1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 68 #include "audit.h" 69 70 /* flags stating the success for a syscall */ 71 #define AUDITSC_INVALID 0 72 #define AUDITSC_SUCCESS 1 73 #define AUDITSC_FAILURE 2 74 75 /* no execve audit message should be longer than this (userspace limits), 76 * see the note near the top of audit_log_execve_info() about this value */ 77 #define MAX_EXECVE_AUDIT_LEN 7500 78 79 /* max length to print of cmdline/proctitle value during audit */ 80 #define MAX_PROCTITLE_AUDIT_LEN 128 81 82 /* number of audit rules */ 83 int audit_n_rules; 84 85 /* determines whether we collect data for signals sent */ 86 int audit_signals; 87 88 struct audit_aux_data { 89 struct audit_aux_data *next; 90 int type; 91 }; 92 93 /* Number of target pids per aux struct. */ 94 #define AUDIT_AUX_PIDS 16 95 96 struct audit_aux_data_pids { 97 struct audit_aux_data d; 98 pid_t target_pid[AUDIT_AUX_PIDS]; 99 kuid_t target_auid[AUDIT_AUX_PIDS]; 100 kuid_t target_uid[AUDIT_AUX_PIDS]; 101 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 102 u32 target_sid[AUDIT_AUX_PIDS]; 103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 104 int pid_count; 105 }; 106 107 struct audit_aux_data_bprm_fcaps { 108 struct audit_aux_data d; 109 struct audit_cap_data fcap; 110 unsigned int fcap_ver; 111 struct audit_cap_data old_pcap; 112 struct audit_cap_data new_pcap; 113 }; 114 115 struct audit_tree_refs { 116 struct audit_tree_refs *next; 117 struct audit_chunk *c[31]; 118 }; 119 120 struct audit_nfcfgop_tab { 121 enum audit_nfcfgop op; 122 const char *s; 123 }; 124 125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 126 { AUDIT_XT_OP_REGISTER, "xt_register" }, 127 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 145 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 146 }; 147 148 static int audit_match_perm(struct audit_context *ctx, int mask) 149 { 150 unsigned n; 151 152 if (unlikely(!ctx)) 153 return 0; 154 n = ctx->major; 155 156 switch (audit_classify_syscall(ctx->arch, n)) { 157 case AUDITSC_NATIVE: 158 if ((mask & AUDIT_PERM_WRITE) && 159 audit_match_class(AUDIT_CLASS_WRITE, n)) 160 return 1; 161 if ((mask & AUDIT_PERM_READ) && 162 audit_match_class(AUDIT_CLASS_READ, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_ATTR) && 165 audit_match_class(AUDIT_CLASS_CHATTR, n)) 166 return 1; 167 return 0; 168 case AUDITSC_COMPAT: /* 32bit on biarch */ 169 if ((mask & AUDIT_PERM_WRITE) && 170 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 171 return 1; 172 if ((mask & AUDIT_PERM_READ) && 173 audit_match_class(AUDIT_CLASS_READ_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_ATTR) && 176 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 177 return 1; 178 return 0; 179 case AUDITSC_OPEN: 180 return mask & ACC_MODE(ctx->argv[1]); 181 case AUDITSC_OPENAT: 182 return mask & ACC_MODE(ctx->argv[2]); 183 case AUDITSC_SOCKETCALL: 184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 185 case AUDITSC_EXECVE: 186 return mask & AUDIT_PERM_EXEC; 187 case AUDITSC_OPENAT2: 188 return mask & ACC_MODE((u32)ctx->openat2.flags); 189 default: 190 return 0; 191 } 192 } 193 194 static int audit_match_filetype(struct audit_context *ctx, int val) 195 { 196 struct audit_names *n; 197 umode_t mode = (umode_t)val; 198 199 if (unlikely(!ctx)) 200 return 0; 201 202 list_for_each_entry(n, &ctx->names_list, list) { 203 if ((n->ino != AUDIT_INO_UNSET) && 204 ((n->mode & S_IFMT) == mode)) 205 return 1; 206 } 207 208 return 0; 209 } 210 211 /* 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 213 * ->first_trees points to its beginning, ->trees - to the current end of data. 214 * ->tree_count is the number of free entries in array pointed to by ->trees. 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 217 * it's going to remain 1-element for almost any setup) until we free context itself. 218 * References in it _are_ dropped - at the same time we free/drop aux stuff. 219 */ 220 221 static void audit_set_auditable(struct audit_context *ctx) 222 { 223 if (!ctx->prio) { 224 ctx->prio = 1; 225 ctx->current_state = AUDIT_STATE_RECORD; 226 } 227 } 228 229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 230 { 231 struct audit_tree_refs *p = ctx->trees; 232 int left = ctx->tree_count; 233 234 if (likely(left)) { 235 p->c[--left] = chunk; 236 ctx->tree_count = left; 237 return 1; 238 } 239 if (!p) 240 return 0; 241 p = p->next; 242 if (p) { 243 p->c[30] = chunk; 244 ctx->trees = p; 245 ctx->tree_count = 30; 246 return 1; 247 } 248 return 0; 249 } 250 251 static int grow_tree_refs(struct audit_context *ctx) 252 { 253 struct audit_tree_refs *p = ctx->trees; 254 255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 256 if (!ctx->trees) { 257 ctx->trees = p; 258 return 0; 259 } 260 if (p) 261 p->next = ctx->trees; 262 else 263 ctx->first_trees = ctx->trees; 264 ctx->tree_count = 31; 265 return 1; 266 } 267 268 static void unroll_tree_refs(struct audit_context *ctx, 269 struct audit_tree_refs *p, int count) 270 { 271 struct audit_tree_refs *q; 272 int n; 273 274 if (!p) { 275 /* we started with empty chain */ 276 p = ctx->first_trees; 277 count = 31; 278 /* if the very first allocation has failed, nothing to do */ 279 if (!p) 280 return; 281 } 282 n = count; 283 for (q = p; q != ctx->trees; q = q->next, n = 31) { 284 while (n--) { 285 audit_put_chunk(q->c[n]); 286 q->c[n] = NULL; 287 } 288 } 289 while (n-- > ctx->tree_count) { 290 audit_put_chunk(q->c[n]); 291 q->c[n] = NULL; 292 } 293 ctx->trees = p; 294 ctx->tree_count = count; 295 } 296 297 static void free_tree_refs(struct audit_context *ctx) 298 { 299 struct audit_tree_refs *p, *q; 300 301 for (p = ctx->first_trees; p; p = q) { 302 q = p->next; 303 kfree(p); 304 } 305 } 306 307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 308 { 309 struct audit_tree_refs *p; 310 int n; 311 312 if (!tree) 313 return 0; 314 /* full ones */ 315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 316 for (n = 0; n < 31; n++) 317 if (audit_tree_match(p->c[n], tree)) 318 return 1; 319 } 320 /* partial */ 321 if (p) { 322 for (n = ctx->tree_count; n < 31; n++) 323 if (audit_tree_match(p->c[n], tree)) 324 return 1; 325 } 326 return 0; 327 } 328 329 static int audit_compare_uid(kuid_t uid, 330 struct audit_names *name, 331 struct audit_field *f, 332 struct audit_context *ctx) 333 { 334 struct audit_names *n; 335 int rc; 336 337 if (name) { 338 rc = audit_uid_comparator(uid, f->op, name->uid); 339 if (rc) 340 return rc; 341 } 342 343 if (ctx) { 344 list_for_each_entry(n, &ctx->names_list, list) { 345 rc = audit_uid_comparator(uid, f->op, n->uid); 346 if (rc) 347 return rc; 348 } 349 } 350 return 0; 351 } 352 353 static int audit_compare_gid(kgid_t gid, 354 struct audit_names *name, 355 struct audit_field *f, 356 struct audit_context *ctx) 357 { 358 struct audit_names *n; 359 int rc; 360 361 if (name) { 362 rc = audit_gid_comparator(gid, f->op, name->gid); 363 if (rc) 364 return rc; 365 } 366 367 if (ctx) { 368 list_for_each_entry(n, &ctx->names_list, list) { 369 rc = audit_gid_comparator(gid, f->op, n->gid); 370 if (rc) 371 return rc; 372 } 373 } 374 return 0; 375 } 376 377 static int audit_field_compare(struct task_struct *tsk, 378 const struct cred *cred, 379 struct audit_field *f, 380 struct audit_context *ctx, 381 struct audit_names *name) 382 { 383 switch (f->val) { 384 /* process to file object comparisons */ 385 case AUDIT_COMPARE_UID_TO_OBJ_UID: 386 return audit_compare_uid(cred->uid, name, f, ctx); 387 case AUDIT_COMPARE_GID_TO_OBJ_GID: 388 return audit_compare_gid(cred->gid, name, f, ctx); 389 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 390 return audit_compare_uid(cred->euid, name, f, ctx); 391 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 392 return audit_compare_gid(cred->egid, name, f, ctx); 393 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 395 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 396 return audit_compare_uid(cred->suid, name, f, ctx); 397 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 398 return audit_compare_gid(cred->sgid, name, f, ctx); 399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 400 return audit_compare_uid(cred->fsuid, name, f, ctx); 401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 402 return audit_compare_gid(cred->fsgid, name, f, ctx); 403 /* uid comparisons */ 404 case AUDIT_COMPARE_UID_TO_AUID: 405 return audit_uid_comparator(cred->uid, f->op, 406 audit_get_loginuid(tsk)); 407 case AUDIT_COMPARE_UID_TO_EUID: 408 return audit_uid_comparator(cred->uid, f->op, cred->euid); 409 case AUDIT_COMPARE_UID_TO_SUID: 410 return audit_uid_comparator(cred->uid, f->op, cred->suid); 411 case AUDIT_COMPARE_UID_TO_FSUID: 412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 413 /* auid comparisons */ 414 case AUDIT_COMPARE_AUID_TO_EUID: 415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 416 cred->euid); 417 case AUDIT_COMPARE_AUID_TO_SUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->suid); 420 case AUDIT_COMPARE_AUID_TO_FSUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->fsuid); 423 /* euid comparisons */ 424 case AUDIT_COMPARE_EUID_TO_SUID: 425 return audit_uid_comparator(cred->euid, f->op, cred->suid); 426 case AUDIT_COMPARE_EUID_TO_FSUID: 427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 428 /* suid comparisons */ 429 case AUDIT_COMPARE_SUID_TO_FSUID: 430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 431 /* gid comparisons */ 432 case AUDIT_COMPARE_GID_TO_EGID: 433 return audit_gid_comparator(cred->gid, f->op, cred->egid); 434 case AUDIT_COMPARE_GID_TO_SGID: 435 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 436 case AUDIT_COMPARE_GID_TO_FSGID: 437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 438 /* egid comparisons */ 439 case AUDIT_COMPARE_EGID_TO_SGID: 440 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 441 case AUDIT_COMPARE_EGID_TO_FSGID: 442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 443 /* sgid comparison */ 444 case AUDIT_COMPARE_SGID_TO_FSGID: 445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 446 default: 447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 448 return 0; 449 } 450 return 0; 451 } 452 453 /* Determine if any context name data matches a rule's watch data */ 454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 455 * otherwise. 456 * 457 * If task_creation is true, this is an explicit indication that we are 458 * filtering a task rule at task creation time. This and tsk == current are 459 * the only situations where tsk->cred may be accessed without an rcu read lock. 460 */ 461 static int audit_filter_rules(struct task_struct *tsk, 462 struct audit_krule *rule, 463 struct audit_context *ctx, 464 struct audit_names *name, 465 enum audit_state *state, 466 bool task_creation) 467 { 468 const struct cred *cred; 469 int i, need_sid = 1; 470 u32 sid; 471 unsigned int sessionid; 472 473 if (ctx && rule->prio <= ctx->prio) 474 return 0; 475 476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 477 478 for (i = 0; i < rule->field_count; i++) { 479 struct audit_field *f = &rule->fields[i]; 480 struct audit_names *n; 481 int result = 0; 482 pid_t pid; 483 484 switch (f->type) { 485 case AUDIT_PID: 486 pid = task_tgid_nr(tsk); 487 result = audit_comparator(pid, f->op, f->val); 488 break; 489 case AUDIT_PPID: 490 if (ctx) { 491 if (!ctx->ppid) 492 ctx->ppid = task_ppid_nr(tsk); 493 result = audit_comparator(ctx->ppid, f->op, f->val); 494 } 495 break; 496 case AUDIT_EXE: 497 result = audit_exe_compare(tsk, rule->exe); 498 if (f->op == Audit_not_equal) 499 result = !result; 500 break; 501 case AUDIT_UID: 502 result = audit_uid_comparator(cred->uid, f->op, f->uid); 503 break; 504 case AUDIT_EUID: 505 result = audit_uid_comparator(cred->euid, f->op, f->uid); 506 break; 507 case AUDIT_SUID: 508 result = audit_uid_comparator(cred->suid, f->op, f->uid); 509 break; 510 case AUDIT_FSUID: 511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 512 break; 513 case AUDIT_GID: 514 result = audit_gid_comparator(cred->gid, f->op, f->gid); 515 if (f->op == Audit_equal) { 516 if (!result) 517 result = groups_search(cred->group_info, f->gid); 518 } else if (f->op == Audit_not_equal) { 519 if (result) 520 result = !groups_search(cred->group_info, f->gid); 521 } 522 break; 523 case AUDIT_EGID: 524 result = audit_gid_comparator(cred->egid, f->op, f->gid); 525 if (f->op == Audit_equal) { 526 if (!result) 527 result = groups_search(cred->group_info, f->gid); 528 } else if (f->op == Audit_not_equal) { 529 if (result) 530 result = !groups_search(cred->group_info, f->gid); 531 } 532 break; 533 case AUDIT_SGID: 534 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 535 break; 536 case AUDIT_FSGID: 537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 538 break; 539 case AUDIT_SESSIONID: 540 sessionid = audit_get_sessionid(tsk); 541 result = audit_comparator(sessionid, f->op, f->val); 542 break; 543 case AUDIT_PERS: 544 result = audit_comparator(tsk->personality, f->op, f->val); 545 break; 546 case AUDIT_ARCH: 547 if (ctx) 548 result = audit_comparator(ctx->arch, f->op, f->val); 549 break; 550 551 case AUDIT_EXIT: 552 if (ctx && ctx->return_valid != AUDITSC_INVALID) 553 result = audit_comparator(ctx->return_code, f->op, f->val); 554 break; 555 case AUDIT_SUCCESS: 556 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 557 if (f->val) 558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 559 else 560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 561 } 562 break; 563 case AUDIT_DEVMAJOR: 564 if (name) { 565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 566 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 567 ++result; 568 } else if (ctx) { 569 list_for_each_entry(n, &ctx->names_list, list) { 570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 572 ++result; 573 break; 574 } 575 } 576 } 577 break; 578 case AUDIT_DEVMINOR: 579 if (name) { 580 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 581 audit_comparator(MINOR(name->rdev), f->op, f->val)) 582 ++result; 583 } else if (ctx) { 584 list_for_each_entry(n, &ctx->names_list, list) { 585 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 586 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 587 ++result; 588 break; 589 } 590 } 591 } 592 break; 593 case AUDIT_INODE: 594 if (name) 595 result = audit_comparator(name->ino, f->op, f->val); 596 else if (ctx) { 597 list_for_each_entry(n, &ctx->names_list, list) { 598 if (audit_comparator(n->ino, f->op, f->val)) { 599 ++result; 600 break; 601 } 602 } 603 } 604 break; 605 case AUDIT_OBJ_UID: 606 if (name) { 607 result = audit_uid_comparator(name->uid, f->op, f->uid); 608 } else if (ctx) { 609 list_for_each_entry(n, &ctx->names_list, list) { 610 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 611 ++result; 612 break; 613 } 614 } 615 } 616 break; 617 case AUDIT_OBJ_GID: 618 if (name) { 619 result = audit_gid_comparator(name->gid, f->op, f->gid); 620 } else if (ctx) { 621 list_for_each_entry(n, &ctx->names_list, list) { 622 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 623 ++result; 624 break; 625 } 626 } 627 } 628 break; 629 case AUDIT_WATCH: 630 if (name) { 631 result = audit_watch_compare(rule->watch, 632 name->ino, 633 name->dev); 634 if (f->op == Audit_not_equal) 635 result = !result; 636 } 637 break; 638 case AUDIT_DIR: 639 if (ctx) { 640 result = match_tree_refs(ctx, rule->tree); 641 if (f->op == Audit_not_equal) 642 result = !result; 643 } 644 break; 645 case AUDIT_LOGINUID: 646 result = audit_uid_comparator(audit_get_loginuid(tsk), 647 f->op, f->uid); 648 break; 649 case AUDIT_LOGINUID_SET: 650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 651 break; 652 case AUDIT_SADDR_FAM: 653 if (ctx && ctx->sockaddr) 654 result = audit_comparator(ctx->sockaddr->ss_family, 655 f->op, f->val); 656 break; 657 case AUDIT_SUBJ_USER: 658 case AUDIT_SUBJ_ROLE: 659 case AUDIT_SUBJ_TYPE: 660 case AUDIT_SUBJ_SEN: 661 case AUDIT_SUBJ_CLR: 662 /* NOTE: this may return negative values indicating 663 a temporary error. We simply treat this as a 664 match for now to avoid losing information that 665 may be wanted. An error message will also be 666 logged upon error */ 667 if (f->lsm_rule) { 668 if (need_sid) { 669 /* @tsk should always be equal to 670 * @current with the exception of 671 * fork()/copy_process() in which case 672 * the new @tsk creds are still a dup 673 * of @current's creds so we can still 674 * use security_current_getsecid_subj() 675 * here even though it always refs 676 * @current's creds 677 */ 678 security_current_getsecid_subj(&sid); 679 need_sid = 0; 680 } 681 result = security_audit_rule_match(sid, f->type, 682 f->op, 683 f->lsm_rule); 684 } 685 break; 686 case AUDIT_OBJ_USER: 687 case AUDIT_OBJ_ROLE: 688 case AUDIT_OBJ_TYPE: 689 case AUDIT_OBJ_LEV_LOW: 690 case AUDIT_OBJ_LEV_HIGH: 691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 692 also applies here */ 693 if (f->lsm_rule) { 694 /* Find files that match */ 695 if (name) { 696 result = security_audit_rule_match( 697 name->osid, 698 f->type, 699 f->op, 700 f->lsm_rule); 701 } else if (ctx) { 702 list_for_each_entry(n, &ctx->names_list, list) { 703 if (security_audit_rule_match( 704 n->osid, 705 f->type, 706 f->op, 707 f->lsm_rule)) { 708 ++result; 709 break; 710 } 711 } 712 } 713 /* Find ipc objects that match */ 714 if (!ctx || ctx->type != AUDIT_IPC) 715 break; 716 if (security_audit_rule_match(ctx->ipc.osid, 717 f->type, f->op, 718 f->lsm_rule)) 719 ++result; 720 } 721 break; 722 case AUDIT_ARG0: 723 case AUDIT_ARG1: 724 case AUDIT_ARG2: 725 case AUDIT_ARG3: 726 if (ctx) 727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 728 break; 729 case AUDIT_FILTERKEY: 730 /* ignore this field for filtering */ 731 result = 1; 732 break; 733 case AUDIT_PERM: 734 result = audit_match_perm(ctx, f->val); 735 if (f->op == Audit_not_equal) 736 result = !result; 737 break; 738 case AUDIT_FILETYPE: 739 result = audit_match_filetype(ctx, f->val); 740 if (f->op == Audit_not_equal) 741 result = !result; 742 break; 743 case AUDIT_FIELD_COMPARE: 744 result = audit_field_compare(tsk, cred, f, ctx, name); 745 break; 746 } 747 if (!result) 748 return 0; 749 } 750 751 if (ctx) { 752 if (rule->filterkey) { 753 kfree(ctx->filterkey); 754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 755 } 756 ctx->prio = rule->prio; 757 } 758 switch (rule->action) { 759 case AUDIT_NEVER: 760 *state = AUDIT_STATE_DISABLED; 761 break; 762 case AUDIT_ALWAYS: 763 *state = AUDIT_STATE_RECORD; 764 break; 765 } 766 return 1; 767 } 768 769 /* At process creation time, we can determine if system-call auditing is 770 * completely disabled for this task. Since we only have the task 771 * structure at this point, we can only check uid and gid. 772 */ 773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 774 { 775 struct audit_entry *e; 776 enum audit_state state; 777 778 rcu_read_lock(); 779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 781 &state, true)) { 782 if (state == AUDIT_STATE_RECORD) 783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 784 rcu_read_unlock(); 785 return state; 786 } 787 } 788 rcu_read_unlock(); 789 return AUDIT_STATE_BUILD; 790 } 791 792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 793 { 794 int word, bit; 795 796 if (val > 0xffffffff) 797 return false; 798 799 word = AUDIT_WORD(val); 800 if (word >= AUDIT_BITMASK_SIZE) 801 return false; 802 803 bit = AUDIT_BIT(val); 804 805 return rule->mask[word] & bit; 806 } 807 808 /** 809 * audit_filter_uring - apply filters to an io_uring operation 810 * @tsk: associated task 811 * @ctx: audit context 812 */ 813 static void audit_filter_uring(struct task_struct *tsk, 814 struct audit_context *ctx) 815 { 816 struct audit_entry *e; 817 enum audit_state state; 818 819 if (auditd_test_task(tsk)) 820 return; 821 822 rcu_read_lock(); 823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 824 list) { 825 if (audit_in_mask(&e->rule, ctx->uring_op) && 826 audit_filter_rules(tsk, &e->rule, ctx, NULL, &state, 827 false)) { 828 rcu_read_unlock(); 829 ctx->current_state = state; 830 return; 831 } 832 } 833 rcu_read_unlock(); 834 } 835 836 /* At syscall exit time, this filter is called if the audit_state is 837 * not low enough that auditing cannot take place, but is also not 838 * high enough that we already know we have to write an audit record 839 * (i.e., the state is AUDIT_STATE_BUILD). 840 */ 841 static void audit_filter_syscall(struct task_struct *tsk, 842 struct audit_context *ctx) 843 { 844 struct audit_entry *e; 845 enum audit_state state; 846 847 if (auditd_test_task(tsk)) 848 return; 849 850 rcu_read_lock(); 851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) { 852 if (audit_in_mask(&e->rule, ctx->major) && 853 audit_filter_rules(tsk, &e->rule, ctx, NULL, 854 &state, false)) { 855 rcu_read_unlock(); 856 ctx->current_state = state; 857 return; 858 } 859 } 860 rcu_read_unlock(); 861 return; 862 } 863 864 /* 865 * Given an audit_name check the inode hash table to see if they match. 866 * Called holding the rcu read lock to protect the use of audit_inode_hash 867 */ 868 static int audit_filter_inode_name(struct task_struct *tsk, 869 struct audit_names *n, 870 struct audit_context *ctx) { 871 int h = audit_hash_ino((u32)n->ino); 872 struct list_head *list = &audit_inode_hash[h]; 873 struct audit_entry *e; 874 enum audit_state state; 875 876 list_for_each_entry_rcu(e, list, list) { 877 if (audit_in_mask(&e->rule, ctx->major) && 878 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 879 ctx->current_state = state; 880 return 1; 881 } 882 } 883 return 0; 884 } 885 886 /* At syscall exit time, this filter is called if any audit_names have been 887 * collected during syscall processing. We only check rules in sublists at hash 888 * buckets applicable to the inode numbers in audit_names. 889 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 890 */ 891 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 892 { 893 struct audit_names *n; 894 895 if (auditd_test_task(tsk)) 896 return; 897 898 rcu_read_lock(); 899 900 list_for_each_entry(n, &ctx->names_list, list) { 901 if (audit_filter_inode_name(tsk, n, ctx)) 902 break; 903 } 904 rcu_read_unlock(); 905 } 906 907 static inline void audit_proctitle_free(struct audit_context *context) 908 { 909 kfree(context->proctitle.value); 910 context->proctitle.value = NULL; 911 context->proctitle.len = 0; 912 } 913 914 static inline void audit_free_module(struct audit_context *context) 915 { 916 if (context->type == AUDIT_KERN_MODULE) { 917 kfree(context->module.name); 918 context->module.name = NULL; 919 } 920 } 921 static inline void audit_free_names(struct audit_context *context) 922 { 923 struct audit_names *n, *next; 924 925 list_for_each_entry_safe(n, next, &context->names_list, list) { 926 list_del(&n->list); 927 if (n->name) 928 putname(n->name); 929 if (n->should_free) 930 kfree(n); 931 } 932 context->name_count = 0; 933 path_put(&context->pwd); 934 context->pwd.dentry = NULL; 935 context->pwd.mnt = NULL; 936 } 937 938 static inline void audit_free_aux(struct audit_context *context) 939 { 940 struct audit_aux_data *aux; 941 942 while ((aux = context->aux)) { 943 context->aux = aux->next; 944 kfree(aux); 945 } 946 context->aux = NULL; 947 while ((aux = context->aux_pids)) { 948 context->aux_pids = aux->next; 949 kfree(aux); 950 } 951 context->aux_pids = NULL; 952 } 953 954 /** 955 * audit_reset_context - reset a audit_context structure 956 * @ctx: the audit_context to reset 957 * 958 * All fields in the audit_context will be reset to an initial state, all 959 * references held by fields will be dropped, and private memory will be 960 * released. When this function returns the audit_context will be suitable 961 * for reuse, so long as the passed context is not NULL or a dummy context. 962 */ 963 static void audit_reset_context(struct audit_context *ctx) 964 { 965 if (!ctx) 966 return; 967 968 /* if ctx is non-null, reset the "ctx->state" regardless */ 969 ctx->context = AUDIT_CTX_UNUSED; 970 if (ctx->dummy) 971 return; 972 973 /* 974 * NOTE: It shouldn't matter in what order we release the fields, so 975 * release them in the order in which they appear in the struct; 976 * this gives us some hope of quickly making sure we are 977 * resetting the audit_context properly. 978 * 979 * Other things worth mentioning: 980 * - we don't reset "dummy" 981 * - we don't reset "state", we do reset "current_state" 982 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 983 * - much of this is likely overkill, but play it safe for now 984 * - we really need to work on improving the audit_context struct 985 */ 986 987 ctx->current_state = ctx->state; 988 ctx->serial = 0; 989 ctx->major = 0; 990 ctx->uring_op = 0; 991 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 992 memset(ctx->argv, 0, sizeof(ctx->argv)); 993 ctx->return_code = 0; 994 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 995 ctx->return_valid = AUDITSC_INVALID; 996 audit_free_names(ctx); 997 if (ctx->state != AUDIT_STATE_RECORD) { 998 kfree(ctx->filterkey); 999 ctx->filterkey = NULL; 1000 } 1001 audit_free_aux(ctx); 1002 kfree(ctx->sockaddr); 1003 ctx->sockaddr = NULL; 1004 ctx->sockaddr_len = 0; 1005 ctx->pid = ctx->ppid = 0; 1006 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1007 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1008 ctx->personality = 0; 1009 ctx->arch = 0; 1010 ctx->target_pid = 0; 1011 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1012 ctx->target_sessionid = 0; 1013 ctx->target_sid = 0; 1014 ctx->target_comm[0] = '\0'; 1015 unroll_tree_refs(ctx, NULL, 0); 1016 WARN_ON(!list_empty(&ctx->killed_trees)); 1017 audit_free_module(ctx); 1018 ctx->fds[0] = -1; 1019 audit_proctitle_free(ctx); 1020 ctx->type = 0; /* reset last for audit_free_*() */ 1021 } 1022 1023 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1024 { 1025 struct audit_context *context; 1026 1027 context = kzalloc(sizeof(*context), GFP_KERNEL); 1028 if (!context) 1029 return NULL; 1030 context->context = AUDIT_CTX_UNUSED; 1031 context->state = state; 1032 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1033 INIT_LIST_HEAD(&context->killed_trees); 1034 INIT_LIST_HEAD(&context->names_list); 1035 context->fds[0] = -1; 1036 context->return_valid = AUDITSC_INVALID; 1037 return context; 1038 } 1039 1040 /** 1041 * audit_alloc - allocate an audit context block for a task 1042 * @tsk: task 1043 * 1044 * Filter on the task information and allocate a per-task audit context 1045 * if necessary. Doing so turns on system call auditing for the 1046 * specified task. This is called from copy_process, so no lock is 1047 * needed. 1048 */ 1049 int audit_alloc(struct task_struct *tsk) 1050 { 1051 struct audit_context *context; 1052 enum audit_state state; 1053 char *key = NULL; 1054 1055 if (likely(!audit_ever_enabled)) 1056 return 0; 1057 1058 state = audit_filter_task(tsk, &key); 1059 if (state == AUDIT_STATE_DISABLED) { 1060 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1061 return 0; 1062 } 1063 1064 if (!(context = audit_alloc_context(state))) { 1065 kfree(key); 1066 audit_log_lost("out of memory in audit_alloc"); 1067 return -ENOMEM; 1068 } 1069 context->filterkey = key; 1070 1071 audit_set_context(tsk, context); 1072 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1073 return 0; 1074 } 1075 1076 static inline void audit_free_context(struct audit_context *context) 1077 { 1078 /* resetting is extra work, but it is likely just noise */ 1079 audit_reset_context(context); 1080 free_tree_refs(context); 1081 kfree(context->filterkey); 1082 kfree(context); 1083 } 1084 1085 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1086 kuid_t auid, kuid_t uid, unsigned int sessionid, 1087 u32 sid, char *comm) 1088 { 1089 struct audit_buffer *ab; 1090 char *ctx = NULL; 1091 u32 len; 1092 int rc = 0; 1093 1094 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1095 if (!ab) 1096 return rc; 1097 1098 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1099 from_kuid(&init_user_ns, auid), 1100 from_kuid(&init_user_ns, uid), sessionid); 1101 if (sid) { 1102 if (security_secid_to_secctx(sid, &ctx, &len)) { 1103 audit_log_format(ab, " obj=(none)"); 1104 rc = 1; 1105 } else { 1106 audit_log_format(ab, " obj=%s", ctx); 1107 security_release_secctx(ctx, len); 1108 } 1109 } 1110 audit_log_format(ab, " ocomm="); 1111 audit_log_untrustedstring(ab, comm); 1112 audit_log_end(ab); 1113 1114 return rc; 1115 } 1116 1117 static void audit_log_execve_info(struct audit_context *context, 1118 struct audit_buffer **ab) 1119 { 1120 long len_max; 1121 long len_rem; 1122 long len_full; 1123 long len_buf; 1124 long len_abuf = 0; 1125 long len_tmp; 1126 bool require_data; 1127 bool encode; 1128 unsigned int iter; 1129 unsigned int arg; 1130 char *buf_head; 1131 char *buf; 1132 const char __user *p = (const char __user *)current->mm->arg_start; 1133 1134 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1135 * data we put in the audit record for this argument (see the 1136 * code below) ... at this point in time 96 is plenty */ 1137 char abuf[96]; 1138 1139 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1140 * current value of 7500 is not as important as the fact that it 1141 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1142 * room if we go over a little bit in the logging below */ 1143 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1144 len_max = MAX_EXECVE_AUDIT_LEN; 1145 1146 /* scratch buffer to hold the userspace args */ 1147 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1148 if (!buf_head) { 1149 audit_panic("out of memory for argv string"); 1150 return; 1151 } 1152 buf = buf_head; 1153 1154 audit_log_format(*ab, "argc=%d", context->execve.argc); 1155 1156 len_rem = len_max; 1157 len_buf = 0; 1158 len_full = 0; 1159 require_data = true; 1160 encode = false; 1161 iter = 0; 1162 arg = 0; 1163 do { 1164 /* NOTE: we don't ever want to trust this value for anything 1165 * serious, but the audit record format insists we 1166 * provide an argument length for really long arguments, 1167 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1168 * to use strncpy_from_user() to obtain this value for 1169 * recording in the log, although we don't use it 1170 * anywhere here to avoid a double-fetch problem */ 1171 if (len_full == 0) 1172 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1173 1174 /* read more data from userspace */ 1175 if (require_data) { 1176 /* can we make more room in the buffer? */ 1177 if (buf != buf_head) { 1178 memmove(buf_head, buf, len_buf); 1179 buf = buf_head; 1180 } 1181 1182 /* fetch as much as we can of the argument */ 1183 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1184 len_max - len_buf); 1185 if (len_tmp == -EFAULT) { 1186 /* unable to copy from userspace */ 1187 send_sig(SIGKILL, current, 0); 1188 goto out; 1189 } else if (len_tmp == (len_max - len_buf)) { 1190 /* buffer is not large enough */ 1191 require_data = true; 1192 /* NOTE: if we are going to span multiple 1193 * buffers force the encoding so we stand 1194 * a chance at a sane len_full value and 1195 * consistent record encoding */ 1196 encode = true; 1197 len_full = len_full * 2; 1198 p += len_tmp; 1199 } else { 1200 require_data = false; 1201 if (!encode) 1202 encode = audit_string_contains_control( 1203 buf, len_tmp); 1204 /* try to use a trusted value for len_full */ 1205 if (len_full < len_max) 1206 len_full = (encode ? 1207 len_tmp * 2 : len_tmp); 1208 p += len_tmp + 1; 1209 } 1210 len_buf += len_tmp; 1211 buf_head[len_buf] = '\0'; 1212 1213 /* length of the buffer in the audit record? */ 1214 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1215 } 1216 1217 /* write as much as we can to the audit log */ 1218 if (len_buf >= 0) { 1219 /* NOTE: some magic numbers here - basically if we 1220 * can't fit a reasonable amount of data into the 1221 * existing audit buffer, flush it and start with 1222 * a new buffer */ 1223 if ((sizeof(abuf) + 8) > len_rem) { 1224 len_rem = len_max; 1225 audit_log_end(*ab); 1226 *ab = audit_log_start(context, 1227 GFP_KERNEL, AUDIT_EXECVE); 1228 if (!*ab) 1229 goto out; 1230 } 1231 1232 /* create the non-arg portion of the arg record */ 1233 len_tmp = 0; 1234 if (require_data || (iter > 0) || 1235 ((len_abuf + sizeof(abuf)) > len_rem)) { 1236 if (iter == 0) { 1237 len_tmp += snprintf(&abuf[len_tmp], 1238 sizeof(abuf) - len_tmp, 1239 " a%d_len=%lu", 1240 arg, len_full); 1241 } 1242 len_tmp += snprintf(&abuf[len_tmp], 1243 sizeof(abuf) - len_tmp, 1244 " a%d[%d]=", arg, iter++); 1245 } else 1246 len_tmp += snprintf(&abuf[len_tmp], 1247 sizeof(abuf) - len_tmp, 1248 " a%d=", arg); 1249 WARN_ON(len_tmp >= sizeof(abuf)); 1250 abuf[sizeof(abuf) - 1] = '\0'; 1251 1252 /* log the arg in the audit record */ 1253 audit_log_format(*ab, "%s", abuf); 1254 len_rem -= len_tmp; 1255 len_tmp = len_buf; 1256 if (encode) { 1257 if (len_abuf > len_rem) 1258 len_tmp = len_rem / 2; /* encoding */ 1259 audit_log_n_hex(*ab, buf, len_tmp); 1260 len_rem -= len_tmp * 2; 1261 len_abuf -= len_tmp * 2; 1262 } else { 1263 if (len_abuf > len_rem) 1264 len_tmp = len_rem - 2; /* quotes */ 1265 audit_log_n_string(*ab, buf, len_tmp); 1266 len_rem -= len_tmp + 2; 1267 /* don't subtract the "2" because we still need 1268 * to add quotes to the remaining string */ 1269 len_abuf -= len_tmp; 1270 } 1271 len_buf -= len_tmp; 1272 buf += len_tmp; 1273 } 1274 1275 /* ready to move to the next argument? */ 1276 if ((len_buf == 0) && !require_data) { 1277 arg++; 1278 iter = 0; 1279 len_full = 0; 1280 require_data = true; 1281 encode = false; 1282 } 1283 } while (arg < context->execve.argc); 1284 1285 /* NOTE: the caller handles the final audit_log_end() call */ 1286 1287 out: 1288 kfree(buf_head); 1289 } 1290 1291 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1292 kernel_cap_t *cap) 1293 { 1294 int i; 1295 1296 if (cap_isclear(*cap)) { 1297 audit_log_format(ab, " %s=0", prefix); 1298 return; 1299 } 1300 audit_log_format(ab, " %s=", prefix); 1301 CAP_FOR_EACH_U32(i) 1302 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1303 } 1304 1305 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1306 { 1307 if (name->fcap_ver == -1) { 1308 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1309 return; 1310 } 1311 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1312 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1313 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1314 name->fcap.fE, name->fcap_ver, 1315 from_kuid(&init_user_ns, name->fcap.rootid)); 1316 } 1317 1318 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1319 { 1320 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1321 const struct timespec64 *tk = &context->time.tk_injoffset; 1322 static const char * const ntp_name[] = { 1323 "offset", 1324 "freq", 1325 "status", 1326 "tai", 1327 "tick", 1328 "adjust", 1329 }; 1330 int type; 1331 1332 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1333 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1334 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1335 if (!*ab) { 1336 *ab = audit_log_start(context, 1337 GFP_KERNEL, 1338 AUDIT_TIME_ADJNTPVAL); 1339 if (!*ab) 1340 return; 1341 } 1342 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1343 ntp_name[type], 1344 ntp->vals[type].oldval, 1345 ntp->vals[type].newval); 1346 audit_log_end(*ab); 1347 *ab = NULL; 1348 } 1349 } 1350 } 1351 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1352 if (!*ab) { 1353 *ab = audit_log_start(context, GFP_KERNEL, 1354 AUDIT_TIME_INJOFFSET); 1355 if (!*ab) 1356 return; 1357 } 1358 audit_log_format(*ab, "sec=%lli nsec=%li", 1359 (long long)tk->tv_sec, tk->tv_nsec); 1360 audit_log_end(*ab); 1361 *ab = NULL; 1362 } 1363 } 1364 1365 static void show_special(struct audit_context *context, int *call_panic) 1366 { 1367 struct audit_buffer *ab; 1368 int i; 1369 1370 ab = audit_log_start(context, GFP_KERNEL, context->type); 1371 if (!ab) 1372 return; 1373 1374 switch (context->type) { 1375 case AUDIT_SOCKETCALL: { 1376 int nargs = context->socketcall.nargs; 1377 1378 audit_log_format(ab, "nargs=%d", nargs); 1379 for (i = 0; i < nargs; i++) 1380 audit_log_format(ab, " a%d=%lx", i, 1381 context->socketcall.args[i]); 1382 break; } 1383 case AUDIT_IPC: { 1384 u32 osid = context->ipc.osid; 1385 1386 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1387 from_kuid(&init_user_ns, context->ipc.uid), 1388 from_kgid(&init_user_ns, context->ipc.gid), 1389 context->ipc.mode); 1390 if (osid) { 1391 char *ctx = NULL; 1392 u32 len; 1393 1394 if (security_secid_to_secctx(osid, &ctx, &len)) { 1395 audit_log_format(ab, " osid=%u", osid); 1396 *call_panic = 1; 1397 } else { 1398 audit_log_format(ab, " obj=%s", ctx); 1399 security_release_secctx(ctx, len); 1400 } 1401 } 1402 if (context->ipc.has_perm) { 1403 audit_log_end(ab); 1404 ab = audit_log_start(context, GFP_KERNEL, 1405 AUDIT_IPC_SET_PERM); 1406 if (unlikely(!ab)) 1407 return; 1408 audit_log_format(ab, 1409 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1410 context->ipc.qbytes, 1411 context->ipc.perm_uid, 1412 context->ipc.perm_gid, 1413 context->ipc.perm_mode); 1414 } 1415 break; } 1416 case AUDIT_MQ_OPEN: 1417 audit_log_format(ab, 1418 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1419 "mq_msgsize=%ld mq_curmsgs=%ld", 1420 context->mq_open.oflag, context->mq_open.mode, 1421 context->mq_open.attr.mq_flags, 1422 context->mq_open.attr.mq_maxmsg, 1423 context->mq_open.attr.mq_msgsize, 1424 context->mq_open.attr.mq_curmsgs); 1425 break; 1426 case AUDIT_MQ_SENDRECV: 1427 audit_log_format(ab, 1428 "mqdes=%d msg_len=%zd msg_prio=%u " 1429 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1430 context->mq_sendrecv.mqdes, 1431 context->mq_sendrecv.msg_len, 1432 context->mq_sendrecv.msg_prio, 1433 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1434 context->mq_sendrecv.abs_timeout.tv_nsec); 1435 break; 1436 case AUDIT_MQ_NOTIFY: 1437 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1438 context->mq_notify.mqdes, 1439 context->mq_notify.sigev_signo); 1440 break; 1441 case AUDIT_MQ_GETSETATTR: { 1442 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1443 1444 audit_log_format(ab, 1445 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1446 "mq_curmsgs=%ld ", 1447 context->mq_getsetattr.mqdes, 1448 attr->mq_flags, attr->mq_maxmsg, 1449 attr->mq_msgsize, attr->mq_curmsgs); 1450 break; } 1451 case AUDIT_CAPSET: 1452 audit_log_format(ab, "pid=%d", context->capset.pid); 1453 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1454 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1455 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1456 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1457 break; 1458 case AUDIT_MMAP: 1459 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1460 context->mmap.flags); 1461 break; 1462 case AUDIT_OPENAT2: 1463 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1464 context->openat2.flags, 1465 context->openat2.mode, 1466 context->openat2.resolve); 1467 break; 1468 case AUDIT_EXECVE: 1469 audit_log_execve_info(context, &ab); 1470 break; 1471 case AUDIT_KERN_MODULE: 1472 audit_log_format(ab, "name="); 1473 if (context->module.name) { 1474 audit_log_untrustedstring(ab, context->module.name); 1475 } else 1476 audit_log_format(ab, "(null)"); 1477 1478 break; 1479 case AUDIT_TIME_ADJNTPVAL: 1480 case AUDIT_TIME_INJOFFSET: 1481 /* this call deviates from the rest, eating the buffer */ 1482 audit_log_time(context, &ab); 1483 break; 1484 } 1485 audit_log_end(ab); 1486 } 1487 1488 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1489 { 1490 char *end = proctitle + len - 1; 1491 1492 while (end > proctitle && !isprint(*end)) 1493 end--; 1494 1495 /* catch the case where proctitle is only 1 non-print character */ 1496 len = end - proctitle + 1; 1497 len -= isprint(proctitle[len-1]) == 0; 1498 return len; 1499 } 1500 1501 /* 1502 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1503 * @context: audit_context for the task 1504 * @n: audit_names structure with reportable details 1505 * @path: optional path to report instead of audit_names->name 1506 * @record_num: record number to report when handling a list of names 1507 * @call_panic: optional pointer to int that will be updated if secid fails 1508 */ 1509 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1510 const struct path *path, int record_num, int *call_panic) 1511 { 1512 struct audit_buffer *ab; 1513 1514 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1515 if (!ab) 1516 return; 1517 1518 audit_log_format(ab, "item=%d", record_num); 1519 1520 if (path) 1521 audit_log_d_path(ab, " name=", path); 1522 else if (n->name) { 1523 switch (n->name_len) { 1524 case AUDIT_NAME_FULL: 1525 /* log the full path */ 1526 audit_log_format(ab, " name="); 1527 audit_log_untrustedstring(ab, n->name->name); 1528 break; 1529 case 0: 1530 /* name was specified as a relative path and the 1531 * directory component is the cwd 1532 */ 1533 if (context->pwd.dentry && context->pwd.mnt) 1534 audit_log_d_path(ab, " name=", &context->pwd); 1535 else 1536 audit_log_format(ab, " name=(null)"); 1537 break; 1538 default: 1539 /* log the name's directory component */ 1540 audit_log_format(ab, " name="); 1541 audit_log_n_untrustedstring(ab, n->name->name, 1542 n->name_len); 1543 } 1544 } else 1545 audit_log_format(ab, " name=(null)"); 1546 1547 if (n->ino != AUDIT_INO_UNSET) 1548 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1549 n->ino, 1550 MAJOR(n->dev), 1551 MINOR(n->dev), 1552 n->mode, 1553 from_kuid(&init_user_ns, n->uid), 1554 from_kgid(&init_user_ns, n->gid), 1555 MAJOR(n->rdev), 1556 MINOR(n->rdev)); 1557 if (n->osid != 0) { 1558 char *ctx = NULL; 1559 u32 len; 1560 1561 if (security_secid_to_secctx( 1562 n->osid, &ctx, &len)) { 1563 audit_log_format(ab, " osid=%u", n->osid); 1564 if (call_panic) 1565 *call_panic = 2; 1566 } else { 1567 audit_log_format(ab, " obj=%s", ctx); 1568 security_release_secctx(ctx, len); 1569 } 1570 } 1571 1572 /* log the audit_names record type */ 1573 switch (n->type) { 1574 case AUDIT_TYPE_NORMAL: 1575 audit_log_format(ab, " nametype=NORMAL"); 1576 break; 1577 case AUDIT_TYPE_PARENT: 1578 audit_log_format(ab, " nametype=PARENT"); 1579 break; 1580 case AUDIT_TYPE_CHILD_DELETE: 1581 audit_log_format(ab, " nametype=DELETE"); 1582 break; 1583 case AUDIT_TYPE_CHILD_CREATE: 1584 audit_log_format(ab, " nametype=CREATE"); 1585 break; 1586 default: 1587 audit_log_format(ab, " nametype=UNKNOWN"); 1588 break; 1589 } 1590 1591 audit_log_fcaps(ab, n); 1592 audit_log_end(ab); 1593 } 1594 1595 static void audit_log_proctitle(void) 1596 { 1597 int res; 1598 char *buf; 1599 char *msg = "(null)"; 1600 int len = strlen(msg); 1601 struct audit_context *context = audit_context(); 1602 struct audit_buffer *ab; 1603 1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1605 if (!ab) 1606 return; /* audit_panic or being filtered */ 1607 1608 audit_log_format(ab, "proctitle="); 1609 1610 /* Not cached */ 1611 if (!context->proctitle.value) { 1612 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1613 if (!buf) 1614 goto out; 1615 /* Historically called this from procfs naming */ 1616 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1617 if (res == 0) { 1618 kfree(buf); 1619 goto out; 1620 } 1621 res = audit_proctitle_rtrim(buf, res); 1622 if (res == 0) { 1623 kfree(buf); 1624 goto out; 1625 } 1626 context->proctitle.value = buf; 1627 context->proctitle.len = res; 1628 } 1629 msg = context->proctitle.value; 1630 len = context->proctitle.len; 1631 out: 1632 audit_log_n_untrustedstring(ab, msg, len); 1633 audit_log_end(ab); 1634 } 1635 1636 /** 1637 * audit_log_uring - generate a AUDIT_URINGOP record 1638 * @ctx: the audit context 1639 */ 1640 static void audit_log_uring(struct audit_context *ctx) 1641 { 1642 struct audit_buffer *ab; 1643 const struct cred *cred; 1644 1645 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1646 if (!ab) 1647 return; 1648 cred = current_cred(); 1649 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1650 if (ctx->return_valid != AUDITSC_INVALID) 1651 audit_log_format(ab, " success=%s exit=%ld", 1652 (ctx->return_valid == AUDITSC_SUCCESS ? 1653 "yes" : "no"), 1654 ctx->return_code); 1655 audit_log_format(ab, 1656 " items=%d" 1657 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1658 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1659 ctx->name_count, 1660 task_ppid_nr(current), task_tgid_nr(current), 1661 from_kuid(&init_user_ns, cred->uid), 1662 from_kgid(&init_user_ns, cred->gid), 1663 from_kuid(&init_user_ns, cred->euid), 1664 from_kuid(&init_user_ns, cred->suid), 1665 from_kuid(&init_user_ns, cred->fsuid), 1666 from_kgid(&init_user_ns, cred->egid), 1667 from_kgid(&init_user_ns, cred->sgid), 1668 from_kgid(&init_user_ns, cred->fsgid)); 1669 audit_log_task_context(ab); 1670 audit_log_key(ab, ctx->filterkey); 1671 audit_log_end(ab); 1672 } 1673 1674 static void audit_log_exit(void) 1675 { 1676 int i, call_panic = 0; 1677 struct audit_context *context = audit_context(); 1678 struct audit_buffer *ab; 1679 struct audit_aux_data *aux; 1680 struct audit_names *n; 1681 1682 context->personality = current->personality; 1683 1684 switch (context->context) { 1685 case AUDIT_CTX_SYSCALL: 1686 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1687 if (!ab) 1688 return; 1689 audit_log_format(ab, "arch=%x syscall=%d", 1690 context->arch, context->major); 1691 if (context->personality != PER_LINUX) 1692 audit_log_format(ab, " per=%lx", context->personality); 1693 if (context->return_valid != AUDITSC_INVALID) 1694 audit_log_format(ab, " success=%s exit=%ld", 1695 (context->return_valid == AUDITSC_SUCCESS ? 1696 "yes" : "no"), 1697 context->return_code); 1698 audit_log_format(ab, 1699 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1700 context->argv[0], 1701 context->argv[1], 1702 context->argv[2], 1703 context->argv[3], 1704 context->name_count); 1705 audit_log_task_info(ab); 1706 audit_log_key(ab, context->filterkey); 1707 audit_log_end(ab); 1708 break; 1709 case AUDIT_CTX_URING: 1710 audit_log_uring(context); 1711 break; 1712 default: 1713 BUG(); 1714 break; 1715 } 1716 1717 for (aux = context->aux; aux; aux = aux->next) { 1718 1719 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1720 if (!ab) 1721 continue; /* audit_panic has been called */ 1722 1723 switch (aux->type) { 1724 1725 case AUDIT_BPRM_FCAPS: { 1726 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1727 1728 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1729 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1730 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1731 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1732 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1733 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1734 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1735 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1736 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1737 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1738 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1739 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1740 audit_log_format(ab, " frootid=%d", 1741 from_kuid(&init_user_ns, 1742 axs->fcap.rootid)); 1743 break; } 1744 1745 } 1746 audit_log_end(ab); 1747 } 1748 1749 if (context->type) 1750 show_special(context, &call_panic); 1751 1752 if (context->fds[0] >= 0) { 1753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1754 if (ab) { 1755 audit_log_format(ab, "fd0=%d fd1=%d", 1756 context->fds[0], context->fds[1]); 1757 audit_log_end(ab); 1758 } 1759 } 1760 1761 if (context->sockaddr_len) { 1762 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1763 if (ab) { 1764 audit_log_format(ab, "saddr="); 1765 audit_log_n_hex(ab, (void *)context->sockaddr, 1766 context->sockaddr_len); 1767 audit_log_end(ab); 1768 } 1769 } 1770 1771 for (aux = context->aux_pids; aux; aux = aux->next) { 1772 struct audit_aux_data_pids *axs = (void *)aux; 1773 1774 for (i = 0; i < axs->pid_count; i++) 1775 if (audit_log_pid_context(context, axs->target_pid[i], 1776 axs->target_auid[i], 1777 axs->target_uid[i], 1778 axs->target_sessionid[i], 1779 axs->target_sid[i], 1780 axs->target_comm[i])) 1781 call_panic = 1; 1782 } 1783 1784 if (context->target_pid && 1785 audit_log_pid_context(context, context->target_pid, 1786 context->target_auid, context->target_uid, 1787 context->target_sessionid, 1788 context->target_sid, context->target_comm)) 1789 call_panic = 1; 1790 1791 if (context->pwd.dentry && context->pwd.mnt) { 1792 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1793 if (ab) { 1794 audit_log_d_path(ab, "cwd=", &context->pwd); 1795 audit_log_end(ab); 1796 } 1797 } 1798 1799 i = 0; 1800 list_for_each_entry(n, &context->names_list, list) { 1801 if (n->hidden) 1802 continue; 1803 audit_log_name(context, n, NULL, i++, &call_panic); 1804 } 1805 1806 if (context->context == AUDIT_CTX_SYSCALL) 1807 audit_log_proctitle(); 1808 1809 /* Send end of event record to help user space know we are finished */ 1810 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1811 if (ab) 1812 audit_log_end(ab); 1813 if (call_panic) 1814 audit_panic("error in audit_log_exit()"); 1815 } 1816 1817 /** 1818 * __audit_free - free a per-task audit context 1819 * @tsk: task whose audit context block to free 1820 * 1821 * Called from copy_process, do_exit, and the io_uring code 1822 */ 1823 void __audit_free(struct task_struct *tsk) 1824 { 1825 struct audit_context *context = tsk->audit_context; 1826 1827 if (!context) 1828 return; 1829 1830 /* this may generate CONFIG_CHANGE records */ 1831 if (!list_empty(&context->killed_trees)) 1832 audit_kill_trees(context); 1833 1834 /* We are called either by do_exit() or the fork() error handling code; 1835 * in the former case tsk == current and in the latter tsk is a 1836 * random task_struct that doesn't doesn't have any meaningful data we 1837 * need to log via audit_log_exit(). 1838 */ 1839 if (tsk == current && !context->dummy) { 1840 context->return_valid = AUDITSC_INVALID; 1841 context->return_code = 0; 1842 if (context->context == AUDIT_CTX_SYSCALL) { 1843 audit_filter_syscall(tsk, context); 1844 audit_filter_inodes(tsk, context); 1845 if (context->current_state == AUDIT_STATE_RECORD) 1846 audit_log_exit(); 1847 } else if (context->context == AUDIT_CTX_URING) { 1848 /* TODO: verify this case is real and valid */ 1849 audit_filter_uring(tsk, context); 1850 audit_filter_inodes(tsk, context); 1851 if (context->current_state == AUDIT_STATE_RECORD) 1852 audit_log_uring(context); 1853 } 1854 } 1855 1856 audit_set_context(tsk, NULL); 1857 audit_free_context(context); 1858 } 1859 1860 /** 1861 * audit_return_fixup - fixup the return codes in the audit_context 1862 * @ctx: the audit_context 1863 * @success: true/false value to indicate if the operation succeeded or not 1864 * @code: operation return code 1865 * 1866 * We need to fixup the return code in the audit logs if the actual return 1867 * codes are later going to be fixed by the arch specific signal handlers. 1868 */ 1869 static void audit_return_fixup(struct audit_context *ctx, 1870 int success, long code) 1871 { 1872 /* 1873 * This is actually a test for: 1874 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1875 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1876 * 1877 * but is faster than a bunch of || 1878 */ 1879 if (unlikely(code <= -ERESTARTSYS) && 1880 (code >= -ERESTART_RESTARTBLOCK) && 1881 (code != -ENOIOCTLCMD)) 1882 ctx->return_code = -EINTR; 1883 else 1884 ctx->return_code = code; 1885 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1886 } 1887 1888 /** 1889 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1890 * @op: the io_uring opcode 1891 * 1892 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1893 * operations. This function should only ever be called from 1894 * audit_uring_entry() as we rely on the audit context checking present in that 1895 * function. 1896 */ 1897 void __audit_uring_entry(u8 op) 1898 { 1899 struct audit_context *ctx = audit_context(); 1900 1901 if (ctx->state == AUDIT_STATE_DISABLED) 1902 return; 1903 1904 /* 1905 * NOTE: It's possible that we can be called from the process' context 1906 * before it returns to userspace, and before audit_syscall_exit() 1907 * is called. In this case there is not much to do, just record 1908 * the io_uring details and return. 1909 */ 1910 ctx->uring_op = op; 1911 if (ctx->context == AUDIT_CTX_SYSCALL) 1912 return; 1913 1914 ctx->dummy = !audit_n_rules; 1915 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1916 ctx->prio = 0; 1917 1918 ctx->context = AUDIT_CTX_URING; 1919 ctx->current_state = ctx->state; 1920 ktime_get_coarse_real_ts64(&ctx->ctime); 1921 } 1922 1923 /** 1924 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1925 * @success: true/false value to indicate if the operation succeeded or not 1926 * @code: operation return code 1927 * 1928 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1929 * operations. This function should only ever be called from 1930 * audit_uring_exit() as we rely on the audit context checking present in that 1931 * function. 1932 */ 1933 void __audit_uring_exit(int success, long code) 1934 { 1935 struct audit_context *ctx = audit_context(); 1936 1937 if (ctx->dummy) { 1938 if (ctx->context != AUDIT_CTX_URING) 1939 return; 1940 goto out; 1941 } 1942 1943 if (ctx->context == AUDIT_CTX_SYSCALL) { 1944 /* 1945 * NOTE: See the note in __audit_uring_entry() about the case 1946 * where we may be called from process context before we 1947 * return to userspace via audit_syscall_exit(). In this 1948 * case we simply emit a URINGOP record and bail, the 1949 * normal syscall exit handling will take care of 1950 * everything else. 1951 * It is also worth mentioning that when we are called, 1952 * the current process creds may differ from the creds 1953 * used during the normal syscall processing; keep that 1954 * in mind if/when we move the record generation code. 1955 */ 1956 1957 /* 1958 * We need to filter on the syscall info here to decide if we 1959 * should emit a URINGOP record. I know it seems odd but this 1960 * solves the problem where users have a filter to block *all* 1961 * syscall records in the "exit" filter; we want to preserve 1962 * the behavior here. 1963 */ 1964 audit_filter_syscall(current, ctx); 1965 if (ctx->current_state != AUDIT_STATE_RECORD) 1966 audit_filter_uring(current, ctx); 1967 audit_filter_inodes(current, ctx); 1968 if (ctx->current_state != AUDIT_STATE_RECORD) 1969 return; 1970 1971 audit_log_uring(ctx); 1972 return; 1973 } 1974 1975 /* this may generate CONFIG_CHANGE records */ 1976 if (!list_empty(&ctx->killed_trees)) 1977 audit_kill_trees(ctx); 1978 1979 /* run through both filters to ensure we set the filterkey properly */ 1980 audit_filter_uring(current, ctx); 1981 audit_filter_inodes(current, ctx); 1982 if (ctx->current_state != AUDIT_STATE_RECORD) 1983 goto out; 1984 audit_return_fixup(ctx, success, code); 1985 audit_log_exit(); 1986 1987 out: 1988 audit_reset_context(ctx); 1989 } 1990 1991 /** 1992 * __audit_syscall_entry - fill in an audit record at syscall entry 1993 * @major: major syscall type (function) 1994 * @a1: additional syscall register 1 1995 * @a2: additional syscall register 2 1996 * @a3: additional syscall register 3 1997 * @a4: additional syscall register 4 1998 * 1999 * Fill in audit context at syscall entry. This only happens if the 2000 * audit context was created when the task was created and the state or 2001 * filters demand the audit context be built. If the state from the 2002 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2003 * then the record will be written at syscall exit time (otherwise, it 2004 * will only be written if another part of the kernel requests that it 2005 * be written). 2006 */ 2007 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2008 unsigned long a3, unsigned long a4) 2009 { 2010 struct audit_context *context = audit_context(); 2011 enum audit_state state; 2012 2013 if (!audit_enabled || !context) 2014 return; 2015 2016 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2017 WARN_ON(context->name_count); 2018 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2019 audit_panic("unrecoverable error in audit_syscall_entry()"); 2020 return; 2021 } 2022 2023 state = context->state; 2024 if (state == AUDIT_STATE_DISABLED) 2025 return; 2026 2027 context->dummy = !audit_n_rules; 2028 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2029 context->prio = 0; 2030 if (auditd_test_task(current)) 2031 return; 2032 } 2033 2034 context->arch = syscall_get_arch(current); 2035 context->major = major; 2036 context->argv[0] = a1; 2037 context->argv[1] = a2; 2038 context->argv[2] = a3; 2039 context->argv[3] = a4; 2040 context->context = AUDIT_CTX_SYSCALL; 2041 context->current_state = state; 2042 ktime_get_coarse_real_ts64(&context->ctime); 2043 } 2044 2045 /** 2046 * __audit_syscall_exit - deallocate audit context after a system call 2047 * @success: success value of the syscall 2048 * @return_code: return value of the syscall 2049 * 2050 * Tear down after system call. If the audit context has been marked as 2051 * auditable (either because of the AUDIT_STATE_RECORD state from 2052 * filtering, or because some other part of the kernel wrote an audit 2053 * message), then write out the syscall information. In call cases, 2054 * free the names stored from getname(). 2055 */ 2056 void __audit_syscall_exit(int success, long return_code) 2057 { 2058 struct audit_context *context = audit_context(); 2059 2060 if (!context || context->dummy || 2061 context->context != AUDIT_CTX_SYSCALL) 2062 goto out; 2063 2064 /* this may generate CONFIG_CHANGE records */ 2065 if (!list_empty(&context->killed_trees)) 2066 audit_kill_trees(context); 2067 2068 /* run through both filters to ensure we set the filterkey properly */ 2069 audit_filter_syscall(current, context); 2070 audit_filter_inodes(current, context); 2071 if (context->current_state < AUDIT_STATE_RECORD) 2072 goto out; 2073 2074 audit_return_fixup(context, success, return_code); 2075 audit_log_exit(); 2076 2077 out: 2078 audit_reset_context(context); 2079 } 2080 2081 static inline void handle_one(const struct inode *inode) 2082 { 2083 struct audit_context *context; 2084 struct audit_tree_refs *p; 2085 struct audit_chunk *chunk; 2086 int count; 2087 2088 if (likely(!inode->i_fsnotify_marks)) 2089 return; 2090 context = audit_context(); 2091 p = context->trees; 2092 count = context->tree_count; 2093 rcu_read_lock(); 2094 chunk = audit_tree_lookup(inode); 2095 rcu_read_unlock(); 2096 if (!chunk) 2097 return; 2098 if (likely(put_tree_ref(context, chunk))) 2099 return; 2100 if (unlikely(!grow_tree_refs(context))) { 2101 pr_warn("out of memory, audit has lost a tree reference\n"); 2102 audit_set_auditable(context); 2103 audit_put_chunk(chunk); 2104 unroll_tree_refs(context, p, count); 2105 return; 2106 } 2107 put_tree_ref(context, chunk); 2108 } 2109 2110 static void handle_path(const struct dentry *dentry) 2111 { 2112 struct audit_context *context; 2113 struct audit_tree_refs *p; 2114 const struct dentry *d, *parent; 2115 struct audit_chunk *drop; 2116 unsigned long seq; 2117 int count; 2118 2119 context = audit_context(); 2120 p = context->trees; 2121 count = context->tree_count; 2122 retry: 2123 drop = NULL; 2124 d = dentry; 2125 rcu_read_lock(); 2126 seq = read_seqbegin(&rename_lock); 2127 for(;;) { 2128 struct inode *inode = d_backing_inode(d); 2129 2130 if (inode && unlikely(inode->i_fsnotify_marks)) { 2131 struct audit_chunk *chunk; 2132 2133 chunk = audit_tree_lookup(inode); 2134 if (chunk) { 2135 if (unlikely(!put_tree_ref(context, chunk))) { 2136 drop = chunk; 2137 break; 2138 } 2139 } 2140 } 2141 parent = d->d_parent; 2142 if (parent == d) 2143 break; 2144 d = parent; 2145 } 2146 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2147 rcu_read_unlock(); 2148 if (!drop) { 2149 /* just a race with rename */ 2150 unroll_tree_refs(context, p, count); 2151 goto retry; 2152 } 2153 audit_put_chunk(drop); 2154 if (grow_tree_refs(context)) { 2155 /* OK, got more space */ 2156 unroll_tree_refs(context, p, count); 2157 goto retry; 2158 } 2159 /* too bad */ 2160 pr_warn("out of memory, audit has lost a tree reference\n"); 2161 unroll_tree_refs(context, p, count); 2162 audit_set_auditable(context); 2163 return; 2164 } 2165 rcu_read_unlock(); 2166 } 2167 2168 static struct audit_names *audit_alloc_name(struct audit_context *context, 2169 unsigned char type) 2170 { 2171 struct audit_names *aname; 2172 2173 if (context->name_count < AUDIT_NAMES) { 2174 aname = &context->preallocated_names[context->name_count]; 2175 memset(aname, 0, sizeof(*aname)); 2176 } else { 2177 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2178 if (!aname) 2179 return NULL; 2180 aname->should_free = true; 2181 } 2182 2183 aname->ino = AUDIT_INO_UNSET; 2184 aname->type = type; 2185 list_add_tail(&aname->list, &context->names_list); 2186 2187 context->name_count++; 2188 if (!context->pwd.dentry) 2189 get_fs_pwd(current->fs, &context->pwd); 2190 return aname; 2191 } 2192 2193 /** 2194 * __audit_reusename - fill out filename with info from existing entry 2195 * @uptr: userland ptr to pathname 2196 * 2197 * Search the audit_names list for the current audit context. If there is an 2198 * existing entry with a matching "uptr" then return the filename 2199 * associated with that audit_name. If not, return NULL. 2200 */ 2201 struct filename * 2202 __audit_reusename(const __user char *uptr) 2203 { 2204 struct audit_context *context = audit_context(); 2205 struct audit_names *n; 2206 2207 list_for_each_entry(n, &context->names_list, list) { 2208 if (!n->name) 2209 continue; 2210 if (n->name->uptr == uptr) { 2211 n->name->refcnt++; 2212 return n->name; 2213 } 2214 } 2215 return NULL; 2216 } 2217 2218 /** 2219 * __audit_getname - add a name to the list 2220 * @name: name to add 2221 * 2222 * Add a name to the list of audit names for this context. 2223 * Called from fs/namei.c:getname(). 2224 */ 2225 void __audit_getname(struct filename *name) 2226 { 2227 struct audit_context *context = audit_context(); 2228 struct audit_names *n; 2229 2230 if (context->context == AUDIT_CTX_UNUSED) 2231 return; 2232 2233 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2234 if (!n) 2235 return; 2236 2237 n->name = name; 2238 n->name_len = AUDIT_NAME_FULL; 2239 name->aname = n; 2240 name->refcnt++; 2241 } 2242 2243 static inline int audit_copy_fcaps(struct audit_names *name, 2244 const struct dentry *dentry) 2245 { 2246 struct cpu_vfs_cap_data caps; 2247 int rc; 2248 2249 if (!dentry) 2250 return 0; 2251 2252 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); 2253 if (rc) 2254 return rc; 2255 2256 name->fcap.permitted = caps.permitted; 2257 name->fcap.inheritable = caps.inheritable; 2258 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2259 name->fcap.rootid = caps.rootid; 2260 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2261 VFS_CAP_REVISION_SHIFT; 2262 2263 return 0; 2264 } 2265 2266 /* Copy inode data into an audit_names. */ 2267 static void audit_copy_inode(struct audit_names *name, 2268 const struct dentry *dentry, 2269 struct inode *inode, unsigned int flags) 2270 { 2271 name->ino = inode->i_ino; 2272 name->dev = inode->i_sb->s_dev; 2273 name->mode = inode->i_mode; 2274 name->uid = inode->i_uid; 2275 name->gid = inode->i_gid; 2276 name->rdev = inode->i_rdev; 2277 security_inode_getsecid(inode, &name->osid); 2278 if (flags & AUDIT_INODE_NOEVAL) { 2279 name->fcap_ver = -1; 2280 return; 2281 } 2282 audit_copy_fcaps(name, dentry); 2283 } 2284 2285 /** 2286 * __audit_inode - store the inode and device from a lookup 2287 * @name: name being audited 2288 * @dentry: dentry being audited 2289 * @flags: attributes for this particular entry 2290 */ 2291 void __audit_inode(struct filename *name, const struct dentry *dentry, 2292 unsigned int flags) 2293 { 2294 struct audit_context *context = audit_context(); 2295 struct inode *inode = d_backing_inode(dentry); 2296 struct audit_names *n; 2297 bool parent = flags & AUDIT_INODE_PARENT; 2298 struct audit_entry *e; 2299 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2300 int i; 2301 2302 if (context->context == AUDIT_CTX_UNUSED) 2303 return; 2304 2305 rcu_read_lock(); 2306 list_for_each_entry_rcu(e, list, list) { 2307 for (i = 0; i < e->rule.field_count; i++) { 2308 struct audit_field *f = &e->rule.fields[i]; 2309 2310 if (f->type == AUDIT_FSTYPE 2311 && audit_comparator(inode->i_sb->s_magic, 2312 f->op, f->val) 2313 && e->rule.action == AUDIT_NEVER) { 2314 rcu_read_unlock(); 2315 return; 2316 } 2317 } 2318 } 2319 rcu_read_unlock(); 2320 2321 if (!name) 2322 goto out_alloc; 2323 2324 /* 2325 * If we have a pointer to an audit_names entry already, then we can 2326 * just use it directly if the type is correct. 2327 */ 2328 n = name->aname; 2329 if (n) { 2330 if (parent) { 2331 if (n->type == AUDIT_TYPE_PARENT || 2332 n->type == AUDIT_TYPE_UNKNOWN) 2333 goto out; 2334 } else { 2335 if (n->type != AUDIT_TYPE_PARENT) 2336 goto out; 2337 } 2338 } 2339 2340 list_for_each_entry_reverse(n, &context->names_list, list) { 2341 if (n->ino) { 2342 /* valid inode number, use that for the comparison */ 2343 if (n->ino != inode->i_ino || 2344 n->dev != inode->i_sb->s_dev) 2345 continue; 2346 } else if (n->name) { 2347 /* inode number has not been set, check the name */ 2348 if (strcmp(n->name->name, name->name)) 2349 continue; 2350 } else 2351 /* no inode and no name (?!) ... this is odd ... */ 2352 continue; 2353 2354 /* match the correct record type */ 2355 if (parent) { 2356 if (n->type == AUDIT_TYPE_PARENT || 2357 n->type == AUDIT_TYPE_UNKNOWN) 2358 goto out; 2359 } else { 2360 if (n->type != AUDIT_TYPE_PARENT) 2361 goto out; 2362 } 2363 } 2364 2365 out_alloc: 2366 /* unable to find an entry with both a matching name and type */ 2367 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2368 if (!n) 2369 return; 2370 if (name) { 2371 n->name = name; 2372 name->refcnt++; 2373 } 2374 2375 out: 2376 if (parent) { 2377 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2378 n->type = AUDIT_TYPE_PARENT; 2379 if (flags & AUDIT_INODE_HIDDEN) 2380 n->hidden = true; 2381 } else { 2382 n->name_len = AUDIT_NAME_FULL; 2383 n->type = AUDIT_TYPE_NORMAL; 2384 } 2385 handle_path(dentry); 2386 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2387 } 2388 2389 void __audit_file(const struct file *file) 2390 { 2391 __audit_inode(NULL, file->f_path.dentry, 0); 2392 } 2393 2394 /** 2395 * __audit_inode_child - collect inode info for created/removed objects 2396 * @parent: inode of dentry parent 2397 * @dentry: dentry being audited 2398 * @type: AUDIT_TYPE_* value that we're looking for 2399 * 2400 * For syscalls that create or remove filesystem objects, audit_inode 2401 * can only collect information for the filesystem object's parent. 2402 * This call updates the audit context with the child's information. 2403 * Syscalls that create a new filesystem object must be hooked after 2404 * the object is created. Syscalls that remove a filesystem object 2405 * must be hooked prior, in order to capture the target inode during 2406 * unsuccessful attempts. 2407 */ 2408 void __audit_inode_child(struct inode *parent, 2409 const struct dentry *dentry, 2410 const unsigned char type) 2411 { 2412 struct audit_context *context = audit_context(); 2413 struct inode *inode = d_backing_inode(dentry); 2414 const struct qstr *dname = &dentry->d_name; 2415 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2416 struct audit_entry *e; 2417 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2418 int i; 2419 2420 if (context->context == AUDIT_CTX_UNUSED) 2421 return; 2422 2423 rcu_read_lock(); 2424 list_for_each_entry_rcu(e, list, list) { 2425 for (i = 0; i < e->rule.field_count; i++) { 2426 struct audit_field *f = &e->rule.fields[i]; 2427 2428 if (f->type == AUDIT_FSTYPE 2429 && audit_comparator(parent->i_sb->s_magic, 2430 f->op, f->val) 2431 && e->rule.action == AUDIT_NEVER) { 2432 rcu_read_unlock(); 2433 return; 2434 } 2435 } 2436 } 2437 rcu_read_unlock(); 2438 2439 if (inode) 2440 handle_one(inode); 2441 2442 /* look for a parent entry first */ 2443 list_for_each_entry(n, &context->names_list, list) { 2444 if (!n->name || 2445 (n->type != AUDIT_TYPE_PARENT && 2446 n->type != AUDIT_TYPE_UNKNOWN)) 2447 continue; 2448 2449 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2450 !audit_compare_dname_path(dname, 2451 n->name->name, n->name_len)) { 2452 if (n->type == AUDIT_TYPE_UNKNOWN) 2453 n->type = AUDIT_TYPE_PARENT; 2454 found_parent = n; 2455 break; 2456 } 2457 } 2458 2459 /* is there a matching child entry? */ 2460 list_for_each_entry(n, &context->names_list, list) { 2461 /* can only match entries that have a name */ 2462 if (!n->name || 2463 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2464 continue; 2465 2466 if (!strcmp(dname->name, n->name->name) || 2467 !audit_compare_dname_path(dname, n->name->name, 2468 found_parent ? 2469 found_parent->name_len : 2470 AUDIT_NAME_FULL)) { 2471 if (n->type == AUDIT_TYPE_UNKNOWN) 2472 n->type = type; 2473 found_child = n; 2474 break; 2475 } 2476 } 2477 2478 if (!found_parent) { 2479 /* create a new, "anonymous" parent record */ 2480 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2481 if (!n) 2482 return; 2483 audit_copy_inode(n, NULL, parent, 0); 2484 } 2485 2486 if (!found_child) { 2487 found_child = audit_alloc_name(context, type); 2488 if (!found_child) 2489 return; 2490 2491 /* Re-use the name belonging to the slot for a matching parent 2492 * directory. All names for this context are relinquished in 2493 * audit_free_names() */ 2494 if (found_parent) { 2495 found_child->name = found_parent->name; 2496 found_child->name_len = AUDIT_NAME_FULL; 2497 found_child->name->refcnt++; 2498 } 2499 } 2500 2501 if (inode) 2502 audit_copy_inode(found_child, dentry, inode, 0); 2503 else 2504 found_child->ino = AUDIT_INO_UNSET; 2505 } 2506 EXPORT_SYMBOL_GPL(__audit_inode_child); 2507 2508 /** 2509 * auditsc_get_stamp - get local copies of audit_context values 2510 * @ctx: audit_context for the task 2511 * @t: timespec64 to store time recorded in the audit_context 2512 * @serial: serial value that is recorded in the audit_context 2513 * 2514 * Also sets the context as auditable. 2515 */ 2516 int auditsc_get_stamp(struct audit_context *ctx, 2517 struct timespec64 *t, unsigned int *serial) 2518 { 2519 if (ctx->context == AUDIT_CTX_UNUSED) 2520 return 0; 2521 if (!ctx->serial) 2522 ctx->serial = audit_serial(); 2523 t->tv_sec = ctx->ctime.tv_sec; 2524 t->tv_nsec = ctx->ctime.tv_nsec; 2525 *serial = ctx->serial; 2526 if (!ctx->prio) { 2527 ctx->prio = 1; 2528 ctx->current_state = AUDIT_STATE_RECORD; 2529 } 2530 return 1; 2531 } 2532 2533 /** 2534 * __audit_mq_open - record audit data for a POSIX MQ open 2535 * @oflag: open flag 2536 * @mode: mode bits 2537 * @attr: queue attributes 2538 * 2539 */ 2540 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2541 { 2542 struct audit_context *context = audit_context(); 2543 2544 if (attr) 2545 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2546 else 2547 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2548 2549 context->mq_open.oflag = oflag; 2550 context->mq_open.mode = mode; 2551 2552 context->type = AUDIT_MQ_OPEN; 2553 } 2554 2555 /** 2556 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2557 * @mqdes: MQ descriptor 2558 * @msg_len: Message length 2559 * @msg_prio: Message priority 2560 * @abs_timeout: Message timeout in absolute time 2561 * 2562 */ 2563 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2564 const struct timespec64 *abs_timeout) 2565 { 2566 struct audit_context *context = audit_context(); 2567 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2568 2569 if (abs_timeout) 2570 memcpy(p, abs_timeout, sizeof(*p)); 2571 else 2572 memset(p, 0, sizeof(*p)); 2573 2574 context->mq_sendrecv.mqdes = mqdes; 2575 context->mq_sendrecv.msg_len = msg_len; 2576 context->mq_sendrecv.msg_prio = msg_prio; 2577 2578 context->type = AUDIT_MQ_SENDRECV; 2579 } 2580 2581 /** 2582 * __audit_mq_notify - record audit data for a POSIX MQ notify 2583 * @mqdes: MQ descriptor 2584 * @notification: Notification event 2585 * 2586 */ 2587 2588 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2589 { 2590 struct audit_context *context = audit_context(); 2591 2592 if (notification) 2593 context->mq_notify.sigev_signo = notification->sigev_signo; 2594 else 2595 context->mq_notify.sigev_signo = 0; 2596 2597 context->mq_notify.mqdes = mqdes; 2598 context->type = AUDIT_MQ_NOTIFY; 2599 } 2600 2601 /** 2602 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2603 * @mqdes: MQ descriptor 2604 * @mqstat: MQ flags 2605 * 2606 */ 2607 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2608 { 2609 struct audit_context *context = audit_context(); 2610 2611 context->mq_getsetattr.mqdes = mqdes; 2612 context->mq_getsetattr.mqstat = *mqstat; 2613 context->type = AUDIT_MQ_GETSETATTR; 2614 } 2615 2616 /** 2617 * __audit_ipc_obj - record audit data for ipc object 2618 * @ipcp: ipc permissions 2619 * 2620 */ 2621 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2622 { 2623 struct audit_context *context = audit_context(); 2624 2625 context->ipc.uid = ipcp->uid; 2626 context->ipc.gid = ipcp->gid; 2627 context->ipc.mode = ipcp->mode; 2628 context->ipc.has_perm = 0; 2629 security_ipc_getsecid(ipcp, &context->ipc.osid); 2630 context->type = AUDIT_IPC; 2631 } 2632 2633 /** 2634 * __audit_ipc_set_perm - record audit data for new ipc permissions 2635 * @qbytes: msgq bytes 2636 * @uid: msgq user id 2637 * @gid: msgq group id 2638 * @mode: msgq mode (permissions) 2639 * 2640 * Called only after audit_ipc_obj(). 2641 */ 2642 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2643 { 2644 struct audit_context *context = audit_context(); 2645 2646 context->ipc.qbytes = qbytes; 2647 context->ipc.perm_uid = uid; 2648 context->ipc.perm_gid = gid; 2649 context->ipc.perm_mode = mode; 2650 context->ipc.has_perm = 1; 2651 } 2652 2653 void __audit_bprm(struct linux_binprm *bprm) 2654 { 2655 struct audit_context *context = audit_context(); 2656 2657 context->type = AUDIT_EXECVE; 2658 context->execve.argc = bprm->argc; 2659 } 2660 2661 2662 /** 2663 * __audit_socketcall - record audit data for sys_socketcall 2664 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2665 * @args: args array 2666 * 2667 */ 2668 int __audit_socketcall(int nargs, unsigned long *args) 2669 { 2670 struct audit_context *context = audit_context(); 2671 2672 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2673 return -EINVAL; 2674 context->type = AUDIT_SOCKETCALL; 2675 context->socketcall.nargs = nargs; 2676 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2677 return 0; 2678 } 2679 2680 /** 2681 * __audit_fd_pair - record audit data for pipe and socketpair 2682 * @fd1: the first file descriptor 2683 * @fd2: the second file descriptor 2684 * 2685 */ 2686 void __audit_fd_pair(int fd1, int fd2) 2687 { 2688 struct audit_context *context = audit_context(); 2689 2690 context->fds[0] = fd1; 2691 context->fds[1] = fd2; 2692 } 2693 2694 /** 2695 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2696 * @len: data length in user space 2697 * @a: data address in kernel space 2698 * 2699 * Returns 0 for success or NULL context or < 0 on error. 2700 */ 2701 int __audit_sockaddr(int len, void *a) 2702 { 2703 struct audit_context *context = audit_context(); 2704 2705 if (!context->sockaddr) { 2706 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2707 2708 if (!p) 2709 return -ENOMEM; 2710 context->sockaddr = p; 2711 } 2712 2713 context->sockaddr_len = len; 2714 memcpy(context->sockaddr, a, len); 2715 return 0; 2716 } 2717 2718 void __audit_ptrace(struct task_struct *t) 2719 { 2720 struct audit_context *context = audit_context(); 2721 2722 context->target_pid = task_tgid_nr(t); 2723 context->target_auid = audit_get_loginuid(t); 2724 context->target_uid = task_uid(t); 2725 context->target_sessionid = audit_get_sessionid(t); 2726 security_task_getsecid_obj(t, &context->target_sid); 2727 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2728 } 2729 2730 /** 2731 * audit_signal_info_syscall - record signal info for syscalls 2732 * @t: task being signaled 2733 * 2734 * If the audit subsystem is being terminated, record the task (pid) 2735 * and uid that is doing that. 2736 */ 2737 int audit_signal_info_syscall(struct task_struct *t) 2738 { 2739 struct audit_aux_data_pids *axp; 2740 struct audit_context *ctx = audit_context(); 2741 kuid_t t_uid = task_uid(t); 2742 2743 if (!audit_signals || audit_dummy_context()) 2744 return 0; 2745 2746 /* optimize the common case by putting first signal recipient directly 2747 * in audit_context */ 2748 if (!ctx->target_pid) { 2749 ctx->target_pid = task_tgid_nr(t); 2750 ctx->target_auid = audit_get_loginuid(t); 2751 ctx->target_uid = t_uid; 2752 ctx->target_sessionid = audit_get_sessionid(t); 2753 security_task_getsecid_obj(t, &ctx->target_sid); 2754 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2755 return 0; 2756 } 2757 2758 axp = (void *)ctx->aux_pids; 2759 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2760 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2761 if (!axp) 2762 return -ENOMEM; 2763 2764 axp->d.type = AUDIT_OBJ_PID; 2765 axp->d.next = ctx->aux_pids; 2766 ctx->aux_pids = (void *)axp; 2767 } 2768 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2769 2770 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2771 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2772 axp->target_uid[axp->pid_count] = t_uid; 2773 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2774 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2775 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2776 axp->pid_count++; 2777 2778 return 0; 2779 } 2780 2781 /** 2782 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2783 * @bprm: pointer to the bprm being processed 2784 * @new: the proposed new credentials 2785 * @old: the old credentials 2786 * 2787 * Simply check if the proc already has the caps given by the file and if not 2788 * store the priv escalation info for later auditing at the end of the syscall 2789 * 2790 * -Eric 2791 */ 2792 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2793 const struct cred *new, const struct cred *old) 2794 { 2795 struct audit_aux_data_bprm_fcaps *ax; 2796 struct audit_context *context = audit_context(); 2797 struct cpu_vfs_cap_data vcaps; 2798 2799 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2800 if (!ax) 2801 return -ENOMEM; 2802 2803 ax->d.type = AUDIT_BPRM_FCAPS; 2804 ax->d.next = context->aux; 2805 context->aux = (void *)ax; 2806 2807 get_vfs_caps_from_disk(&init_user_ns, 2808 bprm->file->f_path.dentry, &vcaps); 2809 2810 ax->fcap.permitted = vcaps.permitted; 2811 ax->fcap.inheritable = vcaps.inheritable; 2812 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2813 ax->fcap.rootid = vcaps.rootid; 2814 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2815 2816 ax->old_pcap.permitted = old->cap_permitted; 2817 ax->old_pcap.inheritable = old->cap_inheritable; 2818 ax->old_pcap.effective = old->cap_effective; 2819 ax->old_pcap.ambient = old->cap_ambient; 2820 2821 ax->new_pcap.permitted = new->cap_permitted; 2822 ax->new_pcap.inheritable = new->cap_inheritable; 2823 ax->new_pcap.effective = new->cap_effective; 2824 ax->new_pcap.ambient = new->cap_ambient; 2825 return 0; 2826 } 2827 2828 /** 2829 * __audit_log_capset - store information about the arguments to the capset syscall 2830 * @new: the new credentials 2831 * @old: the old (current) credentials 2832 * 2833 * Record the arguments userspace sent to sys_capset for later printing by the 2834 * audit system if applicable 2835 */ 2836 void __audit_log_capset(const struct cred *new, const struct cred *old) 2837 { 2838 struct audit_context *context = audit_context(); 2839 2840 context->capset.pid = task_tgid_nr(current); 2841 context->capset.cap.effective = new->cap_effective; 2842 context->capset.cap.inheritable = new->cap_effective; 2843 context->capset.cap.permitted = new->cap_permitted; 2844 context->capset.cap.ambient = new->cap_ambient; 2845 context->type = AUDIT_CAPSET; 2846 } 2847 2848 void __audit_mmap_fd(int fd, int flags) 2849 { 2850 struct audit_context *context = audit_context(); 2851 2852 context->mmap.fd = fd; 2853 context->mmap.flags = flags; 2854 context->type = AUDIT_MMAP; 2855 } 2856 2857 void __audit_openat2_how(struct open_how *how) 2858 { 2859 struct audit_context *context = audit_context(); 2860 2861 context->openat2.flags = how->flags; 2862 context->openat2.mode = how->mode; 2863 context->openat2.resolve = how->resolve; 2864 context->type = AUDIT_OPENAT2; 2865 } 2866 2867 void __audit_log_kern_module(char *name) 2868 { 2869 struct audit_context *context = audit_context(); 2870 2871 context->module.name = kstrdup(name, GFP_KERNEL); 2872 if (!context->module.name) 2873 audit_log_lost("out of memory in __audit_log_kern_module"); 2874 context->type = AUDIT_KERN_MODULE; 2875 } 2876 2877 void __audit_fanotify(unsigned int response) 2878 { 2879 audit_log(audit_context(), GFP_KERNEL, 2880 AUDIT_FANOTIFY, "resp=%u", response); 2881 } 2882 2883 void __audit_tk_injoffset(struct timespec64 offset) 2884 { 2885 struct audit_context *context = audit_context(); 2886 2887 /* only set type if not already set by NTP */ 2888 if (!context->type) 2889 context->type = AUDIT_TIME_INJOFFSET; 2890 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2891 } 2892 2893 void __audit_ntp_log(const struct audit_ntp_data *ad) 2894 { 2895 struct audit_context *context = audit_context(); 2896 int type; 2897 2898 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2899 if (ad->vals[type].newval != ad->vals[type].oldval) { 2900 /* unconditionally set type, overwriting TK */ 2901 context->type = AUDIT_TIME_ADJNTPVAL; 2902 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2903 break; 2904 } 2905 } 2906 2907 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2908 enum audit_nfcfgop op, gfp_t gfp) 2909 { 2910 struct audit_buffer *ab; 2911 char comm[sizeof(current->comm)]; 2912 2913 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2914 if (!ab) 2915 return; 2916 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2917 name, af, nentries, audit_nfcfgs[op].s); 2918 2919 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2920 audit_log_task_context(ab); /* subj= */ 2921 audit_log_format(ab, " comm="); 2922 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2923 audit_log_end(ab); 2924 } 2925 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2926 2927 static void audit_log_task(struct audit_buffer *ab) 2928 { 2929 kuid_t auid, uid; 2930 kgid_t gid; 2931 unsigned int sessionid; 2932 char comm[sizeof(current->comm)]; 2933 2934 auid = audit_get_loginuid(current); 2935 sessionid = audit_get_sessionid(current); 2936 current_uid_gid(&uid, &gid); 2937 2938 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2939 from_kuid(&init_user_ns, auid), 2940 from_kuid(&init_user_ns, uid), 2941 from_kgid(&init_user_ns, gid), 2942 sessionid); 2943 audit_log_task_context(ab); 2944 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2945 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2946 audit_log_d_path_exe(ab, current->mm); 2947 } 2948 2949 /** 2950 * audit_core_dumps - record information about processes that end abnormally 2951 * @signr: signal value 2952 * 2953 * If a process ends with a core dump, something fishy is going on and we 2954 * should record the event for investigation. 2955 */ 2956 void audit_core_dumps(long signr) 2957 { 2958 struct audit_buffer *ab; 2959 2960 if (!audit_enabled) 2961 return; 2962 2963 if (signr == SIGQUIT) /* don't care for those */ 2964 return; 2965 2966 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2967 if (unlikely(!ab)) 2968 return; 2969 audit_log_task(ab); 2970 audit_log_format(ab, " sig=%ld res=1", signr); 2971 audit_log_end(ab); 2972 } 2973 2974 /** 2975 * audit_seccomp - record information about a seccomp action 2976 * @syscall: syscall number 2977 * @signr: signal value 2978 * @code: the seccomp action 2979 * 2980 * Record the information associated with a seccomp action. Event filtering for 2981 * seccomp actions that are not to be logged is done in seccomp_log(). 2982 * Therefore, this function forces auditing independent of the audit_enabled 2983 * and dummy context state because seccomp actions should be logged even when 2984 * audit is not in use. 2985 */ 2986 void audit_seccomp(unsigned long syscall, long signr, int code) 2987 { 2988 struct audit_buffer *ab; 2989 2990 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2991 if (unlikely(!ab)) 2992 return; 2993 audit_log_task(ab); 2994 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2995 signr, syscall_get_arch(current), syscall, 2996 in_compat_syscall(), KSTK_EIP(current), code); 2997 audit_log_end(ab); 2998 } 2999 3000 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3001 int res) 3002 { 3003 struct audit_buffer *ab; 3004 3005 if (!audit_enabled) 3006 return; 3007 3008 ab = audit_log_start(audit_context(), GFP_KERNEL, 3009 AUDIT_CONFIG_CHANGE); 3010 if (unlikely(!ab)) 3011 return; 3012 3013 audit_log_format(ab, 3014 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3015 names, old_names, res); 3016 audit_log_end(ab); 3017 } 3018 3019 struct list_head *audit_killed_trees(void) 3020 { 3021 struct audit_context *ctx = audit_context(); 3022 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3023 return NULL; 3024 return &ctx->killed_trees; 3025 } 3026