1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <linux/uaccess.h> 76 #include <linux/fsnotify_backend.h> 77 #include <uapi/linux/limits.h> 78 #include <uapi/linux/netfilter/nf_tables.h> 79 80 #include "audit.h" 81 82 /* flags stating the success for a syscall */ 83 #define AUDITSC_INVALID 0 84 #define AUDITSC_SUCCESS 1 85 #define AUDITSC_FAILURE 2 86 87 /* no execve audit message should be longer than this (userspace limits), 88 * see the note near the top of audit_log_execve_info() about this value */ 89 #define MAX_EXECVE_AUDIT_LEN 7500 90 91 /* max length to print of cmdline/proctitle value during audit */ 92 #define MAX_PROCTITLE_AUDIT_LEN 128 93 94 /* number of audit rules */ 95 int audit_n_rules; 96 97 /* determines whether we collect data for signals sent */ 98 int audit_signals; 99 100 struct audit_aux_data { 101 struct audit_aux_data *next; 102 int type; 103 }; 104 105 /* Number of target pids per aux struct. */ 106 #define AUDIT_AUX_PIDS 16 107 108 struct audit_aux_data_pids { 109 struct audit_aux_data d; 110 pid_t target_pid[AUDIT_AUX_PIDS]; 111 kuid_t target_auid[AUDIT_AUX_PIDS]; 112 kuid_t target_uid[AUDIT_AUX_PIDS]; 113 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 114 u32 target_sid[AUDIT_AUX_PIDS]; 115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 116 int pid_count; 117 }; 118 119 struct audit_aux_data_bprm_fcaps { 120 struct audit_aux_data d; 121 struct audit_cap_data fcap; 122 unsigned int fcap_ver; 123 struct audit_cap_data old_pcap; 124 struct audit_cap_data new_pcap; 125 }; 126 127 struct audit_tree_refs { 128 struct audit_tree_refs *next; 129 struct audit_chunk *c[31]; 130 }; 131 132 struct audit_nfcfgop_tab { 133 enum audit_nfcfgop op; 134 const char *s; 135 }; 136 137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 138 { AUDIT_XT_OP_REGISTER, "xt_register" }, 139 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 157 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 158 }; 159 160 static int audit_match_perm(struct audit_context *ctx, int mask) 161 { 162 unsigned n; 163 if (unlikely(!ctx)) 164 return 0; 165 n = ctx->major; 166 167 switch (audit_classify_syscall(ctx->arch, n)) { 168 case 0: /* native */ 169 if ((mask & AUDIT_PERM_WRITE) && 170 audit_match_class(AUDIT_CLASS_WRITE, n)) 171 return 1; 172 if ((mask & AUDIT_PERM_READ) && 173 audit_match_class(AUDIT_CLASS_READ, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_ATTR) && 176 audit_match_class(AUDIT_CLASS_CHATTR, n)) 177 return 1; 178 return 0; 179 case 1: /* 32bit on biarch */ 180 if ((mask & AUDIT_PERM_WRITE) && 181 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 182 return 1; 183 if ((mask & AUDIT_PERM_READ) && 184 audit_match_class(AUDIT_CLASS_READ_32, n)) 185 return 1; 186 if ((mask & AUDIT_PERM_ATTR) && 187 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 188 return 1; 189 return 0; 190 case 2: /* open */ 191 return mask & ACC_MODE(ctx->argv[1]); 192 case 3: /* openat */ 193 return mask & ACC_MODE(ctx->argv[2]); 194 case 4: /* socketcall */ 195 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 196 case 5: /* execve */ 197 return mask & AUDIT_PERM_EXEC; 198 default: 199 return 0; 200 } 201 } 202 203 static int audit_match_filetype(struct audit_context *ctx, int val) 204 { 205 struct audit_names *n; 206 umode_t mode = (umode_t)val; 207 208 if (unlikely(!ctx)) 209 return 0; 210 211 list_for_each_entry(n, &ctx->names_list, list) { 212 if ((n->ino != AUDIT_INO_UNSET) && 213 ((n->mode & S_IFMT) == mode)) 214 return 1; 215 } 216 217 return 0; 218 } 219 220 /* 221 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 222 * ->first_trees points to its beginning, ->trees - to the current end of data. 223 * ->tree_count is the number of free entries in array pointed to by ->trees. 224 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 225 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 226 * it's going to remain 1-element for almost any setup) until we free context itself. 227 * References in it _are_ dropped - at the same time we free/drop aux stuff. 228 */ 229 230 static void audit_set_auditable(struct audit_context *ctx) 231 { 232 if (!ctx->prio) { 233 ctx->prio = 1; 234 ctx->current_state = AUDIT_RECORD_CONTEXT; 235 } 236 } 237 238 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 239 { 240 struct audit_tree_refs *p = ctx->trees; 241 int left = ctx->tree_count; 242 if (likely(left)) { 243 p->c[--left] = chunk; 244 ctx->tree_count = left; 245 return 1; 246 } 247 if (!p) 248 return 0; 249 p = p->next; 250 if (p) { 251 p->c[30] = chunk; 252 ctx->trees = p; 253 ctx->tree_count = 30; 254 return 1; 255 } 256 return 0; 257 } 258 259 static int grow_tree_refs(struct audit_context *ctx) 260 { 261 struct audit_tree_refs *p = ctx->trees; 262 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 263 if (!ctx->trees) { 264 ctx->trees = p; 265 return 0; 266 } 267 if (p) 268 p->next = ctx->trees; 269 else 270 ctx->first_trees = ctx->trees; 271 ctx->tree_count = 31; 272 return 1; 273 } 274 275 static void unroll_tree_refs(struct audit_context *ctx, 276 struct audit_tree_refs *p, int count) 277 { 278 struct audit_tree_refs *q; 279 int n; 280 if (!p) { 281 /* we started with empty chain */ 282 p = ctx->first_trees; 283 count = 31; 284 /* if the very first allocation has failed, nothing to do */ 285 if (!p) 286 return; 287 } 288 n = count; 289 for (q = p; q != ctx->trees; q = q->next, n = 31) { 290 while (n--) { 291 audit_put_chunk(q->c[n]); 292 q->c[n] = NULL; 293 } 294 } 295 while (n-- > ctx->tree_count) { 296 audit_put_chunk(q->c[n]); 297 q->c[n] = NULL; 298 } 299 ctx->trees = p; 300 ctx->tree_count = count; 301 } 302 303 static void free_tree_refs(struct audit_context *ctx) 304 { 305 struct audit_tree_refs *p, *q; 306 for (p = ctx->first_trees; p; p = q) { 307 q = p->next; 308 kfree(p); 309 } 310 } 311 312 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 313 { 314 struct audit_tree_refs *p; 315 int n; 316 if (!tree) 317 return 0; 318 /* full ones */ 319 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 320 for (n = 0; n < 31; n++) 321 if (audit_tree_match(p->c[n], tree)) 322 return 1; 323 } 324 /* partial */ 325 if (p) { 326 for (n = ctx->tree_count; n < 31; n++) 327 if (audit_tree_match(p->c[n], tree)) 328 return 1; 329 } 330 return 0; 331 } 332 333 static int audit_compare_uid(kuid_t uid, 334 struct audit_names *name, 335 struct audit_field *f, 336 struct audit_context *ctx) 337 { 338 struct audit_names *n; 339 int rc; 340 341 if (name) { 342 rc = audit_uid_comparator(uid, f->op, name->uid); 343 if (rc) 344 return rc; 345 } 346 347 if (ctx) { 348 list_for_each_entry(n, &ctx->names_list, list) { 349 rc = audit_uid_comparator(uid, f->op, n->uid); 350 if (rc) 351 return rc; 352 } 353 } 354 return 0; 355 } 356 357 static int audit_compare_gid(kgid_t gid, 358 struct audit_names *name, 359 struct audit_field *f, 360 struct audit_context *ctx) 361 { 362 struct audit_names *n; 363 int rc; 364 365 if (name) { 366 rc = audit_gid_comparator(gid, f->op, name->gid); 367 if (rc) 368 return rc; 369 } 370 371 if (ctx) { 372 list_for_each_entry(n, &ctx->names_list, list) { 373 rc = audit_gid_comparator(gid, f->op, n->gid); 374 if (rc) 375 return rc; 376 } 377 } 378 return 0; 379 } 380 381 static int audit_field_compare(struct task_struct *tsk, 382 const struct cred *cred, 383 struct audit_field *f, 384 struct audit_context *ctx, 385 struct audit_names *name) 386 { 387 switch (f->val) { 388 /* process to file object comparisons */ 389 case AUDIT_COMPARE_UID_TO_OBJ_UID: 390 return audit_compare_uid(cred->uid, name, f, ctx); 391 case AUDIT_COMPARE_GID_TO_OBJ_GID: 392 return audit_compare_gid(cred->gid, name, f, ctx); 393 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 394 return audit_compare_uid(cred->euid, name, f, ctx); 395 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 396 return audit_compare_gid(cred->egid, name, f, ctx); 397 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 398 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 399 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 400 return audit_compare_uid(cred->suid, name, f, ctx); 401 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 402 return audit_compare_gid(cred->sgid, name, f, ctx); 403 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 404 return audit_compare_uid(cred->fsuid, name, f, ctx); 405 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 406 return audit_compare_gid(cred->fsgid, name, f, ctx); 407 /* uid comparisons */ 408 case AUDIT_COMPARE_UID_TO_AUID: 409 return audit_uid_comparator(cred->uid, f->op, 410 audit_get_loginuid(tsk)); 411 case AUDIT_COMPARE_UID_TO_EUID: 412 return audit_uid_comparator(cred->uid, f->op, cred->euid); 413 case AUDIT_COMPARE_UID_TO_SUID: 414 return audit_uid_comparator(cred->uid, f->op, cred->suid); 415 case AUDIT_COMPARE_UID_TO_FSUID: 416 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 417 /* auid comparisons */ 418 case AUDIT_COMPARE_AUID_TO_EUID: 419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 420 cred->euid); 421 case AUDIT_COMPARE_AUID_TO_SUID: 422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 423 cred->suid); 424 case AUDIT_COMPARE_AUID_TO_FSUID: 425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 426 cred->fsuid); 427 /* euid comparisons */ 428 case AUDIT_COMPARE_EUID_TO_SUID: 429 return audit_uid_comparator(cred->euid, f->op, cred->suid); 430 case AUDIT_COMPARE_EUID_TO_FSUID: 431 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 432 /* suid comparisons */ 433 case AUDIT_COMPARE_SUID_TO_FSUID: 434 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 435 /* gid comparisons */ 436 case AUDIT_COMPARE_GID_TO_EGID: 437 return audit_gid_comparator(cred->gid, f->op, cred->egid); 438 case AUDIT_COMPARE_GID_TO_SGID: 439 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 440 case AUDIT_COMPARE_GID_TO_FSGID: 441 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 442 /* egid comparisons */ 443 case AUDIT_COMPARE_EGID_TO_SGID: 444 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 445 case AUDIT_COMPARE_EGID_TO_FSGID: 446 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 447 /* sgid comparison */ 448 case AUDIT_COMPARE_SGID_TO_FSGID: 449 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 450 default: 451 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 452 return 0; 453 } 454 return 0; 455 } 456 457 /* Determine if any context name data matches a rule's watch data */ 458 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 459 * otherwise. 460 * 461 * If task_creation is true, this is an explicit indication that we are 462 * filtering a task rule at task creation time. This and tsk == current are 463 * the only situations where tsk->cred may be accessed without an rcu read lock. 464 */ 465 static int audit_filter_rules(struct task_struct *tsk, 466 struct audit_krule *rule, 467 struct audit_context *ctx, 468 struct audit_names *name, 469 enum audit_state *state, 470 bool task_creation) 471 { 472 const struct cred *cred; 473 int i, need_sid = 1; 474 u32 sid; 475 unsigned int sessionid; 476 477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 478 479 for (i = 0; i < rule->field_count; i++) { 480 struct audit_field *f = &rule->fields[i]; 481 struct audit_names *n; 482 int result = 0; 483 pid_t pid; 484 485 switch (f->type) { 486 case AUDIT_PID: 487 pid = task_tgid_nr(tsk); 488 result = audit_comparator(pid, f->op, f->val); 489 break; 490 case AUDIT_PPID: 491 if (ctx) { 492 if (!ctx->ppid) 493 ctx->ppid = task_ppid_nr(tsk); 494 result = audit_comparator(ctx->ppid, f->op, f->val); 495 } 496 break; 497 case AUDIT_EXE: 498 result = audit_exe_compare(tsk, rule->exe); 499 if (f->op == Audit_not_equal) 500 result = !result; 501 break; 502 case AUDIT_UID: 503 result = audit_uid_comparator(cred->uid, f->op, f->uid); 504 break; 505 case AUDIT_EUID: 506 result = audit_uid_comparator(cred->euid, f->op, f->uid); 507 break; 508 case AUDIT_SUID: 509 result = audit_uid_comparator(cred->suid, f->op, f->uid); 510 break; 511 case AUDIT_FSUID: 512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 513 break; 514 case AUDIT_GID: 515 result = audit_gid_comparator(cred->gid, f->op, f->gid); 516 if (f->op == Audit_equal) { 517 if (!result) 518 result = groups_search(cred->group_info, f->gid); 519 } else if (f->op == Audit_not_equal) { 520 if (result) 521 result = !groups_search(cred->group_info, f->gid); 522 } 523 break; 524 case AUDIT_EGID: 525 result = audit_gid_comparator(cred->egid, f->op, f->gid); 526 if (f->op == Audit_equal) { 527 if (!result) 528 result = groups_search(cred->group_info, f->gid); 529 } else if (f->op == Audit_not_equal) { 530 if (result) 531 result = !groups_search(cred->group_info, f->gid); 532 } 533 break; 534 case AUDIT_SGID: 535 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 536 break; 537 case AUDIT_FSGID: 538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 539 break; 540 case AUDIT_SESSIONID: 541 sessionid = audit_get_sessionid(tsk); 542 result = audit_comparator(sessionid, f->op, f->val); 543 break; 544 case AUDIT_PERS: 545 result = audit_comparator(tsk->personality, f->op, f->val); 546 break; 547 case AUDIT_ARCH: 548 if (ctx) 549 result = audit_comparator(ctx->arch, f->op, f->val); 550 break; 551 552 case AUDIT_EXIT: 553 if (ctx && ctx->return_valid != AUDITSC_INVALID) 554 result = audit_comparator(ctx->return_code, f->op, f->val); 555 break; 556 case AUDIT_SUCCESS: 557 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 558 if (f->val) 559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 560 else 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 562 } 563 break; 564 case AUDIT_DEVMAJOR: 565 if (name) { 566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 567 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 568 ++result; 569 } else if (ctx) { 570 list_for_each_entry(n, &ctx->names_list, list) { 571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 573 ++result; 574 break; 575 } 576 } 577 } 578 break; 579 case AUDIT_DEVMINOR: 580 if (name) { 581 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 582 audit_comparator(MINOR(name->rdev), f->op, f->val)) 583 ++result; 584 } else if (ctx) { 585 list_for_each_entry(n, &ctx->names_list, list) { 586 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 587 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 588 ++result; 589 break; 590 } 591 } 592 } 593 break; 594 case AUDIT_INODE: 595 if (name) 596 result = audit_comparator(name->ino, f->op, f->val); 597 else if (ctx) { 598 list_for_each_entry(n, &ctx->names_list, list) { 599 if (audit_comparator(n->ino, f->op, f->val)) { 600 ++result; 601 break; 602 } 603 } 604 } 605 break; 606 case AUDIT_OBJ_UID: 607 if (name) { 608 result = audit_uid_comparator(name->uid, f->op, f->uid); 609 } else if (ctx) { 610 list_for_each_entry(n, &ctx->names_list, list) { 611 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 612 ++result; 613 break; 614 } 615 } 616 } 617 break; 618 case AUDIT_OBJ_GID: 619 if (name) { 620 result = audit_gid_comparator(name->gid, f->op, f->gid); 621 } else if (ctx) { 622 list_for_each_entry(n, &ctx->names_list, list) { 623 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 624 ++result; 625 break; 626 } 627 } 628 } 629 break; 630 case AUDIT_WATCH: 631 if (name) { 632 result = audit_watch_compare(rule->watch, 633 name->ino, 634 name->dev); 635 if (f->op == Audit_not_equal) 636 result = !result; 637 } 638 break; 639 case AUDIT_DIR: 640 if (ctx) { 641 result = match_tree_refs(ctx, rule->tree); 642 if (f->op == Audit_not_equal) 643 result = !result; 644 } 645 break; 646 case AUDIT_LOGINUID: 647 result = audit_uid_comparator(audit_get_loginuid(tsk), 648 f->op, f->uid); 649 break; 650 case AUDIT_LOGINUID_SET: 651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 652 break; 653 case AUDIT_SADDR_FAM: 654 if (ctx->sockaddr) 655 result = audit_comparator(ctx->sockaddr->ss_family, 656 f->op, f->val); 657 break; 658 case AUDIT_SUBJ_USER: 659 case AUDIT_SUBJ_ROLE: 660 case AUDIT_SUBJ_TYPE: 661 case AUDIT_SUBJ_SEN: 662 case AUDIT_SUBJ_CLR: 663 /* NOTE: this may return negative values indicating 664 a temporary error. We simply treat this as a 665 match for now to avoid losing information that 666 may be wanted. An error message will also be 667 logged upon error */ 668 if (f->lsm_rule) { 669 if (need_sid) { 670 security_task_getsecid_subj(tsk, &sid); 671 need_sid = 0; 672 } 673 result = security_audit_rule_match(sid, f->type, 674 f->op, 675 f->lsm_rule); 676 } 677 break; 678 case AUDIT_OBJ_USER: 679 case AUDIT_OBJ_ROLE: 680 case AUDIT_OBJ_TYPE: 681 case AUDIT_OBJ_LEV_LOW: 682 case AUDIT_OBJ_LEV_HIGH: 683 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 684 also applies here */ 685 if (f->lsm_rule) { 686 /* Find files that match */ 687 if (name) { 688 result = security_audit_rule_match( 689 name->osid, 690 f->type, 691 f->op, 692 f->lsm_rule); 693 } else if (ctx) { 694 list_for_each_entry(n, &ctx->names_list, list) { 695 if (security_audit_rule_match( 696 n->osid, 697 f->type, 698 f->op, 699 f->lsm_rule)) { 700 ++result; 701 break; 702 } 703 } 704 } 705 /* Find ipc objects that match */ 706 if (!ctx || ctx->type != AUDIT_IPC) 707 break; 708 if (security_audit_rule_match(ctx->ipc.osid, 709 f->type, f->op, 710 f->lsm_rule)) 711 ++result; 712 } 713 break; 714 case AUDIT_ARG0: 715 case AUDIT_ARG1: 716 case AUDIT_ARG2: 717 case AUDIT_ARG3: 718 if (ctx) 719 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 720 break; 721 case AUDIT_FILTERKEY: 722 /* ignore this field for filtering */ 723 result = 1; 724 break; 725 case AUDIT_PERM: 726 result = audit_match_perm(ctx, f->val); 727 if (f->op == Audit_not_equal) 728 result = !result; 729 break; 730 case AUDIT_FILETYPE: 731 result = audit_match_filetype(ctx, f->val); 732 if (f->op == Audit_not_equal) 733 result = !result; 734 break; 735 case AUDIT_FIELD_COMPARE: 736 result = audit_field_compare(tsk, cred, f, ctx, name); 737 break; 738 } 739 if (!result) 740 return 0; 741 } 742 743 if (ctx) { 744 if (rule->prio <= ctx->prio) 745 return 0; 746 if (rule->filterkey) { 747 kfree(ctx->filterkey); 748 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 749 } 750 ctx->prio = rule->prio; 751 } 752 switch (rule->action) { 753 case AUDIT_NEVER: 754 *state = AUDIT_DISABLED; 755 break; 756 case AUDIT_ALWAYS: 757 *state = AUDIT_RECORD_CONTEXT; 758 break; 759 } 760 return 1; 761 } 762 763 /* At process creation time, we can determine if system-call auditing is 764 * completely disabled for this task. Since we only have the task 765 * structure at this point, we can only check uid and gid. 766 */ 767 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 768 { 769 struct audit_entry *e; 770 enum audit_state state; 771 772 rcu_read_lock(); 773 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 774 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 775 &state, true)) { 776 if (state == AUDIT_RECORD_CONTEXT) 777 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 778 rcu_read_unlock(); 779 return state; 780 } 781 } 782 rcu_read_unlock(); 783 return AUDIT_BUILD_CONTEXT; 784 } 785 786 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 787 { 788 int word, bit; 789 790 if (val > 0xffffffff) 791 return false; 792 793 word = AUDIT_WORD(val); 794 if (word >= AUDIT_BITMASK_SIZE) 795 return false; 796 797 bit = AUDIT_BIT(val); 798 799 return rule->mask[word] & bit; 800 } 801 802 /* At syscall exit time, this filter is called if the audit_state is 803 * not low enough that auditing cannot take place, but is also not 804 * high enough that we already know we have to write an audit record 805 * (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 806 */ 807 static void audit_filter_syscall(struct task_struct *tsk, 808 struct audit_context *ctx) 809 { 810 struct audit_entry *e; 811 enum audit_state state; 812 813 if (auditd_test_task(tsk)) 814 return; 815 816 rcu_read_lock(); 817 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) { 818 if (audit_in_mask(&e->rule, ctx->major) && 819 audit_filter_rules(tsk, &e->rule, ctx, NULL, 820 &state, false)) { 821 rcu_read_unlock(); 822 ctx->current_state = state; 823 return; 824 } 825 } 826 rcu_read_unlock(); 827 return; 828 } 829 830 /* 831 * Given an audit_name check the inode hash table to see if they match. 832 * Called holding the rcu read lock to protect the use of audit_inode_hash 833 */ 834 static int audit_filter_inode_name(struct task_struct *tsk, 835 struct audit_names *n, 836 struct audit_context *ctx) { 837 int h = audit_hash_ino((u32)n->ino); 838 struct list_head *list = &audit_inode_hash[h]; 839 struct audit_entry *e; 840 enum audit_state state; 841 842 list_for_each_entry_rcu(e, list, list) { 843 if (audit_in_mask(&e->rule, ctx->major) && 844 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 845 ctx->current_state = state; 846 return 1; 847 } 848 } 849 return 0; 850 } 851 852 /* At syscall exit time, this filter is called if any audit_names have been 853 * collected during syscall processing. We only check rules in sublists at hash 854 * buckets applicable to the inode numbers in audit_names. 855 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 856 */ 857 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 858 { 859 struct audit_names *n; 860 861 if (auditd_test_task(tsk)) 862 return; 863 864 rcu_read_lock(); 865 866 list_for_each_entry(n, &ctx->names_list, list) { 867 if (audit_filter_inode_name(tsk, n, ctx)) 868 break; 869 } 870 rcu_read_unlock(); 871 } 872 873 static inline void audit_proctitle_free(struct audit_context *context) 874 { 875 kfree(context->proctitle.value); 876 context->proctitle.value = NULL; 877 context->proctitle.len = 0; 878 } 879 880 static inline void audit_free_module(struct audit_context *context) 881 { 882 if (context->type == AUDIT_KERN_MODULE) { 883 kfree(context->module.name); 884 context->module.name = NULL; 885 } 886 } 887 static inline void audit_free_names(struct audit_context *context) 888 { 889 struct audit_names *n, *next; 890 891 list_for_each_entry_safe(n, next, &context->names_list, list) { 892 list_del(&n->list); 893 if (n->name) 894 putname(n->name); 895 if (n->should_free) 896 kfree(n); 897 } 898 context->name_count = 0; 899 path_put(&context->pwd); 900 context->pwd.dentry = NULL; 901 context->pwd.mnt = NULL; 902 } 903 904 static inline void audit_free_aux(struct audit_context *context) 905 { 906 struct audit_aux_data *aux; 907 908 while ((aux = context->aux)) { 909 context->aux = aux->next; 910 kfree(aux); 911 } 912 while ((aux = context->aux_pids)) { 913 context->aux_pids = aux->next; 914 kfree(aux); 915 } 916 } 917 918 static inline struct audit_context *audit_alloc_context(enum audit_state state) 919 { 920 struct audit_context *context; 921 922 context = kzalloc(sizeof(*context), GFP_KERNEL); 923 if (!context) 924 return NULL; 925 context->state = state; 926 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 927 INIT_LIST_HEAD(&context->killed_trees); 928 INIT_LIST_HEAD(&context->names_list); 929 context->fds[0] = -1; 930 context->return_valid = AUDITSC_INVALID; 931 return context; 932 } 933 934 /** 935 * audit_alloc - allocate an audit context block for a task 936 * @tsk: task 937 * 938 * Filter on the task information and allocate a per-task audit context 939 * if necessary. Doing so turns on system call auditing for the 940 * specified task. This is called from copy_process, so no lock is 941 * needed. 942 */ 943 int audit_alloc(struct task_struct *tsk) 944 { 945 struct audit_context *context; 946 enum audit_state state; 947 char *key = NULL; 948 949 if (likely(!audit_ever_enabled)) 950 return 0; /* Return if not auditing. */ 951 952 state = audit_filter_task(tsk, &key); 953 if (state == AUDIT_DISABLED) { 954 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 955 return 0; 956 } 957 958 if (!(context = audit_alloc_context(state))) { 959 kfree(key); 960 audit_log_lost("out of memory in audit_alloc"); 961 return -ENOMEM; 962 } 963 context->filterkey = key; 964 965 audit_set_context(tsk, context); 966 set_task_syscall_work(tsk, SYSCALL_AUDIT); 967 return 0; 968 } 969 970 static inline void audit_free_context(struct audit_context *context) 971 { 972 audit_free_module(context); 973 audit_free_names(context); 974 unroll_tree_refs(context, NULL, 0); 975 free_tree_refs(context); 976 audit_free_aux(context); 977 kfree(context->filterkey); 978 kfree(context->sockaddr); 979 audit_proctitle_free(context); 980 kfree(context); 981 } 982 983 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 984 kuid_t auid, kuid_t uid, unsigned int sessionid, 985 u32 sid, char *comm) 986 { 987 struct audit_buffer *ab; 988 char *ctx = NULL; 989 u32 len; 990 int rc = 0; 991 992 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 993 if (!ab) 994 return rc; 995 996 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 997 from_kuid(&init_user_ns, auid), 998 from_kuid(&init_user_ns, uid), sessionid); 999 if (sid) { 1000 if (security_secid_to_secctx(sid, &ctx, &len)) { 1001 audit_log_format(ab, " obj=(none)"); 1002 rc = 1; 1003 } else { 1004 audit_log_format(ab, " obj=%s", ctx); 1005 security_release_secctx(ctx, len); 1006 } 1007 } 1008 audit_log_format(ab, " ocomm="); 1009 audit_log_untrustedstring(ab, comm); 1010 audit_log_end(ab); 1011 1012 return rc; 1013 } 1014 1015 static void audit_log_execve_info(struct audit_context *context, 1016 struct audit_buffer **ab) 1017 { 1018 long len_max; 1019 long len_rem; 1020 long len_full; 1021 long len_buf; 1022 long len_abuf = 0; 1023 long len_tmp; 1024 bool require_data; 1025 bool encode; 1026 unsigned int iter; 1027 unsigned int arg; 1028 char *buf_head; 1029 char *buf; 1030 const char __user *p = (const char __user *)current->mm->arg_start; 1031 1032 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1033 * data we put in the audit record for this argument (see the 1034 * code below) ... at this point in time 96 is plenty */ 1035 char abuf[96]; 1036 1037 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1038 * current value of 7500 is not as important as the fact that it 1039 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1040 * room if we go over a little bit in the logging below */ 1041 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1042 len_max = MAX_EXECVE_AUDIT_LEN; 1043 1044 /* scratch buffer to hold the userspace args */ 1045 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1046 if (!buf_head) { 1047 audit_panic("out of memory for argv string"); 1048 return; 1049 } 1050 buf = buf_head; 1051 1052 audit_log_format(*ab, "argc=%d", context->execve.argc); 1053 1054 len_rem = len_max; 1055 len_buf = 0; 1056 len_full = 0; 1057 require_data = true; 1058 encode = false; 1059 iter = 0; 1060 arg = 0; 1061 do { 1062 /* NOTE: we don't ever want to trust this value for anything 1063 * serious, but the audit record format insists we 1064 * provide an argument length for really long arguments, 1065 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1066 * to use strncpy_from_user() to obtain this value for 1067 * recording in the log, although we don't use it 1068 * anywhere here to avoid a double-fetch problem */ 1069 if (len_full == 0) 1070 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1071 1072 /* read more data from userspace */ 1073 if (require_data) { 1074 /* can we make more room in the buffer? */ 1075 if (buf != buf_head) { 1076 memmove(buf_head, buf, len_buf); 1077 buf = buf_head; 1078 } 1079 1080 /* fetch as much as we can of the argument */ 1081 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1082 len_max - len_buf); 1083 if (len_tmp == -EFAULT) { 1084 /* unable to copy from userspace */ 1085 send_sig(SIGKILL, current, 0); 1086 goto out; 1087 } else if (len_tmp == (len_max - len_buf)) { 1088 /* buffer is not large enough */ 1089 require_data = true; 1090 /* NOTE: if we are going to span multiple 1091 * buffers force the encoding so we stand 1092 * a chance at a sane len_full value and 1093 * consistent record encoding */ 1094 encode = true; 1095 len_full = len_full * 2; 1096 p += len_tmp; 1097 } else { 1098 require_data = false; 1099 if (!encode) 1100 encode = audit_string_contains_control( 1101 buf, len_tmp); 1102 /* try to use a trusted value for len_full */ 1103 if (len_full < len_max) 1104 len_full = (encode ? 1105 len_tmp * 2 : len_tmp); 1106 p += len_tmp + 1; 1107 } 1108 len_buf += len_tmp; 1109 buf_head[len_buf] = '\0'; 1110 1111 /* length of the buffer in the audit record? */ 1112 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1113 } 1114 1115 /* write as much as we can to the audit log */ 1116 if (len_buf >= 0) { 1117 /* NOTE: some magic numbers here - basically if we 1118 * can't fit a reasonable amount of data into the 1119 * existing audit buffer, flush it and start with 1120 * a new buffer */ 1121 if ((sizeof(abuf) + 8) > len_rem) { 1122 len_rem = len_max; 1123 audit_log_end(*ab); 1124 *ab = audit_log_start(context, 1125 GFP_KERNEL, AUDIT_EXECVE); 1126 if (!*ab) 1127 goto out; 1128 } 1129 1130 /* create the non-arg portion of the arg record */ 1131 len_tmp = 0; 1132 if (require_data || (iter > 0) || 1133 ((len_abuf + sizeof(abuf)) > len_rem)) { 1134 if (iter == 0) { 1135 len_tmp += snprintf(&abuf[len_tmp], 1136 sizeof(abuf) - len_tmp, 1137 " a%d_len=%lu", 1138 arg, len_full); 1139 } 1140 len_tmp += snprintf(&abuf[len_tmp], 1141 sizeof(abuf) - len_tmp, 1142 " a%d[%d]=", arg, iter++); 1143 } else 1144 len_tmp += snprintf(&abuf[len_tmp], 1145 sizeof(abuf) - len_tmp, 1146 " a%d=", arg); 1147 WARN_ON(len_tmp >= sizeof(abuf)); 1148 abuf[sizeof(abuf) - 1] = '\0'; 1149 1150 /* log the arg in the audit record */ 1151 audit_log_format(*ab, "%s", abuf); 1152 len_rem -= len_tmp; 1153 len_tmp = len_buf; 1154 if (encode) { 1155 if (len_abuf > len_rem) 1156 len_tmp = len_rem / 2; /* encoding */ 1157 audit_log_n_hex(*ab, buf, len_tmp); 1158 len_rem -= len_tmp * 2; 1159 len_abuf -= len_tmp * 2; 1160 } else { 1161 if (len_abuf > len_rem) 1162 len_tmp = len_rem - 2; /* quotes */ 1163 audit_log_n_string(*ab, buf, len_tmp); 1164 len_rem -= len_tmp + 2; 1165 /* don't subtract the "2" because we still need 1166 * to add quotes to the remaining string */ 1167 len_abuf -= len_tmp; 1168 } 1169 len_buf -= len_tmp; 1170 buf += len_tmp; 1171 } 1172 1173 /* ready to move to the next argument? */ 1174 if ((len_buf == 0) && !require_data) { 1175 arg++; 1176 iter = 0; 1177 len_full = 0; 1178 require_data = true; 1179 encode = false; 1180 } 1181 } while (arg < context->execve.argc); 1182 1183 /* NOTE: the caller handles the final audit_log_end() call */ 1184 1185 out: 1186 kfree(buf_head); 1187 } 1188 1189 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1190 kernel_cap_t *cap) 1191 { 1192 int i; 1193 1194 if (cap_isclear(*cap)) { 1195 audit_log_format(ab, " %s=0", prefix); 1196 return; 1197 } 1198 audit_log_format(ab, " %s=", prefix); 1199 CAP_FOR_EACH_U32(i) 1200 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1201 } 1202 1203 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1204 { 1205 if (name->fcap_ver == -1) { 1206 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1207 return; 1208 } 1209 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1210 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1211 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1212 name->fcap.fE, name->fcap_ver, 1213 from_kuid(&init_user_ns, name->fcap.rootid)); 1214 } 1215 1216 static void show_special(struct audit_context *context, int *call_panic) 1217 { 1218 struct audit_buffer *ab; 1219 int i; 1220 1221 ab = audit_log_start(context, GFP_KERNEL, context->type); 1222 if (!ab) 1223 return; 1224 1225 switch (context->type) { 1226 case AUDIT_SOCKETCALL: { 1227 int nargs = context->socketcall.nargs; 1228 audit_log_format(ab, "nargs=%d", nargs); 1229 for (i = 0; i < nargs; i++) 1230 audit_log_format(ab, " a%d=%lx", i, 1231 context->socketcall.args[i]); 1232 break; } 1233 case AUDIT_IPC: { 1234 u32 osid = context->ipc.osid; 1235 1236 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1237 from_kuid(&init_user_ns, context->ipc.uid), 1238 from_kgid(&init_user_ns, context->ipc.gid), 1239 context->ipc.mode); 1240 if (osid) { 1241 char *ctx = NULL; 1242 u32 len; 1243 if (security_secid_to_secctx(osid, &ctx, &len)) { 1244 audit_log_format(ab, " osid=%u", osid); 1245 *call_panic = 1; 1246 } else { 1247 audit_log_format(ab, " obj=%s", ctx); 1248 security_release_secctx(ctx, len); 1249 } 1250 } 1251 if (context->ipc.has_perm) { 1252 audit_log_end(ab); 1253 ab = audit_log_start(context, GFP_KERNEL, 1254 AUDIT_IPC_SET_PERM); 1255 if (unlikely(!ab)) 1256 return; 1257 audit_log_format(ab, 1258 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1259 context->ipc.qbytes, 1260 context->ipc.perm_uid, 1261 context->ipc.perm_gid, 1262 context->ipc.perm_mode); 1263 } 1264 break; } 1265 case AUDIT_MQ_OPEN: 1266 audit_log_format(ab, 1267 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1268 "mq_msgsize=%ld mq_curmsgs=%ld", 1269 context->mq_open.oflag, context->mq_open.mode, 1270 context->mq_open.attr.mq_flags, 1271 context->mq_open.attr.mq_maxmsg, 1272 context->mq_open.attr.mq_msgsize, 1273 context->mq_open.attr.mq_curmsgs); 1274 break; 1275 case AUDIT_MQ_SENDRECV: 1276 audit_log_format(ab, 1277 "mqdes=%d msg_len=%zd msg_prio=%u " 1278 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1279 context->mq_sendrecv.mqdes, 1280 context->mq_sendrecv.msg_len, 1281 context->mq_sendrecv.msg_prio, 1282 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1283 context->mq_sendrecv.abs_timeout.tv_nsec); 1284 break; 1285 case AUDIT_MQ_NOTIFY: 1286 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1287 context->mq_notify.mqdes, 1288 context->mq_notify.sigev_signo); 1289 break; 1290 case AUDIT_MQ_GETSETATTR: { 1291 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1292 audit_log_format(ab, 1293 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1294 "mq_curmsgs=%ld ", 1295 context->mq_getsetattr.mqdes, 1296 attr->mq_flags, attr->mq_maxmsg, 1297 attr->mq_msgsize, attr->mq_curmsgs); 1298 break; } 1299 case AUDIT_CAPSET: 1300 audit_log_format(ab, "pid=%d", context->capset.pid); 1301 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1302 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1303 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1304 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1305 break; 1306 case AUDIT_MMAP: 1307 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1308 context->mmap.flags); 1309 break; 1310 case AUDIT_EXECVE: 1311 audit_log_execve_info(context, &ab); 1312 break; 1313 case AUDIT_KERN_MODULE: 1314 audit_log_format(ab, "name="); 1315 if (context->module.name) { 1316 audit_log_untrustedstring(ab, context->module.name); 1317 } else 1318 audit_log_format(ab, "(null)"); 1319 1320 break; 1321 } 1322 audit_log_end(ab); 1323 } 1324 1325 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1326 { 1327 char *end = proctitle + len - 1; 1328 while (end > proctitle && !isprint(*end)) 1329 end--; 1330 1331 /* catch the case where proctitle is only 1 non-print character */ 1332 len = end - proctitle + 1; 1333 len -= isprint(proctitle[len-1]) == 0; 1334 return len; 1335 } 1336 1337 /* 1338 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1339 * @context: audit_context for the task 1340 * @n: audit_names structure with reportable details 1341 * @path: optional path to report instead of audit_names->name 1342 * @record_num: record number to report when handling a list of names 1343 * @call_panic: optional pointer to int that will be updated if secid fails 1344 */ 1345 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1346 const struct path *path, int record_num, int *call_panic) 1347 { 1348 struct audit_buffer *ab; 1349 1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1351 if (!ab) 1352 return; 1353 1354 audit_log_format(ab, "item=%d", record_num); 1355 1356 if (path) 1357 audit_log_d_path(ab, " name=", path); 1358 else if (n->name) { 1359 switch (n->name_len) { 1360 case AUDIT_NAME_FULL: 1361 /* log the full path */ 1362 audit_log_format(ab, " name="); 1363 audit_log_untrustedstring(ab, n->name->name); 1364 break; 1365 case 0: 1366 /* name was specified as a relative path and the 1367 * directory component is the cwd 1368 */ 1369 if (context->pwd.dentry && context->pwd.mnt) 1370 audit_log_d_path(ab, " name=", &context->pwd); 1371 else 1372 audit_log_format(ab, " name=(null)"); 1373 break; 1374 default: 1375 /* log the name's directory component */ 1376 audit_log_format(ab, " name="); 1377 audit_log_n_untrustedstring(ab, n->name->name, 1378 n->name_len); 1379 } 1380 } else 1381 audit_log_format(ab, " name=(null)"); 1382 1383 if (n->ino != AUDIT_INO_UNSET) 1384 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1385 n->ino, 1386 MAJOR(n->dev), 1387 MINOR(n->dev), 1388 n->mode, 1389 from_kuid(&init_user_ns, n->uid), 1390 from_kgid(&init_user_ns, n->gid), 1391 MAJOR(n->rdev), 1392 MINOR(n->rdev)); 1393 if (n->osid != 0) { 1394 char *ctx = NULL; 1395 u32 len; 1396 1397 if (security_secid_to_secctx( 1398 n->osid, &ctx, &len)) { 1399 audit_log_format(ab, " osid=%u", n->osid); 1400 if (call_panic) 1401 *call_panic = 2; 1402 } else { 1403 audit_log_format(ab, " obj=%s", ctx); 1404 security_release_secctx(ctx, len); 1405 } 1406 } 1407 1408 /* log the audit_names record type */ 1409 switch (n->type) { 1410 case AUDIT_TYPE_NORMAL: 1411 audit_log_format(ab, " nametype=NORMAL"); 1412 break; 1413 case AUDIT_TYPE_PARENT: 1414 audit_log_format(ab, " nametype=PARENT"); 1415 break; 1416 case AUDIT_TYPE_CHILD_DELETE: 1417 audit_log_format(ab, " nametype=DELETE"); 1418 break; 1419 case AUDIT_TYPE_CHILD_CREATE: 1420 audit_log_format(ab, " nametype=CREATE"); 1421 break; 1422 default: 1423 audit_log_format(ab, " nametype=UNKNOWN"); 1424 break; 1425 } 1426 1427 audit_log_fcaps(ab, n); 1428 audit_log_end(ab); 1429 } 1430 1431 static void audit_log_proctitle(void) 1432 { 1433 int res; 1434 char *buf; 1435 char *msg = "(null)"; 1436 int len = strlen(msg); 1437 struct audit_context *context = audit_context(); 1438 struct audit_buffer *ab; 1439 1440 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1441 if (!ab) 1442 return; /* audit_panic or being filtered */ 1443 1444 audit_log_format(ab, "proctitle="); 1445 1446 /* Not cached */ 1447 if (!context->proctitle.value) { 1448 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1449 if (!buf) 1450 goto out; 1451 /* Historically called this from procfs naming */ 1452 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1453 if (res == 0) { 1454 kfree(buf); 1455 goto out; 1456 } 1457 res = audit_proctitle_rtrim(buf, res); 1458 if (res == 0) { 1459 kfree(buf); 1460 goto out; 1461 } 1462 context->proctitle.value = buf; 1463 context->proctitle.len = res; 1464 } 1465 msg = context->proctitle.value; 1466 len = context->proctitle.len; 1467 out: 1468 audit_log_n_untrustedstring(ab, msg, len); 1469 audit_log_end(ab); 1470 } 1471 1472 static void audit_log_exit(void) 1473 { 1474 int i, call_panic = 0; 1475 struct audit_context *context = audit_context(); 1476 struct audit_buffer *ab; 1477 struct audit_aux_data *aux; 1478 struct audit_names *n; 1479 1480 context->personality = current->personality; 1481 1482 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1483 if (!ab) 1484 return; /* audit_panic has been called */ 1485 audit_log_format(ab, "arch=%x syscall=%d", 1486 context->arch, context->major); 1487 if (context->personality != PER_LINUX) 1488 audit_log_format(ab, " per=%lx", context->personality); 1489 if (context->return_valid != AUDITSC_INVALID) 1490 audit_log_format(ab, " success=%s exit=%ld", 1491 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1492 context->return_code); 1493 1494 audit_log_format(ab, 1495 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1496 context->argv[0], 1497 context->argv[1], 1498 context->argv[2], 1499 context->argv[3], 1500 context->name_count); 1501 1502 audit_log_task_info(ab); 1503 audit_log_key(ab, context->filterkey); 1504 audit_log_end(ab); 1505 1506 for (aux = context->aux; aux; aux = aux->next) { 1507 1508 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1509 if (!ab) 1510 continue; /* audit_panic has been called */ 1511 1512 switch (aux->type) { 1513 1514 case AUDIT_BPRM_FCAPS: { 1515 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1516 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1517 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1518 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1519 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1520 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1521 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1522 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1523 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1524 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1525 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1526 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1527 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1528 audit_log_format(ab, " frootid=%d", 1529 from_kuid(&init_user_ns, 1530 axs->fcap.rootid)); 1531 break; } 1532 1533 } 1534 audit_log_end(ab); 1535 } 1536 1537 if (context->type) 1538 show_special(context, &call_panic); 1539 1540 if (context->fds[0] >= 0) { 1541 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1542 if (ab) { 1543 audit_log_format(ab, "fd0=%d fd1=%d", 1544 context->fds[0], context->fds[1]); 1545 audit_log_end(ab); 1546 } 1547 } 1548 1549 if (context->sockaddr_len) { 1550 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1551 if (ab) { 1552 audit_log_format(ab, "saddr="); 1553 audit_log_n_hex(ab, (void *)context->sockaddr, 1554 context->sockaddr_len); 1555 audit_log_end(ab); 1556 } 1557 } 1558 1559 for (aux = context->aux_pids; aux; aux = aux->next) { 1560 struct audit_aux_data_pids *axs = (void *)aux; 1561 1562 for (i = 0; i < axs->pid_count; i++) 1563 if (audit_log_pid_context(context, axs->target_pid[i], 1564 axs->target_auid[i], 1565 axs->target_uid[i], 1566 axs->target_sessionid[i], 1567 axs->target_sid[i], 1568 axs->target_comm[i])) 1569 call_panic = 1; 1570 } 1571 1572 if (context->target_pid && 1573 audit_log_pid_context(context, context->target_pid, 1574 context->target_auid, context->target_uid, 1575 context->target_sessionid, 1576 context->target_sid, context->target_comm)) 1577 call_panic = 1; 1578 1579 if (context->pwd.dentry && context->pwd.mnt) { 1580 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1581 if (ab) { 1582 audit_log_d_path(ab, "cwd=", &context->pwd); 1583 audit_log_end(ab); 1584 } 1585 } 1586 1587 i = 0; 1588 list_for_each_entry(n, &context->names_list, list) { 1589 if (n->hidden) 1590 continue; 1591 audit_log_name(context, n, NULL, i++, &call_panic); 1592 } 1593 1594 audit_log_proctitle(); 1595 1596 /* Send end of event record to help user space know we are finished */ 1597 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1598 if (ab) 1599 audit_log_end(ab); 1600 if (call_panic) 1601 audit_panic("error converting sid to string"); 1602 } 1603 1604 /** 1605 * __audit_free - free a per-task audit context 1606 * @tsk: task whose audit context block to free 1607 * 1608 * Called from copy_process and do_exit 1609 */ 1610 void __audit_free(struct task_struct *tsk) 1611 { 1612 struct audit_context *context = tsk->audit_context; 1613 1614 if (!context) 1615 return; 1616 1617 if (!list_empty(&context->killed_trees)) 1618 audit_kill_trees(context); 1619 1620 /* We are called either by do_exit() or the fork() error handling code; 1621 * in the former case tsk == current and in the latter tsk is a 1622 * random task_struct that doesn't doesn't have any meaningful data we 1623 * need to log via audit_log_exit(). 1624 */ 1625 if (tsk == current && !context->dummy && context->in_syscall) { 1626 context->return_valid = AUDITSC_INVALID; 1627 context->return_code = 0; 1628 1629 audit_filter_syscall(tsk, context); 1630 audit_filter_inodes(tsk, context); 1631 if (context->current_state == AUDIT_RECORD_CONTEXT) 1632 audit_log_exit(); 1633 } 1634 1635 audit_set_context(tsk, NULL); 1636 audit_free_context(context); 1637 } 1638 1639 /** 1640 * __audit_syscall_entry - fill in an audit record at syscall entry 1641 * @major: major syscall type (function) 1642 * @a1: additional syscall register 1 1643 * @a2: additional syscall register 2 1644 * @a3: additional syscall register 3 1645 * @a4: additional syscall register 4 1646 * 1647 * Fill in audit context at syscall entry. This only happens if the 1648 * audit context was created when the task was created and the state or 1649 * filters demand the audit context be built. If the state from the 1650 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1651 * then the record will be written at syscall exit time (otherwise, it 1652 * will only be written if another part of the kernel requests that it 1653 * be written). 1654 */ 1655 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1656 unsigned long a3, unsigned long a4) 1657 { 1658 struct audit_context *context = audit_context(); 1659 enum audit_state state; 1660 1661 if (!audit_enabled || !context) 1662 return; 1663 1664 BUG_ON(context->in_syscall || context->name_count); 1665 1666 state = context->state; 1667 if (state == AUDIT_DISABLED) 1668 return; 1669 1670 context->dummy = !audit_n_rules; 1671 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1672 context->prio = 0; 1673 if (auditd_test_task(current)) 1674 return; 1675 } 1676 1677 context->arch = syscall_get_arch(current); 1678 context->major = major; 1679 context->argv[0] = a1; 1680 context->argv[1] = a2; 1681 context->argv[2] = a3; 1682 context->argv[3] = a4; 1683 context->serial = 0; 1684 context->in_syscall = 1; 1685 context->current_state = state; 1686 context->ppid = 0; 1687 ktime_get_coarse_real_ts64(&context->ctime); 1688 } 1689 1690 /** 1691 * __audit_syscall_exit - deallocate audit context after a system call 1692 * @success: success value of the syscall 1693 * @return_code: return value of the syscall 1694 * 1695 * Tear down after system call. If the audit context has been marked as 1696 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1697 * filtering, or because some other part of the kernel wrote an audit 1698 * message), then write out the syscall information. In call cases, 1699 * free the names stored from getname(). 1700 */ 1701 void __audit_syscall_exit(int success, long return_code) 1702 { 1703 struct audit_context *context; 1704 1705 context = audit_context(); 1706 if (!context) 1707 return; 1708 1709 if (!list_empty(&context->killed_trees)) 1710 audit_kill_trees(context); 1711 1712 if (!context->dummy && context->in_syscall) { 1713 if (success) 1714 context->return_valid = AUDITSC_SUCCESS; 1715 else 1716 context->return_valid = AUDITSC_FAILURE; 1717 1718 /* 1719 * we need to fix up the return code in the audit logs if the 1720 * actual return codes are later going to be fixed up by the 1721 * arch specific signal handlers 1722 * 1723 * This is actually a test for: 1724 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1725 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1726 * 1727 * but is faster than a bunch of || 1728 */ 1729 if (unlikely(return_code <= -ERESTARTSYS) && 1730 (return_code >= -ERESTART_RESTARTBLOCK) && 1731 (return_code != -ENOIOCTLCMD)) 1732 context->return_code = -EINTR; 1733 else 1734 context->return_code = return_code; 1735 1736 audit_filter_syscall(current, context); 1737 audit_filter_inodes(current, context); 1738 if (context->current_state == AUDIT_RECORD_CONTEXT) 1739 audit_log_exit(); 1740 } 1741 1742 context->in_syscall = 0; 1743 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1744 1745 audit_free_module(context); 1746 audit_free_names(context); 1747 unroll_tree_refs(context, NULL, 0); 1748 audit_free_aux(context); 1749 context->aux = NULL; 1750 context->aux_pids = NULL; 1751 context->target_pid = 0; 1752 context->target_sid = 0; 1753 context->sockaddr_len = 0; 1754 context->type = 0; 1755 context->fds[0] = -1; 1756 if (context->state != AUDIT_RECORD_CONTEXT) { 1757 kfree(context->filterkey); 1758 context->filterkey = NULL; 1759 } 1760 } 1761 1762 static inline void handle_one(const struct inode *inode) 1763 { 1764 struct audit_context *context; 1765 struct audit_tree_refs *p; 1766 struct audit_chunk *chunk; 1767 int count; 1768 if (likely(!inode->i_fsnotify_marks)) 1769 return; 1770 context = audit_context(); 1771 p = context->trees; 1772 count = context->tree_count; 1773 rcu_read_lock(); 1774 chunk = audit_tree_lookup(inode); 1775 rcu_read_unlock(); 1776 if (!chunk) 1777 return; 1778 if (likely(put_tree_ref(context, chunk))) 1779 return; 1780 if (unlikely(!grow_tree_refs(context))) { 1781 pr_warn("out of memory, audit has lost a tree reference\n"); 1782 audit_set_auditable(context); 1783 audit_put_chunk(chunk); 1784 unroll_tree_refs(context, p, count); 1785 return; 1786 } 1787 put_tree_ref(context, chunk); 1788 } 1789 1790 static void handle_path(const struct dentry *dentry) 1791 { 1792 struct audit_context *context; 1793 struct audit_tree_refs *p; 1794 const struct dentry *d, *parent; 1795 struct audit_chunk *drop; 1796 unsigned long seq; 1797 int count; 1798 1799 context = audit_context(); 1800 p = context->trees; 1801 count = context->tree_count; 1802 retry: 1803 drop = NULL; 1804 d = dentry; 1805 rcu_read_lock(); 1806 seq = read_seqbegin(&rename_lock); 1807 for(;;) { 1808 struct inode *inode = d_backing_inode(d); 1809 if (inode && unlikely(inode->i_fsnotify_marks)) { 1810 struct audit_chunk *chunk; 1811 chunk = audit_tree_lookup(inode); 1812 if (chunk) { 1813 if (unlikely(!put_tree_ref(context, chunk))) { 1814 drop = chunk; 1815 break; 1816 } 1817 } 1818 } 1819 parent = d->d_parent; 1820 if (parent == d) 1821 break; 1822 d = parent; 1823 } 1824 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1825 rcu_read_unlock(); 1826 if (!drop) { 1827 /* just a race with rename */ 1828 unroll_tree_refs(context, p, count); 1829 goto retry; 1830 } 1831 audit_put_chunk(drop); 1832 if (grow_tree_refs(context)) { 1833 /* OK, got more space */ 1834 unroll_tree_refs(context, p, count); 1835 goto retry; 1836 } 1837 /* too bad */ 1838 pr_warn("out of memory, audit has lost a tree reference\n"); 1839 unroll_tree_refs(context, p, count); 1840 audit_set_auditable(context); 1841 return; 1842 } 1843 rcu_read_unlock(); 1844 } 1845 1846 static struct audit_names *audit_alloc_name(struct audit_context *context, 1847 unsigned char type) 1848 { 1849 struct audit_names *aname; 1850 1851 if (context->name_count < AUDIT_NAMES) { 1852 aname = &context->preallocated_names[context->name_count]; 1853 memset(aname, 0, sizeof(*aname)); 1854 } else { 1855 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1856 if (!aname) 1857 return NULL; 1858 aname->should_free = true; 1859 } 1860 1861 aname->ino = AUDIT_INO_UNSET; 1862 aname->type = type; 1863 list_add_tail(&aname->list, &context->names_list); 1864 1865 context->name_count++; 1866 if (!context->pwd.dentry) 1867 get_fs_pwd(current->fs, &context->pwd); 1868 return aname; 1869 } 1870 1871 /** 1872 * __audit_reusename - fill out filename with info from existing entry 1873 * @uptr: userland ptr to pathname 1874 * 1875 * Search the audit_names list for the current audit context. If there is an 1876 * existing entry with a matching "uptr" then return the filename 1877 * associated with that audit_name. If not, return NULL. 1878 */ 1879 struct filename * 1880 __audit_reusename(const __user char *uptr) 1881 { 1882 struct audit_context *context = audit_context(); 1883 struct audit_names *n; 1884 1885 list_for_each_entry(n, &context->names_list, list) { 1886 if (!n->name) 1887 continue; 1888 if (n->name->uptr == uptr) { 1889 n->name->refcnt++; 1890 return n->name; 1891 } 1892 } 1893 return NULL; 1894 } 1895 1896 /** 1897 * __audit_getname - add a name to the list 1898 * @name: name to add 1899 * 1900 * Add a name to the list of audit names for this context. 1901 * Called from fs/namei.c:getname(). 1902 */ 1903 void __audit_getname(struct filename *name) 1904 { 1905 struct audit_context *context = audit_context(); 1906 struct audit_names *n; 1907 1908 if (!context->in_syscall) 1909 return; 1910 1911 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1912 if (!n) 1913 return; 1914 1915 n->name = name; 1916 n->name_len = AUDIT_NAME_FULL; 1917 name->aname = n; 1918 name->refcnt++; 1919 } 1920 1921 static inline int audit_copy_fcaps(struct audit_names *name, 1922 const struct dentry *dentry) 1923 { 1924 struct cpu_vfs_cap_data caps; 1925 int rc; 1926 1927 if (!dentry) 1928 return 0; 1929 1930 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); 1931 if (rc) 1932 return rc; 1933 1934 name->fcap.permitted = caps.permitted; 1935 name->fcap.inheritable = caps.inheritable; 1936 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1937 name->fcap.rootid = caps.rootid; 1938 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1939 VFS_CAP_REVISION_SHIFT; 1940 1941 return 0; 1942 } 1943 1944 /* Copy inode data into an audit_names. */ 1945 static void audit_copy_inode(struct audit_names *name, 1946 const struct dentry *dentry, 1947 struct inode *inode, unsigned int flags) 1948 { 1949 name->ino = inode->i_ino; 1950 name->dev = inode->i_sb->s_dev; 1951 name->mode = inode->i_mode; 1952 name->uid = inode->i_uid; 1953 name->gid = inode->i_gid; 1954 name->rdev = inode->i_rdev; 1955 security_inode_getsecid(inode, &name->osid); 1956 if (flags & AUDIT_INODE_NOEVAL) { 1957 name->fcap_ver = -1; 1958 return; 1959 } 1960 audit_copy_fcaps(name, dentry); 1961 } 1962 1963 /** 1964 * __audit_inode - store the inode and device from a lookup 1965 * @name: name being audited 1966 * @dentry: dentry being audited 1967 * @flags: attributes for this particular entry 1968 */ 1969 void __audit_inode(struct filename *name, const struct dentry *dentry, 1970 unsigned int flags) 1971 { 1972 struct audit_context *context = audit_context(); 1973 struct inode *inode = d_backing_inode(dentry); 1974 struct audit_names *n; 1975 bool parent = flags & AUDIT_INODE_PARENT; 1976 struct audit_entry *e; 1977 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 1978 int i; 1979 1980 if (!context->in_syscall) 1981 return; 1982 1983 rcu_read_lock(); 1984 list_for_each_entry_rcu(e, list, list) { 1985 for (i = 0; i < e->rule.field_count; i++) { 1986 struct audit_field *f = &e->rule.fields[i]; 1987 1988 if (f->type == AUDIT_FSTYPE 1989 && audit_comparator(inode->i_sb->s_magic, 1990 f->op, f->val) 1991 && e->rule.action == AUDIT_NEVER) { 1992 rcu_read_unlock(); 1993 return; 1994 } 1995 } 1996 } 1997 rcu_read_unlock(); 1998 1999 if (!name) 2000 goto out_alloc; 2001 2002 /* 2003 * If we have a pointer to an audit_names entry already, then we can 2004 * just use it directly if the type is correct. 2005 */ 2006 n = name->aname; 2007 if (n) { 2008 if (parent) { 2009 if (n->type == AUDIT_TYPE_PARENT || 2010 n->type == AUDIT_TYPE_UNKNOWN) 2011 goto out; 2012 } else { 2013 if (n->type != AUDIT_TYPE_PARENT) 2014 goto out; 2015 } 2016 } 2017 2018 list_for_each_entry_reverse(n, &context->names_list, list) { 2019 if (n->ino) { 2020 /* valid inode number, use that for the comparison */ 2021 if (n->ino != inode->i_ino || 2022 n->dev != inode->i_sb->s_dev) 2023 continue; 2024 } else if (n->name) { 2025 /* inode number has not been set, check the name */ 2026 if (strcmp(n->name->name, name->name)) 2027 continue; 2028 } else 2029 /* no inode and no name (?!) ... this is odd ... */ 2030 continue; 2031 2032 /* match the correct record type */ 2033 if (parent) { 2034 if (n->type == AUDIT_TYPE_PARENT || 2035 n->type == AUDIT_TYPE_UNKNOWN) 2036 goto out; 2037 } else { 2038 if (n->type != AUDIT_TYPE_PARENT) 2039 goto out; 2040 } 2041 } 2042 2043 out_alloc: 2044 /* unable to find an entry with both a matching name and type */ 2045 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2046 if (!n) 2047 return; 2048 if (name) { 2049 n->name = name; 2050 name->refcnt++; 2051 } 2052 2053 out: 2054 if (parent) { 2055 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2056 n->type = AUDIT_TYPE_PARENT; 2057 if (flags & AUDIT_INODE_HIDDEN) 2058 n->hidden = true; 2059 } else { 2060 n->name_len = AUDIT_NAME_FULL; 2061 n->type = AUDIT_TYPE_NORMAL; 2062 } 2063 handle_path(dentry); 2064 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2065 } 2066 2067 void __audit_file(const struct file *file) 2068 { 2069 __audit_inode(NULL, file->f_path.dentry, 0); 2070 } 2071 2072 /** 2073 * __audit_inode_child - collect inode info for created/removed objects 2074 * @parent: inode of dentry parent 2075 * @dentry: dentry being audited 2076 * @type: AUDIT_TYPE_* value that we're looking for 2077 * 2078 * For syscalls that create or remove filesystem objects, audit_inode 2079 * can only collect information for the filesystem object's parent. 2080 * This call updates the audit context with the child's information. 2081 * Syscalls that create a new filesystem object must be hooked after 2082 * the object is created. Syscalls that remove a filesystem object 2083 * must be hooked prior, in order to capture the target inode during 2084 * unsuccessful attempts. 2085 */ 2086 void __audit_inode_child(struct inode *parent, 2087 const struct dentry *dentry, 2088 const unsigned char type) 2089 { 2090 struct audit_context *context = audit_context(); 2091 struct inode *inode = d_backing_inode(dentry); 2092 const struct qstr *dname = &dentry->d_name; 2093 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2094 struct audit_entry *e; 2095 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2096 int i; 2097 2098 if (!context->in_syscall) 2099 return; 2100 2101 rcu_read_lock(); 2102 list_for_each_entry_rcu(e, list, list) { 2103 for (i = 0; i < e->rule.field_count; i++) { 2104 struct audit_field *f = &e->rule.fields[i]; 2105 2106 if (f->type == AUDIT_FSTYPE 2107 && audit_comparator(parent->i_sb->s_magic, 2108 f->op, f->val) 2109 && e->rule.action == AUDIT_NEVER) { 2110 rcu_read_unlock(); 2111 return; 2112 } 2113 } 2114 } 2115 rcu_read_unlock(); 2116 2117 if (inode) 2118 handle_one(inode); 2119 2120 /* look for a parent entry first */ 2121 list_for_each_entry(n, &context->names_list, list) { 2122 if (!n->name || 2123 (n->type != AUDIT_TYPE_PARENT && 2124 n->type != AUDIT_TYPE_UNKNOWN)) 2125 continue; 2126 2127 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2128 !audit_compare_dname_path(dname, 2129 n->name->name, n->name_len)) { 2130 if (n->type == AUDIT_TYPE_UNKNOWN) 2131 n->type = AUDIT_TYPE_PARENT; 2132 found_parent = n; 2133 break; 2134 } 2135 } 2136 2137 /* is there a matching child entry? */ 2138 list_for_each_entry(n, &context->names_list, list) { 2139 /* can only match entries that have a name */ 2140 if (!n->name || 2141 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2142 continue; 2143 2144 if (!strcmp(dname->name, n->name->name) || 2145 !audit_compare_dname_path(dname, n->name->name, 2146 found_parent ? 2147 found_parent->name_len : 2148 AUDIT_NAME_FULL)) { 2149 if (n->type == AUDIT_TYPE_UNKNOWN) 2150 n->type = type; 2151 found_child = n; 2152 break; 2153 } 2154 } 2155 2156 if (!found_parent) { 2157 /* create a new, "anonymous" parent record */ 2158 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2159 if (!n) 2160 return; 2161 audit_copy_inode(n, NULL, parent, 0); 2162 } 2163 2164 if (!found_child) { 2165 found_child = audit_alloc_name(context, type); 2166 if (!found_child) 2167 return; 2168 2169 /* Re-use the name belonging to the slot for a matching parent 2170 * directory. All names for this context are relinquished in 2171 * audit_free_names() */ 2172 if (found_parent) { 2173 found_child->name = found_parent->name; 2174 found_child->name_len = AUDIT_NAME_FULL; 2175 found_child->name->refcnt++; 2176 } 2177 } 2178 2179 if (inode) 2180 audit_copy_inode(found_child, dentry, inode, 0); 2181 else 2182 found_child->ino = AUDIT_INO_UNSET; 2183 } 2184 EXPORT_SYMBOL_GPL(__audit_inode_child); 2185 2186 /** 2187 * auditsc_get_stamp - get local copies of audit_context values 2188 * @ctx: audit_context for the task 2189 * @t: timespec64 to store time recorded in the audit_context 2190 * @serial: serial value that is recorded in the audit_context 2191 * 2192 * Also sets the context as auditable. 2193 */ 2194 int auditsc_get_stamp(struct audit_context *ctx, 2195 struct timespec64 *t, unsigned int *serial) 2196 { 2197 if (!ctx->in_syscall) 2198 return 0; 2199 if (!ctx->serial) 2200 ctx->serial = audit_serial(); 2201 t->tv_sec = ctx->ctime.tv_sec; 2202 t->tv_nsec = ctx->ctime.tv_nsec; 2203 *serial = ctx->serial; 2204 if (!ctx->prio) { 2205 ctx->prio = 1; 2206 ctx->current_state = AUDIT_RECORD_CONTEXT; 2207 } 2208 return 1; 2209 } 2210 2211 /** 2212 * __audit_mq_open - record audit data for a POSIX MQ open 2213 * @oflag: open flag 2214 * @mode: mode bits 2215 * @attr: queue attributes 2216 * 2217 */ 2218 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2219 { 2220 struct audit_context *context = audit_context(); 2221 2222 if (attr) 2223 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2224 else 2225 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2226 2227 context->mq_open.oflag = oflag; 2228 context->mq_open.mode = mode; 2229 2230 context->type = AUDIT_MQ_OPEN; 2231 } 2232 2233 /** 2234 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2235 * @mqdes: MQ descriptor 2236 * @msg_len: Message length 2237 * @msg_prio: Message priority 2238 * @abs_timeout: Message timeout in absolute time 2239 * 2240 */ 2241 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2242 const struct timespec64 *abs_timeout) 2243 { 2244 struct audit_context *context = audit_context(); 2245 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2246 2247 if (abs_timeout) 2248 memcpy(p, abs_timeout, sizeof(*p)); 2249 else 2250 memset(p, 0, sizeof(*p)); 2251 2252 context->mq_sendrecv.mqdes = mqdes; 2253 context->mq_sendrecv.msg_len = msg_len; 2254 context->mq_sendrecv.msg_prio = msg_prio; 2255 2256 context->type = AUDIT_MQ_SENDRECV; 2257 } 2258 2259 /** 2260 * __audit_mq_notify - record audit data for a POSIX MQ notify 2261 * @mqdes: MQ descriptor 2262 * @notification: Notification event 2263 * 2264 */ 2265 2266 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2267 { 2268 struct audit_context *context = audit_context(); 2269 2270 if (notification) 2271 context->mq_notify.sigev_signo = notification->sigev_signo; 2272 else 2273 context->mq_notify.sigev_signo = 0; 2274 2275 context->mq_notify.mqdes = mqdes; 2276 context->type = AUDIT_MQ_NOTIFY; 2277 } 2278 2279 /** 2280 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2281 * @mqdes: MQ descriptor 2282 * @mqstat: MQ flags 2283 * 2284 */ 2285 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2286 { 2287 struct audit_context *context = audit_context(); 2288 context->mq_getsetattr.mqdes = mqdes; 2289 context->mq_getsetattr.mqstat = *mqstat; 2290 context->type = AUDIT_MQ_GETSETATTR; 2291 } 2292 2293 /** 2294 * __audit_ipc_obj - record audit data for ipc object 2295 * @ipcp: ipc permissions 2296 * 2297 */ 2298 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2299 { 2300 struct audit_context *context = audit_context(); 2301 context->ipc.uid = ipcp->uid; 2302 context->ipc.gid = ipcp->gid; 2303 context->ipc.mode = ipcp->mode; 2304 context->ipc.has_perm = 0; 2305 security_ipc_getsecid(ipcp, &context->ipc.osid); 2306 context->type = AUDIT_IPC; 2307 } 2308 2309 /** 2310 * __audit_ipc_set_perm - record audit data for new ipc permissions 2311 * @qbytes: msgq bytes 2312 * @uid: msgq user id 2313 * @gid: msgq group id 2314 * @mode: msgq mode (permissions) 2315 * 2316 * Called only after audit_ipc_obj(). 2317 */ 2318 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2319 { 2320 struct audit_context *context = audit_context(); 2321 2322 context->ipc.qbytes = qbytes; 2323 context->ipc.perm_uid = uid; 2324 context->ipc.perm_gid = gid; 2325 context->ipc.perm_mode = mode; 2326 context->ipc.has_perm = 1; 2327 } 2328 2329 void __audit_bprm(struct linux_binprm *bprm) 2330 { 2331 struct audit_context *context = audit_context(); 2332 2333 context->type = AUDIT_EXECVE; 2334 context->execve.argc = bprm->argc; 2335 } 2336 2337 2338 /** 2339 * __audit_socketcall - record audit data for sys_socketcall 2340 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2341 * @args: args array 2342 * 2343 */ 2344 int __audit_socketcall(int nargs, unsigned long *args) 2345 { 2346 struct audit_context *context = audit_context(); 2347 2348 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2349 return -EINVAL; 2350 context->type = AUDIT_SOCKETCALL; 2351 context->socketcall.nargs = nargs; 2352 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2353 return 0; 2354 } 2355 2356 /** 2357 * __audit_fd_pair - record audit data for pipe and socketpair 2358 * @fd1: the first file descriptor 2359 * @fd2: the second file descriptor 2360 * 2361 */ 2362 void __audit_fd_pair(int fd1, int fd2) 2363 { 2364 struct audit_context *context = audit_context(); 2365 context->fds[0] = fd1; 2366 context->fds[1] = fd2; 2367 } 2368 2369 /** 2370 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2371 * @len: data length in user space 2372 * @a: data address in kernel space 2373 * 2374 * Returns 0 for success or NULL context or < 0 on error. 2375 */ 2376 int __audit_sockaddr(int len, void *a) 2377 { 2378 struct audit_context *context = audit_context(); 2379 2380 if (!context->sockaddr) { 2381 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2382 if (!p) 2383 return -ENOMEM; 2384 context->sockaddr = p; 2385 } 2386 2387 context->sockaddr_len = len; 2388 memcpy(context->sockaddr, a, len); 2389 return 0; 2390 } 2391 2392 void __audit_ptrace(struct task_struct *t) 2393 { 2394 struct audit_context *context = audit_context(); 2395 2396 context->target_pid = task_tgid_nr(t); 2397 context->target_auid = audit_get_loginuid(t); 2398 context->target_uid = task_uid(t); 2399 context->target_sessionid = audit_get_sessionid(t); 2400 security_task_getsecid_obj(t, &context->target_sid); 2401 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2402 } 2403 2404 /** 2405 * audit_signal_info_syscall - record signal info for syscalls 2406 * @t: task being signaled 2407 * 2408 * If the audit subsystem is being terminated, record the task (pid) 2409 * and uid that is doing that. 2410 */ 2411 int audit_signal_info_syscall(struct task_struct *t) 2412 { 2413 struct audit_aux_data_pids *axp; 2414 struct audit_context *ctx = audit_context(); 2415 kuid_t t_uid = task_uid(t); 2416 2417 if (!audit_signals || audit_dummy_context()) 2418 return 0; 2419 2420 /* optimize the common case by putting first signal recipient directly 2421 * in audit_context */ 2422 if (!ctx->target_pid) { 2423 ctx->target_pid = task_tgid_nr(t); 2424 ctx->target_auid = audit_get_loginuid(t); 2425 ctx->target_uid = t_uid; 2426 ctx->target_sessionid = audit_get_sessionid(t); 2427 security_task_getsecid_obj(t, &ctx->target_sid); 2428 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2429 return 0; 2430 } 2431 2432 axp = (void *)ctx->aux_pids; 2433 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2434 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2435 if (!axp) 2436 return -ENOMEM; 2437 2438 axp->d.type = AUDIT_OBJ_PID; 2439 axp->d.next = ctx->aux_pids; 2440 ctx->aux_pids = (void *)axp; 2441 } 2442 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2443 2444 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2445 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2446 axp->target_uid[axp->pid_count] = t_uid; 2447 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2448 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2449 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2450 axp->pid_count++; 2451 2452 return 0; 2453 } 2454 2455 /** 2456 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2457 * @bprm: pointer to the bprm being processed 2458 * @new: the proposed new credentials 2459 * @old: the old credentials 2460 * 2461 * Simply check if the proc already has the caps given by the file and if not 2462 * store the priv escalation info for later auditing at the end of the syscall 2463 * 2464 * -Eric 2465 */ 2466 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2467 const struct cred *new, const struct cred *old) 2468 { 2469 struct audit_aux_data_bprm_fcaps *ax; 2470 struct audit_context *context = audit_context(); 2471 struct cpu_vfs_cap_data vcaps; 2472 2473 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2474 if (!ax) 2475 return -ENOMEM; 2476 2477 ax->d.type = AUDIT_BPRM_FCAPS; 2478 ax->d.next = context->aux; 2479 context->aux = (void *)ax; 2480 2481 get_vfs_caps_from_disk(&init_user_ns, 2482 bprm->file->f_path.dentry, &vcaps); 2483 2484 ax->fcap.permitted = vcaps.permitted; 2485 ax->fcap.inheritable = vcaps.inheritable; 2486 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2487 ax->fcap.rootid = vcaps.rootid; 2488 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2489 2490 ax->old_pcap.permitted = old->cap_permitted; 2491 ax->old_pcap.inheritable = old->cap_inheritable; 2492 ax->old_pcap.effective = old->cap_effective; 2493 ax->old_pcap.ambient = old->cap_ambient; 2494 2495 ax->new_pcap.permitted = new->cap_permitted; 2496 ax->new_pcap.inheritable = new->cap_inheritable; 2497 ax->new_pcap.effective = new->cap_effective; 2498 ax->new_pcap.ambient = new->cap_ambient; 2499 return 0; 2500 } 2501 2502 /** 2503 * __audit_log_capset - store information about the arguments to the capset syscall 2504 * @new: the new credentials 2505 * @old: the old (current) credentials 2506 * 2507 * Record the arguments userspace sent to sys_capset for later printing by the 2508 * audit system if applicable 2509 */ 2510 void __audit_log_capset(const struct cred *new, const struct cred *old) 2511 { 2512 struct audit_context *context = audit_context(); 2513 context->capset.pid = task_tgid_nr(current); 2514 context->capset.cap.effective = new->cap_effective; 2515 context->capset.cap.inheritable = new->cap_effective; 2516 context->capset.cap.permitted = new->cap_permitted; 2517 context->capset.cap.ambient = new->cap_ambient; 2518 context->type = AUDIT_CAPSET; 2519 } 2520 2521 void __audit_mmap_fd(int fd, int flags) 2522 { 2523 struct audit_context *context = audit_context(); 2524 context->mmap.fd = fd; 2525 context->mmap.flags = flags; 2526 context->type = AUDIT_MMAP; 2527 } 2528 2529 void __audit_log_kern_module(char *name) 2530 { 2531 struct audit_context *context = audit_context(); 2532 2533 context->module.name = kstrdup(name, GFP_KERNEL); 2534 if (!context->module.name) 2535 audit_log_lost("out of memory in __audit_log_kern_module"); 2536 context->type = AUDIT_KERN_MODULE; 2537 } 2538 2539 void __audit_fanotify(unsigned int response) 2540 { 2541 audit_log(audit_context(), GFP_KERNEL, 2542 AUDIT_FANOTIFY, "resp=%u", response); 2543 } 2544 2545 void __audit_tk_injoffset(struct timespec64 offset) 2546 { 2547 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET, 2548 "sec=%lli nsec=%li", 2549 (long long)offset.tv_sec, offset.tv_nsec); 2550 } 2551 2552 static void audit_log_ntp_val(const struct audit_ntp_data *ad, 2553 const char *op, enum audit_ntp_type type) 2554 { 2555 const struct audit_ntp_val *val = &ad->vals[type]; 2556 2557 if (val->newval == val->oldval) 2558 return; 2559 2560 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL, 2561 "op=%s old=%lli new=%lli", op, val->oldval, val->newval); 2562 } 2563 2564 void __audit_ntp_log(const struct audit_ntp_data *ad) 2565 { 2566 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET); 2567 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ); 2568 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS); 2569 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI); 2570 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK); 2571 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST); 2572 } 2573 2574 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2575 enum audit_nfcfgop op, gfp_t gfp) 2576 { 2577 struct audit_buffer *ab; 2578 char comm[sizeof(current->comm)]; 2579 2580 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2581 if (!ab) 2582 return; 2583 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2584 name, af, nentries, audit_nfcfgs[op].s); 2585 2586 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2587 audit_log_task_context(ab); /* subj= */ 2588 audit_log_format(ab, " comm="); 2589 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2590 audit_log_end(ab); 2591 } 2592 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2593 2594 static void audit_log_task(struct audit_buffer *ab) 2595 { 2596 kuid_t auid, uid; 2597 kgid_t gid; 2598 unsigned int sessionid; 2599 char comm[sizeof(current->comm)]; 2600 2601 auid = audit_get_loginuid(current); 2602 sessionid = audit_get_sessionid(current); 2603 current_uid_gid(&uid, &gid); 2604 2605 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2606 from_kuid(&init_user_ns, auid), 2607 from_kuid(&init_user_ns, uid), 2608 from_kgid(&init_user_ns, gid), 2609 sessionid); 2610 audit_log_task_context(ab); 2611 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2612 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2613 audit_log_d_path_exe(ab, current->mm); 2614 } 2615 2616 /** 2617 * audit_core_dumps - record information about processes that end abnormally 2618 * @signr: signal value 2619 * 2620 * If a process ends with a core dump, something fishy is going on and we 2621 * should record the event for investigation. 2622 */ 2623 void audit_core_dumps(long signr) 2624 { 2625 struct audit_buffer *ab; 2626 2627 if (!audit_enabled) 2628 return; 2629 2630 if (signr == SIGQUIT) /* don't care for those */ 2631 return; 2632 2633 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2634 if (unlikely(!ab)) 2635 return; 2636 audit_log_task(ab); 2637 audit_log_format(ab, " sig=%ld res=1", signr); 2638 audit_log_end(ab); 2639 } 2640 2641 /** 2642 * audit_seccomp - record information about a seccomp action 2643 * @syscall: syscall number 2644 * @signr: signal value 2645 * @code: the seccomp action 2646 * 2647 * Record the information associated with a seccomp action. Event filtering for 2648 * seccomp actions that are not to be logged is done in seccomp_log(). 2649 * Therefore, this function forces auditing independent of the audit_enabled 2650 * and dummy context state because seccomp actions should be logged even when 2651 * audit is not in use. 2652 */ 2653 void audit_seccomp(unsigned long syscall, long signr, int code) 2654 { 2655 struct audit_buffer *ab; 2656 2657 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2658 if (unlikely(!ab)) 2659 return; 2660 audit_log_task(ab); 2661 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2662 signr, syscall_get_arch(current), syscall, 2663 in_compat_syscall(), KSTK_EIP(current), code); 2664 audit_log_end(ab); 2665 } 2666 2667 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2668 int res) 2669 { 2670 struct audit_buffer *ab; 2671 2672 if (!audit_enabled) 2673 return; 2674 2675 ab = audit_log_start(audit_context(), GFP_KERNEL, 2676 AUDIT_CONFIG_CHANGE); 2677 if (unlikely(!ab)) 2678 return; 2679 2680 audit_log_format(ab, 2681 "op=seccomp-logging actions=%s old-actions=%s res=%d", 2682 names, old_names, res); 2683 audit_log_end(ab); 2684 } 2685 2686 struct list_head *audit_killed_trees(void) 2687 { 2688 struct audit_context *ctx = audit_context(); 2689 if (likely(!ctx || !ctx->in_syscall)) 2690 return NULL; 2691 return &ctx->killed_trees; 2692 } 2693