1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <uapi/linux/limits.h> 76 77 #include "audit.h" 78 79 /* flags stating the success for a syscall */ 80 #define AUDITSC_INVALID 0 81 #define AUDITSC_SUCCESS 1 82 #define AUDITSC_FAILURE 2 83 84 /* no execve audit message should be longer than this (userspace limits) */ 85 #define MAX_EXECVE_AUDIT_LEN 7500 86 87 /* max length to print of cmdline/proctitle value during audit */ 88 #define MAX_PROCTITLE_AUDIT_LEN 128 89 90 /* number of audit rules */ 91 int audit_n_rules; 92 93 /* determines whether we collect data for signals sent */ 94 int audit_signals; 95 96 struct audit_aux_data { 97 struct audit_aux_data *next; 98 int type; 99 }; 100 101 #define AUDIT_AUX_IPCPERM 0 102 103 /* Number of target pids per aux struct. */ 104 #define AUDIT_AUX_PIDS 16 105 106 struct audit_aux_data_pids { 107 struct audit_aux_data d; 108 pid_t target_pid[AUDIT_AUX_PIDS]; 109 kuid_t target_auid[AUDIT_AUX_PIDS]; 110 kuid_t target_uid[AUDIT_AUX_PIDS]; 111 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 112 u32 target_sid[AUDIT_AUX_PIDS]; 113 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 114 int pid_count; 115 }; 116 117 struct audit_aux_data_bprm_fcaps { 118 struct audit_aux_data d; 119 struct audit_cap_data fcap; 120 unsigned int fcap_ver; 121 struct audit_cap_data old_pcap; 122 struct audit_cap_data new_pcap; 123 }; 124 125 struct audit_tree_refs { 126 struct audit_tree_refs *next; 127 struct audit_chunk *c[31]; 128 }; 129 130 static int audit_match_perm(struct audit_context *ctx, int mask) 131 { 132 unsigned n; 133 if (unlikely(!ctx)) 134 return 0; 135 n = ctx->major; 136 137 switch (audit_classify_syscall(ctx->arch, n)) { 138 case 0: /* native */ 139 if ((mask & AUDIT_PERM_WRITE) && 140 audit_match_class(AUDIT_CLASS_WRITE, n)) 141 return 1; 142 if ((mask & AUDIT_PERM_READ) && 143 audit_match_class(AUDIT_CLASS_READ, n)) 144 return 1; 145 if ((mask & AUDIT_PERM_ATTR) && 146 audit_match_class(AUDIT_CLASS_CHATTR, n)) 147 return 1; 148 return 0; 149 case 1: /* 32bit on biarch */ 150 if ((mask & AUDIT_PERM_WRITE) && 151 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 152 return 1; 153 if ((mask & AUDIT_PERM_READ) && 154 audit_match_class(AUDIT_CLASS_READ_32, n)) 155 return 1; 156 if ((mask & AUDIT_PERM_ATTR) && 157 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 158 return 1; 159 return 0; 160 case 2: /* open */ 161 return mask & ACC_MODE(ctx->argv[1]); 162 case 3: /* openat */ 163 return mask & ACC_MODE(ctx->argv[2]); 164 case 4: /* socketcall */ 165 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 166 case 5: /* execve */ 167 return mask & AUDIT_PERM_EXEC; 168 default: 169 return 0; 170 } 171 } 172 173 static int audit_match_filetype(struct audit_context *ctx, int val) 174 { 175 struct audit_names *n; 176 umode_t mode = (umode_t)val; 177 178 if (unlikely(!ctx)) 179 return 0; 180 181 list_for_each_entry(n, &ctx->names_list, list) { 182 if ((n->ino != AUDIT_INO_UNSET) && 183 ((n->mode & S_IFMT) == mode)) 184 return 1; 185 } 186 187 return 0; 188 } 189 190 /* 191 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 192 * ->first_trees points to its beginning, ->trees - to the current end of data. 193 * ->tree_count is the number of free entries in array pointed to by ->trees. 194 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 195 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 196 * it's going to remain 1-element for almost any setup) until we free context itself. 197 * References in it _are_ dropped - at the same time we free/drop aux stuff. 198 */ 199 200 #ifdef CONFIG_AUDIT_TREE 201 static void audit_set_auditable(struct audit_context *ctx) 202 { 203 if (!ctx->prio) { 204 ctx->prio = 1; 205 ctx->current_state = AUDIT_RECORD_CONTEXT; 206 } 207 } 208 209 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 210 { 211 struct audit_tree_refs *p = ctx->trees; 212 int left = ctx->tree_count; 213 if (likely(left)) { 214 p->c[--left] = chunk; 215 ctx->tree_count = left; 216 return 1; 217 } 218 if (!p) 219 return 0; 220 p = p->next; 221 if (p) { 222 p->c[30] = chunk; 223 ctx->trees = p; 224 ctx->tree_count = 30; 225 return 1; 226 } 227 return 0; 228 } 229 230 static int grow_tree_refs(struct audit_context *ctx) 231 { 232 struct audit_tree_refs *p = ctx->trees; 233 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 234 if (!ctx->trees) { 235 ctx->trees = p; 236 return 0; 237 } 238 if (p) 239 p->next = ctx->trees; 240 else 241 ctx->first_trees = ctx->trees; 242 ctx->tree_count = 31; 243 return 1; 244 } 245 #endif 246 247 static void unroll_tree_refs(struct audit_context *ctx, 248 struct audit_tree_refs *p, int count) 249 { 250 #ifdef CONFIG_AUDIT_TREE 251 struct audit_tree_refs *q; 252 int n; 253 if (!p) { 254 /* we started with empty chain */ 255 p = ctx->first_trees; 256 count = 31; 257 /* if the very first allocation has failed, nothing to do */ 258 if (!p) 259 return; 260 } 261 n = count; 262 for (q = p; q != ctx->trees; q = q->next, n = 31) { 263 while (n--) { 264 audit_put_chunk(q->c[n]); 265 q->c[n] = NULL; 266 } 267 } 268 while (n-- > ctx->tree_count) { 269 audit_put_chunk(q->c[n]); 270 q->c[n] = NULL; 271 } 272 ctx->trees = p; 273 ctx->tree_count = count; 274 #endif 275 } 276 277 static void free_tree_refs(struct audit_context *ctx) 278 { 279 struct audit_tree_refs *p, *q; 280 for (p = ctx->first_trees; p; p = q) { 281 q = p->next; 282 kfree(p); 283 } 284 } 285 286 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 287 { 288 #ifdef CONFIG_AUDIT_TREE 289 struct audit_tree_refs *p; 290 int n; 291 if (!tree) 292 return 0; 293 /* full ones */ 294 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 295 for (n = 0; n < 31; n++) 296 if (audit_tree_match(p->c[n], tree)) 297 return 1; 298 } 299 /* partial */ 300 if (p) { 301 for (n = ctx->tree_count; n < 31; n++) 302 if (audit_tree_match(p->c[n], tree)) 303 return 1; 304 } 305 #endif 306 return 0; 307 } 308 309 static int audit_compare_uid(kuid_t uid, 310 struct audit_names *name, 311 struct audit_field *f, 312 struct audit_context *ctx) 313 { 314 struct audit_names *n; 315 int rc; 316 317 if (name) { 318 rc = audit_uid_comparator(uid, f->op, name->uid); 319 if (rc) 320 return rc; 321 } 322 323 if (ctx) { 324 list_for_each_entry(n, &ctx->names_list, list) { 325 rc = audit_uid_comparator(uid, f->op, n->uid); 326 if (rc) 327 return rc; 328 } 329 } 330 return 0; 331 } 332 333 static int audit_compare_gid(kgid_t gid, 334 struct audit_names *name, 335 struct audit_field *f, 336 struct audit_context *ctx) 337 { 338 struct audit_names *n; 339 int rc; 340 341 if (name) { 342 rc = audit_gid_comparator(gid, f->op, name->gid); 343 if (rc) 344 return rc; 345 } 346 347 if (ctx) { 348 list_for_each_entry(n, &ctx->names_list, list) { 349 rc = audit_gid_comparator(gid, f->op, n->gid); 350 if (rc) 351 return rc; 352 } 353 } 354 return 0; 355 } 356 357 static int audit_field_compare(struct task_struct *tsk, 358 const struct cred *cred, 359 struct audit_field *f, 360 struct audit_context *ctx, 361 struct audit_names *name) 362 { 363 switch (f->val) { 364 /* process to file object comparisons */ 365 case AUDIT_COMPARE_UID_TO_OBJ_UID: 366 return audit_compare_uid(cred->uid, name, f, ctx); 367 case AUDIT_COMPARE_GID_TO_OBJ_GID: 368 return audit_compare_gid(cred->gid, name, f, ctx); 369 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 370 return audit_compare_uid(cred->euid, name, f, ctx); 371 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 372 return audit_compare_gid(cred->egid, name, f, ctx); 373 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 374 return audit_compare_uid(tsk->loginuid, name, f, ctx); 375 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 376 return audit_compare_uid(cred->suid, name, f, ctx); 377 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 378 return audit_compare_gid(cred->sgid, name, f, ctx); 379 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 380 return audit_compare_uid(cred->fsuid, name, f, ctx); 381 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 382 return audit_compare_gid(cred->fsgid, name, f, ctx); 383 /* uid comparisons */ 384 case AUDIT_COMPARE_UID_TO_AUID: 385 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 386 case AUDIT_COMPARE_UID_TO_EUID: 387 return audit_uid_comparator(cred->uid, f->op, cred->euid); 388 case AUDIT_COMPARE_UID_TO_SUID: 389 return audit_uid_comparator(cred->uid, f->op, cred->suid); 390 case AUDIT_COMPARE_UID_TO_FSUID: 391 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 392 /* auid comparisons */ 393 case AUDIT_COMPARE_AUID_TO_EUID: 394 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 395 case AUDIT_COMPARE_AUID_TO_SUID: 396 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 397 case AUDIT_COMPARE_AUID_TO_FSUID: 398 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 399 /* euid comparisons */ 400 case AUDIT_COMPARE_EUID_TO_SUID: 401 return audit_uid_comparator(cred->euid, f->op, cred->suid); 402 case AUDIT_COMPARE_EUID_TO_FSUID: 403 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 404 /* suid comparisons */ 405 case AUDIT_COMPARE_SUID_TO_FSUID: 406 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 407 /* gid comparisons */ 408 case AUDIT_COMPARE_GID_TO_EGID: 409 return audit_gid_comparator(cred->gid, f->op, cred->egid); 410 case AUDIT_COMPARE_GID_TO_SGID: 411 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 412 case AUDIT_COMPARE_GID_TO_FSGID: 413 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 414 /* egid comparisons */ 415 case AUDIT_COMPARE_EGID_TO_SGID: 416 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 417 case AUDIT_COMPARE_EGID_TO_FSGID: 418 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 419 /* sgid comparison */ 420 case AUDIT_COMPARE_SGID_TO_FSGID: 421 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 422 default: 423 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 424 return 0; 425 } 426 return 0; 427 } 428 429 /* Determine if any context name data matches a rule's watch data */ 430 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 431 * otherwise. 432 * 433 * If task_creation is true, this is an explicit indication that we are 434 * filtering a task rule at task creation time. This and tsk == current are 435 * the only situations where tsk->cred may be accessed without an rcu read lock. 436 */ 437 static int audit_filter_rules(struct task_struct *tsk, 438 struct audit_krule *rule, 439 struct audit_context *ctx, 440 struct audit_names *name, 441 enum audit_state *state, 442 bool task_creation) 443 { 444 const struct cred *cred; 445 int i, need_sid = 1; 446 u32 sid; 447 448 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 449 450 for (i = 0; i < rule->field_count; i++) { 451 struct audit_field *f = &rule->fields[i]; 452 struct audit_names *n; 453 int result = 0; 454 pid_t pid; 455 456 switch (f->type) { 457 case AUDIT_PID: 458 pid = task_pid_nr(tsk); 459 result = audit_comparator(pid, f->op, f->val); 460 break; 461 case AUDIT_PPID: 462 if (ctx) { 463 if (!ctx->ppid) 464 ctx->ppid = task_ppid_nr(tsk); 465 result = audit_comparator(ctx->ppid, f->op, f->val); 466 } 467 break; 468 case AUDIT_EXE: 469 result = audit_exe_compare(tsk, rule->exe); 470 break; 471 case AUDIT_UID: 472 result = audit_uid_comparator(cred->uid, f->op, f->uid); 473 break; 474 case AUDIT_EUID: 475 result = audit_uid_comparator(cred->euid, f->op, f->uid); 476 break; 477 case AUDIT_SUID: 478 result = audit_uid_comparator(cred->suid, f->op, f->uid); 479 break; 480 case AUDIT_FSUID: 481 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 482 break; 483 case AUDIT_GID: 484 result = audit_gid_comparator(cred->gid, f->op, f->gid); 485 if (f->op == Audit_equal) { 486 if (!result) 487 result = in_group_p(f->gid); 488 } else if (f->op == Audit_not_equal) { 489 if (result) 490 result = !in_group_p(f->gid); 491 } 492 break; 493 case AUDIT_EGID: 494 result = audit_gid_comparator(cred->egid, f->op, f->gid); 495 if (f->op == Audit_equal) { 496 if (!result) 497 result = in_egroup_p(f->gid); 498 } else if (f->op == Audit_not_equal) { 499 if (result) 500 result = !in_egroup_p(f->gid); 501 } 502 break; 503 case AUDIT_SGID: 504 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 505 break; 506 case AUDIT_FSGID: 507 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 508 break; 509 case AUDIT_PERS: 510 result = audit_comparator(tsk->personality, f->op, f->val); 511 break; 512 case AUDIT_ARCH: 513 if (ctx) 514 result = audit_comparator(ctx->arch, f->op, f->val); 515 break; 516 517 case AUDIT_EXIT: 518 if (ctx && ctx->return_valid) 519 result = audit_comparator(ctx->return_code, f->op, f->val); 520 break; 521 case AUDIT_SUCCESS: 522 if (ctx && ctx->return_valid) { 523 if (f->val) 524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 525 else 526 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 527 } 528 break; 529 case AUDIT_DEVMAJOR: 530 if (name) { 531 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 532 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 533 ++result; 534 } else if (ctx) { 535 list_for_each_entry(n, &ctx->names_list, list) { 536 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 537 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 538 ++result; 539 break; 540 } 541 } 542 } 543 break; 544 case AUDIT_DEVMINOR: 545 if (name) { 546 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 547 audit_comparator(MINOR(name->rdev), f->op, f->val)) 548 ++result; 549 } else if (ctx) { 550 list_for_each_entry(n, &ctx->names_list, list) { 551 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 552 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 553 ++result; 554 break; 555 } 556 } 557 } 558 break; 559 case AUDIT_INODE: 560 if (name) 561 result = audit_comparator(name->ino, f->op, f->val); 562 else if (ctx) { 563 list_for_each_entry(n, &ctx->names_list, list) { 564 if (audit_comparator(n->ino, f->op, f->val)) { 565 ++result; 566 break; 567 } 568 } 569 } 570 break; 571 case AUDIT_OBJ_UID: 572 if (name) { 573 result = audit_uid_comparator(name->uid, f->op, f->uid); 574 } else if (ctx) { 575 list_for_each_entry(n, &ctx->names_list, list) { 576 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 577 ++result; 578 break; 579 } 580 } 581 } 582 break; 583 case AUDIT_OBJ_GID: 584 if (name) { 585 result = audit_gid_comparator(name->gid, f->op, f->gid); 586 } else if (ctx) { 587 list_for_each_entry(n, &ctx->names_list, list) { 588 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 589 ++result; 590 break; 591 } 592 } 593 } 594 break; 595 case AUDIT_WATCH: 596 if (name) 597 result = audit_watch_compare(rule->watch, name->ino, name->dev); 598 break; 599 case AUDIT_DIR: 600 if (ctx) 601 result = match_tree_refs(ctx, rule->tree); 602 break; 603 case AUDIT_LOGINUID: 604 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 605 break; 606 case AUDIT_LOGINUID_SET: 607 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 608 break; 609 case AUDIT_SUBJ_USER: 610 case AUDIT_SUBJ_ROLE: 611 case AUDIT_SUBJ_TYPE: 612 case AUDIT_SUBJ_SEN: 613 case AUDIT_SUBJ_CLR: 614 /* NOTE: this may return negative values indicating 615 a temporary error. We simply treat this as a 616 match for now to avoid losing information that 617 may be wanted. An error message will also be 618 logged upon error */ 619 if (f->lsm_rule) { 620 if (need_sid) { 621 security_task_getsecid(tsk, &sid); 622 need_sid = 0; 623 } 624 result = security_audit_rule_match(sid, f->type, 625 f->op, 626 f->lsm_rule, 627 ctx); 628 } 629 break; 630 case AUDIT_OBJ_USER: 631 case AUDIT_OBJ_ROLE: 632 case AUDIT_OBJ_TYPE: 633 case AUDIT_OBJ_LEV_LOW: 634 case AUDIT_OBJ_LEV_HIGH: 635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 636 also applies here */ 637 if (f->lsm_rule) { 638 /* Find files that match */ 639 if (name) { 640 result = security_audit_rule_match( 641 name->osid, f->type, f->op, 642 f->lsm_rule, ctx); 643 } else if (ctx) { 644 list_for_each_entry(n, &ctx->names_list, list) { 645 if (security_audit_rule_match(n->osid, f->type, 646 f->op, f->lsm_rule, 647 ctx)) { 648 ++result; 649 break; 650 } 651 } 652 } 653 /* Find ipc objects that match */ 654 if (!ctx || ctx->type != AUDIT_IPC) 655 break; 656 if (security_audit_rule_match(ctx->ipc.osid, 657 f->type, f->op, 658 f->lsm_rule, ctx)) 659 ++result; 660 } 661 break; 662 case AUDIT_ARG0: 663 case AUDIT_ARG1: 664 case AUDIT_ARG2: 665 case AUDIT_ARG3: 666 if (ctx) 667 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 668 break; 669 case AUDIT_FILTERKEY: 670 /* ignore this field for filtering */ 671 result = 1; 672 break; 673 case AUDIT_PERM: 674 result = audit_match_perm(ctx, f->val); 675 break; 676 case AUDIT_FILETYPE: 677 result = audit_match_filetype(ctx, f->val); 678 break; 679 case AUDIT_FIELD_COMPARE: 680 result = audit_field_compare(tsk, cred, f, ctx, name); 681 break; 682 } 683 if (!result) 684 return 0; 685 } 686 687 if (ctx) { 688 if (rule->prio <= ctx->prio) 689 return 0; 690 if (rule->filterkey) { 691 kfree(ctx->filterkey); 692 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 693 } 694 ctx->prio = rule->prio; 695 } 696 switch (rule->action) { 697 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 698 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 699 } 700 return 1; 701 } 702 703 /* At process creation time, we can determine if system-call auditing is 704 * completely disabled for this task. Since we only have the task 705 * structure at this point, we can only check uid and gid. 706 */ 707 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 708 { 709 struct audit_entry *e; 710 enum audit_state state; 711 712 rcu_read_lock(); 713 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 714 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 715 &state, true)) { 716 if (state == AUDIT_RECORD_CONTEXT) 717 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 718 rcu_read_unlock(); 719 return state; 720 } 721 } 722 rcu_read_unlock(); 723 return AUDIT_BUILD_CONTEXT; 724 } 725 726 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 727 { 728 int word, bit; 729 730 if (val > 0xffffffff) 731 return false; 732 733 word = AUDIT_WORD(val); 734 if (word >= AUDIT_BITMASK_SIZE) 735 return false; 736 737 bit = AUDIT_BIT(val); 738 739 return rule->mask[word] & bit; 740 } 741 742 /* At syscall entry and exit time, this filter is called if the 743 * audit_state is not low enough that auditing cannot take place, but is 744 * also not high enough that we already know we have to write an audit 745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 746 */ 747 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 748 struct audit_context *ctx, 749 struct list_head *list) 750 { 751 struct audit_entry *e; 752 enum audit_state state; 753 754 if (audit_pid && tsk->tgid == audit_pid) 755 return AUDIT_DISABLED; 756 757 rcu_read_lock(); 758 if (!list_empty(list)) { 759 list_for_each_entry_rcu(e, list, list) { 760 if (audit_in_mask(&e->rule, ctx->major) && 761 audit_filter_rules(tsk, &e->rule, ctx, NULL, 762 &state, false)) { 763 rcu_read_unlock(); 764 ctx->current_state = state; 765 return state; 766 } 767 } 768 } 769 rcu_read_unlock(); 770 return AUDIT_BUILD_CONTEXT; 771 } 772 773 /* 774 * Given an audit_name check the inode hash table to see if they match. 775 * Called holding the rcu read lock to protect the use of audit_inode_hash 776 */ 777 static int audit_filter_inode_name(struct task_struct *tsk, 778 struct audit_names *n, 779 struct audit_context *ctx) { 780 int h = audit_hash_ino((u32)n->ino); 781 struct list_head *list = &audit_inode_hash[h]; 782 struct audit_entry *e; 783 enum audit_state state; 784 785 if (list_empty(list)) 786 return 0; 787 788 list_for_each_entry_rcu(e, list, list) { 789 if (audit_in_mask(&e->rule, ctx->major) && 790 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 791 ctx->current_state = state; 792 return 1; 793 } 794 } 795 796 return 0; 797 } 798 799 /* At syscall exit time, this filter is called if any audit_names have been 800 * collected during syscall processing. We only check rules in sublists at hash 801 * buckets applicable to the inode numbers in audit_names. 802 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 803 */ 804 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 805 { 806 struct audit_names *n; 807 808 if (audit_pid && tsk->tgid == audit_pid) 809 return; 810 811 rcu_read_lock(); 812 813 list_for_each_entry(n, &ctx->names_list, list) { 814 if (audit_filter_inode_name(tsk, n, ctx)) 815 break; 816 } 817 rcu_read_unlock(); 818 } 819 820 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 821 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 822 int return_valid, 823 long return_code) 824 { 825 struct audit_context *context = tsk->audit_context; 826 827 if (!context) 828 return NULL; 829 context->return_valid = return_valid; 830 831 /* 832 * we need to fix up the return code in the audit logs if the actual 833 * return codes are later going to be fixed up by the arch specific 834 * signal handlers 835 * 836 * This is actually a test for: 837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 839 * 840 * but is faster than a bunch of || 841 */ 842 if (unlikely(return_code <= -ERESTARTSYS) && 843 (return_code >= -ERESTART_RESTARTBLOCK) && 844 (return_code != -ENOIOCTLCMD)) 845 context->return_code = -EINTR; 846 else 847 context->return_code = return_code; 848 849 if (context->in_syscall && !context->dummy) { 850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 851 audit_filter_inodes(tsk, context); 852 } 853 854 tsk->audit_context = NULL; 855 return context; 856 } 857 858 static inline void audit_proctitle_free(struct audit_context *context) 859 { 860 kfree(context->proctitle.value); 861 context->proctitle.value = NULL; 862 context->proctitle.len = 0; 863 } 864 865 static inline void audit_free_names(struct audit_context *context) 866 { 867 struct audit_names *n, *next; 868 869 list_for_each_entry_safe(n, next, &context->names_list, list) { 870 list_del(&n->list); 871 if (n->name) 872 putname(n->name); 873 if (n->should_free) 874 kfree(n); 875 } 876 context->name_count = 0; 877 path_put(&context->pwd); 878 context->pwd.dentry = NULL; 879 context->pwd.mnt = NULL; 880 } 881 882 static inline void audit_free_aux(struct audit_context *context) 883 { 884 struct audit_aux_data *aux; 885 886 while ((aux = context->aux)) { 887 context->aux = aux->next; 888 kfree(aux); 889 } 890 while ((aux = context->aux_pids)) { 891 context->aux_pids = aux->next; 892 kfree(aux); 893 } 894 } 895 896 static inline struct audit_context *audit_alloc_context(enum audit_state state) 897 { 898 struct audit_context *context; 899 900 context = kzalloc(sizeof(*context), GFP_KERNEL); 901 if (!context) 902 return NULL; 903 context->state = state; 904 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 905 INIT_LIST_HEAD(&context->killed_trees); 906 INIT_LIST_HEAD(&context->names_list); 907 return context; 908 } 909 910 /** 911 * audit_alloc - allocate an audit context block for a task 912 * @tsk: task 913 * 914 * Filter on the task information and allocate a per-task audit context 915 * if necessary. Doing so turns on system call auditing for the 916 * specified task. This is called from copy_process, so no lock is 917 * needed. 918 */ 919 int audit_alloc(struct task_struct *tsk) 920 { 921 struct audit_context *context; 922 enum audit_state state; 923 char *key = NULL; 924 925 if (likely(!audit_ever_enabled)) 926 return 0; /* Return if not auditing. */ 927 928 state = audit_filter_task(tsk, &key); 929 if (state == AUDIT_DISABLED) { 930 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 931 return 0; 932 } 933 934 if (!(context = audit_alloc_context(state))) { 935 kfree(key); 936 audit_log_lost("out of memory in audit_alloc"); 937 return -ENOMEM; 938 } 939 context->filterkey = key; 940 941 tsk->audit_context = context; 942 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 943 return 0; 944 } 945 946 static inline void audit_free_context(struct audit_context *context) 947 { 948 audit_free_names(context); 949 unroll_tree_refs(context, NULL, 0); 950 free_tree_refs(context); 951 audit_free_aux(context); 952 kfree(context->filterkey); 953 kfree(context->sockaddr); 954 audit_proctitle_free(context); 955 kfree(context); 956 } 957 958 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 959 kuid_t auid, kuid_t uid, unsigned int sessionid, 960 u32 sid, char *comm) 961 { 962 struct audit_buffer *ab; 963 char *ctx = NULL; 964 u32 len; 965 int rc = 0; 966 967 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 968 if (!ab) 969 return rc; 970 971 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 972 from_kuid(&init_user_ns, auid), 973 from_kuid(&init_user_ns, uid), sessionid); 974 if (sid) { 975 if (security_secid_to_secctx(sid, &ctx, &len)) { 976 audit_log_format(ab, " obj=(none)"); 977 rc = 1; 978 } else { 979 audit_log_format(ab, " obj=%s", ctx); 980 security_release_secctx(ctx, len); 981 } 982 } 983 audit_log_format(ab, " ocomm="); 984 audit_log_untrustedstring(ab, comm); 985 audit_log_end(ab); 986 987 return rc; 988 } 989 990 /* 991 * to_send and len_sent accounting are very loose estimates. We aren't 992 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 993 * within about 500 bytes (next page boundary) 994 * 995 * why snprintf? an int is up to 12 digits long. if we just assumed when 996 * logging that a[%d]= was going to be 16 characters long we would be wasting 997 * space in every audit message. In one 7500 byte message we can log up to 998 * about 1000 min size arguments. That comes down to about 50% waste of space 999 * if we didn't do the snprintf to find out how long arg_num_len was. 1000 */ 1001 static int audit_log_single_execve_arg(struct audit_context *context, 1002 struct audit_buffer **ab, 1003 int arg_num, 1004 size_t *len_sent, 1005 const char __user *p, 1006 char *buf) 1007 { 1008 char arg_num_len_buf[12]; 1009 const char __user *tmp_p = p; 1010 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1011 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1012 size_t len, len_left, to_send; 1013 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1014 unsigned int i, has_cntl = 0, too_long = 0; 1015 int ret; 1016 1017 /* strnlen_user includes the null we don't want to send */ 1018 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1019 1020 /* 1021 * We just created this mm, if we can't find the strings 1022 * we just copied into it something is _very_ wrong. Similar 1023 * for strings that are too long, we should not have created 1024 * any. 1025 */ 1026 if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) { 1027 send_sig(SIGKILL, current, 0); 1028 return -1; 1029 } 1030 1031 /* walk the whole argument looking for non-ascii chars */ 1032 do { 1033 if (len_left > MAX_EXECVE_AUDIT_LEN) 1034 to_send = MAX_EXECVE_AUDIT_LEN; 1035 else 1036 to_send = len_left; 1037 ret = copy_from_user(buf, tmp_p, to_send); 1038 /* 1039 * There is no reason for this copy to be short. We just 1040 * copied them here, and the mm hasn't been exposed to user- 1041 * space yet. 1042 */ 1043 if (ret) { 1044 WARN_ON(1); 1045 send_sig(SIGKILL, current, 0); 1046 return -1; 1047 } 1048 buf[to_send] = '\0'; 1049 has_cntl = audit_string_contains_control(buf, to_send); 1050 if (has_cntl) { 1051 /* 1052 * hex messages get logged as 2 bytes, so we can only 1053 * send half as much in each message 1054 */ 1055 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1056 break; 1057 } 1058 len_left -= to_send; 1059 tmp_p += to_send; 1060 } while (len_left > 0); 1061 1062 len_left = len; 1063 1064 if (len > max_execve_audit_len) 1065 too_long = 1; 1066 1067 /* rewalk the argument actually logging the message */ 1068 for (i = 0; len_left > 0; i++) { 1069 int room_left; 1070 1071 if (len_left > max_execve_audit_len) 1072 to_send = max_execve_audit_len; 1073 else 1074 to_send = len_left; 1075 1076 /* do we have space left to send this argument in this ab? */ 1077 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1078 if (has_cntl) 1079 room_left -= (to_send * 2); 1080 else 1081 room_left -= to_send; 1082 if (room_left < 0) { 1083 *len_sent = 0; 1084 audit_log_end(*ab); 1085 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1086 if (!*ab) 1087 return 0; 1088 } 1089 1090 /* 1091 * first record needs to say how long the original string was 1092 * so we can be sure nothing was lost. 1093 */ 1094 if ((i == 0) && (too_long)) 1095 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1096 has_cntl ? 2*len : len); 1097 1098 /* 1099 * normally arguments are small enough to fit and we already 1100 * filled buf above when we checked for control characters 1101 * so don't bother with another copy_from_user 1102 */ 1103 if (len >= max_execve_audit_len) 1104 ret = copy_from_user(buf, p, to_send); 1105 else 1106 ret = 0; 1107 if (ret) { 1108 WARN_ON(1); 1109 send_sig(SIGKILL, current, 0); 1110 return -1; 1111 } 1112 buf[to_send] = '\0'; 1113 1114 /* actually log it */ 1115 audit_log_format(*ab, " a%d", arg_num); 1116 if (too_long) 1117 audit_log_format(*ab, "[%d]", i); 1118 audit_log_format(*ab, "="); 1119 if (has_cntl) 1120 audit_log_n_hex(*ab, buf, to_send); 1121 else 1122 audit_log_string(*ab, buf); 1123 1124 p += to_send; 1125 len_left -= to_send; 1126 *len_sent += arg_num_len; 1127 if (has_cntl) 1128 *len_sent += to_send * 2; 1129 else 1130 *len_sent += to_send; 1131 } 1132 /* include the null we didn't log */ 1133 return len + 1; 1134 } 1135 1136 static void audit_log_execve_info(struct audit_context *context, 1137 struct audit_buffer **ab) 1138 { 1139 int i, len; 1140 size_t len_sent = 0; 1141 const char __user *p; 1142 char *buf; 1143 1144 p = (const char __user *)current->mm->arg_start; 1145 1146 audit_log_format(*ab, "argc=%d", context->execve.argc); 1147 1148 /* 1149 * we need some kernel buffer to hold the userspace args. Just 1150 * allocate one big one rather than allocating one of the right size 1151 * for every single argument inside audit_log_single_execve_arg() 1152 * should be <8k allocation so should be pretty safe. 1153 */ 1154 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1155 if (!buf) { 1156 audit_panic("out of memory for argv string"); 1157 return; 1158 } 1159 1160 for (i = 0; i < context->execve.argc; i++) { 1161 len = audit_log_single_execve_arg(context, ab, i, 1162 &len_sent, p, buf); 1163 if (len <= 0) 1164 break; 1165 p += len; 1166 } 1167 kfree(buf); 1168 } 1169 1170 static void show_special(struct audit_context *context, int *call_panic) 1171 { 1172 struct audit_buffer *ab; 1173 int i; 1174 1175 ab = audit_log_start(context, GFP_KERNEL, context->type); 1176 if (!ab) 1177 return; 1178 1179 switch (context->type) { 1180 case AUDIT_SOCKETCALL: { 1181 int nargs = context->socketcall.nargs; 1182 audit_log_format(ab, "nargs=%d", nargs); 1183 for (i = 0; i < nargs; i++) 1184 audit_log_format(ab, " a%d=%lx", i, 1185 context->socketcall.args[i]); 1186 break; } 1187 case AUDIT_IPC: { 1188 u32 osid = context->ipc.osid; 1189 1190 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1191 from_kuid(&init_user_ns, context->ipc.uid), 1192 from_kgid(&init_user_ns, context->ipc.gid), 1193 context->ipc.mode); 1194 if (osid) { 1195 char *ctx = NULL; 1196 u32 len; 1197 if (security_secid_to_secctx(osid, &ctx, &len)) { 1198 audit_log_format(ab, " osid=%u", osid); 1199 *call_panic = 1; 1200 } else { 1201 audit_log_format(ab, " obj=%s", ctx); 1202 security_release_secctx(ctx, len); 1203 } 1204 } 1205 if (context->ipc.has_perm) { 1206 audit_log_end(ab); 1207 ab = audit_log_start(context, GFP_KERNEL, 1208 AUDIT_IPC_SET_PERM); 1209 if (unlikely(!ab)) 1210 return; 1211 audit_log_format(ab, 1212 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1213 context->ipc.qbytes, 1214 context->ipc.perm_uid, 1215 context->ipc.perm_gid, 1216 context->ipc.perm_mode); 1217 } 1218 break; } 1219 case AUDIT_MQ_OPEN: { 1220 audit_log_format(ab, 1221 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1222 "mq_msgsize=%ld mq_curmsgs=%ld", 1223 context->mq_open.oflag, context->mq_open.mode, 1224 context->mq_open.attr.mq_flags, 1225 context->mq_open.attr.mq_maxmsg, 1226 context->mq_open.attr.mq_msgsize, 1227 context->mq_open.attr.mq_curmsgs); 1228 break; } 1229 case AUDIT_MQ_SENDRECV: { 1230 audit_log_format(ab, 1231 "mqdes=%d msg_len=%zd msg_prio=%u " 1232 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1233 context->mq_sendrecv.mqdes, 1234 context->mq_sendrecv.msg_len, 1235 context->mq_sendrecv.msg_prio, 1236 context->mq_sendrecv.abs_timeout.tv_sec, 1237 context->mq_sendrecv.abs_timeout.tv_nsec); 1238 break; } 1239 case AUDIT_MQ_NOTIFY: { 1240 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1241 context->mq_notify.mqdes, 1242 context->mq_notify.sigev_signo); 1243 break; } 1244 case AUDIT_MQ_GETSETATTR: { 1245 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1246 audit_log_format(ab, 1247 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1248 "mq_curmsgs=%ld ", 1249 context->mq_getsetattr.mqdes, 1250 attr->mq_flags, attr->mq_maxmsg, 1251 attr->mq_msgsize, attr->mq_curmsgs); 1252 break; } 1253 case AUDIT_CAPSET: { 1254 audit_log_format(ab, "pid=%d", context->capset.pid); 1255 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1256 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1257 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1258 break; } 1259 case AUDIT_MMAP: { 1260 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1261 context->mmap.flags); 1262 break; } 1263 case AUDIT_EXECVE: { 1264 audit_log_execve_info(context, &ab); 1265 break; } 1266 } 1267 audit_log_end(ab); 1268 } 1269 1270 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1271 { 1272 char *end = proctitle + len - 1; 1273 while (end > proctitle && !isprint(*end)) 1274 end--; 1275 1276 /* catch the case where proctitle is only 1 non-print character */ 1277 len = end - proctitle + 1; 1278 len -= isprint(proctitle[len-1]) == 0; 1279 return len; 1280 } 1281 1282 static void audit_log_proctitle(struct task_struct *tsk, 1283 struct audit_context *context) 1284 { 1285 int res; 1286 char *buf; 1287 char *msg = "(null)"; 1288 int len = strlen(msg); 1289 struct audit_buffer *ab; 1290 1291 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1292 if (!ab) 1293 return; /* audit_panic or being filtered */ 1294 1295 audit_log_format(ab, "proctitle="); 1296 1297 /* Not cached */ 1298 if (!context->proctitle.value) { 1299 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1300 if (!buf) 1301 goto out; 1302 /* Historically called this from procfs naming */ 1303 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1304 if (res == 0) { 1305 kfree(buf); 1306 goto out; 1307 } 1308 res = audit_proctitle_rtrim(buf, res); 1309 if (res == 0) { 1310 kfree(buf); 1311 goto out; 1312 } 1313 context->proctitle.value = buf; 1314 context->proctitle.len = res; 1315 } 1316 msg = context->proctitle.value; 1317 len = context->proctitle.len; 1318 out: 1319 audit_log_n_untrustedstring(ab, msg, len); 1320 audit_log_end(ab); 1321 } 1322 1323 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1324 { 1325 int i, call_panic = 0; 1326 struct audit_buffer *ab; 1327 struct audit_aux_data *aux; 1328 struct audit_names *n; 1329 1330 /* tsk == current */ 1331 context->personality = tsk->personality; 1332 1333 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1334 if (!ab) 1335 return; /* audit_panic has been called */ 1336 audit_log_format(ab, "arch=%x syscall=%d", 1337 context->arch, context->major); 1338 if (context->personality != PER_LINUX) 1339 audit_log_format(ab, " per=%lx", context->personality); 1340 if (context->return_valid) 1341 audit_log_format(ab, " success=%s exit=%ld", 1342 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1343 context->return_code); 1344 1345 audit_log_format(ab, 1346 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1347 context->argv[0], 1348 context->argv[1], 1349 context->argv[2], 1350 context->argv[3], 1351 context->name_count); 1352 1353 audit_log_task_info(ab, tsk); 1354 audit_log_key(ab, context->filterkey); 1355 audit_log_end(ab); 1356 1357 for (aux = context->aux; aux; aux = aux->next) { 1358 1359 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1360 if (!ab) 1361 continue; /* audit_panic has been called */ 1362 1363 switch (aux->type) { 1364 1365 case AUDIT_BPRM_FCAPS: { 1366 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1367 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1368 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1369 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1370 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1371 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1372 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1373 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1374 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1375 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1376 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1377 break; } 1378 1379 } 1380 audit_log_end(ab); 1381 } 1382 1383 if (context->type) 1384 show_special(context, &call_panic); 1385 1386 if (context->fds[0] >= 0) { 1387 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1388 if (ab) { 1389 audit_log_format(ab, "fd0=%d fd1=%d", 1390 context->fds[0], context->fds[1]); 1391 audit_log_end(ab); 1392 } 1393 } 1394 1395 if (context->sockaddr_len) { 1396 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1397 if (ab) { 1398 audit_log_format(ab, "saddr="); 1399 audit_log_n_hex(ab, (void *)context->sockaddr, 1400 context->sockaddr_len); 1401 audit_log_end(ab); 1402 } 1403 } 1404 1405 for (aux = context->aux_pids; aux; aux = aux->next) { 1406 struct audit_aux_data_pids *axs = (void *)aux; 1407 1408 for (i = 0; i < axs->pid_count; i++) 1409 if (audit_log_pid_context(context, axs->target_pid[i], 1410 axs->target_auid[i], 1411 axs->target_uid[i], 1412 axs->target_sessionid[i], 1413 axs->target_sid[i], 1414 axs->target_comm[i])) 1415 call_panic = 1; 1416 } 1417 1418 if (context->target_pid && 1419 audit_log_pid_context(context, context->target_pid, 1420 context->target_auid, context->target_uid, 1421 context->target_sessionid, 1422 context->target_sid, context->target_comm)) 1423 call_panic = 1; 1424 1425 if (context->pwd.dentry && context->pwd.mnt) { 1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1427 if (ab) { 1428 audit_log_d_path(ab, " cwd=", &context->pwd); 1429 audit_log_end(ab); 1430 } 1431 } 1432 1433 i = 0; 1434 list_for_each_entry(n, &context->names_list, list) { 1435 if (n->hidden) 1436 continue; 1437 audit_log_name(context, n, NULL, i++, &call_panic); 1438 } 1439 1440 audit_log_proctitle(tsk, context); 1441 1442 /* Send end of event record to help user space know we are finished */ 1443 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1444 if (ab) 1445 audit_log_end(ab); 1446 if (call_panic) 1447 audit_panic("error converting sid to string"); 1448 } 1449 1450 /** 1451 * audit_free - free a per-task audit context 1452 * @tsk: task whose audit context block to free 1453 * 1454 * Called from copy_process and do_exit 1455 */ 1456 void __audit_free(struct task_struct *tsk) 1457 { 1458 struct audit_context *context; 1459 1460 context = audit_take_context(tsk, 0, 0); 1461 if (!context) 1462 return; 1463 1464 /* Check for system calls that do not go through the exit 1465 * function (e.g., exit_group), then free context block. 1466 * We use GFP_ATOMIC here because we might be doing this 1467 * in the context of the idle thread */ 1468 /* that can happen only if we are called from do_exit() */ 1469 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1470 audit_log_exit(context, tsk); 1471 if (!list_empty(&context->killed_trees)) 1472 audit_kill_trees(&context->killed_trees); 1473 1474 audit_free_context(context); 1475 } 1476 1477 /** 1478 * audit_syscall_entry - fill in an audit record at syscall entry 1479 * @major: major syscall type (function) 1480 * @a1: additional syscall register 1 1481 * @a2: additional syscall register 2 1482 * @a3: additional syscall register 3 1483 * @a4: additional syscall register 4 1484 * 1485 * Fill in audit context at syscall entry. This only happens if the 1486 * audit context was created when the task was created and the state or 1487 * filters demand the audit context be built. If the state from the 1488 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1489 * then the record will be written at syscall exit time (otherwise, it 1490 * will only be written if another part of the kernel requests that it 1491 * be written). 1492 */ 1493 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1494 unsigned long a3, unsigned long a4) 1495 { 1496 struct task_struct *tsk = current; 1497 struct audit_context *context = tsk->audit_context; 1498 enum audit_state state; 1499 1500 if (!context) 1501 return; 1502 1503 BUG_ON(context->in_syscall || context->name_count); 1504 1505 if (!audit_enabled) 1506 return; 1507 1508 context->arch = syscall_get_arch(); 1509 context->major = major; 1510 context->argv[0] = a1; 1511 context->argv[1] = a2; 1512 context->argv[2] = a3; 1513 context->argv[3] = a4; 1514 1515 state = context->state; 1516 context->dummy = !audit_n_rules; 1517 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1518 context->prio = 0; 1519 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1520 } 1521 if (state == AUDIT_DISABLED) 1522 return; 1523 1524 context->serial = 0; 1525 context->ctime = CURRENT_TIME; 1526 context->in_syscall = 1; 1527 context->current_state = state; 1528 context->ppid = 0; 1529 } 1530 1531 /** 1532 * audit_syscall_exit - deallocate audit context after a system call 1533 * @success: success value of the syscall 1534 * @return_code: return value of the syscall 1535 * 1536 * Tear down after system call. If the audit context has been marked as 1537 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1538 * filtering, or because some other part of the kernel wrote an audit 1539 * message), then write out the syscall information. In call cases, 1540 * free the names stored from getname(). 1541 */ 1542 void __audit_syscall_exit(int success, long return_code) 1543 { 1544 struct task_struct *tsk = current; 1545 struct audit_context *context; 1546 1547 if (success) 1548 success = AUDITSC_SUCCESS; 1549 else 1550 success = AUDITSC_FAILURE; 1551 1552 context = audit_take_context(tsk, success, return_code); 1553 if (!context) 1554 return; 1555 1556 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1557 audit_log_exit(context, tsk); 1558 1559 context->in_syscall = 0; 1560 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1561 1562 if (!list_empty(&context->killed_trees)) 1563 audit_kill_trees(&context->killed_trees); 1564 1565 audit_free_names(context); 1566 unroll_tree_refs(context, NULL, 0); 1567 audit_free_aux(context); 1568 context->aux = NULL; 1569 context->aux_pids = NULL; 1570 context->target_pid = 0; 1571 context->target_sid = 0; 1572 context->sockaddr_len = 0; 1573 context->type = 0; 1574 context->fds[0] = -1; 1575 if (context->state != AUDIT_RECORD_CONTEXT) { 1576 kfree(context->filterkey); 1577 context->filterkey = NULL; 1578 } 1579 tsk->audit_context = context; 1580 } 1581 1582 static inline void handle_one(const struct inode *inode) 1583 { 1584 #ifdef CONFIG_AUDIT_TREE 1585 struct audit_context *context; 1586 struct audit_tree_refs *p; 1587 struct audit_chunk *chunk; 1588 int count; 1589 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1590 return; 1591 context = current->audit_context; 1592 p = context->trees; 1593 count = context->tree_count; 1594 rcu_read_lock(); 1595 chunk = audit_tree_lookup(inode); 1596 rcu_read_unlock(); 1597 if (!chunk) 1598 return; 1599 if (likely(put_tree_ref(context, chunk))) 1600 return; 1601 if (unlikely(!grow_tree_refs(context))) { 1602 pr_warn("out of memory, audit has lost a tree reference\n"); 1603 audit_set_auditable(context); 1604 audit_put_chunk(chunk); 1605 unroll_tree_refs(context, p, count); 1606 return; 1607 } 1608 put_tree_ref(context, chunk); 1609 #endif 1610 } 1611 1612 static void handle_path(const struct dentry *dentry) 1613 { 1614 #ifdef CONFIG_AUDIT_TREE 1615 struct audit_context *context; 1616 struct audit_tree_refs *p; 1617 const struct dentry *d, *parent; 1618 struct audit_chunk *drop; 1619 unsigned long seq; 1620 int count; 1621 1622 context = current->audit_context; 1623 p = context->trees; 1624 count = context->tree_count; 1625 retry: 1626 drop = NULL; 1627 d = dentry; 1628 rcu_read_lock(); 1629 seq = read_seqbegin(&rename_lock); 1630 for(;;) { 1631 struct inode *inode = d_backing_inode(d); 1632 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1633 struct audit_chunk *chunk; 1634 chunk = audit_tree_lookup(inode); 1635 if (chunk) { 1636 if (unlikely(!put_tree_ref(context, chunk))) { 1637 drop = chunk; 1638 break; 1639 } 1640 } 1641 } 1642 parent = d->d_parent; 1643 if (parent == d) 1644 break; 1645 d = parent; 1646 } 1647 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1648 rcu_read_unlock(); 1649 if (!drop) { 1650 /* just a race with rename */ 1651 unroll_tree_refs(context, p, count); 1652 goto retry; 1653 } 1654 audit_put_chunk(drop); 1655 if (grow_tree_refs(context)) { 1656 /* OK, got more space */ 1657 unroll_tree_refs(context, p, count); 1658 goto retry; 1659 } 1660 /* too bad */ 1661 pr_warn("out of memory, audit has lost a tree reference\n"); 1662 unroll_tree_refs(context, p, count); 1663 audit_set_auditable(context); 1664 return; 1665 } 1666 rcu_read_unlock(); 1667 #endif 1668 } 1669 1670 static struct audit_names *audit_alloc_name(struct audit_context *context, 1671 unsigned char type) 1672 { 1673 struct audit_names *aname; 1674 1675 if (context->name_count < AUDIT_NAMES) { 1676 aname = &context->preallocated_names[context->name_count]; 1677 memset(aname, 0, sizeof(*aname)); 1678 } else { 1679 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1680 if (!aname) 1681 return NULL; 1682 aname->should_free = true; 1683 } 1684 1685 aname->ino = AUDIT_INO_UNSET; 1686 aname->type = type; 1687 list_add_tail(&aname->list, &context->names_list); 1688 1689 context->name_count++; 1690 return aname; 1691 } 1692 1693 /** 1694 * audit_reusename - fill out filename with info from existing entry 1695 * @uptr: userland ptr to pathname 1696 * 1697 * Search the audit_names list for the current audit context. If there is an 1698 * existing entry with a matching "uptr" then return the filename 1699 * associated with that audit_name. If not, return NULL. 1700 */ 1701 struct filename * 1702 __audit_reusename(const __user char *uptr) 1703 { 1704 struct audit_context *context = current->audit_context; 1705 struct audit_names *n; 1706 1707 list_for_each_entry(n, &context->names_list, list) { 1708 if (!n->name) 1709 continue; 1710 if (n->name->uptr == uptr) { 1711 n->name->refcnt++; 1712 return n->name; 1713 } 1714 } 1715 return NULL; 1716 } 1717 1718 /** 1719 * audit_getname - add a name to the list 1720 * @name: name to add 1721 * 1722 * Add a name to the list of audit names for this context. 1723 * Called from fs/namei.c:getname(). 1724 */ 1725 void __audit_getname(struct filename *name) 1726 { 1727 struct audit_context *context = current->audit_context; 1728 struct audit_names *n; 1729 1730 if (!context->in_syscall) 1731 return; 1732 1733 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1734 if (!n) 1735 return; 1736 1737 n->name = name; 1738 n->name_len = AUDIT_NAME_FULL; 1739 name->aname = n; 1740 name->refcnt++; 1741 1742 if (!context->pwd.dentry) 1743 get_fs_pwd(current->fs, &context->pwd); 1744 } 1745 1746 /** 1747 * __audit_inode - store the inode and device from a lookup 1748 * @name: name being audited 1749 * @dentry: dentry being audited 1750 * @flags: attributes for this particular entry 1751 */ 1752 void __audit_inode(struct filename *name, const struct dentry *dentry, 1753 unsigned int flags) 1754 { 1755 struct audit_context *context = current->audit_context; 1756 struct inode *inode = d_backing_inode(dentry); 1757 struct audit_names *n; 1758 bool parent = flags & AUDIT_INODE_PARENT; 1759 1760 if (!context->in_syscall) 1761 return; 1762 1763 if (!name) 1764 goto out_alloc; 1765 1766 /* 1767 * If we have a pointer to an audit_names entry already, then we can 1768 * just use it directly if the type is correct. 1769 */ 1770 n = name->aname; 1771 if (n) { 1772 if (parent) { 1773 if (n->type == AUDIT_TYPE_PARENT || 1774 n->type == AUDIT_TYPE_UNKNOWN) 1775 goto out; 1776 } else { 1777 if (n->type != AUDIT_TYPE_PARENT) 1778 goto out; 1779 } 1780 } 1781 1782 list_for_each_entry_reverse(n, &context->names_list, list) { 1783 if (n->ino) { 1784 /* valid inode number, use that for the comparison */ 1785 if (n->ino != inode->i_ino || 1786 n->dev != inode->i_sb->s_dev) 1787 continue; 1788 } else if (n->name) { 1789 /* inode number has not been set, check the name */ 1790 if (strcmp(n->name->name, name->name)) 1791 continue; 1792 } else 1793 /* no inode and no name (?!) ... this is odd ... */ 1794 continue; 1795 1796 /* match the correct record type */ 1797 if (parent) { 1798 if (n->type == AUDIT_TYPE_PARENT || 1799 n->type == AUDIT_TYPE_UNKNOWN) 1800 goto out; 1801 } else { 1802 if (n->type != AUDIT_TYPE_PARENT) 1803 goto out; 1804 } 1805 } 1806 1807 out_alloc: 1808 /* unable to find an entry with both a matching name and type */ 1809 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1810 if (!n) 1811 return; 1812 if (name) { 1813 n->name = name; 1814 name->refcnt++; 1815 } 1816 1817 out: 1818 if (parent) { 1819 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1820 n->type = AUDIT_TYPE_PARENT; 1821 if (flags & AUDIT_INODE_HIDDEN) 1822 n->hidden = true; 1823 } else { 1824 n->name_len = AUDIT_NAME_FULL; 1825 n->type = AUDIT_TYPE_NORMAL; 1826 } 1827 handle_path(dentry); 1828 audit_copy_inode(n, dentry, inode); 1829 } 1830 1831 void __audit_file(const struct file *file) 1832 { 1833 __audit_inode(NULL, file->f_path.dentry, 0); 1834 } 1835 1836 /** 1837 * __audit_inode_child - collect inode info for created/removed objects 1838 * @parent: inode of dentry parent 1839 * @dentry: dentry being audited 1840 * @type: AUDIT_TYPE_* value that we're looking for 1841 * 1842 * For syscalls that create or remove filesystem objects, audit_inode 1843 * can only collect information for the filesystem object's parent. 1844 * This call updates the audit context with the child's information. 1845 * Syscalls that create a new filesystem object must be hooked after 1846 * the object is created. Syscalls that remove a filesystem object 1847 * must be hooked prior, in order to capture the target inode during 1848 * unsuccessful attempts. 1849 */ 1850 void __audit_inode_child(struct inode *parent, 1851 const struct dentry *dentry, 1852 const unsigned char type) 1853 { 1854 struct audit_context *context = current->audit_context; 1855 struct inode *inode = d_backing_inode(dentry); 1856 const char *dname = dentry->d_name.name; 1857 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1858 1859 if (!context->in_syscall) 1860 return; 1861 1862 if (inode) 1863 handle_one(inode); 1864 1865 /* look for a parent entry first */ 1866 list_for_each_entry(n, &context->names_list, list) { 1867 if (!n->name || 1868 (n->type != AUDIT_TYPE_PARENT && 1869 n->type != AUDIT_TYPE_UNKNOWN)) 1870 continue; 1871 1872 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 1873 !audit_compare_dname_path(dname, 1874 n->name->name, n->name_len)) { 1875 if (n->type == AUDIT_TYPE_UNKNOWN) 1876 n->type = AUDIT_TYPE_PARENT; 1877 found_parent = n; 1878 break; 1879 } 1880 } 1881 1882 /* is there a matching child entry? */ 1883 list_for_each_entry(n, &context->names_list, list) { 1884 /* can only match entries that have a name */ 1885 if (!n->name || 1886 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 1887 continue; 1888 1889 if (!strcmp(dname, n->name->name) || 1890 !audit_compare_dname_path(dname, n->name->name, 1891 found_parent ? 1892 found_parent->name_len : 1893 AUDIT_NAME_FULL)) { 1894 if (n->type == AUDIT_TYPE_UNKNOWN) 1895 n->type = type; 1896 found_child = n; 1897 break; 1898 } 1899 } 1900 1901 if (!found_parent) { 1902 /* create a new, "anonymous" parent record */ 1903 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1904 if (!n) 1905 return; 1906 audit_copy_inode(n, NULL, parent); 1907 } 1908 1909 if (!found_child) { 1910 found_child = audit_alloc_name(context, type); 1911 if (!found_child) 1912 return; 1913 1914 /* Re-use the name belonging to the slot for a matching parent 1915 * directory. All names for this context are relinquished in 1916 * audit_free_names() */ 1917 if (found_parent) { 1918 found_child->name = found_parent->name; 1919 found_child->name_len = AUDIT_NAME_FULL; 1920 found_child->name->refcnt++; 1921 } 1922 } 1923 1924 if (inode) 1925 audit_copy_inode(found_child, dentry, inode); 1926 else 1927 found_child->ino = AUDIT_INO_UNSET; 1928 } 1929 EXPORT_SYMBOL_GPL(__audit_inode_child); 1930 1931 /** 1932 * auditsc_get_stamp - get local copies of audit_context values 1933 * @ctx: audit_context for the task 1934 * @t: timespec to store time recorded in the audit_context 1935 * @serial: serial value that is recorded in the audit_context 1936 * 1937 * Also sets the context as auditable. 1938 */ 1939 int auditsc_get_stamp(struct audit_context *ctx, 1940 struct timespec *t, unsigned int *serial) 1941 { 1942 if (!ctx->in_syscall) 1943 return 0; 1944 if (!ctx->serial) 1945 ctx->serial = audit_serial(); 1946 t->tv_sec = ctx->ctime.tv_sec; 1947 t->tv_nsec = ctx->ctime.tv_nsec; 1948 *serial = ctx->serial; 1949 if (!ctx->prio) { 1950 ctx->prio = 1; 1951 ctx->current_state = AUDIT_RECORD_CONTEXT; 1952 } 1953 return 1; 1954 } 1955 1956 /* global counter which is incremented every time something logs in */ 1957 static atomic_t session_id = ATOMIC_INIT(0); 1958 1959 static int audit_set_loginuid_perm(kuid_t loginuid) 1960 { 1961 /* if we are unset, we don't need privs */ 1962 if (!audit_loginuid_set(current)) 1963 return 0; 1964 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 1965 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 1966 return -EPERM; 1967 /* it is set, you need permission */ 1968 if (!capable(CAP_AUDIT_CONTROL)) 1969 return -EPERM; 1970 /* reject if this is not an unset and we don't allow that */ 1971 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 1972 return -EPERM; 1973 return 0; 1974 } 1975 1976 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 1977 unsigned int oldsessionid, unsigned int sessionid, 1978 int rc) 1979 { 1980 struct audit_buffer *ab; 1981 uid_t uid, oldloginuid, loginuid; 1982 struct tty_struct *tty; 1983 1984 if (!audit_enabled) 1985 return; 1986 1987 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1988 if (!ab) 1989 return; 1990 1991 uid = from_kuid(&init_user_ns, task_uid(current)); 1992 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 1993 loginuid = from_kuid(&init_user_ns, kloginuid), 1994 tty = audit_get_tty(current); 1995 1996 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid); 1997 audit_log_task_context(ab); 1998 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 1999 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2000 oldsessionid, sessionid, !rc); 2001 audit_put_tty(tty); 2002 audit_log_end(ab); 2003 } 2004 2005 /** 2006 * audit_set_loginuid - set current task's audit_context loginuid 2007 * @loginuid: loginuid value 2008 * 2009 * Returns 0. 2010 * 2011 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2012 */ 2013 int audit_set_loginuid(kuid_t loginuid) 2014 { 2015 struct task_struct *task = current; 2016 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2017 kuid_t oldloginuid; 2018 int rc; 2019 2020 oldloginuid = audit_get_loginuid(current); 2021 oldsessionid = audit_get_sessionid(current); 2022 2023 rc = audit_set_loginuid_perm(loginuid); 2024 if (rc) 2025 goto out; 2026 2027 /* are we setting or clearing? */ 2028 if (uid_valid(loginuid)) 2029 sessionid = (unsigned int)atomic_inc_return(&session_id); 2030 2031 task->sessionid = sessionid; 2032 task->loginuid = loginuid; 2033 out: 2034 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2035 return rc; 2036 } 2037 2038 /** 2039 * __audit_mq_open - record audit data for a POSIX MQ open 2040 * @oflag: open flag 2041 * @mode: mode bits 2042 * @attr: queue attributes 2043 * 2044 */ 2045 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2046 { 2047 struct audit_context *context = current->audit_context; 2048 2049 if (attr) 2050 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2051 else 2052 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2053 2054 context->mq_open.oflag = oflag; 2055 context->mq_open.mode = mode; 2056 2057 context->type = AUDIT_MQ_OPEN; 2058 } 2059 2060 /** 2061 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2062 * @mqdes: MQ descriptor 2063 * @msg_len: Message length 2064 * @msg_prio: Message priority 2065 * @abs_timeout: Message timeout in absolute time 2066 * 2067 */ 2068 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2069 const struct timespec *abs_timeout) 2070 { 2071 struct audit_context *context = current->audit_context; 2072 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2073 2074 if (abs_timeout) 2075 memcpy(p, abs_timeout, sizeof(struct timespec)); 2076 else 2077 memset(p, 0, sizeof(struct timespec)); 2078 2079 context->mq_sendrecv.mqdes = mqdes; 2080 context->mq_sendrecv.msg_len = msg_len; 2081 context->mq_sendrecv.msg_prio = msg_prio; 2082 2083 context->type = AUDIT_MQ_SENDRECV; 2084 } 2085 2086 /** 2087 * __audit_mq_notify - record audit data for a POSIX MQ notify 2088 * @mqdes: MQ descriptor 2089 * @notification: Notification event 2090 * 2091 */ 2092 2093 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2094 { 2095 struct audit_context *context = current->audit_context; 2096 2097 if (notification) 2098 context->mq_notify.sigev_signo = notification->sigev_signo; 2099 else 2100 context->mq_notify.sigev_signo = 0; 2101 2102 context->mq_notify.mqdes = mqdes; 2103 context->type = AUDIT_MQ_NOTIFY; 2104 } 2105 2106 /** 2107 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2108 * @mqdes: MQ descriptor 2109 * @mqstat: MQ flags 2110 * 2111 */ 2112 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2113 { 2114 struct audit_context *context = current->audit_context; 2115 context->mq_getsetattr.mqdes = mqdes; 2116 context->mq_getsetattr.mqstat = *mqstat; 2117 context->type = AUDIT_MQ_GETSETATTR; 2118 } 2119 2120 /** 2121 * audit_ipc_obj - record audit data for ipc object 2122 * @ipcp: ipc permissions 2123 * 2124 */ 2125 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2126 { 2127 struct audit_context *context = current->audit_context; 2128 context->ipc.uid = ipcp->uid; 2129 context->ipc.gid = ipcp->gid; 2130 context->ipc.mode = ipcp->mode; 2131 context->ipc.has_perm = 0; 2132 security_ipc_getsecid(ipcp, &context->ipc.osid); 2133 context->type = AUDIT_IPC; 2134 } 2135 2136 /** 2137 * audit_ipc_set_perm - record audit data for new ipc permissions 2138 * @qbytes: msgq bytes 2139 * @uid: msgq user id 2140 * @gid: msgq group id 2141 * @mode: msgq mode (permissions) 2142 * 2143 * Called only after audit_ipc_obj(). 2144 */ 2145 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2146 { 2147 struct audit_context *context = current->audit_context; 2148 2149 context->ipc.qbytes = qbytes; 2150 context->ipc.perm_uid = uid; 2151 context->ipc.perm_gid = gid; 2152 context->ipc.perm_mode = mode; 2153 context->ipc.has_perm = 1; 2154 } 2155 2156 void __audit_bprm(struct linux_binprm *bprm) 2157 { 2158 struct audit_context *context = current->audit_context; 2159 2160 context->type = AUDIT_EXECVE; 2161 context->execve.argc = bprm->argc; 2162 } 2163 2164 2165 /** 2166 * audit_socketcall - record audit data for sys_socketcall 2167 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2168 * @args: args array 2169 * 2170 */ 2171 int __audit_socketcall(int nargs, unsigned long *args) 2172 { 2173 struct audit_context *context = current->audit_context; 2174 2175 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2176 return -EINVAL; 2177 context->type = AUDIT_SOCKETCALL; 2178 context->socketcall.nargs = nargs; 2179 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2180 return 0; 2181 } 2182 2183 /** 2184 * __audit_fd_pair - record audit data for pipe and socketpair 2185 * @fd1: the first file descriptor 2186 * @fd2: the second file descriptor 2187 * 2188 */ 2189 void __audit_fd_pair(int fd1, int fd2) 2190 { 2191 struct audit_context *context = current->audit_context; 2192 context->fds[0] = fd1; 2193 context->fds[1] = fd2; 2194 } 2195 2196 /** 2197 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2198 * @len: data length in user space 2199 * @a: data address in kernel space 2200 * 2201 * Returns 0 for success or NULL context or < 0 on error. 2202 */ 2203 int __audit_sockaddr(int len, void *a) 2204 { 2205 struct audit_context *context = current->audit_context; 2206 2207 if (!context->sockaddr) { 2208 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2209 if (!p) 2210 return -ENOMEM; 2211 context->sockaddr = p; 2212 } 2213 2214 context->sockaddr_len = len; 2215 memcpy(context->sockaddr, a, len); 2216 return 0; 2217 } 2218 2219 void __audit_ptrace(struct task_struct *t) 2220 { 2221 struct audit_context *context = current->audit_context; 2222 2223 context->target_pid = task_pid_nr(t); 2224 context->target_auid = audit_get_loginuid(t); 2225 context->target_uid = task_uid(t); 2226 context->target_sessionid = audit_get_sessionid(t); 2227 security_task_getsecid(t, &context->target_sid); 2228 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2229 } 2230 2231 /** 2232 * audit_signal_info - record signal info for shutting down audit subsystem 2233 * @sig: signal value 2234 * @t: task being signaled 2235 * 2236 * If the audit subsystem is being terminated, record the task (pid) 2237 * and uid that is doing that. 2238 */ 2239 int __audit_signal_info(int sig, struct task_struct *t) 2240 { 2241 struct audit_aux_data_pids *axp; 2242 struct task_struct *tsk = current; 2243 struct audit_context *ctx = tsk->audit_context; 2244 kuid_t uid = current_uid(), t_uid = task_uid(t); 2245 2246 if (audit_pid && t->tgid == audit_pid) { 2247 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2248 audit_sig_pid = task_pid_nr(tsk); 2249 if (uid_valid(tsk->loginuid)) 2250 audit_sig_uid = tsk->loginuid; 2251 else 2252 audit_sig_uid = uid; 2253 security_task_getsecid(tsk, &audit_sig_sid); 2254 } 2255 if (!audit_signals || audit_dummy_context()) 2256 return 0; 2257 } 2258 2259 /* optimize the common case by putting first signal recipient directly 2260 * in audit_context */ 2261 if (!ctx->target_pid) { 2262 ctx->target_pid = task_tgid_nr(t); 2263 ctx->target_auid = audit_get_loginuid(t); 2264 ctx->target_uid = t_uid; 2265 ctx->target_sessionid = audit_get_sessionid(t); 2266 security_task_getsecid(t, &ctx->target_sid); 2267 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2268 return 0; 2269 } 2270 2271 axp = (void *)ctx->aux_pids; 2272 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2273 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2274 if (!axp) 2275 return -ENOMEM; 2276 2277 axp->d.type = AUDIT_OBJ_PID; 2278 axp->d.next = ctx->aux_pids; 2279 ctx->aux_pids = (void *)axp; 2280 } 2281 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2282 2283 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2284 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2285 axp->target_uid[axp->pid_count] = t_uid; 2286 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2287 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2288 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2289 axp->pid_count++; 2290 2291 return 0; 2292 } 2293 2294 /** 2295 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2296 * @bprm: pointer to the bprm being processed 2297 * @new: the proposed new credentials 2298 * @old: the old credentials 2299 * 2300 * Simply check if the proc already has the caps given by the file and if not 2301 * store the priv escalation info for later auditing at the end of the syscall 2302 * 2303 * -Eric 2304 */ 2305 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2306 const struct cred *new, const struct cred *old) 2307 { 2308 struct audit_aux_data_bprm_fcaps *ax; 2309 struct audit_context *context = current->audit_context; 2310 struct cpu_vfs_cap_data vcaps; 2311 2312 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2313 if (!ax) 2314 return -ENOMEM; 2315 2316 ax->d.type = AUDIT_BPRM_FCAPS; 2317 ax->d.next = context->aux; 2318 context->aux = (void *)ax; 2319 2320 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2321 2322 ax->fcap.permitted = vcaps.permitted; 2323 ax->fcap.inheritable = vcaps.inheritable; 2324 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2325 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2326 2327 ax->old_pcap.permitted = old->cap_permitted; 2328 ax->old_pcap.inheritable = old->cap_inheritable; 2329 ax->old_pcap.effective = old->cap_effective; 2330 2331 ax->new_pcap.permitted = new->cap_permitted; 2332 ax->new_pcap.inheritable = new->cap_inheritable; 2333 ax->new_pcap.effective = new->cap_effective; 2334 return 0; 2335 } 2336 2337 /** 2338 * __audit_log_capset - store information about the arguments to the capset syscall 2339 * @new: the new credentials 2340 * @old: the old (current) credentials 2341 * 2342 * Record the arguments userspace sent to sys_capset for later printing by the 2343 * audit system if applicable 2344 */ 2345 void __audit_log_capset(const struct cred *new, const struct cred *old) 2346 { 2347 struct audit_context *context = current->audit_context; 2348 context->capset.pid = task_pid_nr(current); 2349 context->capset.cap.effective = new->cap_effective; 2350 context->capset.cap.inheritable = new->cap_effective; 2351 context->capset.cap.permitted = new->cap_permitted; 2352 context->type = AUDIT_CAPSET; 2353 } 2354 2355 void __audit_mmap_fd(int fd, int flags) 2356 { 2357 struct audit_context *context = current->audit_context; 2358 context->mmap.fd = fd; 2359 context->mmap.flags = flags; 2360 context->type = AUDIT_MMAP; 2361 } 2362 2363 static void audit_log_task(struct audit_buffer *ab) 2364 { 2365 kuid_t auid, uid; 2366 kgid_t gid; 2367 unsigned int sessionid; 2368 char comm[sizeof(current->comm)]; 2369 2370 auid = audit_get_loginuid(current); 2371 sessionid = audit_get_sessionid(current); 2372 current_uid_gid(&uid, &gid); 2373 2374 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2375 from_kuid(&init_user_ns, auid), 2376 from_kuid(&init_user_ns, uid), 2377 from_kgid(&init_user_ns, gid), 2378 sessionid); 2379 audit_log_task_context(ab); 2380 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current)); 2381 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2382 audit_log_d_path_exe(ab, current->mm); 2383 } 2384 2385 /** 2386 * audit_core_dumps - record information about processes that end abnormally 2387 * @signr: signal value 2388 * 2389 * If a process ends with a core dump, something fishy is going on and we 2390 * should record the event for investigation. 2391 */ 2392 void audit_core_dumps(long signr) 2393 { 2394 struct audit_buffer *ab; 2395 2396 if (!audit_enabled) 2397 return; 2398 2399 if (signr == SIGQUIT) /* don't care for those */ 2400 return; 2401 2402 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2403 if (unlikely(!ab)) 2404 return; 2405 audit_log_task(ab); 2406 audit_log_format(ab, " sig=%ld", signr); 2407 audit_log_end(ab); 2408 } 2409 2410 void __audit_seccomp(unsigned long syscall, long signr, int code) 2411 { 2412 struct audit_buffer *ab; 2413 2414 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2415 if (unlikely(!ab)) 2416 return; 2417 audit_log_task(ab); 2418 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2419 signr, syscall_get_arch(), syscall, 2420 in_compat_syscall(), KSTK_EIP(current), code); 2421 audit_log_end(ab); 2422 } 2423 2424 struct list_head *audit_killed_trees(void) 2425 { 2426 struct audit_context *ctx = current->audit_context; 2427 if (likely(!ctx || !ctx->in_syscall)) 2428 return NULL; 2429 return &ctx->killed_trees; 2430 } 2431