 case AUDIT_FILETYPE: 675 result = audit_match_filetype(ctx, f->val); 676 break; 677 case AUDIT_FIELD_COMPARE: 678 result = audit_field_compare(tsk, cred, f, ctx, name); 679 break; 680 } 681 if (!result) 682 return 0; 683 } 684 685 if (ctx) { 686 if (rule->prio <= ctx->prio) 687 return 0; 688 if (rule->filterkey) { 689 kfree(ctx->filterkey); 690 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 691 } 692 ctx->prio = rule->prio; 693 } 694 switch (rule->action) { 695 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 696 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 697 } 698 return 1; 699 } 700 701 /* At process creation time, we can determine if system-call auditing is 702 * completely disabled for this task. Since we only have the task 703 * structure at this point, we can only check uid and gid. 704 */ 705 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 706 { 707 struct audit_entry *e; 708 enum audit_state state; 709 710 rcu_read_lock(); 711 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 712 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 713 &state, true)) { 714 if (state == AUDIT_RECORD_CONTEXT) 715 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 716 rcu_read_unlock(); 717 return state; 718 } 719 } 720 rcu_read_unlock(); 721 return AUDIT_BUILD_CONTEXT; 722 } 723 724 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 725 { 726 int word, bit; 727 728 if (val > 0xffffffff) 729 return false; 730 731 word = AUDIT_WORD(val); 732 if (word >= AUDIT_BITMASK_SIZE) 733 return false; 734 735 bit = AUDIT_BIT(val); 736 737 return rule->mask[word] & bit; 738 } 739 740 /* At syscall entry and exit time, this filter is called if the 741 * audit_state is not low enough that auditing cannot take place, but is 742 * also not high enough that we already know we have to write an audit 743 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 744 */ 745 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 746 struct audit_context *ctx, 747 struct list_head *list) 748 { 749 struct audit_entry *e; 750 enum audit_state state; 751 752 if (audit_pid && tsk->tgid == audit_pid) 753 return AUDIT_DISABLED; 754 755 rcu_read_lock(); 756 if (!list_empty(list)) { 757 list_for_each_entry_rcu(e, list, list) { 758 if (audit_in_mask(&e->rule, ctx->major) && 759 audit_filter_rules(tsk, &e->rule, ctx, NULL, 760 &state, false)) { 761 rcu_read_unlock(); 762 ctx->current_state = state; 763 return state; 764 } 765 } 766 } 767 rcu_read_unlock(); 768 return AUDIT_BUILD_CONTEXT; 769 } 770 771 /* 772 * Given an audit_name check the inode hash table to see if they match. 773 * Called holding the rcu read lock to protect the use of audit_inode_hash 774 */ 775 static int audit_filter_inode_name(struct task_struct *tsk, 776 struct audit_names *n, 777 struct audit_context *ctx) { 778 int h = audit_hash_ino((u32)n->ino); 779 struct list_head *list = &audit_inode_hash[h]; 780 struct audit_entry *e; 781 enum audit_state state; 782 783 if (list_empty(list)) 784 return 0; 785 786 list_for_each_entry_rcu(e, list, list) { 787 if (audit_in_mask(&e->rule, ctx->major) && 788 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 789 ctx->current_state = state; 790 return 1; 791 } 792 } 793 794 return 0; 795 } 796 797 /* At syscall exit time, this filter is called if any audit_names have been 798 * collected during syscall processing. We only check rules in sublists at hash 799 * buckets applicable to the inode numbers in audit_names. 800 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 801 */ 802 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 803 { 804 struct audit_names *n; 805 806 if (audit_pid && tsk->tgid == audit_pid) 807 return; 808 809 rcu_read_lock(); 810 811 list_for_each_entry(n, &ctx->names_list, list) { 812 if (audit_filter_inode_name(tsk, n, ctx)) 813 break; 814 } 815 rcu_read_unlock(); 816 } 817 818 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 819 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 820 int return_valid, 821 long return_code) 822 { 823 struct audit_context *context = tsk->audit_context; 824 825 if (!context) 826 return NULL; 827 context->return_valid = return_valid; 828 829 /* 830 * we need to fix up the return code in the audit logs if the actual 831 * return codes are later going to be fixed up by the arch specific 832 * signal handlers 833 * 834 * This is actually a test for: 835 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 836 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 837 * 838 * but is faster than a bunch of || 839 */ 840 if (unlikely(return_code <= -ERESTARTSYS) && 841 (return_code >= -ERESTART_RESTARTBLOCK) && 842 (return_code != -ENOIOCTLCMD)) 843 context->return_code = -EINTR; 844 else 845 context->return_code = return_code; 846 847 if (context->in_syscall && !context->dummy) { 848 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 849 audit_filter_inodes(tsk, context); 850 } 851 852 tsk->audit_context = NULL; 853 return context; 854 } 855 856 static inline void audit_proctitle_free(struct audit_context *context) 857 { 858 kfree(context->proctitle.value); 859 context->proctitle.value = NULL; 860 context->proctitle.len = 0; 861 } 862 863 static inline void audit_free_names(struct audit_context *context) 864 { 865 struct audit_names *n, *next; 866 867 list_for_each_entry_safe(n, next, &context->names_list, list) { 868 list_del(&n->list); 869 if (n->name) 870 putname(n->name); 871 if (n->should_free) 872 kfree(n); 873 } 874 context->name_count = 0; 875 path_put(&context->pwd); 876 context->pwd.dentry = NULL; 877 context->pwd.mnt = NULL; 878 } 879 880 static inline void audit_free_aux(struct audit_context *context) 881 { 882 struct audit_aux_data *aux; 883 884 while ((aux = context->aux)) { 885 context->aux = aux->next; 886 kfree(aux); 887 } 888 while ((aux = context->aux_pids)) { 889 context->aux_pids = aux->next; 890 kfree(aux); 891 } 892 } 893 894 static inline struct audit_context *audit_alloc_context(enum audit_state state) 895 { 896 struct audit_context *context; 897 898 context = kzalloc(sizeof(*context), GFP_KERNEL); 899 if (!context) 900 return NULL; 901 context->state = state; 902 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 903 INIT_LIST_HEAD(&context->killed_trees); 904 INIT_LIST_HEAD(&context->names_list); 905 return context; 906 } 907 908 /** 909 * audit_alloc - allocate an audit context block for a task 910 * @tsk: task 911 * 912 * Filter on the task information and allocate a per-task audit context 913 * if necessary. Doing so turns on system call auditing for the 914 * specified task. This is called from copy_process, so no lock is 915 * needed. 916 */ 917 int audit_alloc(struct task_struct *tsk) 918 { 919 struct audit_context *context; 920 enum audit_state state; 921 char *key = NULL; 922 923 if (likely(!audit_ever_enabled)) 924 return 0; /* Return if not auditing. */ 925 926 state = audit_filter_task(tsk, &key); 927 if (state == AUDIT_DISABLED) { 928 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 929 return 0; 930 } 931 932 if (!(context = audit_alloc_context(state))) { 933 kfree(key); 934 audit_log_lost("out of memory in audit_alloc"); 935 return -ENOMEM; 936 } 937 context->filterkey = key; 938 939 tsk->audit_context = context; 940 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 941 return 0; 942 } 943 944 static inline void audit_free_context(struct audit_context *context) 945 { 946 audit_free_names(context); 947 unroll_tree_refs(context, NULL, 0); 948 free_tree_refs(context); 949 audit_free_aux(context); 950 kfree(context->filterkey); 951 kfree(context->sockaddr); 952 audit_proctitle_free(context); 953 kfree(context); 954 } 955 956 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 957 kuid_t auid, kuid_t uid, unsigned int sessionid, 958 u32 sid, char *comm) 959 { 960 struct audit_buffer *ab; 961 char *ctx = NULL; 962 u32 len; 963 int rc = 0; 964 965 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 966 if (!ab) 967 return rc; 968 969 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 970 from_kuid(&init_user_ns, auid), 971 from_kuid(&init_user_ns, uid), sessionid); 972 if (sid) { 973 if (security_secid_to_secctx(sid, &ctx, &len)) { 974 audit_log_format(ab, " obj=(none)"); 975 rc = 1; 976 } else { 977 audit_log_format(ab, " obj=%s", ctx); 978 security_release_secctx(ctx, len); 979 } 980 } 981 audit_log_format(ab, " ocomm="); 982 audit_log_untrustedstring(ab, comm); 983 audit_log_end(ab); 984 985 return rc; 986 } 987 988 /* 989 * to_send and len_sent accounting are very loose estimates. We aren't 990 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 991 * within about 500 bytes (next page boundary) 992 * 993 * why snprintf? an int is up to 12 digits long. if we just assumed when 994 * logging that a[%d]= was going to be 16 characters long we would be wasting 995 * space in every audit message. In one 7500 byte message we can log up to 996 * about 1000 min size arguments. That comes down to about 50% waste of space 997 * if we didn't do the snprintf to find out how long arg_num_len was. 998 */ 999 static int audit_log_single_execve_arg(struct audit_context *context, 1000 struct audit_buffer **ab, 1001 int arg_num, 1002 size_t *len_sent, 1003 const char __user *p, 1004 char *buf) 1005 { 1006 char arg_num_len_buf[12]; 1007 const char __user *tmp_p = p; 1008 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1009 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1010 size_t len, len_left, to_send; 1011 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1012 unsigned int i, has_cntl = 0, too_long = 0; 1013 int ret; 1014 1015 /* strnlen_user includes the null we don't want to send */ 1016 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1017 1018 /* 1019 * We just created this mm, if we can't find the strings 1020 * we just copied into it something is _very_ wrong. Similar 1021 * for strings that are too long, we should not have created 1022 * any. 1023 */ 1024 if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) { 1025 send_sig(SIGKILL, current, 0); 1026 return -1; 1027 } 1028 1029 /* walk the whole argument looking for non-ascii chars */ 1030 do { 1031 if (len_left > MAX_EXECVE_AUDIT_LEN) 1032 to_send = MAX_EXECVE_AUDIT_LEN; 1033 else 1034 to_send = len_left; 1035 ret = copy_from_user(buf, tmp_p, to_send); 1036 /* 1037 * There is no reason for this copy to be short. We just 1038 * copied them here, and the mm hasn't been exposed to user- 1039 * space yet. 1040 */ 1041 if (ret) { 1042 WARN_ON(1); 1043 send_sig(SIGKILL, current, 0); 1044 return -1; 1045 } 1046 buf[to_send] = '\0'; 1047 has_cntl = audit_string_contains_control(buf, to_send); 1048 if (has_cntl) { 1049 /* 1050 * hex messages get logged as 2 bytes, so we can only 1051 * send half as much in each message 1052 */ 1053 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1054 break; 1055 } 1056 len_left -= to_send; 1057 tmp_p += to_send; 1058 } while (len_left > 0); 1059 1060 len_left = len; 1061 1062 if (len > max_execve_audit_len) 1063 too_long = 1; 1064 1065 /* rewalk the argument actually logging the message */ 1066 for (i = 0; len_left > 0; i++) { 1067 int room_left; 1068 1069 if (len_left > max_execve_audit_len) 1070 to_send = max_execve_audit_len; 1071 else 1072 to_send = len_left; 1073 1074 /* do we have space left to send this argument in this ab? */ 1075 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1076 if (has_cntl) 1077 room_left -= (to_send * 2); 1078 else 1079 room_left -= to_send; 1080 if (room_left < 0) { 1081 *len_sent = 0; 1082 audit_log_end(*ab); 1083 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1084 if (!*ab) 1085 return 0; 1086 } 1087 1088 /* 1089 * first record needs to say how long the original string was 1090 * so we can be sure nothing was lost. 1091 */ 1092 if ((i == 0) && (too_long)) 1093 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1094 has_cntl ? 2*len : len); 1095 1096 /* 1097 * normally arguments are small enough to fit and we already 1098 * filled buf above when we checked for control characters 1099 * so don't bother with another copy_from_user 1100 */ 1101 if (len >= max_execve_audit_len) 1102 ret = copy_from_user(buf, p, to_send); 1103 else 1104 ret = 0; 1105 if (ret) { 1106 WARN_ON(1); 1107 send_sig(SIGKILL, current, 0); 1108 return -1; 1109 } 1110 buf[to_send] = '\0'; 1111 1112 /* actually log it */ 1113 audit_log_format(*ab, " a%d", arg_num); 1114 if (too_long) 1115 audit_log_format(*ab, "[%d]", i); 1116 audit_log_format(*ab, "="); 1117 if (has_cntl) 1118 audit_log_n_hex(*ab, buf, to_send); 1119 else 1120 audit_log_string(*ab, buf); 1121 1122 p += to_send; 1123 len_left -= to_send; 1124 *len_sent += arg_num_len; 1125 if (has_cntl) 1126 *len_sent += to_send * 2; 1127 else 1128 *len_sent += to_send; 1129 } 1130 /* include the null we didn't log */ 1131 return len + 1; 1132 } 1133 1134 static void audit_log_execve_info(struct audit_context *context, 1135 struct audit_buffer **ab) 1136 { 1137 int i, len; 1138 size_t len_sent = 0; 1139 const char __user *p; 1140 char *buf; 1141 1142 p = (const char __user *)current->mm->arg_start; 1143 1144 audit_log_format(*ab, "argc=%d", context->execve.argc); 1145 1146 /* 1147 * we need some kernel buffer to hold the userspace args. Just 1148 * allocate one big one rather than allocating one of the right size 1149 * for every single argument inside audit_log_single_execve_arg() 1150 * should be <8k allocation so should be pretty safe. 1151 */ 1152 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1153 if (!buf) { 1154 audit_panic("out of memory for argv string"); 1155 return; 1156 } 1157 1158 for (i = 0; i < context->execve.argc; i++) { 1159 len = audit_log_single_execve_arg(context, ab, i, 1160 &len_sent, p, buf); 1161 if (len <= 0) 1162 break; 1163 p += len; 1164 } 1165 kfree(buf); 1166 } 1167 1168 static void show_special(struct audit_context *context, int *call_panic) 1169 { 1170 struct audit_buffer *ab; 1171 int i; 1172 1173 ab = audit_log_start(context, GFP_KERNEL, context->type); 1174 if (!ab) 1175 return; 1176 1177 switch (context->type) { 1178 case AUDIT_SOCKETCALL: { 1179 int nargs = context->socketcall.nargs; 1180 audit_log_format(ab, "nargs=%d", nargs); 1181 for (i = 0; i < nargs; i++) 1182 audit_log_format(ab, " a%d=%lx", i, 1183 context->socketcall.args[i]); 1184 break; } 1185 case AUDIT_IPC: { 1186 u32 osid = context->ipc.osid; 1187 1188 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1189 from_kuid(&init_user_ns, context->ipc.uid), 1190 from_kgid(&init_user_ns, context->ipc.gid), 1191 context->ipc.mode); 1192 if (osid) { 1193 char *ctx = NULL; 1194 u32 len; 1195 if (security_secid_to_secctx(osid, &ctx, &len)) { 1196 audit_log_format(ab, " osid=%u", osid); 1197 *call_panic = 1; 1198 } else { 1199 audit_log_format(ab, " obj=%s", ctx); 1200 security_release_secctx(ctx, len); 1201 } 1202 } 1203 if (context->ipc.has_perm) { 1204 audit_log_end(ab); 1205 ab = audit_log_start(context, GFP_KERNEL, 1206 AUDIT_IPC_SET_PERM); 1207 if (unlikely(!ab)) 1208 return; 1209 audit_log_format(ab, 1210 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1211 context->ipc.qbytes, 1212 context->ipc.perm_uid, 1213 context->ipc.perm_gid, 1214 context->ipc.perm_mode); 1215 } 1216 break; } 1217 case AUDIT_MQ_OPEN: { 1218 audit_log_format(ab, 1219 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1220 "mq_msgsize=%ld mq_curmsgs=%ld", 1221 context->mq_open.oflag, context->mq_open.mode, 1222 context->mq_open.attr.mq_flags, 1223 context->mq_open.attr.mq_maxmsg, 1224 context->mq_open.attr.mq_msgsize, 1225 context->mq_open.attr.mq_curmsgs); 1226 break; } 1227 case AUDIT_MQ_SENDRECV: { 1228 audit_log_format(ab, 1229 "mqdes=%d msg_len=%zd msg_prio=%u " 1230 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1231 context->mq_sendrecv.mqdes, 1232 context->mq_sendrecv.msg_len, 1233 context->mq_sendrecv.msg_prio, 1234 context->mq_sendrecv.abs_timeout.tv_sec, 1235 context->mq_sendrecv.abs_timeout.tv_nsec); 1236 break; } 1237 case AUDIT_MQ_NOTIFY: { 1238 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1239 context->mq_notify.mqdes, 1240 context->mq_notify.sigev_signo); 1241 break; } 1242 case AUDIT_MQ_GETSETATTR: { 1243 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1244 audit_log_format(ab, 1245 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1246 "mq_curmsgs=%ld ", 1247 context->mq_getsetattr.mqdes, 1248 attr->mq_flags, attr->mq_maxmsg, 1249 attr->mq_msgsize, attr->mq_curmsgs); 1250 break; } 1251 case AUDIT_CAPSET: { 1252 audit_log_format(ab, "pid=%d", context->capset.pid); 1253 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1254 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1255 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1256 break; } 1257 case AUDIT_MMAP: { 1258 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1259 context->mmap.flags); 1260 break; } 1261 case AUDIT_EXECVE: { 1262 audit_log_execve_info(context, &ab); 1263 break; } 1264 } 1265 audit_log_end(ab); 1266 } 1267 1268 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1269 { 1270 char *end = proctitle + len - 1; 1271 while (end > proctitle && !isprint(*end)) 1272 end--; 1273 1274 /* catch the case where proctitle is only 1 non-print character */ 1275 len = end - proctitle + 1; 1276 len -= isprint(proctitle[len-1]) == 0; 1277 return len; 1278 } 1279 1280 static void audit_log_proctitle(struct task_struct *tsk, 1281 struct audit_context *context) 1282 { 1283 int res; 1284 char *buf; 1285 char *msg = "(null)"; 1286 int len = strlen(msg); 1287 struct audit_buffer *ab; 1288 1289 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1290 if (!ab) 1291 return; /* audit_panic or being filtered */ 1292 1293 audit_log_format(ab, "proctitle="); 1294 1295 /* Not cached */ 1296 if (!context->proctitle.value) { 1297 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1298 if (!buf) 1299 goto out; 1300 /* Historically called this from procfs naming */ 1301 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1302 if (res == 0) { 1303 kfree(buf); 1304 goto out; 1305 } 1306 res = audit_proctitle_rtrim(buf, res); 1307 if (res == 0) { 1308 kfree(buf); 1309 goto out; 1310 } 1311 context->proctitle.value = buf; 1312 context->proctitle.len = res; 1313 } 1314 msg = context->proctitle.value; 1315 len = context->proctitle.len; 1316 out: 1317 audit_log_n_untrustedstring(ab, msg, len); 1318 audit_log_end(ab); 1319 } 1320 1321 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1322 { 1323 int i, call_panic = 0; 1324 struct audit_buffer *ab; 1325 struct audit_aux_data *aux; 1326 struct audit_names *n; 1327 1328 /* tsk == current */ 1329 context->personality = tsk->personality; 1330 1331 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1332 if (!ab) 1333 return; /* audit_panic has been called */ 1334 audit_log_format(ab, "arch=%x syscall=%d", 1335 context->arch, context->major); 1336 if (context->personality != PER_LINUX) 1337 audit_log_format(ab, " per=%lx", context->personality); 1338 if (context->return_valid) 1339 audit_log_format(ab, " success=%s exit=%ld", 1340 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1341 context->return_code); 1342 1343 audit_log_format(ab, 1344 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1345 context->argv[0], 1346 context->argv[1], 1347 context->argv[2], 1348 context->argv[3], 1349 context->name_count); 1350 1351 audit_log_task_info(ab, tsk); 1352 audit_log_key(ab, context->filterkey); 1353 audit_log_end(ab); 1354 1355 for (aux = context->aux; aux; aux = aux->next) { 1356 1357 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1358 if (!ab) 1359 continue; /* audit_panic has been called */ 1360 1361 switch (aux->type) { 1362 1363 case AUDIT_BPRM_FCAPS: { 1364 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1365 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1366 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1367 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1368 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1369 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1370 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1371 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1372 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1373 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1374 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1375 break; } 1376 1377 } 1378 audit_log_end(ab); 1379 } 1380 1381 if (context->type) 1382 show_special(context, &call_panic); 1383 1384 if (context->fds[0] >= 0) { 1385 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1386 if (ab) { 1387 audit_log_format(ab, "fd0=%d fd1=%d", 1388 context->fds[0], context->fds[1]); 1389 audit_log_end(ab); 1390 } 1391 } 1392 1393 if (context->sockaddr_len) { 1394 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1395 if (ab) { 1396 audit_log_format(ab, "saddr="); 1397 audit_log_n_hex(ab, (void *)context->sockaddr, 1398 context->sockaddr_len); 1399 audit_log_end(ab); 1400 } 1401 } 1402 1403 for (aux = context->aux_pids; aux; aux = aux->next) { 1404 struct audit_aux_data_pids *axs = (void *)aux; 1405 1406 for (i = 0; i < axs->pid_count; i++) 1407 if (audit_log_pid_context(context, axs->target_pid[i], 1408 axs->target_auid[i], 1409 axs->target_uid[i], 1410 axs->target_sessionid[i], 1411 axs->target_sid[i], 1412 axs->target_comm[i])) 1413 call_panic = 1; 1414 } 1415 1416 if (context->target_pid && 1417 audit_log_pid_context(context, context->target_pid, 1418 context->target_auid, context->target_uid, 1419 context->target_sessionid, 1420 context->target_sid, context->target_comm)) 1421 call_panic = 1; 1422 1423 if (context->pwd.dentry && context->pwd.mnt) { 1424 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1425 if (ab) { 1426 audit_log_d_path(ab, " cwd=", &context->pwd); 1427 audit_log_end(ab); 1428 } 1429 } 1430 1431 i = 0; 1432 list_for_each_entry(n, &context->names_list, list) { 1433 if (n->hidden) 1434 continue; 1435 audit_log_name(context, n, NULL, i++, &call_panic); 1436 } 1437 1438 audit_log_proctitle(tsk, context); 1439 1440 /* Send end of event record to help user space know we are finished */ 1441 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1442 if (ab) 1443 audit_log_end(ab); 1444 if (call_panic) 1445 audit_panic("error converting sid to string"); 1446 } 1447 1448 /** 1449 * audit_free - free a per-task audit context 1450 * @tsk: task whose audit context block to free 1451 * 1452 * Called from copy_process and do_exit 1453 */ 1454 void __audit_free(struct task_struct *tsk) 1455 { 1456 struct audit_context *context; 1457 1458 context = audit_take_context(tsk, 0, 0); 1459 if (!context) 1460 return; 1461 1462 /* Check for system calls that do not go through the exit 1463 * function (e.g., exit_group), then free context block. 1464 * We use GFP_ATOMIC here because we might be doing this 1465 * in the context of the idle thread */ 1466 /* that can happen only if we are called from do_exit() */ 1467 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1468 audit_log_exit(context, tsk); 1469 if (!list_empty(&context->killed_trees)) 1470 audit_kill_trees(&context->killed_trees); 1471 1472 audit_free_context(context); 1473 } 1474 1475 /** 1476 * audit_syscall_entry - fill in an audit record at syscall entry 1477 * @major: major syscall type (function) 1478 * @a1: additional syscall register 1 1479 * @a2: additional syscall register 2 1480 * @a3: additional syscall register 3 1481 * @a4: additional syscall register 4 1482 * 1483 * Fill in audit context at syscall entry. This only happens if the 1484 * audit context was created when the task was created and the state or 1485 * filters demand the audit context be built. If the state from the 1486 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1487 * then the record will be written at syscall exit time (otherwise, it 1488 * will only be written if another part of the kernel requests that it 1489 * be written). 1490 */ 1491 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1492 unsigned long a3, unsigned long a4) 1493 { 1494 struct task_struct *tsk = current; 1495 struct audit_context *context = tsk->audit_context; 1496 enum audit_state state; 1497 1498 if (!context) 1499 return; 1500 1501 BUG_ON(context->in_syscall || context->name_count); 1502 1503 if (!audit_enabled) 1504 return; 1505 1506 context->arch = syscall_get_arch(); 1507 context->major = major; 1508 context->argv[0] = a1; 1509 context->argv[1] = a2; 1510 context->argv[2] = a3; 1511 context->argv[3] = a4; 1512 1513 state = context->state; 1514 context->dummy = !audit_n_rules; 1515 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1516 context->prio = 0; 1517 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1518 } 1519 if (state == AUDIT_DISABLED) 1520 return; 1521 1522 context->serial = 0; 1523 context->ctime = CURRENT_TIME; 1524 context->in_syscall = 1; 1525 context->current_state = state; 1526 context->ppid = 0; 1527 } 1528 1529 /** 1530 * audit_syscall_exit - deallocate audit context after a system call 1531 * @success: success value of the syscall 1532 * @return_code: return value of the syscall 1533 * 1534 * Tear down after system call. If the audit context has been marked as 1535 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1536 * filtering, or because some other part of the kernel wrote an audit 1537 * message), then write out the syscall information. In call cases, 1538 * free the names stored from getname(). 1539 */ 1540 void __audit_syscall_exit(int success, long return_code) 1541 { 1542 struct task_struct *tsk = current; 1543 struct audit_context *context; 1544 1545 if (success) 1546 success = AUDITSC_SUCCESS; 1547 else 1548 success = AUDITSC_FAILURE; 1549 1550 context = audit_take_context(tsk, success, return_code); 1551 if (!context) 1552 return; 1553 1554 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1555 audit_log_exit(context, tsk); 1556 1557 context->in_syscall = 0; 1558 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1559 1560 if (!list_empty(&context->killed_trees)) 1561 audit_kill_trees(&context->killed_trees); 1562 1563 audit_free_names(context); 1564 unroll_tree_refs(context, NULL, 0); 1565 audit_free_aux(context); 1566 context->aux = NULL; 1567 context->aux_pids = NULL; 1568 context->target_pid = 0; 1569 context->target_sid = 0; 1570 context->sockaddr_len = 0; 1571 context->type = 0; 1572 context->fds[0] = -1; 1573 if (context->state != AUDIT_RECORD_CONTEXT) { 1574 kfree(context->filterkey); 1575 context->filterkey = NULL; 1576 } 1577 tsk->audit_context = context; 1578 } 1579 1580 static inline void handle_one(const struct inode *inode) 1581 { 1582 #ifdef CONFIG_AUDIT_TREE 1583 struct audit_context *context; 1584 struct audit_tree_refs *p; 1585 struct audit_chunk *chunk; 1586 int count; 1587 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1588 return; 1589 context = current->audit_context; 1590 p = context->trees; 1591 count = context->tree_count; 1592 rcu_read_lock(); 1593 chunk = audit_tree_lookup(inode); 1594 rcu_read_unlock(); 1595 if (!chunk) 1596 return; 1597 if (likely(put_tree_ref(context, chunk))) 1598 return; 1599 if (unlikely(!grow_tree_refs(context))) { 1600 pr_warn("out of memory, audit has lost a tree reference\n"); 1601 audit_set_auditable(context); 1602 audit_put_chunk(chunk); 1603 unroll_tree_refs(context, p, count); 1604 return; 1605 } 1606 put_tree_ref(context, chunk); 1607 #endif 1608 } 1609 1610 static void handle_path(const struct dentry *dentry) 1611 { 1612 #ifdef CONFIG_AUDIT_TREE 1613 struct audit_context *context; 1614 struct audit_tree_refs *p; 1615 const struct dentry *d, *parent; 1616 struct audit_chunk *drop; 1617 unsigned long seq; 1618 int count; 1619 1620 context = current->audit_context; 1621 p = context->trees; 1622 count = context->tree_count; 1623 retry: 1624 drop = NULL; 1625 d = dentry; 1626 rcu_read_lock(); 1627 seq = read_seqbegin(&rename_lock); 1628 for(;;) { 1629 struct inode *inode = d_backing_inode(d); 1630 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1631 struct audit_chunk *chunk; 1632 chunk = audit_tree_lookup(inode); 1633 if (chunk) { 1634 if (unlikely(!put_tree_ref(context, chunk))) { 1635 drop = chunk; 1636 break; 1637 } 1638 } 1639 } 1640 parent = d->d_parent; 1641 if (parent == d) 1642 break; 1643 d = parent; 1644 } 1645 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1646 rcu_read_unlock(); 1647 if (!drop) { 1648 /* just a race with rename */ 1649 unroll_tree_refs(context, p, count); 1650 goto retry; 1651 } 1652 audit_put_chunk(drop); 1653 if (grow_tree_refs(context)) { 1654 /* OK, got more space */ 1655 unroll_tree_refs(context, p, count); 1656 goto retry; 1657 } 1658 /* too bad */ 1659 pr_warn("out of memory, audit has lost a tree reference\n"); 1660 unroll_tree_refs(context, p, count); 1661 audit_set_auditable(context); 1662 return; 1663 } 1664 rcu_read_unlock(); 1665 #endif 1666 } 1667 1668 static struct audit_names *audit_alloc_name(struct audit_context *context, 1669 unsigned char type) 1670 { 1671 struct audit_names *aname; 1672 1673 if (context->name_count < AUDIT_NAMES) { 1674 aname = &context->preallocated_names[context->name_count]; 1675 memset(aname, 0, sizeof(*aname)); 1676 } else { 1677 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1678 if (!aname) 1679 return NULL; 1680 aname->should_free = true; 1681 } 1682 1683 aname->ino = (unsigned long)-1; 1684 aname->type = type; 1685 list_add_tail(&aname->list, &context->names_list); 1686 1687 context->name_count++; 1688 return aname; 1689 } 1690 1691 /** 1692 * audit_reusename - fill out filename with info from existing entry 1693 * @uptr: userland ptr to pathname 1694 * 1695 * Search the audit_names list for the current audit context. If there is an 1696 * existing entry with a matching "uptr" then return the filename 1697 * associated with that audit_name. If not, return NULL. 1698 */ 1699 struct filename * 1700 __audit_reusename(const __user char *uptr) 1701 { 1702 struct audit_context *context = current->audit_context; 1703 struct audit_names *n; 1704 1705 list_for_each_entry(n, &context->names_list, list) { 1706 if (!n->name) 1707 continue; 1708 if (n->name->uptr == uptr) { 1709 n->name->refcnt++; 1710 return n->name; 1711 } 1712 } 1713 return NULL; 1714 } 1715 1716 /** 1717 * audit_getname - add a name to the list 1718 * @name: name to add 1719 * 1720 * Add a name to the list of audit names for this context. 1721 * Called from fs/namei.c:getname(). 1722 */ 1723 void __audit_getname(struct filename *name) 1724 { 1725 struct audit_context *context = current->audit_context; 1726 struct audit_names *n; 1727 1728 if (!context->in_syscall) 1729 return; 1730 1731 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1732 if (!n) 1733 return; 1734 1735 n->name = name; 1736 n->name_len = AUDIT_NAME_FULL; 1737 name->aname = n; 1738 name->refcnt++; 1739 1740 if (!context->pwd.dentry) 1741 get_fs_pwd(current->fs, &context->pwd); 1742 } 1743 1744 /** 1745 * __audit_inode - store the inode and device from a lookup 1746 * @name: name being audited 1747 * @dentry: dentry being audited 1748 * @flags: attributes for this particular entry 1749 */ 1750 void __audit_inode(struct filename *name, const struct dentry *dentry, 1751 unsigned int flags) 1752 { 1753 struct audit_context *context = current->audit_context; 1754 const struct inode *inode = d_backing_inode(dentry); 1755 struct audit_names *n; 1756 bool parent = flags & AUDIT_INODE_PARENT; 1757 1758 if (!context->in_syscall) 1759 return; 1760 1761 if (!name) 1762 goto out_alloc; 1763 1764 /* 1765 * If we have a pointer to an audit_names entry already, then we can 1766 * just use it directly if the type is correct. 1767 */ 1768 n = name->aname; 1769 if (n) { 1770 if (parent) { 1771 if (n->type == AUDIT_TYPE_PARENT || 1772 n->type == AUDIT_TYPE_UNKNOWN) 1773 goto out; 1774 } else { 1775 if (n->type != AUDIT_TYPE_PARENT) 1776 goto out; 1777 } 1778 } 1779 1780 list_for_each_entry_reverse(n, &context->names_list, list) { 1781 if (n->ino) { 1782 /* valid inode number, use that for the comparison */ 1783 if (n->ino != inode->i_ino || 1784 n->dev != inode->i_sb->s_dev) 1785 continue; 1786 } else if (n->name) { 1787 /* inode number has not been set, check the name */ 1788 if (strcmp(n->name->name, name->name)) 1789 continue; 1790 } else 1791 /* no inode and no name (?!) ... this is odd ... */ 1792 continue; 1793 1794 /* match the correct record type */ 1795 if (parent) { 1796 if (n->type == AUDIT_TYPE_PARENT || 1797 n->type == AUDIT_TYPE_UNKNOWN) 1798 goto out; 1799 } else { 1800 if (n->type != AUDIT_TYPE_PARENT) 1801 goto out; 1802 } 1803 } 1804 1805 out_alloc: 1806 /* unable to find an entry with both a matching name and type */ 1807 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1808 if (!n) 1809 return; 1810 if (name) { 1811 n->name = name; 1812 name->refcnt++; 1813 } 1814 1815 out: 1816 if (parent) { 1817 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1818 n->type = AUDIT_TYPE_PARENT; 1819 if (flags & AUDIT_INODE_HIDDEN) 1820 n->hidden = true; 1821 } else { 1822 n->name_len = AUDIT_NAME_FULL; 1823 n->type = AUDIT_TYPE_NORMAL; 1824 } 1825 handle_path(dentry); 1826 audit_copy_inode(n, dentry, inode); 1827 } 1828 1829 void __audit_file(const struct file *file) 1830 { 1831 __audit_inode(NULL, file->f_path.dentry, 0); 1832 } 1833 1834 /** 1835 * __audit_inode_child - collect inode info for created/removed objects 1836 * @parent: inode of dentry parent 1837 * @dentry: dentry being audited 1838 * @type: AUDIT_TYPE_* value that we're looking for 1839 * 1840 * For syscalls that create or remove filesystem objects, audit_inode 1841 * can only collect information for the filesystem object's parent. 1842 * This call updates the audit context with the child's information. 1843 * Syscalls that create a new filesystem object must be hooked after 1844 * the object is created. Syscalls that remove a filesystem object 1845 * must be hooked prior, in order to capture the target inode during 1846 * unsuccessful attempts. 1847 */ 1848 void __audit_inode_child(const struct inode *parent, 1849 const struct dentry *dentry, 1850 const unsigned char type) 1851 { 1852 struct audit_context *context = current->audit_context; 1853 const struct inode *inode = d_backing_inode(dentry); 1854 const char *dname = dentry->d_name.name; 1855 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1856 1857 if (!context->in_syscall) 1858 return; 1859 1860 if (inode) 1861 handle_one(inode); 1862 1863 /* look for a parent entry first */ 1864 list_for_each_entry(n, &context->names_list, list) { 1865 if (!n->name || 1866 (n->type != AUDIT_TYPE_PARENT && 1867 n->type != AUDIT_TYPE_UNKNOWN)) 1868 continue; 1869 1870 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 1871 !audit_compare_dname_path(dname, 1872 n->name->name, n->name_len)) { 1873 if (n->type == AUDIT_TYPE_UNKNOWN) 1874 n->type = AUDIT_TYPE_PARENT; 1875 found_parent = n; 1876 break; 1877 } 1878 } 1879 1880 /* is there a matching child entry? */ 1881 list_for_each_entry(n, &context->names_list, list) { 1882 /* can only match entries that have a name */ 1883 if (!n->name || 1884 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 1885 continue; 1886 1887 if (!strcmp(dname, n->name->name) || 1888 !audit_compare_dname_path(dname, n->name->name, 1889 found_parent ? 1890 found_parent->name_len : 1891 AUDIT_NAME_FULL)) { 1892 if (n->type == AUDIT_TYPE_UNKNOWN) 1893 n->type = type; 1894 found_child = n; 1895 break; 1896 } 1897 } 1898 1899 if (!found_parent) { 1900 /* create a new, "anonymous" parent record */ 1901 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1902 if (!n) 1903 return; 1904 audit_copy_inode(n, NULL, parent); 1905 } 1906 1907 if (!found_child) { 1908 found_child = audit_alloc_name(context, type); 1909 if (!found_child) 1910 return; 1911 1912 /* Re-use the name belonging to the slot for a matching parent 1913 * directory. All names for this context are relinquished in 1914 * audit_free_names() */ 1915 if (found_parent) { 1916 found_child->name = found_parent->name; 1917 found_child->name_len = AUDIT_NAME_FULL; 1918 found_child->name->refcnt++; 1919 } 1920 } 1921 1922 if (inode) 1923 audit_copy_inode(found_child, dentry, inode); 1924 else 1925 found_child->ino = (unsigned long)-1; 1926 } 1927 EXPORT_SYMBOL_GPL(__audit_inode_child); 1928 1929 /** 1930 * auditsc_get_stamp - get local copies of audit_context values 1931 * @ctx: audit_context for the task 1932 * @t: timespec to store time recorded in the audit_context 1933 * @serial: serial value that is recorded in the audit_context 1934 * 1935 * Also sets the context as auditable. 1936 */ 1937 int auditsc_get_stamp(struct audit_context *ctx, 1938 struct timespec *t, unsigned int *serial) 1939 { 1940 if (!ctx->in_syscall) 1941 return 0; 1942 if (!ctx->serial) 1943 ctx->serial = audit_serial(); 1944 t->tv_sec = ctx->ctime.tv_sec; 1945 t->tv_nsec = ctx->ctime.tv_nsec; 1946 *serial = ctx->serial; 1947 if (!ctx->prio) { 1948 ctx->prio = 1; 1949 ctx->current_state = AUDIT_RECORD_CONTEXT; 1950 } 1951 return 1; 1952 } 1953 1954 /* global counter which is incremented every time something logs in */ 1955 static atomic_t session_id = ATOMIC_INIT(0); 1956 1957 static int audit_set_loginuid_perm(kuid_t loginuid) 1958 { 1959 /* if we are unset, we don't need privs */ 1960 if (!audit_loginuid_set(current)) 1961 return 0; 1962 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 1963 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 1964 return -EPERM; 1965 /* it is set, you need permission */ 1966 if (!capable(CAP_AUDIT_CONTROL)) 1967 return -EPERM; 1968 /* reject if this is not an unset and we don't allow that */ 1969 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 1970 return -EPERM; 1971 return 0; 1972 } 1973 1974 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 1975 unsigned int oldsessionid, unsigned int sessionid, 1976 int rc) 1977 { 1978 struct audit_buffer *ab; 1979 uid_t uid, oldloginuid, loginuid; 1980 1981 if (!audit_enabled) 1982 return; 1983 1984 uid = from_kuid(&init_user_ns, task_uid(current)); 1985 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 1986 loginuid = from_kuid(&init_user_ns, kloginuid), 1987 1988 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1989 if (!ab) 1990 return; 1991 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid); 1992 audit_log_task_context(ab); 1993 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d", 1994 oldloginuid, loginuid, oldsessionid, sessionid, !rc); 1995 audit_log_end(ab); 1996 } 1997 1998 /** 1999 * audit_set_loginuid - set current task's audit_context loginuid 2000 * @loginuid: loginuid value 2001 * 2002 * Returns 0. 2003 * 2004 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2005 */ 2006 int audit_set_loginuid(kuid_t loginuid) 2007 { 2008 struct task_struct *task = current; 2009 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2010 kuid_t oldloginuid; 2011 int rc; 2012 2013 oldloginuid = audit_get_loginuid(current); 2014 oldsessionid = audit_get_sessionid(current); 2015 2016 rc = audit_set_loginuid_perm(loginuid); 2017 if (rc) 2018 goto out; 2019 2020 /* are we setting or clearing? */ 2021 if (uid_valid(loginuid)) 2022 sessionid = (unsigned int)atomic_inc_return(&session_id); 2023 2024 task->sessionid = sessionid; 2025 task->loginuid = loginuid; 2026 out: 2027 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2028 return rc; 2029 } 2030 2031 /** 2032 * __audit_mq_open - record audit data for a POSIX MQ open 2033 * @oflag: open flag 2034 * @mode: mode bits 2035 * @attr: queue attributes 2036 * 2037 */ 2038 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2039 { 2040 struct audit_context *context = current->audit_context; 2041 2042 if (attr) 2043 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2044 else 2045 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2046 2047 context->mq_open.oflag = oflag; 2048 context->mq_open.mode = mode; 2049 2050 context->type = AUDIT_MQ_OPEN; 2051 } 2052 2053 /** 2054 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2055 * @mqdes: MQ descriptor 2056 * @msg_len: Message length 2057 * @msg_prio: Message priority 2058 * @abs_timeout: Message timeout in absolute time 2059 * 2060 */ 2061 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2062 const struct timespec *abs_timeout) 2063 { 2064 struct audit_context *context = current->audit_context; 2065 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2066 2067 if (abs_timeout) 2068 memcpy(p, abs_timeout, sizeof(struct timespec)); 2069 else 2070 memset(p, 0, sizeof(struct timespec)); 2071 2072 context->mq_sendrecv.mqdes = mqdes; 2073 context->mq_sendrecv.msg_len = msg_len; 2074 context->mq_sendrecv.msg_prio = msg_prio; 2075 2076 context->type = AUDIT_MQ_SENDRECV; 2077 } 2078 2079 /** 2080 * __audit_mq_notify - record audit data for a POSIX MQ notify 2081 * @mqdes: MQ descriptor 2082 * @notification: Notification event 2083 * 2084 */ 2085 2086 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2087 { 2088 struct audit_context *context = current->audit_context; 2089 2090 if (notification) 2091 context->mq_notify.sigev_signo = notification->sigev_signo; 2092 else 2093 context->mq_notify.sigev_signo = 0; 2094 2095 context->mq_notify.mqdes = mqdes; 2096 context->type = AUDIT_MQ_NOTIFY; 2097 } 2098 2099 /** 2100 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2101 * @mqdes: MQ descriptor 2102 * @mqstat: MQ flags 2103 * 2104 */ 2105 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2106 { 2107 struct audit_context *context = current->audit_context; 2108 context->mq_getsetattr.mqdes = mqdes; 2109 context->mq_getsetattr.mqstat = *mqstat; 2110 context->type = AUDIT_MQ_GETSETATTR; 2111 } 2112 2113 /** 2114 * audit_ipc_obj - record audit data for ipc object 2115 * @ipcp: ipc permissions 2116 * 2117 */ 2118 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2119 { 2120 struct audit_context *context = current->audit_context; 2121 context->ipc.uid = ipcp->uid; 2122 context->ipc.gid = ipcp->gid; 2123 context->ipc.mode = ipcp->mode; 2124 context->ipc.has_perm = 0; 2125 security_ipc_getsecid(ipcp, &context->ipc.osid); 2126 context->type = AUDIT_IPC; 2127 } 2128 2129 /** 2130 * audit_ipc_set_perm - record audit data for new ipc permissions 2131 * @qbytes: msgq bytes 2132 * @uid: msgq user id 2133 * @gid: msgq group id 2134 * @mode: msgq mode (permissions) 2135 * 2136 * Called only after audit_ipc_obj(). 2137 */ 2138 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2139 { 2140 struct audit_context *context = current->audit_context; 2141 2142 context->ipc.qbytes = qbytes; 2143 context->ipc.perm_uid = uid; 2144 context->ipc.perm_gid = gid; 2145 context->ipc.perm_mode = mode; 2146 context->ipc.has_perm = 1; 2147 } 2148 2149 void __audit_bprm(struct linux_binprm *bprm) 2150 { 2151 struct audit_context *context = current->audit_context; 2152 2153 context->type = AUDIT_EXECVE; 2154 context->execve.argc = bprm->argc; 2155 } 2156 2157 2158 /** 2159 * audit_socketcall - record audit data for sys_socketcall 2160 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2161 * @args: args array 2162 * 2163 */ 2164 int __audit_socketcall(int nargs, unsigned long *args) 2165 { 2166 struct audit_context *context = current->audit_context; 2167 2168 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2169 return -EINVAL; 2170 context->type = AUDIT_SOCKETCALL; 2171 context->socketcall.nargs = nargs; 2172 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2173 return 0; 2174 } 2175 2176 /** 2177 * __audit_fd_pair - record audit data for pipe and socketpair 2178 * @fd1: the first file descriptor 2179 * @fd2: the second file descriptor 2180 * 2181 */ 2182 void __audit_fd_pair(int fd1, int fd2) 2183 { 2184 struct audit_context *context = current->audit_context; 2185 context->fds[0] = fd1; 2186 context->fds[1] = fd2; 2187 } 2188 2189 /** 2190 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2191 * @len: data length in user space 2192 * @a: data address in kernel space 2193 * 2194 * Returns 0 for success or NULL context or < 0 on error. 2195 */ 2196 int __audit_sockaddr(int len, void *a) 2197 { 2198 struct audit_context *context = current->audit_context; 2199 2200 if (!context->sockaddr) { 2201 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2202 if (!p) 2203 return -ENOMEM; 2204 context->sockaddr = p; 2205 } 2206 2207 context->sockaddr_len = len; 2208 memcpy(context->sockaddr, a, len); 2209 return 0; 2210 } 2211 2212 void __audit_ptrace(struct task_struct *t) 2213 { 2214 struct audit_context *context = current->audit_context; 2215 2216 context->target_pid = task_pid_nr(t); 2217 context->target_auid = audit_get_loginuid(t); 2218 context->target_uid = task_uid(t); 2219 context->target_sessionid = audit_get_sessionid(t); 2220 security_task_getsecid(t, &context->target_sid); 2221 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2222 } 2223 2224 /** 2225 * audit_signal_info - record signal info for shutting down audit subsystem 2226 * @sig: signal value 2227 * @t: task being signaled 2228 * 2229 * If the audit subsystem is being terminated, record the task (pid) 2230 * and uid that is doing that. 2231 */ 2232 int __audit_signal_info(int sig, struct task_struct *t) 2233 { 2234 struct audit_aux_data_pids *axp; 2235 struct task_struct *tsk = current; 2236 struct audit_context *ctx = tsk->audit_context; 2237 kuid_t uid = current_uid(), t_uid = task_uid(t); 2238 2239 if (audit_pid && t->tgid == audit_pid) { 2240 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2241 audit_sig_pid = task_pid_nr(tsk); 2242 if (uid_valid(tsk->loginuid)) 2243 audit_sig_uid = tsk->loginuid; 2244 else 2245 audit_sig_uid = uid; 2246 security_task_getsecid(tsk, &audit_sig_sid); 2247 } 2248 if (!audit_signals || audit_dummy_context()) 2249 return 0; 2250 } 2251 2252 /* optimize the common case by putting first signal recipient directly 2253 * in audit_context */ 2254 if (!ctx->target_pid) { 2255 ctx->target_pid = task_tgid_nr(t); 2256 ctx->target_auid = audit_get_loginuid(t); 2257 ctx->target_uid = t_uid; 2258 ctx->target_sessionid = audit_get_sessionid(t); 2259 security_task_getsecid(t, &ctx->target_sid); 2260 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2261 return 0; 2262 } 2263 2264 axp = (void *)ctx->aux_pids; 2265 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2266 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2267 if (!axp) 2268 return -ENOMEM; 2269 2270 axp->d.type = AUDIT_OBJ_PID; 2271 axp->d.next = ctx->aux_pids; 2272 ctx->aux_pids = (void *)axp; 2273 } 2274 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2275 2276 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2277 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2278 axp->target_uid[axp->pid_count] = t_uid; 2279 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2280 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2281 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2282 axp->pid_count++; 2283 2284 return 0; 2285 } 2286 2287 /** 2288 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2289 * @bprm: pointer to the bprm being processed 2290 * @new: the proposed new credentials 2291 * @old: the old credentials 2292 * 2293 * Simply check if the proc already has the caps given by the file and if not 2294 * store the priv escalation info for later auditing at the end of the syscall 2295 * 2296 * -Eric 2297 */ 2298 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2299 const struct cred *new, const struct cred *old) 2300 { 2301 struct audit_aux_data_bprm_fcaps *ax; 2302 struct audit_context *context = current->audit_context; 2303 struct cpu_vfs_cap_data vcaps; 2304 2305 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2306 if (!ax) 2307 return -ENOMEM; 2308 2309 ax->d.type = AUDIT_BPRM_FCAPS; 2310 ax->d.next = context->aux; 2311 context->aux = (void *)ax; 2312 2313 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2314 2315 ax->fcap.permitted = vcaps.permitted; 2316 ax->fcap.inheritable = vcaps.inheritable; 2317 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2318 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2319 2320 ax->old_pcap.permitted = old->cap_permitted; 2321 ax->old_pcap.inheritable = old->cap_inheritable; 2322 ax->old_pcap.effective = old->cap_effective; 2323 2324 ax->new_pcap.permitted = new->cap_permitted; 2325 ax->new_pcap.inheritable = new->cap_inheritable; 2326 ax->new_pcap.effective = new->cap_effective; 2327 return 0; 2328 } 2329 2330 /** 2331 * __audit_log_capset - store information about the arguments to the capset syscall 2332 * @new: the new credentials 2333 * @old: the old (current) credentials 2334 * 2335 * Record the arguments userspace sent to sys_capset for later printing by the 2336 * audit system if applicable 2337 */ 2338 void __audit_log_capset(const struct cred *new, const struct cred *old) 2339 { 2340 struct audit_context *context = current->audit_context; 2341 context->capset.pid = task_pid_nr(current); 2342 context->capset.cap.effective = new->cap_effective; 2343 context->capset.cap.inheritable = new->cap_effective; 2344 context->capset.cap.permitted = new->cap_permitted; 2345 context->type = AUDIT_CAPSET; 2346 } 2347 2348 void __audit_mmap_fd(int fd, int flags) 2349 { 2350 struct audit_context *context = current->audit_context; 2351 context->mmap.fd = fd; 2352 context->mmap.flags = flags; 2353 context->type = AUDIT_MMAP; 2354 } 2355 2356 static void audit_log_task(struct audit_buffer *ab) 2357 { 2358 kuid_t auid, uid; 2359 kgid_t gid; 2360 unsigned int sessionid; 2361 char comm[sizeof(current->comm)]; 2362 2363 auid = audit_get_loginuid(current); 2364 sessionid = audit_get_sessionid(current); 2365 current_uid_gid(&uid, &gid); 2366 2367 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2368 from_kuid(&init_user_ns, auid), 2369 from_kuid(&init_user_ns, uid), 2370 from_kgid(&init_user_ns, gid), 2371 sessionid); 2372 audit_log_task_context(ab); 2373 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current)); 2374 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2375 audit_log_d_path_exe(ab, current->mm); 2376 } 2377 2378 /** 2379 * audit_core_dumps - record information about processes that end abnormally 2380 * @signr: signal value 2381 * 2382 * If a process ends with a core dump, something fishy is going on and we 2383 * should record the event for investigation. 2384 */ 2385 void audit_core_dumps(long signr) 2386 { 2387 struct audit_buffer *ab; 2388 2389 if (!audit_enabled) 2390 return; 2391 2392 if (signr == SIGQUIT) /* don't care for those */ 2393 return; 2394 2395 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2396 if (unlikely(!ab)) 2397 return; 2398 audit_log_task(ab); 2399 audit_log_format(ab, " sig=%ld", signr); 2400 audit_log_end(ab); 2401 } 2402 2403 void __audit_seccomp(unsigned long syscall, long signr, int code) 2404 { 2405 struct audit_buffer *ab; 2406 2407 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2408 if (unlikely(!ab)) 2409 return; 2410 audit_log_task(ab); 2411 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2412 signr, syscall_get_arch(), syscall, is_compat_task(), 2413 KSTK_EIP(current), code); 2414 audit_log_end(ab); 2415 } 2416 2417 struct list_head *audit_killed_trees(void) 2418 { 2419 struct audit_context *ctx = current->audit_context; 2420 if (likely(!ctx || !ctx->in_syscall)) 2421 return NULL; 2422 return &ctx->killed_trees; 2423 } 2424