1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 68 69 #include "audit.h" 70 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 75 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_aux_data { 90 struct audit_aux_data *next; 91 int type; 92 }; 93 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 96 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 struct lsm_prop target_ref[AUDIT_AUX_PIDS]; 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 106 }; 107 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 114 }; 115 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 119 }; 120 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 123 const char *s; 124 }; 125 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, 147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, 148 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 149 }; 150 151 static int audit_match_perm(struct audit_context *ctx, int mask) 152 { 153 unsigned n; 154 155 if (unlikely(!ctx)) 156 return 0; 157 n = ctx->major; 158 159 switch (audit_classify_syscall(ctx->arch, n)) { 160 case AUDITSC_NATIVE: 161 if ((mask & AUDIT_PERM_WRITE) && 162 audit_match_class(AUDIT_CLASS_WRITE, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_READ) && 165 audit_match_class(AUDIT_CLASS_READ, n)) 166 return 1; 167 if ((mask & AUDIT_PERM_ATTR) && 168 audit_match_class(AUDIT_CLASS_CHATTR, n)) 169 return 1; 170 return 0; 171 case AUDITSC_COMPAT: /* 32bit on biarch */ 172 if ((mask & AUDIT_PERM_WRITE) && 173 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_READ) && 176 audit_match_class(AUDIT_CLASS_READ_32, n)) 177 return 1; 178 if ((mask & AUDIT_PERM_ATTR) && 179 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 180 return 1; 181 return 0; 182 case AUDITSC_OPEN: 183 return mask & ACC_MODE(ctx->argv[1]); 184 case AUDITSC_OPENAT: 185 return mask & ACC_MODE(ctx->argv[2]); 186 case AUDITSC_SOCKETCALL: 187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 188 case AUDITSC_EXECVE: 189 return mask & AUDIT_PERM_EXEC; 190 case AUDITSC_OPENAT2: 191 return mask & ACC_MODE((u32)ctx->openat2.flags); 192 default: 193 return 0; 194 } 195 } 196 197 static int audit_match_filetype(struct audit_context *ctx, int val) 198 { 199 struct audit_names *n; 200 umode_t mode = (umode_t)val; 201 202 if (unlikely(!ctx)) 203 return 0; 204 205 list_for_each_entry(n, &ctx->names_list, list) { 206 if ((n->ino != AUDIT_INO_UNSET) && 207 ((n->mode & S_IFMT) == mode)) 208 return 1; 209 } 210 211 return 0; 212 } 213 214 /* 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 216 * ->first_trees points to its beginning, ->trees - to the current end of data. 217 * ->tree_count is the number of free entries in array pointed to by ->trees. 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 220 * it's going to remain 1-element for almost any setup) until we free context itself. 221 * References in it _are_ dropped - at the same time we free/drop aux stuff. 222 */ 223 224 static void audit_set_auditable(struct audit_context *ctx) 225 { 226 if (!ctx->prio) { 227 ctx->prio = 1; 228 ctx->current_state = AUDIT_STATE_RECORD; 229 } 230 } 231 232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 int left = ctx->tree_count; 236 237 if (likely(left)) { 238 p->c[--left] = chunk; 239 ctx->tree_count = left; 240 return 1; 241 } 242 if (!p) 243 return 0; 244 p = p->next; 245 if (p) { 246 p->c[30] = chunk; 247 ctx->trees = p; 248 ctx->tree_count = 30; 249 return 1; 250 } 251 return 0; 252 } 253 254 static int grow_tree_refs(struct audit_context *ctx) 255 { 256 struct audit_tree_refs *p = ctx->trees; 257 258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 259 if (!ctx->trees) { 260 ctx->trees = p; 261 return 0; 262 } 263 if (p) 264 p->next = ctx->trees; 265 else 266 ctx->first_trees = ctx->trees; 267 ctx->tree_count = 31; 268 return 1; 269 } 270 271 static void unroll_tree_refs(struct audit_context *ctx, 272 struct audit_tree_refs *p, int count) 273 { 274 struct audit_tree_refs *q; 275 int n; 276 277 if (!p) { 278 /* we started with empty chain */ 279 p = ctx->first_trees; 280 count = 31; 281 /* if the very first allocation has failed, nothing to do */ 282 if (!p) 283 return; 284 } 285 n = count; 286 for (q = p; q != ctx->trees; q = q->next, n = 31) { 287 while (n--) { 288 audit_put_chunk(q->c[n]); 289 q->c[n] = NULL; 290 } 291 } 292 while (n-- > ctx->tree_count) { 293 audit_put_chunk(q->c[n]); 294 q->c[n] = NULL; 295 } 296 ctx->trees = p; 297 ctx->tree_count = count; 298 } 299 300 static void free_tree_refs(struct audit_context *ctx) 301 { 302 struct audit_tree_refs *p, *q; 303 304 for (p = ctx->first_trees; p; p = q) { 305 q = p->next; 306 kfree(p); 307 } 308 } 309 310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 311 { 312 struct audit_tree_refs *p; 313 int n; 314 315 if (!tree) 316 return 0; 317 /* full ones */ 318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 319 for (n = 0; n < 31; n++) 320 if (audit_tree_match(p->c[n], tree)) 321 return 1; 322 } 323 /* partial */ 324 if (p) { 325 for (n = ctx->tree_count; n < 31; n++) 326 if (audit_tree_match(p->c[n], tree)) 327 return 1; 328 } 329 return 0; 330 } 331 332 static int audit_compare_uid(kuid_t uid, 333 struct audit_names *name, 334 struct audit_field *f, 335 struct audit_context *ctx) 336 { 337 struct audit_names *n; 338 int rc; 339 340 if (name) { 341 rc = audit_uid_comparator(uid, f->op, name->uid); 342 if (rc) 343 return rc; 344 } 345 346 if (ctx) { 347 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_uid_comparator(uid, f->op, n->uid); 349 if (rc) 350 return rc; 351 } 352 } 353 return 0; 354 } 355 356 static int audit_compare_gid(kgid_t gid, 357 struct audit_names *name, 358 struct audit_field *f, 359 struct audit_context *ctx) 360 { 361 struct audit_names *n; 362 int rc; 363 364 if (name) { 365 rc = audit_gid_comparator(gid, f->op, name->gid); 366 if (rc) 367 return rc; 368 } 369 370 if (ctx) { 371 list_for_each_entry(n, &ctx->names_list, list) { 372 rc = audit_gid_comparator(gid, f->op, n->gid); 373 if (rc) 374 return rc; 375 } 376 } 377 return 0; 378 } 379 380 static int audit_field_compare(struct task_struct *tsk, 381 const struct cred *cred, 382 struct audit_field *f, 383 struct audit_context *ctx, 384 struct audit_names *name) 385 { 386 switch (f->val) { 387 /* process to file object comparisons */ 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 389 return audit_compare_uid(cred->uid, name, f, ctx); 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 391 return audit_compare_gid(cred->gid, name, f, ctx); 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 393 return audit_compare_uid(cred->euid, name, f, ctx); 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 395 return audit_compare_gid(cred->egid, name, f, ctx); 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 399 return audit_compare_uid(cred->suid, name, f, ctx); 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 401 return audit_compare_gid(cred->sgid, name, f, ctx); 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 403 return audit_compare_uid(cred->fsuid, name, f, ctx); 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 405 return audit_compare_gid(cred->fsgid, name, f, ctx); 406 /* uid comparisons */ 407 case AUDIT_COMPARE_UID_TO_AUID: 408 return audit_uid_comparator(cred->uid, f->op, 409 audit_get_loginuid(tsk)); 410 case AUDIT_COMPARE_UID_TO_EUID: 411 return audit_uid_comparator(cred->uid, f->op, cred->euid); 412 case AUDIT_COMPARE_UID_TO_SUID: 413 return audit_uid_comparator(cred->uid, f->op, cred->suid); 414 case AUDIT_COMPARE_UID_TO_FSUID: 415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 416 /* auid comparisons */ 417 case AUDIT_COMPARE_AUID_TO_EUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->euid); 420 case AUDIT_COMPARE_AUID_TO_SUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->suid); 423 case AUDIT_COMPARE_AUID_TO_FSUID: 424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 425 cred->fsuid); 426 /* euid comparisons */ 427 case AUDIT_COMPARE_EUID_TO_SUID: 428 return audit_uid_comparator(cred->euid, f->op, cred->suid); 429 case AUDIT_COMPARE_EUID_TO_FSUID: 430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 431 /* suid comparisons */ 432 case AUDIT_COMPARE_SUID_TO_FSUID: 433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 434 /* gid comparisons */ 435 case AUDIT_COMPARE_GID_TO_EGID: 436 return audit_gid_comparator(cred->gid, f->op, cred->egid); 437 case AUDIT_COMPARE_GID_TO_SGID: 438 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 439 case AUDIT_COMPARE_GID_TO_FSGID: 440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 441 /* egid comparisons */ 442 case AUDIT_COMPARE_EGID_TO_SGID: 443 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 444 case AUDIT_COMPARE_EGID_TO_FSGID: 445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 446 /* sgid comparison */ 447 case AUDIT_COMPARE_SGID_TO_FSGID: 448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 449 default: 450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 451 return 0; 452 } 453 return 0; 454 } 455 456 /* Determine if any context name data matches a rule's watch data */ 457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 458 * otherwise. 459 * 460 * If task_creation is true, this is an explicit indication that we are 461 * filtering a task rule at task creation time. This and tsk == current are 462 * the only situations where tsk->cred may be accessed without an rcu read lock. 463 */ 464 static int audit_filter_rules(struct task_struct *tsk, 465 struct audit_krule *rule, 466 struct audit_context *ctx, 467 struct audit_names *name, 468 enum audit_state *state, 469 bool task_creation) 470 { 471 const struct cred *cred; 472 int i, need_sid = 1; 473 struct lsm_prop prop = { }; 474 unsigned int sessionid; 475 476 if (ctx && rule->prio <= ctx->prio) 477 return 0; 478 479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 480 481 for (i = 0; i < rule->field_count; i++) { 482 struct audit_field *f = &rule->fields[i]; 483 struct audit_names *n; 484 int result = 0; 485 pid_t pid; 486 487 switch (f->type) { 488 case AUDIT_PID: 489 pid = task_tgid_nr(tsk); 490 result = audit_comparator(pid, f->op, f->val); 491 break; 492 case AUDIT_PPID: 493 if (ctx) { 494 if (!ctx->ppid) 495 ctx->ppid = task_ppid_nr(tsk); 496 result = audit_comparator(ctx->ppid, f->op, f->val); 497 } 498 break; 499 case AUDIT_EXE: 500 result = audit_exe_compare(tsk, rule->exe); 501 if (f->op == Audit_not_equal) 502 result = !result; 503 break; 504 case AUDIT_UID: 505 result = audit_uid_comparator(cred->uid, f->op, f->uid); 506 break; 507 case AUDIT_EUID: 508 result = audit_uid_comparator(cred->euid, f->op, f->uid); 509 break; 510 case AUDIT_SUID: 511 result = audit_uid_comparator(cred->suid, f->op, f->uid); 512 break; 513 case AUDIT_FSUID: 514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 515 break; 516 case AUDIT_GID: 517 result = audit_gid_comparator(cred->gid, f->op, f->gid); 518 if (f->op == Audit_equal) { 519 if (!result) 520 result = groups_search(cred->group_info, f->gid); 521 } else if (f->op == Audit_not_equal) { 522 if (result) 523 result = !groups_search(cred->group_info, f->gid); 524 } 525 break; 526 case AUDIT_EGID: 527 result = audit_gid_comparator(cred->egid, f->op, f->gid); 528 if (f->op == Audit_equal) { 529 if (!result) 530 result = groups_search(cred->group_info, f->gid); 531 } else if (f->op == Audit_not_equal) { 532 if (result) 533 result = !groups_search(cred->group_info, f->gid); 534 } 535 break; 536 case AUDIT_SGID: 537 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 538 break; 539 case AUDIT_FSGID: 540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 541 break; 542 case AUDIT_SESSIONID: 543 sessionid = audit_get_sessionid(tsk); 544 result = audit_comparator(sessionid, f->op, f->val); 545 break; 546 case AUDIT_PERS: 547 result = audit_comparator(tsk->personality, f->op, f->val); 548 break; 549 case AUDIT_ARCH: 550 if (ctx) 551 result = audit_comparator(ctx->arch, f->op, f->val); 552 break; 553 554 case AUDIT_EXIT: 555 if (ctx && ctx->return_valid != AUDITSC_INVALID) 556 result = audit_comparator(ctx->return_code, f->op, f->val); 557 break; 558 case AUDIT_SUCCESS: 559 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 560 if (f->val) 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 562 else 563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 564 } 565 break; 566 case AUDIT_DEVMAJOR: 567 if (name) { 568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 569 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 570 ++result; 571 } else if (ctx) { 572 list_for_each_entry(n, &ctx->names_list, list) { 573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 575 ++result; 576 break; 577 } 578 } 579 } 580 break; 581 case AUDIT_DEVMINOR: 582 if (name) { 583 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 584 audit_comparator(MINOR(name->rdev), f->op, f->val)) 585 ++result; 586 } else if (ctx) { 587 list_for_each_entry(n, &ctx->names_list, list) { 588 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 589 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 590 ++result; 591 break; 592 } 593 } 594 } 595 break; 596 case AUDIT_INODE: 597 if (name) 598 result = audit_comparator(name->ino, f->op, f->val); 599 else if (ctx) { 600 list_for_each_entry(n, &ctx->names_list, list) { 601 if (audit_comparator(n->ino, f->op, f->val)) { 602 ++result; 603 break; 604 } 605 } 606 } 607 break; 608 case AUDIT_OBJ_UID: 609 if (name) { 610 result = audit_uid_comparator(name->uid, f->op, f->uid); 611 } else if (ctx) { 612 list_for_each_entry(n, &ctx->names_list, list) { 613 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 614 ++result; 615 break; 616 } 617 } 618 } 619 break; 620 case AUDIT_OBJ_GID: 621 if (name) { 622 result = audit_gid_comparator(name->gid, f->op, f->gid); 623 } else if (ctx) { 624 list_for_each_entry(n, &ctx->names_list, list) { 625 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 626 ++result; 627 break; 628 } 629 } 630 } 631 break; 632 case AUDIT_WATCH: 633 if (name) { 634 result = audit_watch_compare(rule->watch, 635 name->ino, 636 name->dev); 637 if (f->op == Audit_not_equal) 638 result = !result; 639 } 640 break; 641 case AUDIT_DIR: 642 if (ctx) { 643 result = match_tree_refs(ctx, rule->tree); 644 if (f->op == Audit_not_equal) 645 result = !result; 646 } 647 break; 648 case AUDIT_LOGINUID: 649 result = audit_uid_comparator(audit_get_loginuid(tsk), 650 f->op, f->uid); 651 break; 652 case AUDIT_LOGINUID_SET: 653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 654 break; 655 case AUDIT_SADDR_FAM: 656 if (ctx && ctx->sockaddr) 657 result = audit_comparator(ctx->sockaddr->ss_family, 658 f->op, f->val); 659 break; 660 case AUDIT_SUBJ_USER: 661 case AUDIT_SUBJ_ROLE: 662 case AUDIT_SUBJ_TYPE: 663 case AUDIT_SUBJ_SEN: 664 case AUDIT_SUBJ_CLR: 665 /* NOTE: this may return negative values indicating 666 a temporary error. We simply treat this as a 667 match for now to avoid losing information that 668 may be wanted. An error message will also be 669 logged upon error */ 670 if (f->lsm_rule) { 671 if (need_sid) { 672 /* @tsk should always be equal to 673 * @current with the exception of 674 * fork()/copy_process() in which case 675 * the new @tsk creds are still a dup 676 * of @current's creds so we can still 677 * use 678 * security_current_getlsmprop_subj() 679 * here even though it always refs 680 * @current's creds 681 */ 682 security_current_getlsmprop_subj(&prop); 683 need_sid = 0; 684 } 685 result = security_audit_rule_match(&prop, 686 f->type, 687 f->op, 688 f->lsm_rule); 689 } 690 break; 691 case AUDIT_OBJ_USER: 692 case AUDIT_OBJ_ROLE: 693 case AUDIT_OBJ_TYPE: 694 case AUDIT_OBJ_LEV_LOW: 695 case AUDIT_OBJ_LEV_HIGH: 696 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 697 also applies here */ 698 if (f->lsm_rule) { 699 /* Find files that match */ 700 if (name) { 701 result = security_audit_rule_match( 702 &name->oprop, 703 f->type, 704 f->op, 705 f->lsm_rule); 706 } else if (ctx) { 707 list_for_each_entry(n, &ctx->names_list, list) { 708 if (security_audit_rule_match( 709 &n->oprop, 710 f->type, 711 f->op, 712 f->lsm_rule)) { 713 ++result; 714 break; 715 } 716 } 717 } 718 /* Find ipc objects that match */ 719 if (!ctx || ctx->type != AUDIT_IPC) 720 break; 721 if (security_audit_rule_match(&ctx->ipc.oprop, 722 f->type, f->op, 723 f->lsm_rule)) 724 ++result; 725 } 726 break; 727 case AUDIT_ARG0: 728 case AUDIT_ARG1: 729 case AUDIT_ARG2: 730 case AUDIT_ARG3: 731 if (ctx) 732 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 733 break; 734 case AUDIT_FILTERKEY: 735 /* ignore this field for filtering */ 736 result = 1; 737 break; 738 case AUDIT_PERM: 739 result = audit_match_perm(ctx, f->val); 740 if (f->op == Audit_not_equal) 741 result = !result; 742 break; 743 case AUDIT_FILETYPE: 744 result = audit_match_filetype(ctx, f->val); 745 if (f->op == Audit_not_equal) 746 result = !result; 747 break; 748 case AUDIT_FIELD_COMPARE: 749 result = audit_field_compare(tsk, cred, f, ctx, name); 750 break; 751 } 752 if (!result) 753 return 0; 754 } 755 756 if (ctx) { 757 if (rule->filterkey) { 758 kfree(ctx->filterkey); 759 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 760 } 761 ctx->prio = rule->prio; 762 } 763 switch (rule->action) { 764 case AUDIT_NEVER: 765 *state = AUDIT_STATE_DISABLED; 766 break; 767 case AUDIT_ALWAYS: 768 *state = AUDIT_STATE_RECORD; 769 break; 770 } 771 return 1; 772 } 773 774 /* At process creation time, we can determine if system-call auditing is 775 * completely disabled for this task. Since we only have the task 776 * structure at this point, we can only check uid and gid. 777 */ 778 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 779 { 780 struct audit_entry *e; 781 enum audit_state state; 782 783 rcu_read_lock(); 784 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 785 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 786 &state, true)) { 787 if (state == AUDIT_STATE_RECORD) 788 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 789 rcu_read_unlock(); 790 return state; 791 } 792 } 793 rcu_read_unlock(); 794 return AUDIT_STATE_BUILD; 795 } 796 797 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 798 { 799 int word, bit; 800 801 if (val > 0xffffffff) 802 return false; 803 804 word = AUDIT_WORD(val); 805 if (word >= AUDIT_BITMASK_SIZE) 806 return false; 807 808 bit = AUDIT_BIT(val); 809 810 return rule->mask[word] & bit; 811 } 812 813 /** 814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 815 * @tsk: associated task 816 * @ctx: audit context 817 * @list: audit filter list 818 * @name: audit_name (can be NULL) 819 * @op: current syscall/uring_op 820 * 821 * Run the udit filters specified in @list against @tsk using @ctx, 822 * @name, and @op, as necessary; the caller is responsible for ensuring 823 * that the call is made while the RCU read lock is held. The @name 824 * parameter can be NULL, but all others must be specified. 825 * Returns 1/true if the filter finds a match, 0/false if none are found. 826 */ 827 static int __audit_filter_op(struct task_struct *tsk, 828 struct audit_context *ctx, 829 struct list_head *list, 830 struct audit_names *name, 831 unsigned long op) 832 { 833 struct audit_entry *e; 834 enum audit_state state; 835 836 list_for_each_entry_rcu(e, list, list) { 837 if (audit_in_mask(&e->rule, op) && 838 audit_filter_rules(tsk, &e->rule, ctx, name, 839 &state, false)) { 840 ctx->current_state = state; 841 return 1; 842 } 843 } 844 return 0; 845 } 846 847 /** 848 * audit_filter_uring - apply filters to an io_uring operation 849 * @tsk: associated task 850 * @ctx: audit context 851 */ 852 static void audit_filter_uring(struct task_struct *tsk, 853 struct audit_context *ctx) 854 { 855 if (auditd_test_task(tsk)) 856 return; 857 858 rcu_read_lock(); 859 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 860 NULL, ctx->uring_op); 861 rcu_read_unlock(); 862 } 863 864 /* At syscall exit time, this filter is called if the audit_state is 865 * not low enough that auditing cannot take place, but is also not 866 * high enough that we already know we have to write an audit record 867 * (i.e., the state is AUDIT_STATE_BUILD). 868 */ 869 static void audit_filter_syscall(struct task_struct *tsk, 870 struct audit_context *ctx) 871 { 872 if (auditd_test_task(tsk)) 873 return; 874 875 rcu_read_lock(); 876 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 877 NULL, ctx->major); 878 rcu_read_unlock(); 879 } 880 881 /* 882 * Given an audit_name check the inode hash table to see if they match. 883 * Called holding the rcu read lock to protect the use of audit_inode_hash 884 */ 885 static int audit_filter_inode_name(struct task_struct *tsk, 886 struct audit_names *n, 887 struct audit_context *ctx) 888 { 889 int h = audit_hash_ino((u32)n->ino); 890 struct list_head *list = &audit_inode_hash[h]; 891 892 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 893 } 894 895 /* At syscall exit time, this filter is called if any audit_names have been 896 * collected during syscall processing. We only check rules in sublists at hash 897 * buckets applicable to the inode numbers in audit_names. 898 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 899 */ 900 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 901 { 902 struct audit_names *n; 903 904 if (auditd_test_task(tsk)) 905 return; 906 907 rcu_read_lock(); 908 909 list_for_each_entry(n, &ctx->names_list, list) { 910 if (audit_filter_inode_name(tsk, n, ctx)) 911 break; 912 } 913 rcu_read_unlock(); 914 } 915 916 static inline void audit_proctitle_free(struct audit_context *context) 917 { 918 kfree(context->proctitle.value); 919 context->proctitle.value = NULL; 920 context->proctitle.len = 0; 921 } 922 923 static inline void audit_free_module(struct audit_context *context) 924 { 925 if (context->type == AUDIT_KERN_MODULE) { 926 kfree(context->module.name); 927 context->module.name = NULL; 928 } 929 } 930 static inline void audit_free_names(struct audit_context *context) 931 { 932 struct audit_names *n, *next; 933 934 list_for_each_entry_safe(n, next, &context->names_list, list) { 935 list_del(&n->list); 936 if (n->name) 937 putname(n->name); 938 if (n->should_free) 939 kfree(n); 940 } 941 context->name_count = 0; 942 path_put(&context->pwd); 943 context->pwd.dentry = NULL; 944 context->pwd.mnt = NULL; 945 } 946 947 static inline void audit_free_aux(struct audit_context *context) 948 { 949 struct audit_aux_data *aux; 950 951 while ((aux = context->aux)) { 952 context->aux = aux->next; 953 kfree(aux); 954 } 955 context->aux = NULL; 956 while ((aux = context->aux_pids)) { 957 context->aux_pids = aux->next; 958 kfree(aux); 959 } 960 context->aux_pids = NULL; 961 } 962 963 /** 964 * audit_reset_context - reset a audit_context structure 965 * @ctx: the audit_context to reset 966 * 967 * All fields in the audit_context will be reset to an initial state, all 968 * references held by fields will be dropped, and private memory will be 969 * released. When this function returns the audit_context will be suitable 970 * for reuse, so long as the passed context is not NULL or a dummy context. 971 */ 972 static void audit_reset_context(struct audit_context *ctx) 973 { 974 if (!ctx) 975 return; 976 977 /* if ctx is non-null, reset the "ctx->context" regardless */ 978 ctx->context = AUDIT_CTX_UNUSED; 979 if (ctx->dummy) 980 return; 981 982 /* 983 * NOTE: It shouldn't matter in what order we release the fields, so 984 * release them in the order in which they appear in the struct; 985 * this gives us some hope of quickly making sure we are 986 * resetting the audit_context properly. 987 * 988 * Other things worth mentioning: 989 * - we don't reset "dummy" 990 * - we don't reset "state", we do reset "current_state" 991 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 992 * - much of this is likely overkill, but play it safe for now 993 * - we really need to work on improving the audit_context struct 994 */ 995 996 ctx->current_state = ctx->state; 997 ctx->serial = 0; 998 ctx->major = 0; 999 ctx->uring_op = 0; 1000 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 1001 memset(ctx->argv, 0, sizeof(ctx->argv)); 1002 ctx->return_code = 0; 1003 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 1004 ctx->return_valid = AUDITSC_INVALID; 1005 audit_free_names(ctx); 1006 if (ctx->state != AUDIT_STATE_RECORD) { 1007 kfree(ctx->filterkey); 1008 ctx->filterkey = NULL; 1009 } 1010 audit_free_aux(ctx); 1011 kfree(ctx->sockaddr); 1012 ctx->sockaddr = NULL; 1013 ctx->sockaddr_len = 0; 1014 ctx->ppid = 0; 1015 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1016 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1017 ctx->personality = 0; 1018 ctx->arch = 0; 1019 ctx->target_pid = 0; 1020 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1021 ctx->target_sessionid = 0; 1022 lsmprop_init(&ctx->target_ref); 1023 ctx->target_comm[0] = '\0'; 1024 unroll_tree_refs(ctx, NULL, 0); 1025 WARN_ON(!list_empty(&ctx->killed_trees)); 1026 audit_free_module(ctx); 1027 ctx->fds[0] = -1; 1028 ctx->type = 0; /* reset last for audit_free_*() */ 1029 } 1030 1031 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1032 { 1033 struct audit_context *context; 1034 1035 context = kzalloc(sizeof(*context), GFP_KERNEL); 1036 if (!context) 1037 return NULL; 1038 context->context = AUDIT_CTX_UNUSED; 1039 context->state = state; 1040 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1041 INIT_LIST_HEAD(&context->killed_trees); 1042 INIT_LIST_HEAD(&context->names_list); 1043 context->fds[0] = -1; 1044 context->return_valid = AUDITSC_INVALID; 1045 return context; 1046 } 1047 1048 /** 1049 * audit_alloc - allocate an audit context block for a task 1050 * @tsk: task 1051 * 1052 * Filter on the task information and allocate a per-task audit context 1053 * if necessary. Doing so turns on system call auditing for the 1054 * specified task. This is called from copy_process, so no lock is 1055 * needed. 1056 */ 1057 int audit_alloc(struct task_struct *tsk) 1058 { 1059 struct audit_context *context; 1060 enum audit_state state; 1061 char *key = NULL; 1062 1063 if (likely(!audit_ever_enabled)) 1064 return 0; 1065 1066 state = audit_filter_task(tsk, &key); 1067 if (state == AUDIT_STATE_DISABLED) { 1068 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1069 return 0; 1070 } 1071 1072 context = audit_alloc_context(state); 1073 if (!context) { 1074 kfree(key); 1075 audit_log_lost("out of memory in audit_alloc"); 1076 return -ENOMEM; 1077 } 1078 context->filterkey = key; 1079 1080 audit_set_context(tsk, context); 1081 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1082 return 0; 1083 } 1084 1085 static inline void audit_free_context(struct audit_context *context) 1086 { 1087 /* resetting is extra work, but it is likely just noise */ 1088 audit_reset_context(context); 1089 audit_proctitle_free(context); 1090 free_tree_refs(context); 1091 kfree(context->filterkey); 1092 kfree(context); 1093 } 1094 1095 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1096 kuid_t auid, kuid_t uid, 1097 unsigned int sessionid, struct lsm_prop *prop, 1098 char *comm) 1099 { 1100 struct audit_buffer *ab; 1101 struct lsm_context ctx; 1102 int rc = 0; 1103 1104 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1105 if (!ab) 1106 return rc; 1107 1108 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1109 from_kuid(&init_user_ns, auid), 1110 from_kuid(&init_user_ns, uid), sessionid); 1111 if (lsmprop_is_set(prop)) { 1112 if (security_lsmprop_to_secctx(prop, &ctx) < 0) { 1113 audit_log_format(ab, " obj=(none)"); 1114 rc = 1; 1115 } else { 1116 audit_log_format(ab, " obj=%s", ctx.context); 1117 security_release_secctx(&ctx); 1118 } 1119 } 1120 audit_log_format(ab, " ocomm="); 1121 audit_log_untrustedstring(ab, comm); 1122 audit_log_end(ab); 1123 1124 return rc; 1125 } 1126 1127 static void audit_log_execve_info(struct audit_context *context, 1128 struct audit_buffer **ab) 1129 { 1130 long len_max; 1131 long len_rem; 1132 long len_full; 1133 long len_buf; 1134 long len_abuf = 0; 1135 long len_tmp; 1136 bool require_data; 1137 bool encode; 1138 unsigned int iter; 1139 unsigned int arg; 1140 char *buf_head; 1141 char *buf; 1142 const char __user *p = (const char __user *)current->mm->arg_start; 1143 1144 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1145 * data we put in the audit record for this argument (see the 1146 * code below) ... at this point in time 96 is plenty */ 1147 char abuf[96]; 1148 1149 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1150 * current value of 7500 is not as important as the fact that it 1151 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1152 * room if we go over a little bit in the logging below */ 1153 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1154 len_max = MAX_EXECVE_AUDIT_LEN; 1155 1156 /* scratch buffer to hold the userspace args */ 1157 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1158 if (!buf_head) { 1159 audit_panic("out of memory for argv string"); 1160 return; 1161 } 1162 buf = buf_head; 1163 1164 audit_log_format(*ab, "argc=%d", context->execve.argc); 1165 1166 len_rem = len_max; 1167 len_buf = 0; 1168 len_full = 0; 1169 require_data = true; 1170 encode = false; 1171 iter = 0; 1172 arg = 0; 1173 do { 1174 /* NOTE: we don't ever want to trust this value for anything 1175 * serious, but the audit record format insists we 1176 * provide an argument length for really long arguments, 1177 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1178 * to use strncpy_from_user() to obtain this value for 1179 * recording in the log, although we don't use it 1180 * anywhere here to avoid a double-fetch problem */ 1181 if (len_full == 0) 1182 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1183 1184 /* read more data from userspace */ 1185 if (require_data) { 1186 /* can we make more room in the buffer? */ 1187 if (buf != buf_head) { 1188 memmove(buf_head, buf, len_buf); 1189 buf = buf_head; 1190 } 1191 1192 /* fetch as much as we can of the argument */ 1193 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1194 len_max - len_buf); 1195 if (len_tmp == -EFAULT) { 1196 /* unable to copy from userspace */ 1197 send_sig(SIGKILL, current, 0); 1198 goto out; 1199 } else if (len_tmp == (len_max - len_buf)) { 1200 /* buffer is not large enough */ 1201 require_data = true; 1202 /* NOTE: if we are going to span multiple 1203 * buffers force the encoding so we stand 1204 * a chance at a sane len_full value and 1205 * consistent record encoding */ 1206 encode = true; 1207 len_full = len_full * 2; 1208 p += len_tmp; 1209 } else { 1210 require_data = false; 1211 if (!encode) 1212 encode = audit_string_contains_control( 1213 buf, len_tmp); 1214 /* try to use a trusted value for len_full */ 1215 if (len_full < len_max) 1216 len_full = (encode ? 1217 len_tmp * 2 : len_tmp); 1218 p += len_tmp + 1; 1219 } 1220 len_buf += len_tmp; 1221 buf_head[len_buf] = '\0'; 1222 1223 /* length of the buffer in the audit record? */ 1224 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1225 } 1226 1227 /* write as much as we can to the audit log */ 1228 if (len_buf >= 0) { 1229 /* NOTE: some magic numbers here - basically if we 1230 * can't fit a reasonable amount of data into the 1231 * existing audit buffer, flush it and start with 1232 * a new buffer */ 1233 if ((sizeof(abuf) + 8) > len_rem) { 1234 len_rem = len_max; 1235 audit_log_end(*ab); 1236 *ab = audit_log_start(context, 1237 GFP_KERNEL, AUDIT_EXECVE); 1238 if (!*ab) 1239 goto out; 1240 } 1241 1242 /* create the non-arg portion of the arg record */ 1243 len_tmp = 0; 1244 if (require_data || (iter > 0) || 1245 ((len_abuf + sizeof(abuf)) > len_rem)) { 1246 if (iter == 0) { 1247 len_tmp += snprintf(&abuf[len_tmp], 1248 sizeof(abuf) - len_tmp, 1249 " a%d_len=%lu", 1250 arg, len_full); 1251 } 1252 len_tmp += snprintf(&abuf[len_tmp], 1253 sizeof(abuf) - len_tmp, 1254 " a%d[%d]=", arg, iter++); 1255 } else 1256 len_tmp += snprintf(&abuf[len_tmp], 1257 sizeof(abuf) - len_tmp, 1258 " a%d=", arg); 1259 WARN_ON(len_tmp >= sizeof(abuf)); 1260 abuf[sizeof(abuf) - 1] = '\0'; 1261 1262 /* log the arg in the audit record */ 1263 audit_log_format(*ab, "%s", abuf); 1264 len_rem -= len_tmp; 1265 len_tmp = len_buf; 1266 if (encode) { 1267 if (len_abuf > len_rem) 1268 len_tmp = len_rem / 2; /* encoding */ 1269 audit_log_n_hex(*ab, buf, len_tmp); 1270 len_rem -= len_tmp * 2; 1271 len_abuf -= len_tmp * 2; 1272 } else { 1273 if (len_abuf > len_rem) 1274 len_tmp = len_rem - 2; /* quotes */ 1275 audit_log_n_string(*ab, buf, len_tmp); 1276 len_rem -= len_tmp + 2; 1277 /* don't subtract the "2" because we still need 1278 * to add quotes to the remaining string */ 1279 len_abuf -= len_tmp; 1280 } 1281 len_buf -= len_tmp; 1282 buf += len_tmp; 1283 } 1284 1285 /* ready to move to the next argument? */ 1286 if ((len_buf == 0) && !require_data) { 1287 arg++; 1288 iter = 0; 1289 len_full = 0; 1290 require_data = true; 1291 encode = false; 1292 } 1293 } while (arg < context->execve.argc); 1294 1295 /* NOTE: the caller handles the final audit_log_end() call */ 1296 1297 out: 1298 kfree(buf_head); 1299 } 1300 1301 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1302 kernel_cap_t *cap) 1303 { 1304 if (cap_isclear(*cap)) { 1305 audit_log_format(ab, " %s=0", prefix); 1306 return; 1307 } 1308 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1309 } 1310 1311 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1312 { 1313 if (name->fcap_ver == -1) { 1314 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1315 return; 1316 } 1317 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1318 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1319 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1320 name->fcap.fE, name->fcap_ver, 1321 from_kuid(&init_user_ns, name->fcap.rootid)); 1322 } 1323 1324 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1325 { 1326 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1327 const struct timespec64 *tk = &context->time.tk_injoffset; 1328 static const char * const ntp_name[] = { 1329 "offset", 1330 "freq", 1331 "status", 1332 "tai", 1333 "tick", 1334 "adjust", 1335 }; 1336 int type; 1337 1338 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1339 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1340 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1341 if (!*ab) { 1342 *ab = audit_log_start(context, 1343 GFP_KERNEL, 1344 AUDIT_TIME_ADJNTPVAL); 1345 if (!*ab) 1346 return; 1347 } 1348 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1349 ntp_name[type], 1350 ntp->vals[type].oldval, 1351 ntp->vals[type].newval); 1352 audit_log_end(*ab); 1353 *ab = NULL; 1354 } 1355 } 1356 } 1357 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1358 if (!*ab) { 1359 *ab = audit_log_start(context, GFP_KERNEL, 1360 AUDIT_TIME_INJOFFSET); 1361 if (!*ab) 1362 return; 1363 } 1364 audit_log_format(*ab, "sec=%lli nsec=%li", 1365 (long long)tk->tv_sec, tk->tv_nsec); 1366 audit_log_end(*ab); 1367 *ab = NULL; 1368 } 1369 } 1370 1371 static void show_special(struct audit_context *context, int *call_panic) 1372 { 1373 struct audit_buffer *ab; 1374 int i; 1375 1376 ab = audit_log_start(context, GFP_KERNEL, context->type); 1377 if (!ab) 1378 return; 1379 1380 switch (context->type) { 1381 case AUDIT_SOCKETCALL: { 1382 int nargs = context->socketcall.nargs; 1383 1384 audit_log_format(ab, "nargs=%d", nargs); 1385 for (i = 0; i < nargs; i++) 1386 audit_log_format(ab, " a%d=%lx", i, 1387 context->socketcall.args[i]); 1388 break; } 1389 case AUDIT_IPC: 1390 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1391 from_kuid(&init_user_ns, context->ipc.uid), 1392 from_kgid(&init_user_ns, context->ipc.gid), 1393 context->ipc.mode); 1394 if (lsmprop_is_set(&context->ipc.oprop)) { 1395 struct lsm_context lsmctx; 1396 1397 if (security_lsmprop_to_secctx(&context->ipc.oprop, 1398 &lsmctx) < 0) { 1399 *call_panic = 1; 1400 } else { 1401 audit_log_format(ab, " obj=%s", lsmctx.context); 1402 security_release_secctx(&lsmctx); 1403 } 1404 } 1405 if (context->ipc.has_perm) { 1406 audit_log_end(ab); 1407 ab = audit_log_start(context, GFP_KERNEL, 1408 AUDIT_IPC_SET_PERM); 1409 if (unlikely(!ab)) 1410 return; 1411 audit_log_format(ab, 1412 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1413 context->ipc.qbytes, 1414 context->ipc.perm_uid, 1415 context->ipc.perm_gid, 1416 context->ipc.perm_mode); 1417 } 1418 break; 1419 case AUDIT_MQ_OPEN: 1420 audit_log_format(ab, 1421 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1422 "mq_msgsize=%ld mq_curmsgs=%ld", 1423 context->mq_open.oflag, context->mq_open.mode, 1424 context->mq_open.attr.mq_flags, 1425 context->mq_open.attr.mq_maxmsg, 1426 context->mq_open.attr.mq_msgsize, 1427 context->mq_open.attr.mq_curmsgs); 1428 break; 1429 case AUDIT_MQ_SENDRECV: 1430 audit_log_format(ab, 1431 "mqdes=%d msg_len=%zd msg_prio=%u " 1432 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1433 context->mq_sendrecv.mqdes, 1434 context->mq_sendrecv.msg_len, 1435 context->mq_sendrecv.msg_prio, 1436 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1437 context->mq_sendrecv.abs_timeout.tv_nsec); 1438 break; 1439 case AUDIT_MQ_NOTIFY: 1440 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1441 context->mq_notify.mqdes, 1442 context->mq_notify.sigev_signo); 1443 break; 1444 case AUDIT_MQ_GETSETATTR: { 1445 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1446 1447 audit_log_format(ab, 1448 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1449 "mq_curmsgs=%ld ", 1450 context->mq_getsetattr.mqdes, 1451 attr->mq_flags, attr->mq_maxmsg, 1452 attr->mq_msgsize, attr->mq_curmsgs); 1453 break; } 1454 case AUDIT_CAPSET: 1455 audit_log_format(ab, "pid=%d", context->capset.pid); 1456 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1457 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1458 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1459 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1460 break; 1461 case AUDIT_MMAP: 1462 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1463 context->mmap.flags); 1464 break; 1465 case AUDIT_OPENAT2: 1466 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1467 context->openat2.flags, 1468 context->openat2.mode, 1469 context->openat2.resolve); 1470 break; 1471 case AUDIT_EXECVE: 1472 audit_log_execve_info(context, &ab); 1473 break; 1474 case AUDIT_KERN_MODULE: 1475 audit_log_format(ab, "name="); 1476 if (context->module.name) { 1477 audit_log_untrustedstring(ab, context->module.name); 1478 } else 1479 audit_log_format(ab, "(null)"); 1480 1481 break; 1482 case AUDIT_TIME_ADJNTPVAL: 1483 case AUDIT_TIME_INJOFFSET: 1484 /* this call deviates from the rest, eating the buffer */ 1485 audit_log_time(context, &ab); 1486 break; 1487 } 1488 audit_log_end(ab); 1489 } 1490 1491 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1492 { 1493 char *end = proctitle + len - 1; 1494 1495 while (end > proctitle && !isprint(*end)) 1496 end--; 1497 1498 /* catch the case where proctitle is only 1 non-print character */ 1499 len = end - proctitle + 1; 1500 len -= isprint(proctitle[len-1]) == 0; 1501 return len; 1502 } 1503 1504 /* 1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1506 * @context: audit_context for the task 1507 * @n: audit_names structure with reportable details 1508 * @path: optional path to report instead of audit_names->name 1509 * @record_num: record number to report when handling a list of names 1510 * @call_panic: optional pointer to int that will be updated if secid fails 1511 */ 1512 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1513 const struct path *path, int record_num, int *call_panic) 1514 { 1515 struct audit_buffer *ab; 1516 1517 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1518 if (!ab) 1519 return; 1520 1521 audit_log_format(ab, "item=%d", record_num); 1522 1523 if (path) 1524 audit_log_d_path(ab, " name=", path); 1525 else if (n->name) { 1526 switch (n->name_len) { 1527 case AUDIT_NAME_FULL: 1528 /* log the full path */ 1529 audit_log_format(ab, " name="); 1530 audit_log_untrustedstring(ab, n->name->name); 1531 break; 1532 case 0: 1533 /* name was specified as a relative path and the 1534 * directory component is the cwd 1535 */ 1536 if (context->pwd.dentry && context->pwd.mnt) 1537 audit_log_d_path(ab, " name=", &context->pwd); 1538 else 1539 audit_log_format(ab, " name=(null)"); 1540 break; 1541 default: 1542 /* log the name's directory component */ 1543 audit_log_format(ab, " name="); 1544 audit_log_n_untrustedstring(ab, n->name->name, 1545 n->name_len); 1546 } 1547 } else 1548 audit_log_format(ab, " name=(null)"); 1549 1550 if (n->ino != AUDIT_INO_UNSET) 1551 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1552 n->ino, 1553 MAJOR(n->dev), 1554 MINOR(n->dev), 1555 n->mode, 1556 from_kuid(&init_user_ns, n->uid), 1557 from_kgid(&init_user_ns, n->gid), 1558 MAJOR(n->rdev), 1559 MINOR(n->rdev)); 1560 if (lsmprop_is_set(&n->oprop)) { 1561 struct lsm_context ctx; 1562 1563 if (security_lsmprop_to_secctx(&n->oprop, &ctx) < 0) { 1564 if (call_panic) 1565 *call_panic = 2; 1566 } else { 1567 audit_log_format(ab, " obj=%s", ctx.context); 1568 security_release_secctx(&ctx); 1569 } 1570 } 1571 1572 /* log the audit_names record type */ 1573 switch (n->type) { 1574 case AUDIT_TYPE_NORMAL: 1575 audit_log_format(ab, " nametype=NORMAL"); 1576 break; 1577 case AUDIT_TYPE_PARENT: 1578 audit_log_format(ab, " nametype=PARENT"); 1579 break; 1580 case AUDIT_TYPE_CHILD_DELETE: 1581 audit_log_format(ab, " nametype=DELETE"); 1582 break; 1583 case AUDIT_TYPE_CHILD_CREATE: 1584 audit_log_format(ab, " nametype=CREATE"); 1585 break; 1586 default: 1587 audit_log_format(ab, " nametype=UNKNOWN"); 1588 break; 1589 } 1590 1591 audit_log_fcaps(ab, n); 1592 audit_log_end(ab); 1593 } 1594 1595 static void audit_log_proctitle(void) 1596 { 1597 int res; 1598 char *buf; 1599 char *msg = "(null)"; 1600 int len = strlen(msg); 1601 struct audit_context *context = audit_context(); 1602 struct audit_buffer *ab; 1603 1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1605 if (!ab) 1606 return; /* audit_panic or being filtered */ 1607 1608 audit_log_format(ab, "proctitle="); 1609 1610 /* Not cached */ 1611 if (!context->proctitle.value) { 1612 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1613 if (!buf) 1614 goto out; 1615 /* Historically called this from procfs naming */ 1616 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1617 if (res == 0) { 1618 kfree(buf); 1619 goto out; 1620 } 1621 res = audit_proctitle_rtrim(buf, res); 1622 if (res == 0) { 1623 kfree(buf); 1624 goto out; 1625 } 1626 context->proctitle.value = buf; 1627 context->proctitle.len = res; 1628 } 1629 msg = context->proctitle.value; 1630 len = context->proctitle.len; 1631 out: 1632 audit_log_n_untrustedstring(ab, msg, len); 1633 audit_log_end(ab); 1634 } 1635 1636 /** 1637 * audit_log_uring - generate a AUDIT_URINGOP record 1638 * @ctx: the audit context 1639 */ 1640 static void audit_log_uring(struct audit_context *ctx) 1641 { 1642 struct audit_buffer *ab; 1643 const struct cred *cred; 1644 1645 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1646 if (!ab) 1647 return; 1648 cred = current_cred(); 1649 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1650 if (ctx->return_valid != AUDITSC_INVALID) 1651 audit_log_format(ab, " success=%s exit=%ld", 1652 str_yes_no(ctx->return_valid == 1653 AUDITSC_SUCCESS), 1654 ctx->return_code); 1655 audit_log_format(ab, 1656 " items=%d" 1657 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1658 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1659 ctx->name_count, 1660 task_ppid_nr(current), task_tgid_nr(current), 1661 from_kuid(&init_user_ns, cred->uid), 1662 from_kgid(&init_user_ns, cred->gid), 1663 from_kuid(&init_user_ns, cred->euid), 1664 from_kuid(&init_user_ns, cred->suid), 1665 from_kuid(&init_user_ns, cred->fsuid), 1666 from_kgid(&init_user_ns, cred->egid), 1667 from_kgid(&init_user_ns, cred->sgid), 1668 from_kgid(&init_user_ns, cred->fsgid)); 1669 audit_log_task_context(ab); 1670 audit_log_key(ab, ctx->filterkey); 1671 audit_log_end(ab); 1672 } 1673 1674 static void audit_log_exit(void) 1675 { 1676 int i, call_panic = 0; 1677 struct audit_context *context = audit_context(); 1678 struct audit_buffer *ab; 1679 struct audit_aux_data *aux; 1680 struct audit_names *n; 1681 1682 context->personality = current->personality; 1683 1684 switch (context->context) { 1685 case AUDIT_CTX_SYSCALL: 1686 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1687 if (!ab) 1688 return; 1689 audit_log_format(ab, "arch=%x syscall=%d", 1690 context->arch, context->major); 1691 if (context->personality != PER_LINUX) 1692 audit_log_format(ab, " per=%lx", context->personality); 1693 if (context->return_valid != AUDITSC_INVALID) 1694 audit_log_format(ab, " success=%s exit=%ld", 1695 str_yes_no(context->return_valid == 1696 AUDITSC_SUCCESS), 1697 context->return_code); 1698 audit_log_format(ab, 1699 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1700 context->argv[0], 1701 context->argv[1], 1702 context->argv[2], 1703 context->argv[3], 1704 context->name_count); 1705 audit_log_task_info(ab); 1706 audit_log_key(ab, context->filterkey); 1707 audit_log_end(ab); 1708 break; 1709 case AUDIT_CTX_URING: 1710 audit_log_uring(context); 1711 break; 1712 default: 1713 BUG(); 1714 break; 1715 } 1716 1717 for (aux = context->aux; aux; aux = aux->next) { 1718 1719 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1720 if (!ab) 1721 continue; /* audit_panic has been called */ 1722 1723 switch (aux->type) { 1724 1725 case AUDIT_BPRM_FCAPS: { 1726 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1727 1728 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1729 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1730 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1731 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1732 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1733 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1734 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1735 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1736 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1737 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1738 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1739 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1740 audit_log_format(ab, " frootid=%d", 1741 from_kuid(&init_user_ns, 1742 axs->fcap.rootid)); 1743 break; } 1744 1745 } 1746 audit_log_end(ab); 1747 } 1748 1749 if (context->type) 1750 show_special(context, &call_panic); 1751 1752 if (context->fds[0] >= 0) { 1753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1754 if (ab) { 1755 audit_log_format(ab, "fd0=%d fd1=%d", 1756 context->fds[0], context->fds[1]); 1757 audit_log_end(ab); 1758 } 1759 } 1760 1761 if (context->sockaddr_len) { 1762 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1763 if (ab) { 1764 audit_log_format(ab, "saddr="); 1765 audit_log_n_hex(ab, (void *)context->sockaddr, 1766 context->sockaddr_len); 1767 audit_log_end(ab); 1768 } 1769 } 1770 1771 for (aux = context->aux_pids; aux; aux = aux->next) { 1772 struct audit_aux_data_pids *axs = (void *)aux; 1773 1774 for (i = 0; i < axs->pid_count; i++) 1775 if (audit_log_pid_context(context, axs->target_pid[i], 1776 axs->target_auid[i], 1777 axs->target_uid[i], 1778 axs->target_sessionid[i], 1779 &axs->target_ref[i], 1780 axs->target_comm[i])) 1781 call_panic = 1; 1782 } 1783 1784 if (context->target_pid && 1785 audit_log_pid_context(context, context->target_pid, 1786 context->target_auid, context->target_uid, 1787 context->target_sessionid, 1788 &context->target_ref, context->target_comm)) 1789 call_panic = 1; 1790 1791 if (context->pwd.dentry && context->pwd.mnt) { 1792 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1793 if (ab) { 1794 audit_log_d_path(ab, "cwd=", &context->pwd); 1795 audit_log_end(ab); 1796 } 1797 } 1798 1799 i = 0; 1800 list_for_each_entry(n, &context->names_list, list) { 1801 if (n->hidden) 1802 continue; 1803 audit_log_name(context, n, NULL, i++, &call_panic); 1804 } 1805 1806 if (context->context == AUDIT_CTX_SYSCALL) 1807 audit_log_proctitle(); 1808 1809 /* Send end of event record to help user space know we are finished */ 1810 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1811 if (ab) 1812 audit_log_end(ab); 1813 if (call_panic) 1814 audit_panic("error in audit_log_exit()"); 1815 } 1816 1817 /** 1818 * __audit_free - free a per-task audit context 1819 * @tsk: task whose audit context block to free 1820 * 1821 * Called from copy_process, do_exit, and the io_uring code 1822 */ 1823 void __audit_free(struct task_struct *tsk) 1824 { 1825 struct audit_context *context = tsk->audit_context; 1826 1827 if (!context) 1828 return; 1829 1830 /* this may generate CONFIG_CHANGE records */ 1831 if (!list_empty(&context->killed_trees)) 1832 audit_kill_trees(context); 1833 1834 /* We are called either by do_exit() or the fork() error handling code; 1835 * in the former case tsk == current and in the latter tsk is a 1836 * random task_struct that doesn't have any meaningful data we 1837 * need to log via audit_log_exit(). 1838 */ 1839 if (tsk == current && !context->dummy) { 1840 context->return_valid = AUDITSC_INVALID; 1841 context->return_code = 0; 1842 if (context->context == AUDIT_CTX_SYSCALL) { 1843 audit_filter_syscall(tsk, context); 1844 audit_filter_inodes(tsk, context); 1845 if (context->current_state == AUDIT_STATE_RECORD) 1846 audit_log_exit(); 1847 } else if (context->context == AUDIT_CTX_URING) { 1848 /* TODO: verify this case is real and valid */ 1849 audit_filter_uring(tsk, context); 1850 audit_filter_inodes(tsk, context); 1851 if (context->current_state == AUDIT_STATE_RECORD) 1852 audit_log_uring(context); 1853 } 1854 } 1855 1856 audit_set_context(tsk, NULL); 1857 audit_free_context(context); 1858 } 1859 1860 /** 1861 * audit_return_fixup - fixup the return codes in the audit_context 1862 * @ctx: the audit_context 1863 * @success: true/false value to indicate if the operation succeeded or not 1864 * @code: operation return code 1865 * 1866 * We need to fixup the return code in the audit logs if the actual return 1867 * codes are later going to be fixed by the arch specific signal handlers. 1868 */ 1869 static void audit_return_fixup(struct audit_context *ctx, 1870 int success, long code) 1871 { 1872 /* 1873 * This is actually a test for: 1874 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1875 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1876 * 1877 * but is faster than a bunch of || 1878 */ 1879 if (unlikely(code <= -ERESTARTSYS) && 1880 (code >= -ERESTART_RESTARTBLOCK) && 1881 (code != -ENOIOCTLCMD)) 1882 ctx->return_code = -EINTR; 1883 else 1884 ctx->return_code = code; 1885 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1886 } 1887 1888 /** 1889 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1890 * @op: the io_uring opcode 1891 * 1892 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1893 * operations. This function should only ever be called from 1894 * audit_uring_entry() as we rely on the audit context checking present in that 1895 * function. 1896 */ 1897 void __audit_uring_entry(u8 op) 1898 { 1899 struct audit_context *ctx = audit_context(); 1900 1901 if (ctx->state == AUDIT_STATE_DISABLED) 1902 return; 1903 1904 /* 1905 * NOTE: It's possible that we can be called from the process' context 1906 * before it returns to userspace, and before audit_syscall_exit() 1907 * is called. In this case there is not much to do, just record 1908 * the io_uring details and return. 1909 */ 1910 ctx->uring_op = op; 1911 if (ctx->context == AUDIT_CTX_SYSCALL) 1912 return; 1913 1914 ctx->dummy = !audit_n_rules; 1915 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1916 ctx->prio = 0; 1917 1918 ctx->context = AUDIT_CTX_URING; 1919 ctx->current_state = ctx->state; 1920 ktime_get_coarse_real_ts64(&ctx->ctime); 1921 } 1922 1923 /** 1924 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1925 * @success: true/false value to indicate if the operation succeeded or not 1926 * @code: operation return code 1927 * 1928 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1929 * operations. This function should only ever be called from 1930 * audit_uring_exit() as we rely on the audit context checking present in that 1931 * function. 1932 */ 1933 void __audit_uring_exit(int success, long code) 1934 { 1935 struct audit_context *ctx = audit_context(); 1936 1937 if (ctx->dummy) { 1938 if (ctx->context != AUDIT_CTX_URING) 1939 return; 1940 goto out; 1941 } 1942 1943 audit_return_fixup(ctx, success, code); 1944 if (ctx->context == AUDIT_CTX_SYSCALL) { 1945 /* 1946 * NOTE: See the note in __audit_uring_entry() about the case 1947 * where we may be called from process context before we 1948 * return to userspace via audit_syscall_exit(). In this 1949 * case we simply emit a URINGOP record and bail, the 1950 * normal syscall exit handling will take care of 1951 * everything else. 1952 * It is also worth mentioning that when we are called, 1953 * the current process creds may differ from the creds 1954 * used during the normal syscall processing; keep that 1955 * in mind if/when we move the record generation code. 1956 */ 1957 1958 /* 1959 * We need to filter on the syscall info here to decide if we 1960 * should emit a URINGOP record. I know it seems odd but this 1961 * solves the problem where users have a filter to block *all* 1962 * syscall records in the "exit" filter; we want to preserve 1963 * the behavior here. 1964 */ 1965 audit_filter_syscall(current, ctx); 1966 if (ctx->current_state != AUDIT_STATE_RECORD) 1967 audit_filter_uring(current, ctx); 1968 audit_filter_inodes(current, ctx); 1969 if (ctx->current_state != AUDIT_STATE_RECORD) 1970 return; 1971 1972 audit_log_uring(ctx); 1973 return; 1974 } 1975 1976 /* this may generate CONFIG_CHANGE records */ 1977 if (!list_empty(&ctx->killed_trees)) 1978 audit_kill_trees(ctx); 1979 1980 /* run through both filters to ensure we set the filterkey properly */ 1981 audit_filter_uring(current, ctx); 1982 audit_filter_inodes(current, ctx); 1983 if (ctx->current_state != AUDIT_STATE_RECORD) 1984 goto out; 1985 audit_log_exit(); 1986 1987 out: 1988 audit_reset_context(ctx); 1989 } 1990 1991 /** 1992 * __audit_syscall_entry - fill in an audit record at syscall entry 1993 * @major: major syscall type (function) 1994 * @a1: additional syscall register 1 1995 * @a2: additional syscall register 2 1996 * @a3: additional syscall register 3 1997 * @a4: additional syscall register 4 1998 * 1999 * Fill in audit context at syscall entry. This only happens if the 2000 * audit context was created when the task was created and the state or 2001 * filters demand the audit context be built. If the state from the 2002 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2003 * then the record will be written at syscall exit time (otherwise, it 2004 * will only be written if another part of the kernel requests that it 2005 * be written). 2006 */ 2007 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2008 unsigned long a3, unsigned long a4) 2009 { 2010 struct audit_context *context = audit_context(); 2011 enum audit_state state; 2012 2013 if (!audit_enabled || !context) 2014 return; 2015 2016 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2017 WARN_ON(context->name_count); 2018 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2019 audit_panic("unrecoverable error in audit_syscall_entry()"); 2020 return; 2021 } 2022 2023 state = context->state; 2024 if (state == AUDIT_STATE_DISABLED) 2025 return; 2026 2027 context->dummy = !audit_n_rules; 2028 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2029 context->prio = 0; 2030 if (auditd_test_task(current)) 2031 return; 2032 } 2033 2034 context->arch = syscall_get_arch(current); 2035 context->major = major; 2036 context->argv[0] = a1; 2037 context->argv[1] = a2; 2038 context->argv[2] = a3; 2039 context->argv[3] = a4; 2040 context->context = AUDIT_CTX_SYSCALL; 2041 context->current_state = state; 2042 ktime_get_coarse_real_ts64(&context->ctime); 2043 } 2044 2045 /** 2046 * __audit_syscall_exit - deallocate audit context after a system call 2047 * @success: success value of the syscall 2048 * @return_code: return value of the syscall 2049 * 2050 * Tear down after system call. If the audit context has been marked as 2051 * auditable (either because of the AUDIT_STATE_RECORD state from 2052 * filtering, or because some other part of the kernel wrote an audit 2053 * message), then write out the syscall information. In call cases, 2054 * free the names stored from getname(). 2055 */ 2056 void __audit_syscall_exit(int success, long return_code) 2057 { 2058 struct audit_context *context = audit_context(); 2059 2060 if (!context || context->dummy || 2061 context->context != AUDIT_CTX_SYSCALL) 2062 goto out; 2063 2064 /* this may generate CONFIG_CHANGE records */ 2065 if (!list_empty(&context->killed_trees)) 2066 audit_kill_trees(context); 2067 2068 audit_return_fixup(context, success, return_code); 2069 /* run through both filters to ensure we set the filterkey properly */ 2070 audit_filter_syscall(current, context); 2071 audit_filter_inodes(current, context); 2072 if (context->current_state != AUDIT_STATE_RECORD) 2073 goto out; 2074 2075 audit_log_exit(); 2076 2077 out: 2078 audit_reset_context(context); 2079 } 2080 2081 static inline void handle_one(const struct inode *inode) 2082 { 2083 struct audit_context *context; 2084 struct audit_tree_refs *p; 2085 struct audit_chunk *chunk; 2086 int count; 2087 2088 if (likely(!inode->i_fsnotify_marks)) 2089 return; 2090 context = audit_context(); 2091 p = context->trees; 2092 count = context->tree_count; 2093 rcu_read_lock(); 2094 chunk = audit_tree_lookup(inode); 2095 rcu_read_unlock(); 2096 if (!chunk) 2097 return; 2098 if (likely(put_tree_ref(context, chunk))) 2099 return; 2100 if (unlikely(!grow_tree_refs(context))) { 2101 pr_warn("out of memory, audit has lost a tree reference\n"); 2102 audit_set_auditable(context); 2103 audit_put_chunk(chunk); 2104 unroll_tree_refs(context, p, count); 2105 return; 2106 } 2107 put_tree_ref(context, chunk); 2108 } 2109 2110 static void handle_path(const struct dentry *dentry) 2111 { 2112 struct audit_context *context; 2113 struct audit_tree_refs *p; 2114 const struct dentry *d, *parent; 2115 struct audit_chunk *drop; 2116 unsigned long seq; 2117 int count; 2118 2119 context = audit_context(); 2120 p = context->trees; 2121 count = context->tree_count; 2122 retry: 2123 drop = NULL; 2124 d = dentry; 2125 rcu_read_lock(); 2126 seq = read_seqbegin(&rename_lock); 2127 for (;;) { 2128 struct inode *inode = d_backing_inode(d); 2129 2130 if (inode && unlikely(inode->i_fsnotify_marks)) { 2131 struct audit_chunk *chunk; 2132 2133 chunk = audit_tree_lookup(inode); 2134 if (chunk) { 2135 if (unlikely(!put_tree_ref(context, chunk))) { 2136 drop = chunk; 2137 break; 2138 } 2139 } 2140 } 2141 parent = d->d_parent; 2142 if (parent == d) 2143 break; 2144 d = parent; 2145 } 2146 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2147 rcu_read_unlock(); 2148 if (!drop) { 2149 /* just a race with rename */ 2150 unroll_tree_refs(context, p, count); 2151 goto retry; 2152 } 2153 audit_put_chunk(drop); 2154 if (grow_tree_refs(context)) { 2155 /* OK, got more space */ 2156 unroll_tree_refs(context, p, count); 2157 goto retry; 2158 } 2159 /* too bad */ 2160 pr_warn("out of memory, audit has lost a tree reference\n"); 2161 unroll_tree_refs(context, p, count); 2162 audit_set_auditable(context); 2163 return; 2164 } 2165 rcu_read_unlock(); 2166 } 2167 2168 static struct audit_names *audit_alloc_name(struct audit_context *context, 2169 unsigned char type) 2170 { 2171 struct audit_names *aname; 2172 2173 if (context->name_count < AUDIT_NAMES) { 2174 aname = &context->preallocated_names[context->name_count]; 2175 memset(aname, 0, sizeof(*aname)); 2176 } else { 2177 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2178 if (!aname) 2179 return NULL; 2180 aname->should_free = true; 2181 } 2182 2183 aname->ino = AUDIT_INO_UNSET; 2184 aname->type = type; 2185 list_add_tail(&aname->list, &context->names_list); 2186 2187 context->name_count++; 2188 if (!context->pwd.dentry) 2189 get_fs_pwd(current->fs, &context->pwd); 2190 return aname; 2191 } 2192 2193 /** 2194 * __audit_reusename - fill out filename with info from existing entry 2195 * @uptr: userland ptr to pathname 2196 * 2197 * Search the audit_names list for the current audit context. If there is an 2198 * existing entry with a matching "uptr" then return the filename 2199 * associated with that audit_name. If not, return NULL. 2200 */ 2201 struct filename * 2202 __audit_reusename(const __user char *uptr) 2203 { 2204 struct audit_context *context = audit_context(); 2205 struct audit_names *n; 2206 2207 list_for_each_entry(n, &context->names_list, list) { 2208 if (!n->name) 2209 continue; 2210 if (n->name->uptr == uptr) { 2211 atomic_inc(&n->name->refcnt); 2212 return n->name; 2213 } 2214 } 2215 return NULL; 2216 } 2217 2218 /** 2219 * __audit_getname - add a name to the list 2220 * @name: name to add 2221 * 2222 * Add a name to the list of audit names for this context. 2223 * Called from fs/namei.c:getname(). 2224 */ 2225 void __audit_getname(struct filename *name) 2226 { 2227 struct audit_context *context = audit_context(); 2228 struct audit_names *n; 2229 2230 if (context->context == AUDIT_CTX_UNUSED) 2231 return; 2232 2233 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2234 if (!n) 2235 return; 2236 2237 n->name = name; 2238 n->name_len = AUDIT_NAME_FULL; 2239 name->aname = n; 2240 atomic_inc(&name->refcnt); 2241 } 2242 2243 static inline int audit_copy_fcaps(struct audit_names *name, 2244 const struct dentry *dentry) 2245 { 2246 struct cpu_vfs_cap_data caps; 2247 int rc; 2248 2249 if (!dentry) 2250 return 0; 2251 2252 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2253 if (rc) 2254 return rc; 2255 2256 name->fcap.permitted = caps.permitted; 2257 name->fcap.inheritable = caps.inheritable; 2258 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2259 name->fcap.rootid = caps.rootid; 2260 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2261 VFS_CAP_REVISION_SHIFT; 2262 2263 return 0; 2264 } 2265 2266 /* Copy inode data into an audit_names. */ 2267 static void audit_copy_inode(struct audit_names *name, 2268 const struct dentry *dentry, 2269 struct inode *inode, unsigned int flags) 2270 { 2271 name->ino = inode->i_ino; 2272 name->dev = inode->i_sb->s_dev; 2273 name->mode = inode->i_mode; 2274 name->uid = inode->i_uid; 2275 name->gid = inode->i_gid; 2276 name->rdev = inode->i_rdev; 2277 security_inode_getlsmprop(inode, &name->oprop); 2278 if (flags & AUDIT_INODE_NOEVAL) { 2279 name->fcap_ver = -1; 2280 return; 2281 } 2282 audit_copy_fcaps(name, dentry); 2283 } 2284 2285 /** 2286 * __audit_inode - store the inode and device from a lookup 2287 * @name: name being audited 2288 * @dentry: dentry being audited 2289 * @flags: attributes for this particular entry 2290 */ 2291 void __audit_inode(struct filename *name, const struct dentry *dentry, 2292 unsigned int flags) 2293 { 2294 struct audit_context *context = audit_context(); 2295 struct inode *inode = d_backing_inode(dentry); 2296 struct audit_names *n; 2297 bool parent = flags & AUDIT_INODE_PARENT; 2298 struct audit_entry *e; 2299 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2300 int i; 2301 2302 if (context->context == AUDIT_CTX_UNUSED) 2303 return; 2304 2305 rcu_read_lock(); 2306 list_for_each_entry_rcu(e, list, list) { 2307 for (i = 0; i < e->rule.field_count; i++) { 2308 struct audit_field *f = &e->rule.fields[i]; 2309 2310 if (f->type == AUDIT_FSTYPE 2311 && audit_comparator(inode->i_sb->s_magic, 2312 f->op, f->val) 2313 && e->rule.action == AUDIT_NEVER) { 2314 rcu_read_unlock(); 2315 return; 2316 } 2317 } 2318 } 2319 rcu_read_unlock(); 2320 2321 if (!name) 2322 goto out_alloc; 2323 2324 /* 2325 * If we have a pointer to an audit_names entry already, then we can 2326 * just use it directly if the type is correct. 2327 */ 2328 n = name->aname; 2329 if (n) { 2330 if (parent) { 2331 if (n->type == AUDIT_TYPE_PARENT || 2332 n->type == AUDIT_TYPE_UNKNOWN) 2333 goto out; 2334 } else { 2335 if (n->type != AUDIT_TYPE_PARENT) 2336 goto out; 2337 } 2338 } 2339 2340 list_for_each_entry_reverse(n, &context->names_list, list) { 2341 if (n->ino) { 2342 /* valid inode number, use that for the comparison */ 2343 if (n->ino != inode->i_ino || 2344 n->dev != inode->i_sb->s_dev) 2345 continue; 2346 } else if (n->name) { 2347 /* inode number has not been set, check the name */ 2348 if (strcmp(n->name->name, name->name)) 2349 continue; 2350 } else 2351 /* no inode and no name (?!) ... this is odd ... */ 2352 continue; 2353 2354 /* match the correct record type */ 2355 if (parent) { 2356 if (n->type == AUDIT_TYPE_PARENT || 2357 n->type == AUDIT_TYPE_UNKNOWN) 2358 goto out; 2359 } else { 2360 if (n->type != AUDIT_TYPE_PARENT) 2361 goto out; 2362 } 2363 } 2364 2365 out_alloc: 2366 /* unable to find an entry with both a matching name and type */ 2367 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2368 if (!n) 2369 return; 2370 if (name) { 2371 n->name = name; 2372 atomic_inc(&name->refcnt); 2373 } 2374 2375 out: 2376 if (parent) { 2377 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2378 n->type = AUDIT_TYPE_PARENT; 2379 if (flags & AUDIT_INODE_HIDDEN) 2380 n->hidden = true; 2381 } else { 2382 n->name_len = AUDIT_NAME_FULL; 2383 n->type = AUDIT_TYPE_NORMAL; 2384 } 2385 handle_path(dentry); 2386 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2387 } 2388 2389 void __audit_file(const struct file *file) 2390 { 2391 __audit_inode(NULL, file->f_path.dentry, 0); 2392 } 2393 2394 /** 2395 * __audit_inode_child - collect inode info for created/removed objects 2396 * @parent: inode of dentry parent 2397 * @dentry: dentry being audited 2398 * @type: AUDIT_TYPE_* value that we're looking for 2399 * 2400 * For syscalls that create or remove filesystem objects, audit_inode 2401 * can only collect information for the filesystem object's parent. 2402 * This call updates the audit context with the child's information. 2403 * Syscalls that create a new filesystem object must be hooked after 2404 * the object is created. Syscalls that remove a filesystem object 2405 * must be hooked prior, in order to capture the target inode during 2406 * unsuccessful attempts. 2407 */ 2408 void __audit_inode_child(struct inode *parent, 2409 const struct dentry *dentry, 2410 const unsigned char type) 2411 { 2412 struct audit_context *context = audit_context(); 2413 struct inode *inode = d_backing_inode(dentry); 2414 const struct qstr *dname = &dentry->d_name; 2415 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2416 struct audit_entry *e; 2417 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2418 int i; 2419 2420 if (context->context == AUDIT_CTX_UNUSED) 2421 return; 2422 2423 rcu_read_lock(); 2424 list_for_each_entry_rcu(e, list, list) { 2425 for (i = 0; i < e->rule.field_count; i++) { 2426 struct audit_field *f = &e->rule.fields[i]; 2427 2428 if (f->type == AUDIT_FSTYPE 2429 && audit_comparator(parent->i_sb->s_magic, 2430 f->op, f->val) 2431 && e->rule.action == AUDIT_NEVER) { 2432 rcu_read_unlock(); 2433 return; 2434 } 2435 } 2436 } 2437 rcu_read_unlock(); 2438 2439 if (inode) 2440 handle_one(inode); 2441 2442 /* look for a parent entry first */ 2443 list_for_each_entry(n, &context->names_list, list) { 2444 if (!n->name || 2445 (n->type != AUDIT_TYPE_PARENT && 2446 n->type != AUDIT_TYPE_UNKNOWN)) 2447 continue; 2448 2449 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2450 !audit_compare_dname_path(dname, 2451 n->name->name, n->name_len)) { 2452 if (n->type == AUDIT_TYPE_UNKNOWN) 2453 n->type = AUDIT_TYPE_PARENT; 2454 found_parent = n; 2455 break; 2456 } 2457 } 2458 2459 cond_resched(); 2460 2461 /* is there a matching child entry? */ 2462 list_for_each_entry(n, &context->names_list, list) { 2463 /* can only match entries that have a name */ 2464 if (!n->name || 2465 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2466 continue; 2467 2468 if (!strcmp(dname->name, n->name->name) || 2469 !audit_compare_dname_path(dname, n->name->name, 2470 found_parent ? 2471 found_parent->name_len : 2472 AUDIT_NAME_FULL)) { 2473 if (n->type == AUDIT_TYPE_UNKNOWN) 2474 n->type = type; 2475 found_child = n; 2476 break; 2477 } 2478 } 2479 2480 if (!found_parent) { 2481 /* create a new, "anonymous" parent record */ 2482 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2483 if (!n) 2484 return; 2485 audit_copy_inode(n, NULL, parent, 0); 2486 } 2487 2488 if (!found_child) { 2489 found_child = audit_alloc_name(context, type); 2490 if (!found_child) 2491 return; 2492 2493 /* Re-use the name belonging to the slot for a matching parent 2494 * directory. All names for this context are relinquished in 2495 * audit_free_names() */ 2496 if (found_parent) { 2497 found_child->name = found_parent->name; 2498 found_child->name_len = AUDIT_NAME_FULL; 2499 atomic_inc(&found_child->name->refcnt); 2500 } 2501 } 2502 2503 if (inode) 2504 audit_copy_inode(found_child, dentry, inode, 0); 2505 else 2506 found_child->ino = AUDIT_INO_UNSET; 2507 } 2508 EXPORT_SYMBOL_GPL(__audit_inode_child); 2509 2510 /** 2511 * auditsc_get_stamp - get local copies of audit_context values 2512 * @ctx: audit_context for the task 2513 * @t: timespec64 to store time recorded in the audit_context 2514 * @serial: serial value that is recorded in the audit_context 2515 * 2516 * Also sets the context as auditable. 2517 */ 2518 int auditsc_get_stamp(struct audit_context *ctx, 2519 struct timespec64 *t, unsigned int *serial) 2520 { 2521 if (ctx->context == AUDIT_CTX_UNUSED) 2522 return 0; 2523 if (!ctx->serial) 2524 ctx->serial = audit_serial(); 2525 t->tv_sec = ctx->ctime.tv_sec; 2526 t->tv_nsec = ctx->ctime.tv_nsec; 2527 *serial = ctx->serial; 2528 if (!ctx->prio) { 2529 ctx->prio = 1; 2530 ctx->current_state = AUDIT_STATE_RECORD; 2531 } 2532 return 1; 2533 } 2534 2535 /** 2536 * __audit_mq_open - record audit data for a POSIX MQ open 2537 * @oflag: open flag 2538 * @mode: mode bits 2539 * @attr: queue attributes 2540 * 2541 */ 2542 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2543 { 2544 struct audit_context *context = audit_context(); 2545 2546 if (attr) 2547 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2548 else 2549 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2550 2551 context->mq_open.oflag = oflag; 2552 context->mq_open.mode = mode; 2553 2554 context->type = AUDIT_MQ_OPEN; 2555 } 2556 2557 /** 2558 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2559 * @mqdes: MQ descriptor 2560 * @msg_len: Message length 2561 * @msg_prio: Message priority 2562 * @abs_timeout: Message timeout in absolute time 2563 * 2564 */ 2565 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2566 const struct timespec64 *abs_timeout) 2567 { 2568 struct audit_context *context = audit_context(); 2569 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2570 2571 if (abs_timeout) 2572 memcpy(p, abs_timeout, sizeof(*p)); 2573 else 2574 memset(p, 0, sizeof(*p)); 2575 2576 context->mq_sendrecv.mqdes = mqdes; 2577 context->mq_sendrecv.msg_len = msg_len; 2578 context->mq_sendrecv.msg_prio = msg_prio; 2579 2580 context->type = AUDIT_MQ_SENDRECV; 2581 } 2582 2583 /** 2584 * __audit_mq_notify - record audit data for a POSIX MQ notify 2585 * @mqdes: MQ descriptor 2586 * @notification: Notification event 2587 * 2588 */ 2589 2590 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2591 { 2592 struct audit_context *context = audit_context(); 2593 2594 if (notification) 2595 context->mq_notify.sigev_signo = notification->sigev_signo; 2596 else 2597 context->mq_notify.sigev_signo = 0; 2598 2599 context->mq_notify.mqdes = mqdes; 2600 context->type = AUDIT_MQ_NOTIFY; 2601 } 2602 2603 /** 2604 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2605 * @mqdes: MQ descriptor 2606 * @mqstat: MQ flags 2607 * 2608 */ 2609 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2610 { 2611 struct audit_context *context = audit_context(); 2612 2613 context->mq_getsetattr.mqdes = mqdes; 2614 context->mq_getsetattr.mqstat = *mqstat; 2615 context->type = AUDIT_MQ_GETSETATTR; 2616 } 2617 2618 /** 2619 * __audit_ipc_obj - record audit data for ipc object 2620 * @ipcp: ipc permissions 2621 * 2622 */ 2623 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2624 { 2625 struct audit_context *context = audit_context(); 2626 2627 context->ipc.uid = ipcp->uid; 2628 context->ipc.gid = ipcp->gid; 2629 context->ipc.mode = ipcp->mode; 2630 context->ipc.has_perm = 0; 2631 security_ipc_getlsmprop(ipcp, &context->ipc.oprop); 2632 context->type = AUDIT_IPC; 2633 } 2634 2635 /** 2636 * __audit_ipc_set_perm - record audit data for new ipc permissions 2637 * @qbytes: msgq bytes 2638 * @uid: msgq user id 2639 * @gid: msgq group id 2640 * @mode: msgq mode (permissions) 2641 * 2642 * Called only after audit_ipc_obj(). 2643 */ 2644 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2645 { 2646 struct audit_context *context = audit_context(); 2647 2648 context->ipc.qbytes = qbytes; 2649 context->ipc.perm_uid = uid; 2650 context->ipc.perm_gid = gid; 2651 context->ipc.perm_mode = mode; 2652 context->ipc.has_perm = 1; 2653 } 2654 2655 void __audit_bprm(struct linux_binprm *bprm) 2656 { 2657 struct audit_context *context = audit_context(); 2658 2659 context->type = AUDIT_EXECVE; 2660 context->execve.argc = bprm->argc; 2661 } 2662 2663 2664 /** 2665 * __audit_socketcall - record audit data for sys_socketcall 2666 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2667 * @args: args array 2668 * 2669 */ 2670 int __audit_socketcall(int nargs, unsigned long *args) 2671 { 2672 struct audit_context *context = audit_context(); 2673 2674 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2675 return -EINVAL; 2676 context->type = AUDIT_SOCKETCALL; 2677 context->socketcall.nargs = nargs; 2678 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2679 return 0; 2680 } 2681 2682 /** 2683 * __audit_fd_pair - record audit data for pipe and socketpair 2684 * @fd1: the first file descriptor 2685 * @fd2: the second file descriptor 2686 * 2687 */ 2688 void __audit_fd_pair(int fd1, int fd2) 2689 { 2690 struct audit_context *context = audit_context(); 2691 2692 context->fds[0] = fd1; 2693 context->fds[1] = fd2; 2694 } 2695 2696 /** 2697 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2698 * @len: data length in user space 2699 * @a: data address in kernel space 2700 * 2701 * Returns 0 for success or NULL context or < 0 on error. 2702 */ 2703 int __audit_sockaddr(int len, void *a) 2704 { 2705 struct audit_context *context = audit_context(); 2706 2707 if (!context->sockaddr) { 2708 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2709 2710 if (!p) 2711 return -ENOMEM; 2712 context->sockaddr = p; 2713 } 2714 2715 context->sockaddr_len = len; 2716 memcpy(context->sockaddr, a, len); 2717 return 0; 2718 } 2719 2720 void __audit_ptrace(struct task_struct *t) 2721 { 2722 struct audit_context *context = audit_context(); 2723 2724 context->target_pid = task_tgid_nr(t); 2725 context->target_auid = audit_get_loginuid(t); 2726 context->target_uid = task_uid(t); 2727 context->target_sessionid = audit_get_sessionid(t); 2728 security_task_getlsmprop_obj(t, &context->target_ref); 2729 strscpy(context->target_comm, t->comm); 2730 } 2731 2732 /** 2733 * audit_signal_info_syscall - record signal info for syscalls 2734 * @t: task being signaled 2735 * 2736 * If the audit subsystem is being terminated, record the task (pid) 2737 * and uid that is doing that. 2738 */ 2739 int audit_signal_info_syscall(struct task_struct *t) 2740 { 2741 struct audit_aux_data_pids *axp; 2742 struct audit_context *ctx = audit_context(); 2743 kuid_t t_uid = task_uid(t); 2744 2745 if (!audit_signals || audit_dummy_context()) 2746 return 0; 2747 2748 /* optimize the common case by putting first signal recipient directly 2749 * in audit_context */ 2750 if (!ctx->target_pid) { 2751 ctx->target_pid = task_tgid_nr(t); 2752 ctx->target_auid = audit_get_loginuid(t); 2753 ctx->target_uid = t_uid; 2754 ctx->target_sessionid = audit_get_sessionid(t); 2755 security_task_getlsmprop_obj(t, &ctx->target_ref); 2756 strscpy(ctx->target_comm, t->comm); 2757 return 0; 2758 } 2759 2760 axp = (void *)ctx->aux_pids; 2761 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2762 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2763 if (!axp) 2764 return -ENOMEM; 2765 2766 axp->d.type = AUDIT_OBJ_PID; 2767 axp->d.next = ctx->aux_pids; 2768 ctx->aux_pids = (void *)axp; 2769 } 2770 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2771 2772 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2773 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2774 axp->target_uid[axp->pid_count] = t_uid; 2775 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2776 security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]); 2777 strscpy(axp->target_comm[axp->pid_count], t->comm); 2778 axp->pid_count++; 2779 2780 return 0; 2781 } 2782 2783 /** 2784 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2785 * @bprm: pointer to the bprm being processed 2786 * @new: the proposed new credentials 2787 * @old: the old credentials 2788 * 2789 * Simply check if the proc already has the caps given by the file and if not 2790 * store the priv escalation info for later auditing at the end of the syscall 2791 * 2792 * -Eric 2793 */ 2794 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2795 const struct cred *new, const struct cred *old) 2796 { 2797 struct audit_aux_data_bprm_fcaps *ax; 2798 struct audit_context *context = audit_context(); 2799 struct cpu_vfs_cap_data vcaps; 2800 2801 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2802 if (!ax) 2803 return -ENOMEM; 2804 2805 ax->d.type = AUDIT_BPRM_FCAPS; 2806 ax->d.next = context->aux; 2807 context->aux = (void *)ax; 2808 2809 get_vfs_caps_from_disk(&nop_mnt_idmap, 2810 bprm->file->f_path.dentry, &vcaps); 2811 2812 ax->fcap.permitted = vcaps.permitted; 2813 ax->fcap.inheritable = vcaps.inheritable; 2814 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2815 ax->fcap.rootid = vcaps.rootid; 2816 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2817 2818 ax->old_pcap.permitted = old->cap_permitted; 2819 ax->old_pcap.inheritable = old->cap_inheritable; 2820 ax->old_pcap.effective = old->cap_effective; 2821 ax->old_pcap.ambient = old->cap_ambient; 2822 2823 ax->new_pcap.permitted = new->cap_permitted; 2824 ax->new_pcap.inheritable = new->cap_inheritable; 2825 ax->new_pcap.effective = new->cap_effective; 2826 ax->new_pcap.ambient = new->cap_ambient; 2827 return 0; 2828 } 2829 2830 /** 2831 * __audit_log_capset - store information about the arguments to the capset syscall 2832 * @new: the new credentials 2833 * @old: the old (current) credentials 2834 * 2835 * Record the arguments userspace sent to sys_capset for later printing by the 2836 * audit system if applicable 2837 */ 2838 void __audit_log_capset(const struct cred *new, const struct cred *old) 2839 { 2840 struct audit_context *context = audit_context(); 2841 2842 context->capset.pid = task_tgid_nr(current); 2843 context->capset.cap.effective = new->cap_effective; 2844 context->capset.cap.inheritable = new->cap_effective; 2845 context->capset.cap.permitted = new->cap_permitted; 2846 context->capset.cap.ambient = new->cap_ambient; 2847 context->type = AUDIT_CAPSET; 2848 } 2849 2850 void __audit_mmap_fd(int fd, int flags) 2851 { 2852 struct audit_context *context = audit_context(); 2853 2854 context->mmap.fd = fd; 2855 context->mmap.flags = flags; 2856 context->type = AUDIT_MMAP; 2857 } 2858 2859 void __audit_openat2_how(struct open_how *how) 2860 { 2861 struct audit_context *context = audit_context(); 2862 2863 context->openat2.flags = how->flags; 2864 context->openat2.mode = how->mode; 2865 context->openat2.resolve = how->resolve; 2866 context->type = AUDIT_OPENAT2; 2867 } 2868 2869 void __audit_log_kern_module(char *name) 2870 { 2871 struct audit_context *context = audit_context(); 2872 2873 context->module.name = kstrdup(name, GFP_KERNEL); 2874 if (!context->module.name) 2875 audit_log_lost("out of memory in __audit_log_kern_module"); 2876 context->type = AUDIT_KERN_MODULE; 2877 } 2878 2879 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2880 { 2881 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2882 switch (friar->hdr.type) { 2883 case FAN_RESPONSE_INFO_NONE: 2884 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2885 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2886 response, FAN_RESPONSE_INFO_NONE); 2887 break; 2888 case FAN_RESPONSE_INFO_AUDIT_RULE: 2889 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2890 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2891 response, friar->hdr.type, friar->rule_number, 2892 friar->subj_trust, friar->obj_trust); 2893 } 2894 } 2895 2896 void __audit_tk_injoffset(struct timespec64 offset) 2897 { 2898 struct audit_context *context = audit_context(); 2899 2900 /* only set type if not already set by NTP */ 2901 if (!context->type) 2902 context->type = AUDIT_TIME_INJOFFSET; 2903 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2904 } 2905 2906 void __audit_ntp_log(const struct audit_ntp_data *ad) 2907 { 2908 struct audit_context *context = audit_context(); 2909 int type; 2910 2911 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2912 if (ad->vals[type].newval != ad->vals[type].oldval) { 2913 /* unconditionally set type, overwriting TK */ 2914 context->type = AUDIT_TIME_ADJNTPVAL; 2915 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2916 break; 2917 } 2918 } 2919 2920 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2921 enum audit_nfcfgop op, gfp_t gfp) 2922 { 2923 struct audit_buffer *ab; 2924 char comm[sizeof(current->comm)]; 2925 2926 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2927 if (!ab) 2928 return; 2929 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2930 name, af, nentries, audit_nfcfgs[op].s); 2931 2932 audit_log_format(ab, " pid=%u", task_tgid_nr(current)); 2933 audit_log_task_context(ab); /* subj= */ 2934 audit_log_format(ab, " comm="); 2935 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2936 audit_log_end(ab); 2937 } 2938 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2939 2940 static void audit_log_task(struct audit_buffer *ab) 2941 { 2942 kuid_t auid, uid; 2943 kgid_t gid; 2944 unsigned int sessionid; 2945 char comm[sizeof(current->comm)]; 2946 2947 auid = audit_get_loginuid(current); 2948 sessionid = audit_get_sessionid(current); 2949 current_uid_gid(&uid, &gid); 2950 2951 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2952 from_kuid(&init_user_ns, auid), 2953 from_kuid(&init_user_ns, uid), 2954 from_kgid(&init_user_ns, gid), 2955 sessionid); 2956 audit_log_task_context(ab); 2957 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2958 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2959 audit_log_d_path_exe(ab, current->mm); 2960 } 2961 2962 /** 2963 * audit_core_dumps - record information about processes that end abnormally 2964 * @signr: signal value 2965 * 2966 * If a process ends with a core dump, something fishy is going on and we 2967 * should record the event for investigation. 2968 */ 2969 void audit_core_dumps(long signr) 2970 { 2971 struct audit_buffer *ab; 2972 2973 if (!audit_enabled) 2974 return; 2975 2976 if (signr == SIGQUIT) /* don't care for those */ 2977 return; 2978 2979 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2980 if (unlikely(!ab)) 2981 return; 2982 audit_log_task(ab); 2983 audit_log_format(ab, " sig=%ld res=1", signr); 2984 audit_log_end(ab); 2985 } 2986 2987 /** 2988 * audit_seccomp - record information about a seccomp action 2989 * @syscall: syscall number 2990 * @signr: signal value 2991 * @code: the seccomp action 2992 * 2993 * Record the information associated with a seccomp action. Event filtering for 2994 * seccomp actions that are not to be logged is done in seccomp_log(). 2995 * Therefore, this function forces auditing independent of the audit_enabled 2996 * and dummy context state because seccomp actions should be logged even when 2997 * audit is not in use. 2998 */ 2999 void audit_seccomp(unsigned long syscall, long signr, int code) 3000 { 3001 struct audit_buffer *ab; 3002 3003 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3004 if (unlikely(!ab)) 3005 return; 3006 audit_log_task(ab); 3007 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3008 signr, syscall_get_arch(current), syscall, 3009 in_compat_syscall(), KSTK_EIP(current), code); 3010 audit_log_end(ab); 3011 } 3012 3013 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3014 int res) 3015 { 3016 struct audit_buffer *ab; 3017 3018 if (!audit_enabled) 3019 return; 3020 3021 ab = audit_log_start(audit_context(), GFP_KERNEL, 3022 AUDIT_CONFIG_CHANGE); 3023 if (unlikely(!ab)) 3024 return; 3025 3026 audit_log_format(ab, 3027 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3028 names, old_names, res); 3029 audit_log_end(ab); 3030 } 3031 3032 struct list_head *audit_killed_trees(void) 3033 { 3034 struct audit_context *ctx = audit_context(); 3035 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3036 return NULL; 3037 return &ctx->killed_trees; 3038 } 3039