1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 68 69 #include "audit.h" 70 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 75 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_aux_data { 90 struct audit_aux_data *next; 91 int type; 92 }; 93 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 96 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 u32 target_sid[AUDIT_AUX_PIDS]; 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 106 }; 107 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 114 }; 115 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 119 }; 120 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 123 const char *s; 124 }; 125 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, 147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, 148 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 149 }; 150 151 static int audit_match_perm(struct audit_context *ctx, int mask) 152 { 153 unsigned n; 154 155 if (unlikely(!ctx)) 156 return 0; 157 n = ctx->major; 158 159 switch (audit_classify_syscall(ctx->arch, n)) { 160 case AUDITSC_NATIVE: 161 if ((mask & AUDIT_PERM_WRITE) && 162 audit_match_class(AUDIT_CLASS_WRITE, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_READ) && 165 audit_match_class(AUDIT_CLASS_READ, n)) 166 return 1; 167 if ((mask & AUDIT_PERM_ATTR) && 168 audit_match_class(AUDIT_CLASS_CHATTR, n)) 169 return 1; 170 return 0; 171 case AUDITSC_COMPAT: /* 32bit on biarch */ 172 if ((mask & AUDIT_PERM_WRITE) && 173 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_READ) && 176 audit_match_class(AUDIT_CLASS_READ_32, n)) 177 return 1; 178 if ((mask & AUDIT_PERM_ATTR) && 179 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 180 return 1; 181 return 0; 182 case AUDITSC_OPEN: 183 return mask & ACC_MODE(ctx->argv[1]); 184 case AUDITSC_OPENAT: 185 return mask & ACC_MODE(ctx->argv[2]); 186 case AUDITSC_SOCKETCALL: 187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 188 case AUDITSC_EXECVE: 189 return mask & AUDIT_PERM_EXEC; 190 case AUDITSC_OPENAT2: 191 return mask & ACC_MODE((u32)ctx->openat2.flags); 192 default: 193 return 0; 194 } 195 } 196 197 static int audit_match_filetype(struct audit_context *ctx, int val) 198 { 199 struct audit_names *n; 200 umode_t mode = (umode_t)val; 201 202 if (unlikely(!ctx)) 203 return 0; 204 205 list_for_each_entry(n, &ctx->names_list, list) { 206 if ((n->ino != AUDIT_INO_UNSET) && 207 ((n->mode & S_IFMT) == mode)) 208 return 1; 209 } 210 211 return 0; 212 } 213 214 /* 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 216 * ->first_trees points to its beginning, ->trees - to the current end of data. 217 * ->tree_count is the number of free entries in array pointed to by ->trees. 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 220 * it's going to remain 1-element for almost any setup) until we free context itself. 221 * References in it _are_ dropped - at the same time we free/drop aux stuff. 222 */ 223 224 static void audit_set_auditable(struct audit_context *ctx) 225 { 226 if (!ctx->prio) { 227 ctx->prio = 1; 228 ctx->current_state = AUDIT_STATE_RECORD; 229 } 230 } 231 232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 int left = ctx->tree_count; 236 237 if (likely(left)) { 238 p->c[--left] = chunk; 239 ctx->tree_count = left; 240 return 1; 241 } 242 if (!p) 243 return 0; 244 p = p->next; 245 if (p) { 246 p->c[30] = chunk; 247 ctx->trees = p; 248 ctx->tree_count = 30; 249 return 1; 250 } 251 return 0; 252 } 253 254 static int grow_tree_refs(struct audit_context *ctx) 255 { 256 struct audit_tree_refs *p = ctx->trees; 257 258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 259 if (!ctx->trees) { 260 ctx->trees = p; 261 return 0; 262 } 263 if (p) 264 p->next = ctx->trees; 265 else 266 ctx->first_trees = ctx->trees; 267 ctx->tree_count = 31; 268 return 1; 269 } 270 271 static void unroll_tree_refs(struct audit_context *ctx, 272 struct audit_tree_refs *p, int count) 273 { 274 struct audit_tree_refs *q; 275 int n; 276 277 if (!p) { 278 /* we started with empty chain */ 279 p = ctx->first_trees; 280 count = 31; 281 /* if the very first allocation has failed, nothing to do */ 282 if (!p) 283 return; 284 } 285 n = count; 286 for (q = p; q != ctx->trees; q = q->next, n = 31) { 287 while (n--) { 288 audit_put_chunk(q->c[n]); 289 q->c[n] = NULL; 290 } 291 } 292 while (n-- > ctx->tree_count) { 293 audit_put_chunk(q->c[n]); 294 q->c[n] = NULL; 295 } 296 ctx->trees = p; 297 ctx->tree_count = count; 298 } 299 300 static void free_tree_refs(struct audit_context *ctx) 301 { 302 struct audit_tree_refs *p, *q; 303 304 for (p = ctx->first_trees; p; p = q) { 305 q = p->next; 306 kfree(p); 307 } 308 } 309 310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 311 { 312 struct audit_tree_refs *p; 313 int n; 314 315 if (!tree) 316 return 0; 317 /* full ones */ 318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 319 for (n = 0; n < 31; n++) 320 if (audit_tree_match(p->c[n], tree)) 321 return 1; 322 } 323 /* partial */ 324 if (p) { 325 for (n = ctx->tree_count; n < 31; n++) 326 if (audit_tree_match(p->c[n], tree)) 327 return 1; 328 } 329 return 0; 330 } 331 332 static int audit_compare_uid(kuid_t uid, 333 struct audit_names *name, 334 struct audit_field *f, 335 struct audit_context *ctx) 336 { 337 struct audit_names *n; 338 int rc; 339 340 if (name) { 341 rc = audit_uid_comparator(uid, f->op, name->uid); 342 if (rc) 343 return rc; 344 } 345 346 if (ctx) { 347 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_uid_comparator(uid, f->op, n->uid); 349 if (rc) 350 return rc; 351 } 352 } 353 return 0; 354 } 355 356 static int audit_compare_gid(kgid_t gid, 357 struct audit_names *name, 358 struct audit_field *f, 359 struct audit_context *ctx) 360 { 361 struct audit_names *n; 362 int rc; 363 364 if (name) { 365 rc = audit_gid_comparator(gid, f->op, name->gid); 366 if (rc) 367 return rc; 368 } 369 370 if (ctx) { 371 list_for_each_entry(n, &ctx->names_list, list) { 372 rc = audit_gid_comparator(gid, f->op, n->gid); 373 if (rc) 374 return rc; 375 } 376 } 377 return 0; 378 } 379 380 static int audit_field_compare(struct task_struct *tsk, 381 const struct cred *cred, 382 struct audit_field *f, 383 struct audit_context *ctx, 384 struct audit_names *name) 385 { 386 switch (f->val) { 387 /* process to file object comparisons */ 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 389 return audit_compare_uid(cred->uid, name, f, ctx); 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 391 return audit_compare_gid(cred->gid, name, f, ctx); 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 393 return audit_compare_uid(cred->euid, name, f, ctx); 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 395 return audit_compare_gid(cred->egid, name, f, ctx); 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 399 return audit_compare_uid(cred->suid, name, f, ctx); 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 401 return audit_compare_gid(cred->sgid, name, f, ctx); 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 403 return audit_compare_uid(cred->fsuid, name, f, ctx); 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 405 return audit_compare_gid(cred->fsgid, name, f, ctx); 406 /* uid comparisons */ 407 case AUDIT_COMPARE_UID_TO_AUID: 408 return audit_uid_comparator(cred->uid, f->op, 409 audit_get_loginuid(tsk)); 410 case AUDIT_COMPARE_UID_TO_EUID: 411 return audit_uid_comparator(cred->uid, f->op, cred->euid); 412 case AUDIT_COMPARE_UID_TO_SUID: 413 return audit_uid_comparator(cred->uid, f->op, cred->suid); 414 case AUDIT_COMPARE_UID_TO_FSUID: 415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 416 /* auid comparisons */ 417 case AUDIT_COMPARE_AUID_TO_EUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->euid); 420 case AUDIT_COMPARE_AUID_TO_SUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->suid); 423 case AUDIT_COMPARE_AUID_TO_FSUID: 424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 425 cred->fsuid); 426 /* euid comparisons */ 427 case AUDIT_COMPARE_EUID_TO_SUID: 428 return audit_uid_comparator(cred->euid, f->op, cred->suid); 429 case AUDIT_COMPARE_EUID_TO_FSUID: 430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 431 /* suid comparisons */ 432 case AUDIT_COMPARE_SUID_TO_FSUID: 433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 434 /* gid comparisons */ 435 case AUDIT_COMPARE_GID_TO_EGID: 436 return audit_gid_comparator(cred->gid, f->op, cred->egid); 437 case AUDIT_COMPARE_GID_TO_SGID: 438 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 439 case AUDIT_COMPARE_GID_TO_FSGID: 440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 441 /* egid comparisons */ 442 case AUDIT_COMPARE_EGID_TO_SGID: 443 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 444 case AUDIT_COMPARE_EGID_TO_FSGID: 445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 446 /* sgid comparison */ 447 case AUDIT_COMPARE_SGID_TO_FSGID: 448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 449 default: 450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 451 return 0; 452 } 453 return 0; 454 } 455 456 /* Determine if any context name data matches a rule's watch data */ 457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 458 * otherwise. 459 * 460 * If task_creation is true, this is an explicit indication that we are 461 * filtering a task rule at task creation time. This and tsk == current are 462 * the only situations where tsk->cred may be accessed without an rcu read lock. 463 */ 464 static int audit_filter_rules(struct task_struct *tsk, 465 struct audit_krule *rule, 466 struct audit_context *ctx, 467 struct audit_names *name, 468 enum audit_state *state, 469 bool task_creation) 470 { 471 const struct cred *cred; 472 int i, need_sid = 1; 473 u32 sid; 474 unsigned int sessionid; 475 476 if (ctx && rule->prio <= ctx->prio) 477 return 0; 478 479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 480 481 for (i = 0; i < rule->field_count; i++) { 482 struct audit_field *f = &rule->fields[i]; 483 struct audit_names *n; 484 int result = 0; 485 pid_t pid; 486 487 switch (f->type) { 488 case AUDIT_PID: 489 pid = task_tgid_nr(tsk); 490 result = audit_comparator(pid, f->op, f->val); 491 break; 492 case AUDIT_PPID: 493 if (ctx) { 494 if (!ctx->ppid) 495 ctx->ppid = task_ppid_nr(tsk); 496 result = audit_comparator(ctx->ppid, f->op, f->val); 497 } 498 break; 499 case AUDIT_EXE: 500 result = audit_exe_compare(tsk, rule->exe); 501 if (f->op == Audit_not_equal) 502 result = !result; 503 break; 504 case AUDIT_UID: 505 result = audit_uid_comparator(cred->uid, f->op, f->uid); 506 break; 507 case AUDIT_EUID: 508 result = audit_uid_comparator(cred->euid, f->op, f->uid); 509 break; 510 case AUDIT_SUID: 511 result = audit_uid_comparator(cred->suid, f->op, f->uid); 512 break; 513 case AUDIT_FSUID: 514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 515 break; 516 case AUDIT_GID: 517 result = audit_gid_comparator(cred->gid, f->op, f->gid); 518 if (f->op == Audit_equal) { 519 if (!result) 520 result = groups_search(cred->group_info, f->gid); 521 } else if (f->op == Audit_not_equal) { 522 if (result) 523 result = !groups_search(cred->group_info, f->gid); 524 } 525 break; 526 case AUDIT_EGID: 527 result = audit_gid_comparator(cred->egid, f->op, f->gid); 528 if (f->op == Audit_equal) { 529 if (!result) 530 result = groups_search(cred->group_info, f->gid); 531 } else if (f->op == Audit_not_equal) { 532 if (result) 533 result = !groups_search(cred->group_info, f->gid); 534 } 535 break; 536 case AUDIT_SGID: 537 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 538 break; 539 case AUDIT_FSGID: 540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 541 break; 542 case AUDIT_SESSIONID: 543 sessionid = audit_get_sessionid(tsk); 544 result = audit_comparator(sessionid, f->op, f->val); 545 break; 546 case AUDIT_PERS: 547 result = audit_comparator(tsk->personality, f->op, f->val); 548 break; 549 case AUDIT_ARCH: 550 if (ctx) 551 result = audit_comparator(ctx->arch, f->op, f->val); 552 break; 553 554 case AUDIT_EXIT: 555 if (ctx && ctx->return_valid != AUDITSC_INVALID) 556 result = audit_comparator(ctx->return_code, f->op, f->val); 557 break; 558 case AUDIT_SUCCESS: 559 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 560 if (f->val) 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 562 else 563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 564 } 565 break; 566 case AUDIT_DEVMAJOR: 567 if (name) { 568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 569 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 570 ++result; 571 } else if (ctx) { 572 list_for_each_entry(n, &ctx->names_list, list) { 573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 575 ++result; 576 break; 577 } 578 } 579 } 580 break; 581 case AUDIT_DEVMINOR: 582 if (name) { 583 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 584 audit_comparator(MINOR(name->rdev), f->op, f->val)) 585 ++result; 586 } else if (ctx) { 587 list_for_each_entry(n, &ctx->names_list, list) { 588 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 589 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 590 ++result; 591 break; 592 } 593 } 594 } 595 break; 596 case AUDIT_INODE: 597 if (name) 598 result = audit_comparator(name->ino, f->op, f->val); 599 else if (ctx) { 600 list_for_each_entry(n, &ctx->names_list, list) { 601 if (audit_comparator(n->ino, f->op, f->val)) { 602 ++result; 603 break; 604 } 605 } 606 } 607 break; 608 case AUDIT_OBJ_UID: 609 if (name) { 610 result = audit_uid_comparator(name->uid, f->op, f->uid); 611 } else if (ctx) { 612 list_for_each_entry(n, &ctx->names_list, list) { 613 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 614 ++result; 615 break; 616 } 617 } 618 } 619 break; 620 case AUDIT_OBJ_GID: 621 if (name) { 622 result = audit_gid_comparator(name->gid, f->op, f->gid); 623 } else if (ctx) { 624 list_for_each_entry(n, &ctx->names_list, list) { 625 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 626 ++result; 627 break; 628 } 629 } 630 } 631 break; 632 case AUDIT_WATCH: 633 if (name) { 634 result = audit_watch_compare(rule->watch, 635 name->ino, 636 name->dev); 637 if (f->op == Audit_not_equal) 638 result = !result; 639 } 640 break; 641 case AUDIT_DIR: 642 if (ctx) { 643 result = match_tree_refs(ctx, rule->tree); 644 if (f->op == Audit_not_equal) 645 result = !result; 646 } 647 break; 648 case AUDIT_LOGINUID: 649 result = audit_uid_comparator(audit_get_loginuid(tsk), 650 f->op, f->uid); 651 break; 652 case AUDIT_LOGINUID_SET: 653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 654 break; 655 case AUDIT_SADDR_FAM: 656 if (ctx && ctx->sockaddr) 657 result = audit_comparator(ctx->sockaddr->ss_family, 658 f->op, f->val); 659 break; 660 case AUDIT_SUBJ_USER: 661 case AUDIT_SUBJ_ROLE: 662 case AUDIT_SUBJ_TYPE: 663 case AUDIT_SUBJ_SEN: 664 case AUDIT_SUBJ_CLR: 665 /* NOTE: this may return negative values indicating 666 a temporary error. We simply treat this as a 667 match for now to avoid losing information that 668 may be wanted. An error message will also be 669 logged upon error */ 670 if (f->lsm_rule) { 671 if (need_sid) { 672 /* @tsk should always be equal to 673 * @current with the exception of 674 * fork()/copy_process() in which case 675 * the new @tsk creds are still a dup 676 * of @current's creds so we can still 677 * use security_current_getsecid_subj() 678 * here even though it always refs 679 * @current's creds 680 */ 681 security_current_getsecid_subj(&sid); 682 need_sid = 0; 683 } 684 result = security_audit_rule_match(sid, f->type, 685 f->op, 686 f->lsm_rule); 687 } 688 break; 689 case AUDIT_OBJ_USER: 690 case AUDIT_OBJ_ROLE: 691 case AUDIT_OBJ_TYPE: 692 case AUDIT_OBJ_LEV_LOW: 693 case AUDIT_OBJ_LEV_HIGH: 694 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 695 also applies here */ 696 if (f->lsm_rule) { 697 /* Find files that match */ 698 if (name) { 699 result = security_audit_rule_match( 700 name->osid, 701 f->type, 702 f->op, 703 f->lsm_rule); 704 } else if (ctx) { 705 list_for_each_entry(n, &ctx->names_list, list) { 706 if (security_audit_rule_match( 707 n->osid, 708 f->type, 709 f->op, 710 f->lsm_rule)) { 711 ++result; 712 break; 713 } 714 } 715 } 716 /* Find ipc objects that match */ 717 if (!ctx || ctx->type != AUDIT_IPC) 718 break; 719 if (security_audit_rule_match(ctx->ipc.osid, 720 f->type, f->op, 721 f->lsm_rule)) 722 ++result; 723 } 724 break; 725 case AUDIT_ARG0: 726 case AUDIT_ARG1: 727 case AUDIT_ARG2: 728 case AUDIT_ARG3: 729 if (ctx) 730 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 731 break; 732 case AUDIT_FILTERKEY: 733 /* ignore this field for filtering */ 734 result = 1; 735 break; 736 case AUDIT_PERM: 737 result = audit_match_perm(ctx, f->val); 738 if (f->op == Audit_not_equal) 739 result = !result; 740 break; 741 case AUDIT_FILETYPE: 742 result = audit_match_filetype(ctx, f->val); 743 if (f->op == Audit_not_equal) 744 result = !result; 745 break; 746 case AUDIT_FIELD_COMPARE: 747 result = audit_field_compare(tsk, cred, f, ctx, name); 748 break; 749 } 750 if (!result) 751 return 0; 752 } 753 754 if (ctx) { 755 if (rule->filterkey) { 756 kfree(ctx->filterkey); 757 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 758 } 759 ctx->prio = rule->prio; 760 } 761 switch (rule->action) { 762 case AUDIT_NEVER: 763 *state = AUDIT_STATE_DISABLED; 764 break; 765 case AUDIT_ALWAYS: 766 *state = AUDIT_STATE_RECORD; 767 break; 768 } 769 return 1; 770 } 771 772 /* At process creation time, we can determine if system-call auditing is 773 * completely disabled for this task. Since we only have the task 774 * structure at this point, we can only check uid and gid. 775 */ 776 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 777 { 778 struct audit_entry *e; 779 enum audit_state state; 780 781 rcu_read_lock(); 782 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 783 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 784 &state, true)) { 785 if (state == AUDIT_STATE_RECORD) 786 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 787 rcu_read_unlock(); 788 return state; 789 } 790 } 791 rcu_read_unlock(); 792 return AUDIT_STATE_BUILD; 793 } 794 795 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 796 { 797 int word, bit; 798 799 if (val > 0xffffffff) 800 return false; 801 802 word = AUDIT_WORD(val); 803 if (word >= AUDIT_BITMASK_SIZE) 804 return false; 805 806 bit = AUDIT_BIT(val); 807 808 return rule->mask[word] & bit; 809 } 810 811 /** 812 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 813 * @tsk: associated task 814 * @ctx: audit context 815 * @list: audit filter list 816 * @name: audit_name (can be NULL) 817 * @op: current syscall/uring_op 818 * 819 * Run the udit filters specified in @list against @tsk using @ctx, 820 * @name, and @op, as necessary; the caller is responsible for ensuring 821 * that the call is made while the RCU read lock is held. The @name 822 * parameter can be NULL, but all others must be specified. 823 * Returns 1/true if the filter finds a match, 0/false if none are found. 824 */ 825 static int __audit_filter_op(struct task_struct *tsk, 826 struct audit_context *ctx, 827 struct list_head *list, 828 struct audit_names *name, 829 unsigned long op) 830 { 831 struct audit_entry *e; 832 enum audit_state state; 833 834 list_for_each_entry_rcu(e, list, list) { 835 if (audit_in_mask(&e->rule, op) && 836 audit_filter_rules(tsk, &e->rule, ctx, name, 837 &state, false)) { 838 ctx->current_state = state; 839 return 1; 840 } 841 } 842 return 0; 843 } 844 845 /** 846 * audit_filter_uring - apply filters to an io_uring operation 847 * @tsk: associated task 848 * @ctx: audit context 849 */ 850 static void audit_filter_uring(struct task_struct *tsk, 851 struct audit_context *ctx) 852 { 853 if (auditd_test_task(tsk)) 854 return; 855 856 rcu_read_lock(); 857 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 858 NULL, ctx->uring_op); 859 rcu_read_unlock(); 860 } 861 862 /* At syscall exit time, this filter is called if the audit_state is 863 * not low enough that auditing cannot take place, but is also not 864 * high enough that we already know we have to write an audit record 865 * (i.e., the state is AUDIT_STATE_BUILD). 866 */ 867 static void audit_filter_syscall(struct task_struct *tsk, 868 struct audit_context *ctx) 869 { 870 if (auditd_test_task(tsk)) 871 return; 872 873 rcu_read_lock(); 874 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 875 NULL, ctx->major); 876 rcu_read_unlock(); 877 } 878 879 /* 880 * Given an audit_name check the inode hash table to see if they match. 881 * Called holding the rcu read lock to protect the use of audit_inode_hash 882 */ 883 static int audit_filter_inode_name(struct task_struct *tsk, 884 struct audit_names *n, 885 struct audit_context *ctx) 886 { 887 int h = audit_hash_ino((u32)n->ino); 888 struct list_head *list = &audit_inode_hash[h]; 889 890 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 891 } 892 893 /* At syscall exit time, this filter is called if any audit_names have been 894 * collected during syscall processing. We only check rules in sublists at hash 895 * buckets applicable to the inode numbers in audit_names. 896 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 897 */ 898 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 899 { 900 struct audit_names *n; 901 902 if (auditd_test_task(tsk)) 903 return; 904 905 rcu_read_lock(); 906 907 list_for_each_entry(n, &ctx->names_list, list) { 908 if (audit_filter_inode_name(tsk, n, ctx)) 909 break; 910 } 911 rcu_read_unlock(); 912 } 913 914 static inline void audit_proctitle_free(struct audit_context *context) 915 { 916 kfree(context->proctitle.value); 917 context->proctitle.value = NULL; 918 context->proctitle.len = 0; 919 } 920 921 static inline void audit_free_module(struct audit_context *context) 922 { 923 if (context->type == AUDIT_KERN_MODULE) { 924 kfree(context->module.name); 925 context->module.name = NULL; 926 } 927 } 928 static inline void audit_free_names(struct audit_context *context) 929 { 930 struct audit_names *n, *next; 931 932 list_for_each_entry_safe(n, next, &context->names_list, list) { 933 list_del(&n->list); 934 if (n->name) 935 putname(n->name); 936 if (n->should_free) 937 kfree(n); 938 } 939 context->name_count = 0; 940 path_put(&context->pwd); 941 context->pwd.dentry = NULL; 942 context->pwd.mnt = NULL; 943 } 944 945 static inline void audit_free_aux(struct audit_context *context) 946 { 947 struct audit_aux_data *aux; 948 949 while ((aux = context->aux)) { 950 context->aux = aux->next; 951 kfree(aux); 952 } 953 context->aux = NULL; 954 while ((aux = context->aux_pids)) { 955 context->aux_pids = aux->next; 956 kfree(aux); 957 } 958 context->aux_pids = NULL; 959 } 960 961 /** 962 * audit_reset_context - reset a audit_context structure 963 * @ctx: the audit_context to reset 964 * 965 * All fields in the audit_context will be reset to an initial state, all 966 * references held by fields will be dropped, and private memory will be 967 * released. When this function returns the audit_context will be suitable 968 * for reuse, so long as the passed context is not NULL or a dummy context. 969 */ 970 static void audit_reset_context(struct audit_context *ctx) 971 { 972 if (!ctx) 973 return; 974 975 /* if ctx is non-null, reset the "ctx->context" regardless */ 976 ctx->context = AUDIT_CTX_UNUSED; 977 if (ctx->dummy) 978 return; 979 980 /* 981 * NOTE: It shouldn't matter in what order we release the fields, so 982 * release them in the order in which they appear in the struct; 983 * this gives us some hope of quickly making sure we are 984 * resetting the audit_context properly. 985 * 986 * Other things worth mentioning: 987 * - we don't reset "dummy" 988 * - we don't reset "state", we do reset "current_state" 989 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 990 * - much of this is likely overkill, but play it safe for now 991 * - we really need to work on improving the audit_context struct 992 */ 993 994 ctx->current_state = ctx->state; 995 ctx->serial = 0; 996 ctx->major = 0; 997 ctx->uring_op = 0; 998 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 999 memset(ctx->argv, 0, sizeof(ctx->argv)); 1000 ctx->return_code = 0; 1001 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 1002 ctx->return_valid = AUDITSC_INVALID; 1003 audit_free_names(ctx); 1004 if (ctx->state != AUDIT_STATE_RECORD) { 1005 kfree(ctx->filterkey); 1006 ctx->filterkey = NULL; 1007 } 1008 audit_free_aux(ctx); 1009 kfree(ctx->sockaddr); 1010 ctx->sockaddr = NULL; 1011 ctx->sockaddr_len = 0; 1012 ctx->ppid = 0; 1013 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1014 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1015 ctx->personality = 0; 1016 ctx->arch = 0; 1017 ctx->target_pid = 0; 1018 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1019 ctx->target_sessionid = 0; 1020 ctx->target_sid = 0; 1021 ctx->target_comm[0] = '\0'; 1022 unroll_tree_refs(ctx, NULL, 0); 1023 WARN_ON(!list_empty(&ctx->killed_trees)); 1024 audit_free_module(ctx); 1025 ctx->fds[0] = -1; 1026 ctx->type = 0; /* reset last for audit_free_*() */ 1027 } 1028 1029 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1030 { 1031 struct audit_context *context; 1032 1033 context = kzalloc(sizeof(*context), GFP_KERNEL); 1034 if (!context) 1035 return NULL; 1036 context->context = AUDIT_CTX_UNUSED; 1037 context->state = state; 1038 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1039 INIT_LIST_HEAD(&context->killed_trees); 1040 INIT_LIST_HEAD(&context->names_list); 1041 context->fds[0] = -1; 1042 context->return_valid = AUDITSC_INVALID; 1043 return context; 1044 } 1045 1046 /** 1047 * audit_alloc - allocate an audit context block for a task 1048 * @tsk: task 1049 * 1050 * Filter on the task information and allocate a per-task audit context 1051 * if necessary. Doing so turns on system call auditing for the 1052 * specified task. This is called from copy_process, so no lock is 1053 * needed. 1054 */ 1055 int audit_alloc(struct task_struct *tsk) 1056 { 1057 struct audit_context *context; 1058 enum audit_state state; 1059 char *key = NULL; 1060 1061 if (likely(!audit_ever_enabled)) 1062 return 0; 1063 1064 state = audit_filter_task(tsk, &key); 1065 if (state == AUDIT_STATE_DISABLED) { 1066 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1067 return 0; 1068 } 1069 1070 context = audit_alloc_context(state); 1071 if (!context) { 1072 kfree(key); 1073 audit_log_lost("out of memory in audit_alloc"); 1074 return -ENOMEM; 1075 } 1076 context->filterkey = key; 1077 1078 audit_set_context(tsk, context); 1079 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1080 return 0; 1081 } 1082 1083 static inline void audit_free_context(struct audit_context *context) 1084 { 1085 /* resetting is extra work, but it is likely just noise */ 1086 audit_reset_context(context); 1087 audit_proctitle_free(context); 1088 free_tree_refs(context); 1089 kfree(context->filterkey); 1090 kfree(context); 1091 } 1092 1093 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1094 kuid_t auid, kuid_t uid, unsigned int sessionid, 1095 u32 sid, char *comm) 1096 { 1097 struct audit_buffer *ab; 1098 char *ctx = NULL; 1099 u32 len; 1100 int rc = 0; 1101 1102 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1103 if (!ab) 1104 return rc; 1105 1106 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1107 from_kuid(&init_user_ns, auid), 1108 from_kuid(&init_user_ns, uid), sessionid); 1109 if (sid) { 1110 if (security_secid_to_secctx(sid, &ctx, &len)) { 1111 audit_log_format(ab, " obj=(none)"); 1112 rc = 1; 1113 } else { 1114 audit_log_format(ab, " obj=%s", ctx); 1115 security_release_secctx(ctx, len); 1116 } 1117 } 1118 audit_log_format(ab, " ocomm="); 1119 audit_log_untrustedstring(ab, comm); 1120 audit_log_end(ab); 1121 1122 return rc; 1123 } 1124 1125 static void audit_log_execve_info(struct audit_context *context, 1126 struct audit_buffer **ab) 1127 { 1128 long len_max; 1129 long len_rem; 1130 long len_full; 1131 long len_buf; 1132 long len_abuf = 0; 1133 long len_tmp; 1134 bool require_data; 1135 bool encode; 1136 unsigned int iter; 1137 unsigned int arg; 1138 char *buf_head; 1139 char *buf; 1140 const char __user *p = (const char __user *)current->mm->arg_start; 1141 1142 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1143 * data we put in the audit record for this argument (see the 1144 * code below) ... at this point in time 96 is plenty */ 1145 char abuf[96]; 1146 1147 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1148 * current value of 7500 is not as important as the fact that it 1149 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1150 * room if we go over a little bit in the logging below */ 1151 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1152 len_max = MAX_EXECVE_AUDIT_LEN; 1153 1154 /* scratch buffer to hold the userspace args */ 1155 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1156 if (!buf_head) { 1157 audit_panic("out of memory for argv string"); 1158 return; 1159 } 1160 buf = buf_head; 1161 1162 audit_log_format(*ab, "argc=%d", context->execve.argc); 1163 1164 len_rem = len_max; 1165 len_buf = 0; 1166 len_full = 0; 1167 require_data = true; 1168 encode = false; 1169 iter = 0; 1170 arg = 0; 1171 do { 1172 /* NOTE: we don't ever want to trust this value for anything 1173 * serious, but the audit record format insists we 1174 * provide an argument length for really long arguments, 1175 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1176 * to use strncpy_from_user() to obtain this value for 1177 * recording in the log, although we don't use it 1178 * anywhere here to avoid a double-fetch problem */ 1179 if (len_full == 0) 1180 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1181 1182 /* read more data from userspace */ 1183 if (require_data) { 1184 /* can we make more room in the buffer? */ 1185 if (buf != buf_head) { 1186 memmove(buf_head, buf, len_buf); 1187 buf = buf_head; 1188 } 1189 1190 /* fetch as much as we can of the argument */ 1191 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1192 len_max - len_buf); 1193 if (len_tmp == -EFAULT) { 1194 /* unable to copy from userspace */ 1195 send_sig(SIGKILL, current, 0); 1196 goto out; 1197 } else if (len_tmp == (len_max - len_buf)) { 1198 /* buffer is not large enough */ 1199 require_data = true; 1200 /* NOTE: if we are going to span multiple 1201 * buffers force the encoding so we stand 1202 * a chance at a sane len_full value and 1203 * consistent record encoding */ 1204 encode = true; 1205 len_full = len_full * 2; 1206 p += len_tmp; 1207 } else { 1208 require_data = false; 1209 if (!encode) 1210 encode = audit_string_contains_control( 1211 buf, len_tmp); 1212 /* try to use a trusted value for len_full */ 1213 if (len_full < len_max) 1214 len_full = (encode ? 1215 len_tmp * 2 : len_tmp); 1216 p += len_tmp + 1; 1217 } 1218 len_buf += len_tmp; 1219 buf_head[len_buf] = '\0'; 1220 1221 /* length of the buffer in the audit record? */ 1222 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1223 } 1224 1225 /* write as much as we can to the audit log */ 1226 if (len_buf >= 0) { 1227 /* NOTE: some magic numbers here - basically if we 1228 * can't fit a reasonable amount of data into the 1229 * existing audit buffer, flush it and start with 1230 * a new buffer */ 1231 if ((sizeof(abuf) + 8) > len_rem) { 1232 len_rem = len_max; 1233 audit_log_end(*ab); 1234 *ab = audit_log_start(context, 1235 GFP_KERNEL, AUDIT_EXECVE); 1236 if (!*ab) 1237 goto out; 1238 } 1239 1240 /* create the non-arg portion of the arg record */ 1241 len_tmp = 0; 1242 if (require_data || (iter > 0) || 1243 ((len_abuf + sizeof(abuf)) > len_rem)) { 1244 if (iter == 0) { 1245 len_tmp += snprintf(&abuf[len_tmp], 1246 sizeof(abuf) - len_tmp, 1247 " a%d_len=%lu", 1248 arg, len_full); 1249 } 1250 len_tmp += snprintf(&abuf[len_tmp], 1251 sizeof(abuf) - len_tmp, 1252 " a%d[%d]=", arg, iter++); 1253 } else 1254 len_tmp += snprintf(&abuf[len_tmp], 1255 sizeof(abuf) - len_tmp, 1256 " a%d=", arg); 1257 WARN_ON(len_tmp >= sizeof(abuf)); 1258 abuf[sizeof(abuf) - 1] = '\0'; 1259 1260 /* log the arg in the audit record */ 1261 audit_log_format(*ab, "%s", abuf); 1262 len_rem -= len_tmp; 1263 len_tmp = len_buf; 1264 if (encode) { 1265 if (len_abuf > len_rem) 1266 len_tmp = len_rem / 2; /* encoding */ 1267 audit_log_n_hex(*ab, buf, len_tmp); 1268 len_rem -= len_tmp * 2; 1269 len_abuf -= len_tmp * 2; 1270 } else { 1271 if (len_abuf > len_rem) 1272 len_tmp = len_rem - 2; /* quotes */ 1273 audit_log_n_string(*ab, buf, len_tmp); 1274 len_rem -= len_tmp + 2; 1275 /* don't subtract the "2" because we still need 1276 * to add quotes to the remaining string */ 1277 len_abuf -= len_tmp; 1278 } 1279 len_buf -= len_tmp; 1280 buf += len_tmp; 1281 } 1282 1283 /* ready to move to the next argument? */ 1284 if ((len_buf == 0) && !require_data) { 1285 arg++; 1286 iter = 0; 1287 len_full = 0; 1288 require_data = true; 1289 encode = false; 1290 } 1291 } while (arg < context->execve.argc); 1292 1293 /* NOTE: the caller handles the final audit_log_end() call */ 1294 1295 out: 1296 kfree(buf_head); 1297 } 1298 1299 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1300 kernel_cap_t *cap) 1301 { 1302 if (cap_isclear(*cap)) { 1303 audit_log_format(ab, " %s=0", prefix); 1304 return; 1305 } 1306 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1307 } 1308 1309 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1310 { 1311 if (name->fcap_ver == -1) { 1312 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1313 return; 1314 } 1315 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1316 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1317 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1318 name->fcap.fE, name->fcap_ver, 1319 from_kuid(&init_user_ns, name->fcap.rootid)); 1320 } 1321 1322 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1323 { 1324 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1325 const struct timespec64 *tk = &context->time.tk_injoffset; 1326 static const char * const ntp_name[] = { 1327 "offset", 1328 "freq", 1329 "status", 1330 "tai", 1331 "tick", 1332 "adjust", 1333 }; 1334 int type; 1335 1336 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1337 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1338 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1339 if (!*ab) { 1340 *ab = audit_log_start(context, 1341 GFP_KERNEL, 1342 AUDIT_TIME_ADJNTPVAL); 1343 if (!*ab) 1344 return; 1345 } 1346 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1347 ntp_name[type], 1348 ntp->vals[type].oldval, 1349 ntp->vals[type].newval); 1350 audit_log_end(*ab); 1351 *ab = NULL; 1352 } 1353 } 1354 } 1355 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1356 if (!*ab) { 1357 *ab = audit_log_start(context, GFP_KERNEL, 1358 AUDIT_TIME_INJOFFSET); 1359 if (!*ab) 1360 return; 1361 } 1362 audit_log_format(*ab, "sec=%lli nsec=%li", 1363 (long long)tk->tv_sec, tk->tv_nsec); 1364 audit_log_end(*ab); 1365 *ab = NULL; 1366 } 1367 } 1368 1369 static void show_special(struct audit_context *context, int *call_panic) 1370 { 1371 struct audit_buffer *ab; 1372 int i; 1373 1374 ab = audit_log_start(context, GFP_KERNEL, context->type); 1375 if (!ab) 1376 return; 1377 1378 switch (context->type) { 1379 case AUDIT_SOCKETCALL: { 1380 int nargs = context->socketcall.nargs; 1381 1382 audit_log_format(ab, "nargs=%d", nargs); 1383 for (i = 0; i < nargs; i++) 1384 audit_log_format(ab, " a%d=%lx", i, 1385 context->socketcall.args[i]); 1386 break; } 1387 case AUDIT_IPC: { 1388 u32 osid = context->ipc.osid; 1389 1390 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1391 from_kuid(&init_user_ns, context->ipc.uid), 1392 from_kgid(&init_user_ns, context->ipc.gid), 1393 context->ipc.mode); 1394 if (osid) { 1395 char *ctx = NULL; 1396 u32 len; 1397 1398 if (security_secid_to_secctx(osid, &ctx, &len)) { 1399 audit_log_format(ab, " osid=%u", osid); 1400 *call_panic = 1; 1401 } else { 1402 audit_log_format(ab, " obj=%s", ctx); 1403 security_release_secctx(ctx, len); 1404 } 1405 } 1406 if (context->ipc.has_perm) { 1407 audit_log_end(ab); 1408 ab = audit_log_start(context, GFP_KERNEL, 1409 AUDIT_IPC_SET_PERM); 1410 if (unlikely(!ab)) 1411 return; 1412 audit_log_format(ab, 1413 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1414 context->ipc.qbytes, 1415 context->ipc.perm_uid, 1416 context->ipc.perm_gid, 1417 context->ipc.perm_mode); 1418 } 1419 break; } 1420 case AUDIT_MQ_OPEN: 1421 audit_log_format(ab, 1422 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1423 "mq_msgsize=%ld mq_curmsgs=%ld", 1424 context->mq_open.oflag, context->mq_open.mode, 1425 context->mq_open.attr.mq_flags, 1426 context->mq_open.attr.mq_maxmsg, 1427 context->mq_open.attr.mq_msgsize, 1428 context->mq_open.attr.mq_curmsgs); 1429 break; 1430 case AUDIT_MQ_SENDRECV: 1431 audit_log_format(ab, 1432 "mqdes=%d msg_len=%zd msg_prio=%u " 1433 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1434 context->mq_sendrecv.mqdes, 1435 context->mq_sendrecv.msg_len, 1436 context->mq_sendrecv.msg_prio, 1437 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1438 context->mq_sendrecv.abs_timeout.tv_nsec); 1439 break; 1440 case AUDIT_MQ_NOTIFY: 1441 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1442 context->mq_notify.mqdes, 1443 context->mq_notify.sigev_signo); 1444 break; 1445 case AUDIT_MQ_GETSETATTR: { 1446 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1447 1448 audit_log_format(ab, 1449 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1450 "mq_curmsgs=%ld ", 1451 context->mq_getsetattr.mqdes, 1452 attr->mq_flags, attr->mq_maxmsg, 1453 attr->mq_msgsize, attr->mq_curmsgs); 1454 break; } 1455 case AUDIT_CAPSET: 1456 audit_log_format(ab, "pid=%d", context->capset.pid); 1457 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1458 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1459 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1460 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1461 break; 1462 case AUDIT_MMAP: 1463 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1464 context->mmap.flags); 1465 break; 1466 case AUDIT_OPENAT2: 1467 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1468 context->openat2.flags, 1469 context->openat2.mode, 1470 context->openat2.resolve); 1471 break; 1472 case AUDIT_EXECVE: 1473 audit_log_execve_info(context, &ab); 1474 break; 1475 case AUDIT_KERN_MODULE: 1476 audit_log_format(ab, "name="); 1477 if (context->module.name) { 1478 audit_log_untrustedstring(ab, context->module.name); 1479 } else 1480 audit_log_format(ab, "(null)"); 1481 1482 break; 1483 case AUDIT_TIME_ADJNTPVAL: 1484 case AUDIT_TIME_INJOFFSET: 1485 /* this call deviates from the rest, eating the buffer */ 1486 audit_log_time(context, &ab); 1487 break; 1488 } 1489 audit_log_end(ab); 1490 } 1491 1492 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1493 { 1494 char *end = proctitle + len - 1; 1495 1496 while (end > proctitle && !isprint(*end)) 1497 end--; 1498 1499 /* catch the case where proctitle is only 1 non-print character */ 1500 len = end - proctitle + 1; 1501 len -= isprint(proctitle[len-1]) == 0; 1502 return len; 1503 } 1504 1505 /* 1506 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1507 * @context: audit_context for the task 1508 * @n: audit_names structure with reportable details 1509 * @path: optional path to report instead of audit_names->name 1510 * @record_num: record number to report when handling a list of names 1511 * @call_panic: optional pointer to int that will be updated if secid fails 1512 */ 1513 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1514 const struct path *path, int record_num, int *call_panic) 1515 { 1516 struct audit_buffer *ab; 1517 1518 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1519 if (!ab) 1520 return; 1521 1522 audit_log_format(ab, "item=%d", record_num); 1523 1524 if (path) 1525 audit_log_d_path(ab, " name=", path); 1526 else if (n->name) { 1527 switch (n->name_len) { 1528 case AUDIT_NAME_FULL: 1529 /* log the full path */ 1530 audit_log_format(ab, " name="); 1531 audit_log_untrustedstring(ab, n->name->name); 1532 break; 1533 case 0: 1534 /* name was specified as a relative path and the 1535 * directory component is the cwd 1536 */ 1537 if (context->pwd.dentry && context->pwd.mnt) 1538 audit_log_d_path(ab, " name=", &context->pwd); 1539 else 1540 audit_log_format(ab, " name=(null)"); 1541 break; 1542 default: 1543 /* log the name's directory component */ 1544 audit_log_format(ab, " name="); 1545 audit_log_n_untrustedstring(ab, n->name->name, 1546 n->name_len); 1547 } 1548 } else 1549 audit_log_format(ab, " name=(null)"); 1550 1551 if (n->ino != AUDIT_INO_UNSET) 1552 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1553 n->ino, 1554 MAJOR(n->dev), 1555 MINOR(n->dev), 1556 n->mode, 1557 from_kuid(&init_user_ns, n->uid), 1558 from_kgid(&init_user_ns, n->gid), 1559 MAJOR(n->rdev), 1560 MINOR(n->rdev)); 1561 if (n->osid != 0) { 1562 char *ctx = NULL; 1563 u32 len; 1564 1565 if (security_secid_to_secctx( 1566 n->osid, &ctx, &len)) { 1567 audit_log_format(ab, " osid=%u", n->osid); 1568 if (call_panic) 1569 *call_panic = 2; 1570 } else { 1571 audit_log_format(ab, " obj=%s", ctx); 1572 security_release_secctx(ctx, len); 1573 } 1574 } 1575 1576 /* log the audit_names record type */ 1577 switch (n->type) { 1578 case AUDIT_TYPE_NORMAL: 1579 audit_log_format(ab, " nametype=NORMAL"); 1580 break; 1581 case AUDIT_TYPE_PARENT: 1582 audit_log_format(ab, " nametype=PARENT"); 1583 break; 1584 case AUDIT_TYPE_CHILD_DELETE: 1585 audit_log_format(ab, " nametype=DELETE"); 1586 break; 1587 case AUDIT_TYPE_CHILD_CREATE: 1588 audit_log_format(ab, " nametype=CREATE"); 1589 break; 1590 default: 1591 audit_log_format(ab, " nametype=UNKNOWN"); 1592 break; 1593 } 1594 1595 audit_log_fcaps(ab, n); 1596 audit_log_end(ab); 1597 } 1598 1599 static void audit_log_proctitle(void) 1600 { 1601 int res; 1602 char *buf; 1603 char *msg = "(null)"; 1604 int len = strlen(msg); 1605 struct audit_context *context = audit_context(); 1606 struct audit_buffer *ab; 1607 1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1609 if (!ab) 1610 return; /* audit_panic or being filtered */ 1611 1612 audit_log_format(ab, "proctitle="); 1613 1614 /* Not cached */ 1615 if (!context->proctitle.value) { 1616 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1617 if (!buf) 1618 goto out; 1619 /* Historically called this from procfs naming */ 1620 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1621 if (res == 0) { 1622 kfree(buf); 1623 goto out; 1624 } 1625 res = audit_proctitle_rtrim(buf, res); 1626 if (res == 0) { 1627 kfree(buf); 1628 goto out; 1629 } 1630 context->proctitle.value = buf; 1631 context->proctitle.len = res; 1632 } 1633 msg = context->proctitle.value; 1634 len = context->proctitle.len; 1635 out: 1636 audit_log_n_untrustedstring(ab, msg, len); 1637 audit_log_end(ab); 1638 } 1639 1640 /** 1641 * audit_log_uring - generate a AUDIT_URINGOP record 1642 * @ctx: the audit context 1643 */ 1644 static void audit_log_uring(struct audit_context *ctx) 1645 { 1646 struct audit_buffer *ab; 1647 const struct cred *cred; 1648 1649 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1650 if (!ab) 1651 return; 1652 cred = current_cred(); 1653 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1654 if (ctx->return_valid != AUDITSC_INVALID) 1655 audit_log_format(ab, " success=%s exit=%ld", 1656 (ctx->return_valid == AUDITSC_SUCCESS ? 1657 "yes" : "no"), 1658 ctx->return_code); 1659 audit_log_format(ab, 1660 " items=%d" 1661 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1662 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1663 ctx->name_count, 1664 task_ppid_nr(current), task_tgid_nr(current), 1665 from_kuid(&init_user_ns, cred->uid), 1666 from_kgid(&init_user_ns, cred->gid), 1667 from_kuid(&init_user_ns, cred->euid), 1668 from_kuid(&init_user_ns, cred->suid), 1669 from_kuid(&init_user_ns, cred->fsuid), 1670 from_kgid(&init_user_ns, cred->egid), 1671 from_kgid(&init_user_ns, cred->sgid), 1672 from_kgid(&init_user_ns, cred->fsgid)); 1673 audit_log_task_context(ab); 1674 audit_log_key(ab, ctx->filterkey); 1675 audit_log_end(ab); 1676 } 1677 1678 static void audit_log_exit(void) 1679 { 1680 int i, call_panic = 0; 1681 struct audit_context *context = audit_context(); 1682 struct audit_buffer *ab; 1683 struct audit_aux_data *aux; 1684 struct audit_names *n; 1685 1686 context->personality = current->personality; 1687 1688 switch (context->context) { 1689 case AUDIT_CTX_SYSCALL: 1690 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1691 if (!ab) 1692 return; 1693 audit_log_format(ab, "arch=%x syscall=%d", 1694 context->arch, context->major); 1695 if (context->personality != PER_LINUX) 1696 audit_log_format(ab, " per=%lx", context->personality); 1697 if (context->return_valid != AUDITSC_INVALID) 1698 audit_log_format(ab, " success=%s exit=%ld", 1699 (context->return_valid == AUDITSC_SUCCESS ? 1700 "yes" : "no"), 1701 context->return_code); 1702 audit_log_format(ab, 1703 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1704 context->argv[0], 1705 context->argv[1], 1706 context->argv[2], 1707 context->argv[3], 1708 context->name_count); 1709 audit_log_task_info(ab); 1710 audit_log_key(ab, context->filterkey); 1711 audit_log_end(ab); 1712 break; 1713 case AUDIT_CTX_URING: 1714 audit_log_uring(context); 1715 break; 1716 default: 1717 BUG(); 1718 break; 1719 } 1720 1721 for (aux = context->aux; aux; aux = aux->next) { 1722 1723 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1724 if (!ab) 1725 continue; /* audit_panic has been called */ 1726 1727 switch (aux->type) { 1728 1729 case AUDIT_BPRM_FCAPS: { 1730 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1731 1732 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1733 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1734 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1735 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1736 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1737 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1738 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1739 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1740 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1741 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1742 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1743 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1744 audit_log_format(ab, " frootid=%d", 1745 from_kuid(&init_user_ns, 1746 axs->fcap.rootid)); 1747 break; } 1748 1749 } 1750 audit_log_end(ab); 1751 } 1752 1753 if (context->type) 1754 show_special(context, &call_panic); 1755 1756 if (context->fds[0] >= 0) { 1757 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1758 if (ab) { 1759 audit_log_format(ab, "fd0=%d fd1=%d", 1760 context->fds[0], context->fds[1]); 1761 audit_log_end(ab); 1762 } 1763 } 1764 1765 if (context->sockaddr_len) { 1766 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1767 if (ab) { 1768 audit_log_format(ab, "saddr="); 1769 audit_log_n_hex(ab, (void *)context->sockaddr, 1770 context->sockaddr_len); 1771 audit_log_end(ab); 1772 } 1773 } 1774 1775 for (aux = context->aux_pids; aux; aux = aux->next) { 1776 struct audit_aux_data_pids *axs = (void *)aux; 1777 1778 for (i = 0; i < axs->pid_count; i++) 1779 if (audit_log_pid_context(context, axs->target_pid[i], 1780 axs->target_auid[i], 1781 axs->target_uid[i], 1782 axs->target_sessionid[i], 1783 axs->target_sid[i], 1784 axs->target_comm[i])) 1785 call_panic = 1; 1786 } 1787 1788 if (context->target_pid && 1789 audit_log_pid_context(context, context->target_pid, 1790 context->target_auid, context->target_uid, 1791 context->target_sessionid, 1792 context->target_sid, context->target_comm)) 1793 call_panic = 1; 1794 1795 if (context->pwd.dentry && context->pwd.mnt) { 1796 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1797 if (ab) { 1798 audit_log_d_path(ab, "cwd=", &context->pwd); 1799 audit_log_end(ab); 1800 } 1801 } 1802 1803 i = 0; 1804 list_for_each_entry(n, &context->names_list, list) { 1805 if (n->hidden) 1806 continue; 1807 audit_log_name(context, n, NULL, i++, &call_panic); 1808 } 1809 1810 if (context->context == AUDIT_CTX_SYSCALL) 1811 audit_log_proctitle(); 1812 1813 /* Send end of event record to help user space know we are finished */ 1814 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1815 if (ab) 1816 audit_log_end(ab); 1817 if (call_panic) 1818 audit_panic("error in audit_log_exit()"); 1819 } 1820 1821 /** 1822 * __audit_free - free a per-task audit context 1823 * @tsk: task whose audit context block to free 1824 * 1825 * Called from copy_process, do_exit, and the io_uring code 1826 */ 1827 void __audit_free(struct task_struct *tsk) 1828 { 1829 struct audit_context *context = tsk->audit_context; 1830 1831 if (!context) 1832 return; 1833 1834 /* this may generate CONFIG_CHANGE records */ 1835 if (!list_empty(&context->killed_trees)) 1836 audit_kill_trees(context); 1837 1838 /* We are called either by do_exit() or the fork() error handling code; 1839 * in the former case tsk == current and in the latter tsk is a 1840 * random task_struct that doesn't have any meaningful data we 1841 * need to log via audit_log_exit(). 1842 */ 1843 if (tsk == current && !context->dummy) { 1844 context->return_valid = AUDITSC_INVALID; 1845 context->return_code = 0; 1846 if (context->context == AUDIT_CTX_SYSCALL) { 1847 audit_filter_syscall(tsk, context); 1848 audit_filter_inodes(tsk, context); 1849 if (context->current_state == AUDIT_STATE_RECORD) 1850 audit_log_exit(); 1851 } else if (context->context == AUDIT_CTX_URING) { 1852 /* TODO: verify this case is real and valid */ 1853 audit_filter_uring(tsk, context); 1854 audit_filter_inodes(tsk, context); 1855 if (context->current_state == AUDIT_STATE_RECORD) 1856 audit_log_uring(context); 1857 } 1858 } 1859 1860 audit_set_context(tsk, NULL); 1861 audit_free_context(context); 1862 } 1863 1864 /** 1865 * audit_return_fixup - fixup the return codes in the audit_context 1866 * @ctx: the audit_context 1867 * @success: true/false value to indicate if the operation succeeded or not 1868 * @code: operation return code 1869 * 1870 * We need to fixup the return code in the audit logs if the actual return 1871 * codes are later going to be fixed by the arch specific signal handlers. 1872 */ 1873 static void audit_return_fixup(struct audit_context *ctx, 1874 int success, long code) 1875 { 1876 /* 1877 * This is actually a test for: 1878 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1879 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1880 * 1881 * but is faster than a bunch of || 1882 */ 1883 if (unlikely(code <= -ERESTARTSYS) && 1884 (code >= -ERESTART_RESTARTBLOCK) && 1885 (code != -ENOIOCTLCMD)) 1886 ctx->return_code = -EINTR; 1887 else 1888 ctx->return_code = code; 1889 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1890 } 1891 1892 /** 1893 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1894 * @op: the io_uring opcode 1895 * 1896 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1897 * operations. This function should only ever be called from 1898 * audit_uring_entry() as we rely on the audit context checking present in that 1899 * function. 1900 */ 1901 void __audit_uring_entry(u8 op) 1902 { 1903 struct audit_context *ctx = audit_context(); 1904 1905 if (ctx->state == AUDIT_STATE_DISABLED) 1906 return; 1907 1908 /* 1909 * NOTE: It's possible that we can be called from the process' context 1910 * before it returns to userspace, and before audit_syscall_exit() 1911 * is called. In this case there is not much to do, just record 1912 * the io_uring details and return. 1913 */ 1914 ctx->uring_op = op; 1915 if (ctx->context == AUDIT_CTX_SYSCALL) 1916 return; 1917 1918 ctx->dummy = !audit_n_rules; 1919 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1920 ctx->prio = 0; 1921 1922 ctx->context = AUDIT_CTX_URING; 1923 ctx->current_state = ctx->state; 1924 ktime_get_coarse_real_ts64(&ctx->ctime); 1925 } 1926 1927 /** 1928 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1929 * @success: true/false value to indicate if the operation succeeded or not 1930 * @code: operation return code 1931 * 1932 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1933 * operations. This function should only ever be called from 1934 * audit_uring_exit() as we rely on the audit context checking present in that 1935 * function. 1936 */ 1937 void __audit_uring_exit(int success, long code) 1938 { 1939 struct audit_context *ctx = audit_context(); 1940 1941 if (ctx->dummy) { 1942 if (ctx->context != AUDIT_CTX_URING) 1943 return; 1944 goto out; 1945 } 1946 1947 audit_return_fixup(ctx, success, code); 1948 if (ctx->context == AUDIT_CTX_SYSCALL) { 1949 /* 1950 * NOTE: See the note in __audit_uring_entry() about the case 1951 * where we may be called from process context before we 1952 * return to userspace via audit_syscall_exit(). In this 1953 * case we simply emit a URINGOP record and bail, the 1954 * normal syscall exit handling will take care of 1955 * everything else. 1956 * It is also worth mentioning that when we are called, 1957 * the current process creds may differ from the creds 1958 * used during the normal syscall processing; keep that 1959 * in mind if/when we move the record generation code. 1960 */ 1961 1962 /* 1963 * We need to filter on the syscall info here to decide if we 1964 * should emit a URINGOP record. I know it seems odd but this 1965 * solves the problem where users have a filter to block *all* 1966 * syscall records in the "exit" filter; we want to preserve 1967 * the behavior here. 1968 */ 1969 audit_filter_syscall(current, ctx); 1970 if (ctx->current_state != AUDIT_STATE_RECORD) 1971 audit_filter_uring(current, ctx); 1972 audit_filter_inodes(current, ctx); 1973 if (ctx->current_state != AUDIT_STATE_RECORD) 1974 return; 1975 1976 audit_log_uring(ctx); 1977 return; 1978 } 1979 1980 /* this may generate CONFIG_CHANGE records */ 1981 if (!list_empty(&ctx->killed_trees)) 1982 audit_kill_trees(ctx); 1983 1984 /* run through both filters to ensure we set the filterkey properly */ 1985 audit_filter_uring(current, ctx); 1986 audit_filter_inodes(current, ctx); 1987 if (ctx->current_state != AUDIT_STATE_RECORD) 1988 goto out; 1989 audit_log_exit(); 1990 1991 out: 1992 audit_reset_context(ctx); 1993 } 1994 1995 /** 1996 * __audit_syscall_entry - fill in an audit record at syscall entry 1997 * @major: major syscall type (function) 1998 * @a1: additional syscall register 1 1999 * @a2: additional syscall register 2 2000 * @a3: additional syscall register 3 2001 * @a4: additional syscall register 4 2002 * 2003 * Fill in audit context at syscall entry. This only happens if the 2004 * audit context was created when the task was created and the state or 2005 * filters demand the audit context be built. If the state from the 2006 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2007 * then the record will be written at syscall exit time (otherwise, it 2008 * will only be written if another part of the kernel requests that it 2009 * be written). 2010 */ 2011 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2012 unsigned long a3, unsigned long a4) 2013 { 2014 struct audit_context *context = audit_context(); 2015 enum audit_state state; 2016 2017 if (!audit_enabled || !context) 2018 return; 2019 2020 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2021 WARN_ON(context->name_count); 2022 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2023 audit_panic("unrecoverable error in audit_syscall_entry()"); 2024 return; 2025 } 2026 2027 state = context->state; 2028 if (state == AUDIT_STATE_DISABLED) 2029 return; 2030 2031 context->dummy = !audit_n_rules; 2032 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2033 context->prio = 0; 2034 if (auditd_test_task(current)) 2035 return; 2036 } 2037 2038 context->arch = syscall_get_arch(current); 2039 context->major = major; 2040 context->argv[0] = a1; 2041 context->argv[1] = a2; 2042 context->argv[2] = a3; 2043 context->argv[3] = a4; 2044 context->context = AUDIT_CTX_SYSCALL; 2045 context->current_state = state; 2046 ktime_get_coarse_real_ts64(&context->ctime); 2047 } 2048 2049 /** 2050 * __audit_syscall_exit - deallocate audit context after a system call 2051 * @success: success value of the syscall 2052 * @return_code: return value of the syscall 2053 * 2054 * Tear down after system call. If the audit context has been marked as 2055 * auditable (either because of the AUDIT_STATE_RECORD state from 2056 * filtering, or because some other part of the kernel wrote an audit 2057 * message), then write out the syscall information. In call cases, 2058 * free the names stored from getname(). 2059 */ 2060 void __audit_syscall_exit(int success, long return_code) 2061 { 2062 struct audit_context *context = audit_context(); 2063 2064 if (!context || context->dummy || 2065 context->context != AUDIT_CTX_SYSCALL) 2066 goto out; 2067 2068 /* this may generate CONFIG_CHANGE records */ 2069 if (!list_empty(&context->killed_trees)) 2070 audit_kill_trees(context); 2071 2072 audit_return_fixup(context, success, return_code); 2073 /* run through both filters to ensure we set the filterkey properly */ 2074 audit_filter_syscall(current, context); 2075 audit_filter_inodes(current, context); 2076 if (context->current_state != AUDIT_STATE_RECORD) 2077 goto out; 2078 2079 audit_log_exit(); 2080 2081 out: 2082 audit_reset_context(context); 2083 } 2084 2085 static inline void handle_one(const struct inode *inode) 2086 { 2087 struct audit_context *context; 2088 struct audit_tree_refs *p; 2089 struct audit_chunk *chunk; 2090 int count; 2091 2092 if (likely(!inode->i_fsnotify_marks)) 2093 return; 2094 context = audit_context(); 2095 p = context->trees; 2096 count = context->tree_count; 2097 rcu_read_lock(); 2098 chunk = audit_tree_lookup(inode); 2099 rcu_read_unlock(); 2100 if (!chunk) 2101 return; 2102 if (likely(put_tree_ref(context, chunk))) 2103 return; 2104 if (unlikely(!grow_tree_refs(context))) { 2105 pr_warn("out of memory, audit has lost a tree reference\n"); 2106 audit_set_auditable(context); 2107 audit_put_chunk(chunk); 2108 unroll_tree_refs(context, p, count); 2109 return; 2110 } 2111 put_tree_ref(context, chunk); 2112 } 2113 2114 static void handle_path(const struct dentry *dentry) 2115 { 2116 struct audit_context *context; 2117 struct audit_tree_refs *p; 2118 const struct dentry *d, *parent; 2119 struct audit_chunk *drop; 2120 unsigned long seq; 2121 int count; 2122 2123 context = audit_context(); 2124 p = context->trees; 2125 count = context->tree_count; 2126 retry: 2127 drop = NULL; 2128 d = dentry; 2129 rcu_read_lock(); 2130 seq = read_seqbegin(&rename_lock); 2131 for (;;) { 2132 struct inode *inode = d_backing_inode(d); 2133 2134 if (inode && unlikely(inode->i_fsnotify_marks)) { 2135 struct audit_chunk *chunk; 2136 2137 chunk = audit_tree_lookup(inode); 2138 if (chunk) { 2139 if (unlikely(!put_tree_ref(context, chunk))) { 2140 drop = chunk; 2141 break; 2142 } 2143 } 2144 } 2145 parent = d->d_parent; 2146 if (parent == d) 2147 break; 2148 d = parent; 2149 } 2150 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2151 rcu_read_unlock(); 2152 if (!drop) { 2153 /* just a race with rename */ 2154 unroll_tree_refs(context, p, count); 2155 goto retry; 2156 } 2157 audit_put_chunk(drop); 2158 if (grow_tree_refs(context)) { 2159 /* OK, got more space */ 2160 unroll_tree_refs(context, p, count); 2161 goto retry; 2162 } 2163 /* too bad */ 2164 pr_warn("out of memory, audit has lost a tree reference\n"); 2165 unroll_tree_refs(context, p, count); 2166 audit_set_auditable(context); 2167 return; 2168 } 2169 rcu_read_unlock(); 2170 } 2171 2172 static struct audit_names *audit_alloc_name(struct audit_context *context, 2173 unsigned char type) 2174 { 2175 struct audit_names *aname; 2176 2177 if (context->name_count < AUDIT_NAMES) { 2178 aname = &context->preallocated_names[context->name_count]; 2179 memset(aname, 0, sizeof(*aname)); 2180 } else { 2181 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2182 if (!aname) 2183 return NULL; 2184 aname->should_free = true; 2185 } 2186 2187 aname->ino = AUDIT_INO_UNSET; 2188 aname->type = type; 2189 list_add_tail(&aname->list, &context->names_list); 2190 2191 context->name_count++; 2192 if (!context->pwd.dentry) 2193 get_fs_pwd(current->fs, &context->pwd); 2194 return aname; 2195 } 2196 2197 /** 2198 * __audit_reusename - fill out filename with info from existing entry 2199 * @uptr: userland ptr to pathname 2200 * 2201 * Search the audit_names list for the current audit context. If there is an 2202 * existing entry with a matching "uptr" then return the filename 2203 * associated with that audit_name. If not, return NULL. 2204 */ 2205 struct filename * 2206 __audit_reusename(const __user char *uptr) 2207 { 2208 struct audit_context *context = audit_context(); 2209 struct audit_names *n; 2210 2211 list_for_each_entry(n, &context->names_list, list) { 2212 if (!n->name) 2213 continue; 2214 if (n->name->uptr == uptr) { 2215 atomic_inc(&n->name->refcnt); 2216 return n->name; 2217 } 2218 } 2219 return NULL; 2220 } 2221 2222 /** 2223 * __audit_getname - add a name to the list 2224 * @name: name to add 2225 * 2226 * Add a name to the list of audit names for this context. 2227 * Called from fs/namei.c:getname(). 2228 */ 2229 void __audit_getname(struct filename *name) 2230 { 2231 struct audit_context *context = audit_context(); 2232 struct audit_names *n; 2233 2234 if (context->context == AUDIT_CTX_UNUSED) 2235 return; 2236 2237 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2238 if (!n) 2239 return; 2240 2241 n->name = name; 2242 n->name_len = AUDIT_NAME_FULL; 2243 name->aname = n; 2244 atomic_inc(&name->refcnt); 2245 } 2246 2247 static inline int audit_copy_fcaps(struct audit_names *name, 2248 const struct dentry *dentry) 2249 { 2250 struct cpu_vfs_cap_data caps; 2251 int rc; 2252 2253 if (!dentry) 2254 return 0; 2255 2256 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2257 if (rc) 2258 return rc; 2259 2260 name->fcap.permitted = caps.permitted; 2261 name->fcap.inheritable = caps.inheritable; 2262 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2263 name->fcap.rootid = caps.rootid; 2264 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2265 VFS_CAP_REVISION_SHIFT; 2266 2267 return 0; 2268 } 2269 2270 /* Copy inode data into an audit_names. */ 2271 static void audit_copy_inode(struct audit_names *name, 2272 const struct dentry *dentry, 2273 struct inode *inode, unsigned int flags) 2274 { 2275 name->ino = inode->i_ino; 2276 name->dev = inode->i_sb->s_dev; 2277 name->mode = inode->i_mode; 2278 name->uid = inode->i_uid; 2279 name->gid = inode->i_gid; 2280 name->rdev = inode->i_rdev; 2281 security_inode_getsecid(inode, &name->osid); 2282 if (flags & AUDIT_INODE_NOEVAL) { 2283 name->fcap_ver = -1; 2284 return; 2285 } 2286 audit_copy_fcaps(name, dentry); 2287 } 2288 2289 /** 2290 * __audit_inode - store the inode and device from a lookup 2291 * @name: name being audited 2292 * @dentry: dentry being audited 2293 * @flags: attributes for this particular entry 2294 */ 2295 void __audit_inode(struct filename *name, const struct dentry *dentry, 2296 unsigned int flags) 2297 { 2298 struct audit_context *context = audit_context(); 2299 struct inode *inode = d_backing_inode(dentry); 2300 struct audit_names *n; 2301 bool parent = flags & AUDIT_INODE_PARENT; 2302 struct audit_entry *e; 2303 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2304 int i; 2305 2306 if (context->context == AUDIT_CTX_UNUSED) 2307 return; 2308 2309 rcu_read_lock(); 2310 list_for_each_entry_rcu(e, list, list) { 2311 for (i = 0; i < e->rule.field_count; i++) { 2312 struct audit_field *f = &e->rule.fields[i]; 2313 2314 if (f->type == AUDIT_FSTYPE 2315 && audit_comparator(inode->i_sb->s_magic, 2316 f->op, f->val) 2317 && e->rule.action == AUDIT_NEVER) { 2318 rcu_read_unlock(); 2319 return; 2320 } 2321 } 2322 } 2323 rcu_read_unlock(); 2324 2325 if (!name) 2326 goto out_alloc; 2327 2328 /* 2329 * If we have a pointer to an audit_names entry already, then we can 2330 * just use it directly if the type is correct. 2331 */ 2332 n = name->aname; 2333 if (n) { 2334 if (parent) { 2335 if (n->type == AUDIT_TYPE_PARENT || 2336 n->type == AUDIT_TYPE_UNKNOWN) 2337 goto out; 2338 } else { 2339 if (n->type != AUDIT_TYPE_PARENT) 2340 goto out; 2341 } 2342 } 2343 2344 list_for_each_entry_reverse(n, &context->names_list, list) { 2345 if (n->ino) { 2346 /* valid inode number, use that for the comparison */ 2347 if (n->ino != inode->i_ino || 2348 n->dev != inode->i_sb->s_dev) 2349 continue; 2350 } else if (n->name) { 2351 /* inode number has not been set, check the name */ 2352 if (strcmp(n->name->name, name->name)) 2353 continue; 2354 } else 2355 /* no inode and no name (?!) ... this is odd ... */ 2356 continue; 2357 2358 /* match the correct record type */ 2359 if (parent) { 2360 if (n->type == AUDIT_TYPE_PARENT || 2361 n->type == AUDIT_TYPE_UNKNOWN) 2362 goto out; 2363 } else { 2364 if (n->type != AUDIT_TYPE_PARENT) 2365 goto out; 2366 } 2367 } 2368 2369 out_alloc: 2370 /* unable to find an entry with both a matching name and type */ 2371 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2372 if (!n) 2373 return; 2374 if (name) { 2375 n->name = name; 2376 atomic_inc(&name->refcnt); 2377 } 2378 2379 out: 2380 if (parent) { 2381 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2382 n->type = AUDIT_TYPE_PARENT; 2383 if (flags & AUDIT_INODE_HIDDEN) 2384 n->hidden = true; 2385 } else { 2386 n->name_len = AUDIT_NAME_FULL; 2387 n->type = AUDIT_TYPE_NORMAL; 2388 } 2389 handle_path(dentry); 2390 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2391 } 2392 2393 void __audit_file(const struct file *file) 2394 { 2395 __audit_inode(NULL, file->f_path.dentry, 0); 2396 } 2397 2398 /** 2399 * __audit_inode_child - collect inode info for created/removed objects 2400 * @parent: inode of dentry parent 2401 * @dentry: dentry being audited 2402 * @type: AUDIT_TYPE_* value that we're looking for 2403 * 2404 * For syscalls that create or remove filesystem objects, audit_inode 2405 * can only collect information for the filesystem object's parent. 2406 * This call updates the audit context with the child's information. 2407 * Syscalls that create a new filesystem object must be hooked after 2408 * the object is created. Syscalls that remove a filesystem object 2409 * must be hooked prior, in order to capture the target inode during 2410 * unsuccessful attempts. 2411 */ 2412 void __audit_inode_child(struct inode *parent, 2413 const struct dentry *dentry, 2414 const unsigned char type) 2415 { 2416 struct audit_context *context = audit_context(); 2417 struct inode *inode = d_backing_inode(dentry); 2418 const struct qstr *dname = &dentry->d_name; 2419 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2420 struct audit_entry *e; 2421 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2422 int i; 2423 2424 if (context->context == AUDIT_CTX_UNUSED) 2425 return; 2426 2427 rcu_read_lock(); 2428 list_for_each_entry_rcu(e, list, list) { 2429 for (i = 0; i < e->rule.field_count; i++) { 2430 struct audit_field *f = &e->rule.fields[i]; 2431 2432 if (f->type == AUDIT_FSTYPE 2433 && audit_comparator(parent->i_sb->s_magic, 2434 f->op, f->val) 2435 && e->rule.action == AUDIT_NEVER) { 2436 rcu_read_unlock(); 2437 return; 2438 } 2439 } 2440 } 2441 rcu_read_unlock(); 2442 2443 if (inode) 2444 handle_one(inode); 2445 2446 /* look for a parent entry first */ 2447 list_for_each_entry(n, &context->names_list, list) { 2448 if (!n->name || 2449 (n->type != AUDIT_TYPE_PARENT && 2450 n->type != AUDIT_TYPE_UNKNOWN)) 2451 continue; 2452 2453 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2454 !audit_compare_dname_path(dname, 2455 n->name->name, n->name_len)) { 2456 if (n->type == AUDIT_TYPE_UNKNOWN) 2457 n->type = AUDIT_TYPE_PARENT; 2458 found_parent = n; 2459 break; 2460 } 2461 } 2462 2463 cond_resched(); 2464 2465 /* is there a matching child entry? */ 2466 list_for_each_entry(n, &context->names_list, list) { 2467 /* can only match entries that have a name */ 2468 if (!n->name || 2469 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2470 continue; 2471 2472 if (!strcmp(dname->name, n->name->name) || 2473 !audit_compare_dname_path(dname, n->name->name, 2474 found_parent ? 2475 found_parent->name_len : 2476 AUDIT_NAME_FULL)) { 2477 if (n->type == AUDIT_TYPE_UNKNOWN) 2478 n->type = type; 2479 found_child = n; 2480 break; 2481 } 2482 } 2483 2484 if (!found_parent) { 2485 /* create a new, "anonymous" parent record */ 2486 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2487 if (!n) 2488 return; 2489 audit_copy_inode(n, NULL, parent, 0); 2490 } 2491 2492 if (!found_child) { 2493 found_child = audit_alloc_name(context, type); 2494 if (!found_child) 2495 return; 2496 2497 /* Re-use the name belonging to the slot for a matching parent 2498 * directory. All names for this context are relinquished in 2499 * audit_free_names() */ 2500 if (found_parent) { 2501 found_child->name = found_parent->name; 2502 found_child->name_len = AUDIT_NAME_FULL; 2503 atomic_inc(&found_child->name->refcnt); 2504 } 2505 } 2506 2507 if (inode) 2508 audit_copy_inode(found_child, dentry, inode, 0); 2509 else 2510 found_child->ino = AUDIT_INO_UNSET; 2511 } 2512 EXPORT_SYMBOL_GPL(__audit_inode_child); 2513 2514 /** 2515 * auditsc_get_stamp - get local copies of audit_context values 2516 * @ctx: audit_context for the task 2517 * @t: timespec64 to store time recorded in the audit_context 2518 * @serial: serial value that is recorded in the audit_context 2519 * 2520 * Also sets the context as auditable. 2521 */ 2522 int auditsc_get_stamp(struct audit_context *ctx, 2523 struct timespec64 *t, unsigned int *serial) 2524 { 2525 if (ctx->context == AUDIT_CTX_UNUSED) 2526 return 0; 2527 if (!ctx->serial) 2528 ctx->serial = audit_serial(); 2529 t->tv_sec = ctx->ctime.tv_sec; 2530 t->tv_nsec = ctx->ctime.tv_nsec; 2531 *serial = ctx->serial; 2532 if (!ctx->prio) { 2533 ctx->prio = 1; 2534 ctx->current_state = AUDIT_STATE_RECORD; 2535 } 2536 return 1; 2537 } 2538 2539 /** 2540 * __audit_mq_open - record audit data for a POSIX MQ open 2541 * @oflag: open flag 2542 * @mode: mode bits 2543 * @attr: queue attributes 2544 * 2545 */ 2546 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2547 { 2548 struct audit_context *context = audit_context(); 2549 2550 if (attr) 2551 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2552 else 2553 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2554 2555 context->mq_open.oflag = oflag; 2556 context->mq_open.mode = mode; 2557 2558 context->type = AUDIT_MQ_OPEN; 2559 } 2560 2561 /** 2562 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2563 * @mqdes: MQ descriptor 2564 * @msg_len: Message length 2565 * @msg_prio: Message priority 2566 * @abs_timeout: Message timeout in absolute time 2567 * 2568 */ 2569 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2570 const struct timespec64 *abs_timeout) 2571 { 2572 struct audit_context *context = audit_context(); 2573 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2574 2575 if (abs_timeout) 2576 memcpy(p, abs_timeout, sizeof(*p)); 2577 else 2578 memset(p, 0, sizeof(*p)); 2579 2580 context->mq_sendrecv.mqdes = mqdes; 2581 context->mq_sendrecv.msg_len = msg_len; 2582 context->mq_sendrecv.msg_prio = msg_prio; 2583 2584 context->type = AUDIT_MQ_SENDRECV; 2585 } 2586 2587 /** 2588 * __audit_mq_notify - record audit data for a POSIX MQ notify 2589 * @mqdes: MQ descriptor 2590 * @notification: Notification event 2591 * 2592 */ 2593 2594 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2595 { 2596 struct audit_context *context = audit_context(); 2597 2598 if (notification) 2599 context->mq_notify.sigev_signo = notification->sigev_signo; 2600 else 2601 context->mq_notify.sigev_signo = 0; 2602 2603 context->mq_notify.mqdes = mqdes; 2604 context->type = AUDIT_MQ_NOTIFY; 2605 } 2606 2607 /** 2608 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2609 * @mqdes: MQ descriptor 2610 * @mqstat: MQ flags 2611 * 2612 */ 2613 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2614 { 2615 struct audit_context *context = audit_context(); 2616 2617 context->mq_getsetattr.mqdes = mqdes; 2618 context->mq_getsetattr.mqstat = *mqstat; 2619 context->type = AUDIT_MQ_GETSETATTR; 2620 } 2621 2622 /** 2623 * __audit_ipc_obj - record audit data for ipc object 2624 * @ipcp: ipc permissions 2625 * 2626 */ 2627 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2628 { 2629 struct audit_context *context = audit_context(); 2630 2631 context->ipc.uid = ipcp->uid; 2632 context->ipc.gid = ipcp->gid; 2633 context->ipc.mode = ipcp->mode; 2634 context->ipc.has_perm = 0; 2635 security_ipc_getsecid(ipcp, &context->ipc.osid); 2636 context->type = AUDIT_IPC; 2637 } 2638 2639 /** 2640 * __audit_ipc_set_perm - record audit data for new ipc permissions 2641 * @qbytes: msgq bytes 2642 * @uid: msgq user id 2643 * @gid: msgq group id 2644 * @mode: msgq mode (permissions) 2645 * 2646 * Called only after audit_ipc_obj(). 2647 */ 2648 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2649 { 2650 struct audit_context *context = audit_context(); 2651 2652 context->ipc.qbytes = qbytes; 2653 context->ipc.perm_uid = uid; 2654 context->ipc.perm_gid = gid; 2655 context->ipc.perm_mode = mode; 2656 context->ipc.has_perm = 1; 2657 } 2658 2659 void __audit_bprm(struct linux_binprm *bprm) 2660 { 2661 struct audit_context *context = audit_context(); 2662 2663 context->type = AUDIT_EXECVE; 2664 context->execve.argc = bprm->argc; 2665 } 2666 2667 2668 /** 2669 * __audit_socketcall - record audit data for sys_socketcall 2670 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2671 * @args: args array 2672 * 2673 */ 2674 int __audit_socketcall(int nargs, unsigned long *args) 2675 { 2676 struct audit_context *context = audit_context(); 2677 2678 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2679 return -EINVAL; 2680 context->type = AUDIT_SOCKETCALL; 2681 context->socketcall.nargs = nargs; 2682 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2683 return 0; 2684 } 2685 2686 /** 2687 * __audit_fd_pair - record audit data for pipe and socketpair 2688 * @fd1: the first file descriptor 2689 * @fd2: the second file descriptor 2690 * 2691 */ 2692 void __audit_fd_pair(int fd1, int fd2) 2693 { 2694 struct audit_context *context = audit_context(); 2695 2696 context->fds[0] = fd1; 2697 context->fds[1] = fd2; 2698 } 2699 2700 /** 2701 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2702 * @len: data length in user space 2703 * @a: data address in kernel space 2704 * 2705 * Returns 0 for success or NULL context or < 0 on error. 2706 */ 2707 int __audit_sockaddr(int len, void *a) 2708 { 2709 struct audit_context *context = audit_context(); 2710 2711 if (!context->sockaddr) { 2712 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2713 2714 if (!p) 2715 return -ENOMEM; 2716 context->sockaddr = p; 2717 } 2718 2719 context->sockaddr_len = len; 2720 memcpy(context->sockaddr, a, len); 2721 return 0; 2722 } 2723 2724 void __audit_ptrace(struct task_struct *t) 2725 { 2726 struct audit_context *context = audit_context(); 2727 2728 context->target_pid = task_tgid_nr(t); 2729 context->target_auid = audit_get_loginuid(t); 2730 context->target_uid = task_uid(t); 2731 context->target_sessionid = audit_get_sessionid(t); 2732 security_task_getsecid_obj(t, &context->target_sid); 2733 strscpy(context->target_comm, t->comm); 2734 } 2735 2736 /** 2737 * audit_signal_info_syscall - record signal info for syscalls 2738 * @t: task being signaled 2739 * 2740 * If the audit subsystem is being terminated, record the task (pid) 2741 * and uid that is doing that. 2742 */ 2743 int audit_signal_info_syscall(struct task_struct *t) 2744 { 2745 struct audit_aux_data_pids *axp; 2746 struct audit_context *ctx = audit_context(); 2747 kuid_t t_uid = task_uid(t); 2748 2749 if (!audit_signals || audit_dummy_context()) 2750 return 0; 2751 2752 /* optimize the common case by putting first signal recipient directly 2753 * in audit_context */ 2754 if (!ctx->target_pid) { 2755 ctx->target_pid = task_tgid_nr(t); 2756 ctx->target_auid = audit_get_loginuid(t); 2757 ctx->target_uid = t_uid; 2758 ctx->target_sessionid = audit_get_sessionid(t); 2759 security_task_getsecid_obj(t, &ctx->target_sid); 2760 strscpy(ctx->target_comm, t->comm); 2761 return 0; 2762 } 2763 2764 axp = (void *)ctx->aux_pids; 2765 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2766 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2767 if (!axp) 2768 return -ENOMEM; 2769 2770 axp->d.type = AUDIT_OBJ_PID; 2771 axp->d.next = ctx->aux_pids; 2772 ctx->aux_pids = (void *)axp; 2773 } 2774 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2775 2776 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2777 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2778 axp->target_uid[axp->pid_count] = t_uid; 2779 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2780 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2781 strscpy(axp->target_comm[axp->pid_count], t->comm); 2782 axp->pid_count++; 2783 2784 return 0; 2785 } 2786 2787 /** 2788 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2789 * @bprm: pointer to the bprm being processed 2790 * @new: the proposed new credentials 2791 * @old: the old credentials 2792 * 2793 * Simply check if the proc already has the caps given by the file and if not 2794 * store the priv escalation info for later auditing at the end of the syscall 2795 * 2796 * -Eric 2797 */ 2798 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2799 const struct cred *new, const struct cred *old) 2800 { 2801 struct audit_aux_data_bprm_fcaps *ax; 2802 struct audit_context *context = audit_context(); 2803 struct cpu_vfs_cap_data vcaps; 2804 2805 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2806 if (!ax) 2807 return -ENOMEM; 2808 2809 ax->d.type = AUDIT_BPRM_FCAPS; 2810 ax->d.next = context->aux; 2811 context->aux = (void *)ax; 2812 2813 get_vfs_caps_from_disk(&nop_mnt_idmap, 2814 bprm->file->f_path.dentry, &vcaps); 2815 2816 ax->fcap.permitted = vcaps.permitted; 2817 ax->fcap.inheritable = vcaps.inheritable; 2818 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2819 ax->fcap.rootid = vcaps.rootid; 2820 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2821 2822 ax->old_pcap.permitted = old->cap_permitted; 2823 ax->old_pcap.inheritable = old->cap_inheritable; 2824 ax->old_pcap.effective = old->cap_effective; 2825 ax->old_pcap.ambient = old->cap_ambient; 2826 2827 ax->new_pcap.permitted = new->cap_permitted; 2828 ax->new_pcap.inheritable = new->cap_inheritable; 2829 ax->new_pcap.effective = new->cap_effective; 2830 ax->new_pcap.ambient = new->cap_ambient; 2831 return 0; 2832 } 2833 2834 /** 2835 * __audit_log_capset - store information about the arguments to the capset syscall 2836 * @new: the new credentials 2837 * @old: the old (current) credentials 2838 * 2839 * Record the arguments userspace sent to sys_capset for later printing by the 2840 * audit system if applicable 2841 */ 2842 void __audit_log_capset(const struct cred *new, const struct cred *old) 2843 { 2844 struct audit_context *context = audit_context(); 2845 2846 context->capset.pid = task_tgid_nr(current); 2847 context->capset.cap.effective = new->cap_effective; 2848 context->capset.cap.inheritable = new->cap_effective; 2849 context->capset.cap.permitted = new->cap_permitted; 2850 context->capset.cap.ambient = new->cap_ambient; 2851 context->type = AUDIT_CAPSET; 2852 } 2853 2854 void __audit_mmap_fd(int fd, int flags) 2855 { 2856 struct audit_context *context = audit_context(); 2857 2858 context->mmap.fd = fd; 2859 context->mmap.flags = flags; 2860 context->type = AUDIT_MMAP; 2861 } 2862 2863 void __audit_openat2_how(struct open_how *how) 2864 { 2865 struct audit_context *context = audit_context(); 2866 2867 context->openat2.flags = how->flags; 2868 context->openat2.mode = how->mode; 2869 context->openat2.resolve = how->resolve; 2870 context->type = AUDIT_OPENAT2; 2871 } 2872 2873 void __audit_log_kern_module(char *name) 2874 { 2875 struct audit_context *context = audit_context(); 2876 2877 context->module.name = kstrdup(name, GFP_KERNEL); 2878 if (!context->module.name) 2879 audit_log_lost("out of memory in __audit_log_kern_module"); 2880 context->type = AUDIT_KERN_MODULE; 2881 } 2882 2883 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2884 { 2885 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2886 switch (friar->hdr.type) { 2887 case FAN_RESPONSE_INFO_NONE: 2888 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2889 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2890 response, FAN_RESPONSE_INFO_NONE); 2891 break; 2892 case FAN_RESPONSE_INFO_AUDIT_RULE: 2893 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2894 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2895 response, friar->hdr.type, friar->rule_number, 2896 friar->subj_trust, friar->obj_trust); 2897 } 2898 } 2899 2900 void __audit_tk_injoffset(struct timespec64 offset) 2901 { 2902 struct audit_context *context = audit_context(); 2903 2904 /* only set type if not already set by NTP */ 2905 if (!context->type) 2906 context->type = AUDIT_TIME_INJOFFSET; 2907 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2908 } 2909 2910 void __audit_ntp_log(const struct audit_ntp_data *ad) 2911 { 2912 struct audit_context *context = audit_context(); 2913 int type; 2914 2915 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2916 if (ad->vals[type].newval != ad->vals[type].oldval) { 2917 /* unconditionally set type, overwriting TK */ 2918 context->type = AUDIT_TIME_ADJNTPVAL; 2919 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2920 break; 2921 } 2922 } 2923 2924 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2925 enum audit_nfcfgop op, gfp_t gfp) 2926 { 2927 struct audit_buffer *ab; 2928 char comm[sizeof(current->comm)]; 2929 2930 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2931 if (!ab) 2932 return; 2933 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2934 name, af, nentries, audit_nfcfgs[op].s); 2935 2936 audit_log_format(ab, " pid=%u", task_tgid_nr(current)); 2937 audit_log_task_context(ab); /* subj= */ 2938 audit_log_format(ab, " comm="); 2939 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2940 audit_log_end(ab); 2941 } 2942 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2943 2944 static void audit_log_task(struct audit_buffer *ab) 2945 { 2946 kuid_t auid, uid; 2947 kgid_t gid; 2948 unsigned int sessionid; 2949 char comm[sizeof(current->comm)]; 2950 2951 auid = audit_get_loginuid(current); 2952 sessionid = audit_get_sessionid(current); 2953 current_uid_gid(&uid, &gid); 2954 2955 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2956 from_kuid(&init_user_ns, auid), 2957 from_kuid(&init_user_ns, uid), 2958 from_kgid(&init_user_ns, gid), 2959 sessionid); 2960 audit_log_task_context(ab); 2961 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2962 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2963 audit_log_d_path_exe(ab, current->mm); 2964 } 2965 2966 /** 2967 * audit_core_dumps - record information about processes that end abnormally 2968 * @signr: signal value 2969 * 2970 * If a process ends with a core dump, something fishy is going on and we 2971 * should record the event for investigation. 2972 */ 2973 void audit_core_dumps(long signr) 2974 { 2975 struct audit_buffer *ab; 2976 2977 if (!audit_enabled) 2978 return; 2979 2980 if (signr == SIGQUIT) /* don't care for those */ 2981 return; 2982 2983 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2984 if (unlikely(!ab)) 2985 return; 2986 audit_log_task(ab); 2987 audit_log_format(ab, " sig=%ld res=1", signr); 2988 audit_log_end(ab); 2989 } 2990 2991 /** 2992 * audit_seccomp - record information about a seccomp action 2993 * @syscall: syscall number 2994 * @signr: signal value 2995 * @code: the seccomp action 2996 * 2997 * Record the information associated with a seccomp action. Event filtering for 2998 * seccomp actions that are not to be logged is done in seccomp_log(). 2999 * Therefore, this function forces auditing independent of the audit_enabled 3000 * and dummy context state because seccomp actions should be logged even when 3001 * audit is not in use. 3002 */ 3003 void audit_seccomp(unsigned long syscall, long signr, int code) 3004 { 3005 struct audit_buffer *ab; 3006 3007 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3008 if (unlikely(!ab)) 3009 return; 3010 audit_log_task(ab); 3011 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3012 signr, syscall_get_arch(current), syscall, 3013 in_compat_syscall(), KSTK_EIP(current), code); 3014 audit_log_end(ab); 3015 } 3016 3017 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3018 int res) 3019 { 3020 struct audit_buffer *ab; 3021 3022 if (!audit_enabled) 3023 return; 3024 3025 ab = audit_log_start(audit_context(), GFP_KERNEL, 3026 AUDIT_CONFIG_CHANGE); 3027 if (unlikely(!ab)) 3028 return; 3029 3030 audit_log_format(ab, 3031 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3032 names, old_names, res); 3033 audit_log_end(ab); 3034 } 3035 3036 struct list_head *audit_killed_trees(void) 3037 { 3038 struct audit_context *ctx = audit_context(); 3039 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3040 return NULL; 3041 return &ctx->killed_trees; 3042 } 3043