1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 68 69 #include "audit.h" 70 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 75 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_aux_data { 90 struct audit_aux_data *next; 91 int type; 92 }; 93 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 96 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 u32 target_sid[AUDIT_AUX_PIDS]; 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 106 }; 107 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 114 }; 115 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 119 }; 120 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 123 const char *s; 124 }; 125 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, 147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, 148 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 149 }; 150 151 static int audit_match_perm(struct audit_context *ctx, int mask) 152 { 153 unsigned n; 154 155 if (unlikely(!ctx)) 156 return 0; 157 n = ctx->major; 158 159 switch (audit_classify_syscall(ctx->arch, n)) { 160 case AUDITSC_NATIVE: 161 if ((mask & AUDIT_PERM_WRITE) && 162 audit_match_class(AUDIT_CLASS_WRITE, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_READ) && 165 audit_match_class(AUDIT_CLASS_READ, n)) 166 return 1; 167 if ((mask & AUDIT_PERM_ATTR) && 168 audit_match_class(AUDIT_CLASS_CHATTR, n)) 169 return 1; 170 return 0; 171 case AUDITSC_COMPAT: /* 32bit on biarch */ 172 if ((mask & AUDIT_PERM_WRITE) && 173 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_READ) && 176 audit_match_class(AUDIT_CLASS_READ_32, n)) 177 return 1; 178 if ((mask & AUDIT_PERM_ATTR) && 179 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 180 return 1; 181 return 0; 182 case AUDITSC_OPEN: 183 return mask & ACC_MODE(ctx->argv[1]); 184 case AUDITSC_OPENAT: 185 return mask & ACC_MODE(ctx->argv[2]); 186 case AUDITSC_SOCKETCALL: 187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 188 case AUDITSC_EXECVE: 189 return mask & AUDIT_PERM_EXEC; 190 case AUDITSC_OPENAT2: 191 return mask & ACC_MODE((u32)ctx->openat2.flags); 192 default: 193 return 0; 194 } 195 } 196 197 static int audit_match_filetype(struct audit_context *ctx, int val) 198 { 199 struct audit_names *n; 200 umode_t mode = (umode_t)val; 201 202 if (unlikely(!ctx)) 203 return 0; 204 205 list_for_each_entry(n, &ctx->names_list, list) { 206 if ((n->ino != AUDIT_INO_UNSET) && 207 ((n->mode & S_IFMT) == mode)) 208 return 1; 209 } 210 211 return 0; 212 } 213 214 /* 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 216 * ->first_trees points to its beginning, ->trees - to the current end of data. 217 * ->tree_count is the number of free entries in array pointed to by ->trees. 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 220 * it's going to remain 1-element for almost any setup) until we free context itself. 221 * References in it _are_ dropped - at the same time we free/drop aux stuff. 222 */ 223 224 static void audit_set_auditable(struct audit_context *ctx) 225 { 226 if (!ctx->prio) { 227 ctx->prio = 1; 228 ctx->current_state = AUDIT_STATE_RECORD; 229 } 230 } 231 232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 int left = ctx->tree_count; 236 237 if (likely(left)) { 238 p->c[--left] = chunk; 239 ctx->tree_count = left; 240 return 1; 241 } 242 if (!p) 243 return 0; 244 p = p->next; 245 if (p) { 246 p->c[30] = chunk; 247 ctx->trees = p; 248 ctx->tree_count = 30; 249 return 1; 250 } 251 return 0; 252 } 253 254 static int grow_tree_refs(struct audit_context *ctx) 255 { 256 struct audit_tree_refs *p = ctx->trees; 257 258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 259 if (!ctx->trees) { 260 ctx->trees = p; 261 return 0; 262 } 263 if (p) 264 p->next = ctx->trees; 265 else 266 ctx->first_trees = ctx->trees; 267 ctx->tree_count = 31; 268 return 1; 269 } 270 271 static void unroll_tree_refs(struct audit_context *ctx, 272 struct audit_tree_refs *p, int count) 273 { 274 struct audit_tree_refs *q; 275 int n; 276 277 if (!p) { 278 /* we started with empty chain */ 279 p = ctx->first_trees; 280 count = 31; 281 /* if the very first allocation has failed, nothing to do */ 282 if (!p) 283 return; 284 } 285 n = count; 286 for (q = p; q != ctx->trees; q = q->next, n = 31) { 287 while (n--) { 288 audit_put_chunk(q->c[n]); 289 q->c[n] = NULL; 290 } 291 } 292 while (n-- > ctx->tree_count) { 293 audit_put_chunk(q->c[n]); 294 q->c[n] = NULL; 295 } 296 ctx->trees = p; 297 ctx->tree_count = count; 298 } 299 300 static void free_tree_refs(struct audit_context *ctx) 301 { 302 struct audit_tree_refs *p, *q; 303 304 for (p = ctx->first_trees; p; p = q) { 305 q = p->next; 306 kfree(p); 307 } 308 } 309 310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 311 { 312 struct audit_tree_refs *p; 313 int n; 314 315 if (!tree) 316 return 0; 317 /* full ones */ 318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 319 for (n = 0; n < 31; n++) 320 if (audit_tree_match(p->c[n], tree)) 321 return 1; 322 } 323 /* partial */ 324 if (p) { 325 for (n = ctx->tree_count; n < 31; n++) 326 if (audit_tree_match(p->c[n], tree)) 327 return 1; 328 } 329 return 0; 330 } 331 332 static int audit_compare_uid(kuid_t uid, 333 struct audit_names *name, 334 struct audit_field *f, 335 struct audit_context *ctx) 336 { 337 struct audit_names *n; 338 int rc; 339 340 if (name) { 341 rc = audit_uid_comparator(uid, f->op, name->uid); 342 if (rc) 343 return rc; 344 } 345 346 if (ctx) { 347 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_uid_comparator(uid, f->op, n->uid); 349 if (rc) 350 return rc; 351 } 352 } 353 return 0; 354 } 355 356 static int audit_compare_gid(kgid_t gid, 357 struct audit_names *name, 358 struct audit_field *f, 359 struct audit_context *ctx) 360 { 361 struct audit_names *n; 362 int rc; 363 364 if (name) { 365 rc = audit_gid_comparator(gid, f->op, name->gid); 366 if (rc) 367 return rc; 368 } 369 370 if (ctx) { 371 list_for_each_entry(n, &ctx->names_list, list) { 372 rc = audit_gid_comparator(gid, f->op, n->gid); 373 if (rc) 374 return rc; 375 } 376 } 377 return 0; 378 } 379 380 static int audit_field_compare(struct task_struct *tsk, 381 const struct cred *cred, 382 struct audit_field *f, 383 struct audit_context *ctx, 384 struct audit_names *name) 385 { 386 switch (f->val) { 387 /* process to file object comparisons */ 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 389 return audit_compare_uid(cred->uid, name, f, ctx); 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 391 return audit_compare_gid(cred->gid, name, f, ctx); 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 393 return audit_compare_uid(cred->euid, name, f, ctx); 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 395 return audit_compare_gid(cred->egid, name, f, ctx); 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 399 return audit_compare_uid(cred->suid, name, f, ctx); 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 401 return audit_compare_gid(cred->sgid, name, f, ctx); 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 403 return audit_compare_uid(cred->fsuid, name, f, ctx); 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 405 return audit_compare_gid(cred->fsgid, name, f, ctx); 406 /* uid comparisons */ 407 case AUDIT_COMPARE_UID_TO_AUID: 408 return audit_uid_comparator(cred->uid, f->op, 409 audit_get_loginuid(tsk)); 410 case AUDIT_COMPARE_UID_TO_EUID: 411 return audit_uid_comparator(cred->uid, f->op, cred->euid); 412 case AUDIT_COMPARE_UID_TO_SUID: 413 return audit_uid_comparator(cred->uid, f->op, cred->suid); 414 case AUDIT_COMPARE_UID_TO_FSUID: 415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 416 /* auid comparisons */ 417 case AUDIT_COMPARE_AUID_TO_EUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->euid); 420 case AUDIT_COMPARE_AUID_TO_SUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->suid); 423 case AUDIT_COMPARE_AUID_TO_FSUID: 424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 425 cred->fsuid); 426 /* euid comparisons */ 427 case AUDIT_COMPARE_EUID_TO_SUID: 428 return audit_uid_comparator(cred->euid, f->op, cred->suid); 429 case AUDIT_COMPARE_EUID_TO_FSUID: 430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 431 /* suid comparisons */ 432 case AUDIT_COMPARE_SUID_TO_FSUID: 433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 434 /* gid comparisons */ 435 case AUDIT_COMPARE_GID_TO_EGID: 436 return audit_gid_comparator(cred->gid, f->op, cred->egid); 437 case AUDIT_COMPARE_GID_TO_SGID: 438 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 439 case AUDIT_COMPARE_GID_TO_FSGID: 440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 441 /* egid comparisons */ 442 case AUDIT_COMPARE_EGID_TO_SGID: 443 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 444 case AUDIT_COMPARE_EGID_TO_FSGID: 445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 446 /* sgid comparison */ 447 case AUDIT_COMPARE_SGID_TO_FSGID: 448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 449 default: 450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 451 return 0; 452 } 453 return 0; 454 } 455 456 /* Determine if any context name data matches a rule's watch data */ 457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 458 * otherwise. 459 * 460 * If task_creation is true, this is an explicit indication that we are 461 * filtering a task rule at task creation time. This and tsk == current are 462 * the only situations where tsk->cred may be accessed without an rcu read lock. 463 */ 464 static int audit_filter_rules(struct task_struct *tsk, 465 struct audit_krule *rule, 466 struct audit_context *ctx, 467 struct audit_names *name, 468 enum audit_state *state, 469 bool task_creation) 470 { 471 const struct cred *cred; 472 int i, need_sid = 1; 473 u32 sid; 474 struct lsm_prop prop = { }; 475 unsigned int sessionid; 476 477 if (ctx && rule->prio <= ctx->prio) 478 return 0; 479 480 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 481 482 for (i = 0; i < rule->field_count; i++) { 483 struct audit_field *f = &rule->fields[i]; 484 struct audit_names *n; 485 int result = 0; 486 pid_t pid; 487 488 switch (f->type) { 489 case AUDIT_PID: 490 pid = task_tgid_nr(tsk); 491 result = audit_comparator(pid, f->op, f->val); 492 break; 493 case AUDIT_PPID: 494 if (ctx) { 495 if (!ctx->ppid) 496 ctx->ppid = task_ppid_nr(tsk); 497 result = audit_comparator(ctx->ppid, f->op, f->val); 498 } 499 break; 500 case AUDIT_EXE: 501 result = audit_exe_compare(tsk, rule->exe); 502 if (f->op == Audit_not_equal) 503 result = !result; 504 break; 505 case AUDIT_UID: 506 result = audit_uid_comparator(cred->uid, f->op, f->uid); 507 break; 508 case AUDIT_EUID: 509 result = audit_uid_comparator(cred->euid, f->op, f->uid); 510 break; 511 case AUDIT_SUID: 512 result = audit_uid_comparator(cred->suid, f->op, f->uid); 513 break; 514 case AUDIT_FSUID: 515 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 516 break; 517 case AUDIT_GID: 518 result = audit_gid_comparator(cred->gid, f->op, f->gid); 519 if (f->op == Audit_equal) { 520 if (!result) 521 result = groups_search(cred->group_info, f->gid); 522 } else if (f->op == Audit_not_equal) { 523 if (result) 524 result = !groups_search(cred->group_info, f->gid); 525 } 526 break; 527 case AUDIT_EGID: 528 result = audit_gid_comparator(cred->egid, f->op, f->gid); 529 if (f->op == Audit_equal) { 530 if (!result) 531 result = groups_search(cred->group_info, f->gid); 532 } else if (f->op == Audit_not_equal) { 533 if (result) 534 result = !groups_search(cred->group_info, f->gid); 535 } 536 break; 537 case AUDIT_SGID: 538 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 539 break; 540 case AUDIT_FSGID: 541 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 542 break; 543 case AUDIT_SESSIONID: 544 sessionid = audit_get_sessionid(tsk); 545 result = audit_comparator(sessionid, f->op, f->val); 546 break; 547 case AUDIT_PERS: 548 result = audit_comparator(tsk->personality, f->op, f->val); 549 break; 550 case AUDIT_ARCH: 551 if (ctx) 552 result = audit_comparator(ctx->arch, f->op, f->val); 553 break; 554 555 case AUDIT_EXIT: 556 if (ctx && ctx->return_valid != AUDITSC_INVALID) 557 result = audit_comparator(ctx->return_code, f->op, f->val); 558 break; 559 case AUDIT_SUCCESS: 560 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 561 if (f->val) 562 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 563 else 564 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 565 } 566 break; 567 case AUDIT_DEVMAJOR: 568 if (name) { 569 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 570 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 571 ++result; 572 } else if (ctx) { 573 list_for_each_entry(n, &ctx->names_list, list) { 574 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 575 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 576 ++result; 577 break; 578 } 579 } 580 } 581 break; 582 case AUDIT_DEVMINOR: 583 if (name) { 584 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 585 audit_comparator(MINOR(name->rdev), f->op, f->val)) 586 ++result; 587 } else if (ctx) { 588 list_for_each_entry(n, &ctx->names_list, list) { 589 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 590 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 591 ++result; 592 break; 593 } 594 } 595 } 596 break; 597 case AUDIT_INODE: 598 if (name) 599 result = audit_comparator(name->ino, f->op, f->val); 600 else if (ctx) { 601 list_for_each_entry(n, &ctx->names_list, list) { 602 if (audit_comparator(n->ino, f->op, f->val)) { 603 ++result; 604 break; 605 } 606 } 607 } 608 break; 609 case AUDIT_OBJ_UID: 610 if (name) { 611 result = audit_uid_comparator(name->uid, f->op, f->uid); 612 } else if (ctx) { 613 list_for_each_entry(n, &ctx->names_list, list) { 614 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 615 ++result; 616 break; 617 } 618 } 619 } 620 break; 621 case AUDIT_OBJ_GID: 622 if (name) { 623 result = audit_gid_comparator(name->gid, f->op, f->gid); 624 } else if (ctx) { 625 list_for_each_entry(n, &ctx->names_list, list) { 626 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 627 ++result; 628 break; 629 } 630 } 631 } 632 break; 633 case AUDIT_WATCH: 634 if (name) { 635 result = audit_watch_compare(rule->watch, 636 name->ino, 637 name->dev); 638 if (f->op == Audit_not_equal) 639 result = !result; 640 } 641 break; 642 case AUDIT_DIR: 643 if (ctx) { 644 result = match_tree_refs(ctx, rule->tree); 645 if (f->op == Audit_not_equal) 646 result = !result; 647 } 648 break; 649 case AUDIT_LOGINUID: 650 result = audit_uid_comparator(audit_get_loginuid(tsk), 651 f->op, f->uid); 652 break; 653 case AUDIT_LOGINUID_SET: 654 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 655 break; 656 case AUDIT_SADDR_FAM: 657 if (ctx && ctx->sockaddr) 658 result = audit_comparator(ctx->sockaddr->ss_family, 659 f->op, f->val); 660 break; 661 case AUDIT_SUBJ_USER: 662 case AUDIT_SUBJ_ROLE: 663 case AUDIT_SUBJ_TYPE: 664 case AUDIT_SUBJ_SEN: 665 case AUDIT_SUBJ_CLR: 666 /* NOTE: this may return negative values indicating 667 a temporary error. We simply treat this as a 668 match for now to avoid losing information that 669 may be wanted. An error message will also be 670 logged upon error */ 671 if (f->lsm_rule) { 672 if (need_sid) { 673 /* @tsk should always be equal to 674 * @current with the exception of 675 * fork()/copy_process() in which case 676 * the new @tsk creds are still a dup 677 * of @current's creds so we can still 678 * use security_current_getsecid_subj() 679 * here even though it always refs 680 * @current's creds 681 */ 682 security_current_getsecid_subj(&sid); 683 need_sid = 0; 684 } 685 /* scaffolding */ 686 prop.scaffold.secid = sid; 687 result = security_audit_rule_match(&prop, 688 f->type, 689 f->op, 690 f->lsm_rule); 691 } 692 break; 693 case AUDIT_OBJ_USER: 694 case AUDIT_OBJ_ROLE: 695 case AUDIT_OBJ_TYPE: 696 case AUDIT_OBJ_LEV_LOW: 697 case AUDIT_OBJ_LEV_HIGH: 698 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 699 also applies here */ 700 if (f->lsm_rule) { 701 /* Find files that match */ 702 if (name) { 703 /* scaffolding */ 704 prop.scaffold.secid = name->osid; 705 result = security_audit_rule_match( 706 &prop, 707 f->type, 708 f->op, 709 f->lsm_rule); 710 } else if (ctx) { 711 list_for_each_entry(n, &ctx->names_list, list) { 712 /* scaffolding */ 713 prop.scaffold.secid = n->osid; 714 if (security_audit_rule_match( 715 &prop, 716 f->type, 717 f->op, 718 f->lsm_rule)) { 719 ++result; 720 break; 721 } 722 } 723 } 724 /* Find ipc objects that match */ 725 if (!ctx || ctx->type != AUDIT_IPC) 726 break; 727 /* scaffolding */ 728 prop.scaffold.secid = ctx->ipc.osid; 729 if (security_audit_rule_match(&prop, 730 f->type, f->op, 731 f->lsm_rule)) 732 ++result; 733 } 734 break; 735 case AUDIT_ARG0: 736 case AUDIT_ARG1: 737 case AUDIT_ARG2: 738 case AUDIT_ARG3: 739 if (ctx) 740 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 741 break; 742 case AUDIT_FILTERKEY: 743 /* ignore this field for filtering */ 744 result = 1; 745 break; 746 case AUDIT_PERM: 747 result = audit_match_perm(ctx, f->val); 748 if (f->op == Audit_not_equal) 749 result = !result; 750 break; 751 case AUDIT_FILETYPE: 752 result = audit_match_filetype(ctx, f->val); 753 if (f->op == Audit_not_equal) 754 result = !result; 755 break; 756 case AUDIT_FIELD_COMPARE: 757 result = audit_field_compare(tsk, cred, f, ctx, name); 758 break; 759 } 760 if (!result) 761 return 0; 762 } 763 764 if (ctx) { 765 if (rule->filterkey) { 766 kfree(ctx->filterkey); 767 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 768 } 769 ctx->prio = rule->prio; 770 } 771 switch (rule->action) { 772 case AUDIT_NEVER: 773 *state = AUDIT_STATE_DISABLED; 774 break; 775 case AUDIT_ALWAYS: 776 *state = AUDIT_STATE_RECORD; 777 break; 778 } 779 return 1; 780 } 781 782 /* At process creation time, we can determine if system-call auditing is 783 * completely disabled for this task. Since we only have the task 784 * structure at this point, we can only check uid and gid. 785 */ 786 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 787 { 788 struct audit_entry *e; 789 enum audit_state state; 790 791 rcu_read_lock(); 792 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 793 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 794 &state, true)) { 795 if (state == AUDIT_STATE_RECORD) 796 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 797 rcu_read_unlock(); 798 return state; 799 } 800 } 801 rcu_read_unlock(); 802 return AUDIT_STATE_BUILD; 803 } 804 805 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 806 { 807 int word, bit; 808 809 if (val > 0xffffffff) 810 return false; 811 812 word = AUDIT_WORD(val); 813 if (word >= AUDIT_BITMASK_SIZE) 814 return false; 815 816 bit = AUDIT_BIT(val); 817 818 return rule->mask[word] & bit; 819 } 820 821 /** 822 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 823 * @tsk: associated task 824 * @ctx: audit context 825 * @list: audit filter list 826 * @name: audit_name (can be NULL) 827 * @op: current syscall/uring_op 828 * 829 * Run the udit filters specified in @list against @tsk using @ctx, 830 * @name, and @op, as necessary; the caller is responsible for ensuring 831 * that the call is made while the RCU read lock is held. The @name 832 * parameter can be NULL, but all others must be specified. 833 * Returns 1/true if the filter finds a match, 0/false if none are found. 834 */ 835 static int __audit_filter_op(struct task_struct *tsk, 836 struct audit_context *ctx, 837 struct list_head *list, 838 struct audit_names *name, 839 unsigned long op) 840 { 841 struct audit_entry *e; 842 enum audit_state state; 843 844 list_for_each_entry_rcu(e, list, list) { 845 if (audit_in_mask(&e->rule, op) && 846 audit_filter_rules(tsk, &e->rule, ctx, name, 847 &state, false)) { 848 ctx->current_state = state; 849 return 1; 850 } 851 } 852 return 0; 853 } 854 855 /** 856 * audit_filter_uring - apply filters to an io_uring operation 857 * @tsk: associated task 858 * @ctx: audit context 859 */ 860 static void audit_filter_uring(struct task_struct *tsk, 861 struct audit_context *ctx) 862 { 863 if (auditd_test_task(tsk)) 864 return; 865 866 rcu_read_lock(); 867 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 868 NULL, ctx->uring_op); 869 rcu_read_unlock(); 870 } 871 872 /* At syscall exit time, this filter is called if the audit_state is 873 * not low enough that auditing cannot take place, but is also not 874 * high enough that we already know we have to write an audit record 875 * (i.e., the state is AUDIT_STATE_BUILD). 876 */ 877 static void audit_filter_syscall(struct task_struct *tsk, 878 struct audit_context *ctx) 879 { 880 if (auditd_test_task(tsk)) 881 return; 882 883 rcu_read_lock(); 884 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 885 NULL, ctx->major); 886 rcu_read_unlock(); 887 } 888 889 /* 890 * Given an audit_name check the inode hash table to see if they match. 891 * Called holding the rcu read lock to protect the use of audit_inode_hash 892 */ 893 static int audit_filter_inode_name(struct task_struct *tsk, 894 struct audit_names *n, 895 struct audit_context *ctx) 896 { 897 int h = audit_hash_ino((u32)n->ino); 898 struct list_head *list = &audit_inode_hash[h]; 899 900 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 901 } 902 903 /* At syscall exit time, this filter is called if any audit_names have been 904 * collected during syscall processing. We only check rules in sublists at hash 905 * buckets applicable to the inode numbers in audit_names. 906 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 907 */ 908 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 909 { 910 struct audit_names *n; 911 912 if (auditd_test_task(tsk)) 913 return; 914 915 rcu_read_lock(); 916 917 list_for_each_entry(n, &ctx->names_list, list) { 918 if (audit_filter_inode_name(tsk, n, ctx)) 919 break; 920 } 921 rcu_read_unlock(); 922 } 923 924 static inline void audit_proctitle_free(struct audit_context *context) 925 { 926 kfree(context->proctitle.value); 927 context->proctitle.value = NULL; 928 context->proctitle.len = 0; 929 } 930 931 static inline void audit_free_module(struct audit_context *context) 932 { 933 if (context->type == AUDIT_KERN_MODULE) { 934 kfree(context->module.name); 935 context->module.name = NULL; 936 } 937 } 938 static inline void audit_free_names(struct audit_context *context) 939 { 940 struct audit_names *n, *next; 941 942 list_for_each_entry_safe(n, next, &context->names_list, list) { 943 list_del(&n->list); 944 if (n->name) 945 putname(n->name); 946 if (n->should_free) 947 kfree(n); 948 } 949 context->name_count = 0; 950 path_put(&context->pwd); 951 context->pwd.dentry = NULL; 952 context->pwd.mnt = NULL; 953 } 954 955 static inline void audit_free_aux(struct audit_context *context) 956 { 957 struct audit_aux_data *aux; 958 959 while ((aux = context->aux)) { 960 context->aux = aux->next; 961 kfree(aux); 962 } 963 context->aux = NULL; 964 while ((aux = context->aux_pids)) { 965 context->aux_pids = aux->next; 966 kfree(aux); 967 } 968 context->aux_pids = NULL; 969 } 970 971 /** 972 * audit_reset_context - reset a audit_context structure 973 * @ctx: the audit_context to reset 974 * 975 * All fields in the audit_context will be reset to an initial state, all 976 * references held by fields will be dropped, and private memory will be 977 * released. When this function returns the audit_context will be suitable 978 * for reuse, so long as the passed context is not NULL or a dummy context. 979 */ 980 static void audit_reset_context(struct audit_context *ctx) 981 { 982 if (!ctx) 983 return; 984 985 /* if ctx is non-null, reset the "ctx->context" regardless */ 986 ctx->context = AUDIT_CTX_UNUSED; 987 if (ctx->dummy) 988 return; 989 990 /* 991 * NOTE: It shouldn't matter in what order we release the fields, so 992 * release them in the order in which they appear in the struct; 993 * this gives us some hope of quickly making sure we are 994 * resetting the audit_context properly. 995 * 996 * Other things worth mentioning: 997 * - we don't reset "dummy" 998 * - we don't reset "state", we do reset "current_state" 999 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 1000 * - much of this is likely overkill, but play it safe for now 1001 * - we really need to work on improving the audit_context struct 1002 */ 1003 1004 ctx->current_state = ctx->state; 1005 ctx->serial = 0; 1006 ctx->major = 0; 1007 ctx->uring_op = 0; 1008 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 1009 memset(ctx->argv, 0, sizeof(ctx->argv)); 1010 ctx->return_code = 0; 1011 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 1012 ctx->return_valid = AUDITSC_INVALID; 1013 audit_free_names(ctx); 1014 if (ctx->state != AUDIT_STATE_RECORD) { 1015 kfree(ctx->filterkey); 1016 ctx->filterkey = NULL; 1017 } 1018 audit_free_aux(ctx); 1019 kfree(ctx->sockaddr); 1020 ctx->sockaddr = NULL; 1021 ctx->sockaddr_len = 0; 1022 ctx->ppid = 0; 1023 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1024 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1025 ctx->personality = 0; 1026 ctx->arch = 0; 1027 ctx->target_pid = 0; 1028 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1029 ctx->target_sessionid = 0; 1030 ctx->target_sid = 0; 1031 ctx->target_comm[0] = '\0'; 1032 unroll_tree_refs(ctx, NULL, 0); 1033 WARN_ON(!list_empty(&ctx->killed_trees)); 1034 audit_free_module(ctx); 1035 ctx->fds[0] = -1; 1036 ctx->type = 0; /* reset last for audit_free_*() */ 1037 } 1038 1039 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1040 { 1041 struct audit_context *context; 1042 1043 context = kzalloc(sizeof(*context), GFP_KERNEL); 1044 if (!context) 1045 return NULL; 1046 context->context = AUDIT_CTX_UNUSED; 1047 context->state = state; 1048 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1049 INIT_LIST_HEAD(&context->killed_trees); 1050 INIT_LIST_HEAD(&context->names_list); 1051 context->fds[0] = -1; 1052 context->return_valid = AUDITSC_INVALID; 1053 return context; 1054 } 1055 1056 /** 1057 * audit_alloc - allocate an audit context block for a task 1058 * @tsk: task 1059 * 1060 * Filter on the task information and allocate a per-task audit context 1061 * if necessary. Doing so turns on system call auditing for the 1062 * specified task. This is called from copy_process, so no lock is 1063 * needed. 1064 */ 1065 int audit_alloc(struct task_struct *tsk) 1066 { 1067 struct audit_context *context; 1068 enum audit_state state; 1069 char *key = NULL; 1070 1071 if (likely(!audit_ever_enabled)) 1072 return 0; 1073 1074 state = audit_filter_task(tsk, &key); 1075 if (state == AUDIT_STATE_DISABLED) { 1076 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1077 return 0; 1078 } 1079 1080 context = audit_alloc_context(state); 1081 if (!context) { 1082 kfree(key); 1083 audit_log_lost("out of memory in audit_alloc"); 1084 return -ENOMEM; 1085 } 1086 context->filterkey = key; 1087 1088 audit_set_context(tsk, context); 1089 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1090 return 0; 1091 } 1092 1093 static inline void audit_free_context(struct audit_context *context) 1094 { 1095 /* resetting is extra work, but it is likely just noise */ 1096 audit_reset_context(context); 1097 audit_proctitle_free(context); 1098 free_tree_refs(context); 1099 kfree(context->filterkey); 1100 kfree(context); 1101 } 1102 1103 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1104 kuid_t auid, kuid_t uid, unsigned int sessionid, 1105 u32 sid, char *comm) 1106 { 1107 struct audit_buffer *ab; 1108 char *ctx = NULL; 1109 u32 len; 1110 int rc = 0; 1111 1112 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1113 if (!ab) 1114 return rc; 1115 1116 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1117 from_kuid(&init_user_ns, auid), 1118 from_kuid(&init_user_ns, uid), sessionid); 1119 if (sid) { 1120 if (security_secid_to_secctx(sid, &ctx, &len)) { 1121 audit_log_format(ab, " obj=(none)"); 1122 rc = 1; 1123 } else { 1124 audit_log_format(ab, " obj=%s", ctx); 1125 security_release_secctx(ctx, len); 1126 } 1127 } 1128 audit_log_format(ab, " ocomm="); 1129 audit_log_untrustedstring(ab, comm); 1130 audit_log_end(ab); 1131 1132 return rc; 1133 } 1134 1135 static void audit_log_execve_info(struct audit_context *context, 1136 struct audit_buffer **ab) 1137 { 1138 long len_max; 1139 long len_rem; 1140 long len_full; 1141 long len_buf; 1142 long len_abuf = 0; 1143 long len_tmp; 1144 bool require_data; 1145 bool encode; 1146 unsigned int iter; 1147 unsigned int arg; 1148 char *buf_head; 1149 char *buf; 1150 const char __user *p = (const char __user *)current->mm->arg_start; 1151 1152 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1153 * data we put in the audit record for this argument (see the 1154 * code below) ... at this point in time 96 is plenty */ 1155 char abuf[96]; 1156 1157 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1158 * current value of 7500 is not as important as the fact that it 1159 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1160 * room if we go over a little bit in the logging below */ 1161 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1162 len_max = MAX_EXECVE_AUDIT_LEN; 1163 1164 /* scratch buffer to hold the userspace args */ 1165 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1166 if (!buf_head) { 1167 audit_panic("out of memory for argv string"); 1168 return; 1169 } 1170 buf = buf_head; 1171 1172 audit_log_format(*ab, "argc=%d", context->execve.argc); 1173 1174 len_rem = len_max; 1175 len_buf = 0; 1176 len_full = 0; 1177 require_data = true; 1178 encode = false; 1179 iter = 0; 1180 arg = 0; 1181 do { 1182 /* NOTE: we don't ever want to trust this value for anything 1183 * serious, but the audit record format insists we 1184 * provide an argument length for really long arguments, 1185 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1186 * to use strncpy_from_user() to obtain this value for 1187 * recording in the log, although we don't use it 1188 * anywhere here to avoid a double-fetch problem */ 1189 if (len_full == 0) 1190 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1191 1192 /* read more data from userspace */ 1193 if (require_data) { 1194 /* can we make more room in the buffer? */ 1195 if (buf != buf_head) { 1196 memmove(buf_head, buf, len_buf); 1197 buf = buf_head; 1198 } 1199 1200 /* fetch as much as we can of the argument */ 1201 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1202 len_max - len_buf); 1203 if (len_tmp == -EFAULT) { 1204 /* unable to copy from userspace */ 1205 send_sig(SIGKILL, current, 0); 1206 goto out; 1207 } else if (len_tmp == (len_max - len_buf)) { 1208 /* buffer is not large enough */ 1209 require_data = true; 1210 /* NOTE: if we are going to span multiple 1211 * buffers force the encoding so we stand 1212 * a chance at a sane len_full value and 1213 * consistent record encoding */ 1214 encode = true; 1215 len_full = len_full * 2; 1216 p += len_tmp; 1217 } else { 1218 require_data = false; 1219 if (!encode) 1220 encode = audit_string_contains_control( 1221 buf, len_tmp); 1222 /* try to use a trusted value for len_full */ 1223 if (len_full < len_max) 1224 len_full = (encode ? 1225 len_tmp * 2 : len_tmp); 1226 p += len_tmp + 1; 1227 } 1228 len_buf += len_tmp; 1229 buf_head[len_buf] = '\0'; 1230 1231 /* length of the buffer in the audit record? */ 1232 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1233 } 1234 1235 /* write as much as we can to the audit log */ 1236 if (len_buf >= 0) { 1237 /* NOTE: some magic numbers here - basically if we 1238 * can't fit a reasonable amount of data into the 1239 * existing audit buffer, flush it and start with 1240 * a new buffer */ 1241 if ((sizeof(abuf) + 8) > len_rem) { 1242 len_rem = len_max; 1243 audit_log_end(*ab); 1244 *ab = audit_log_start(context, 1245 GFP_KERNEL, AUDIT_EXECVE); 1246 if (!*ab) 1247 goto out; 1248 } 1249 1250 /* create the non-arg portion of the arg record */ 1251 len_tmp = 0; 1252 if (require_data || (iter > 0) || 1253 ((len_abuf + sizeof(abuf)) > len_rem)) { 1254 if (iter == 0) { 1255 len_tmp += snprintf(&abuf[len_tmp], 1256 sizeof(abuf) - len_tmp, 1257 " a%d_len=%lu", 1258 arg, len_full); 1259 } 1260 len_tmp += snprintf(&abuf[len_tmp], 1261 sizeof(abuf) - len_tmp, 1262 " a%d[%d]=", arg, iter++); 1263 } else 1264 len_tmp += snprintf(&abuf[len_tmp], 1265 sizeof(abuf) - len_tmp, 1266 " a%d=", arg); 1267 WARN_ON(len_tmp >= sizeof(abuf)); 1268 abuf[sizeof(abuf) - 1] = '\0'; 1269 1270 /* log the arg in the audit record */ 1271 audit_log_format(*ab, "%s", abuf); 1272 len_rem -= len_tmp; 1273 len_tmp = len_buf; 1274 if (encode) { 1275 if (len_abuf > len_rem) 1276 len_tmp = len_rem / 2; /* encoding */ 1277 audit_log_n_hex(*ab, buf, len_tmp); 1278 len_rem -= len_tmp * 2; 1279 len_abuf -= len_tmp * 2; 1280 } else { 1281 if (len_abuf > len_rem) 1282 len_tmp = len_rem - 2; /* quotes */ 1283 audit_log_n_string(*ab, buf, len_tmp); 1284 len_rem -= len_tmp + 2; 1285 /* don't subtract the "2" because we still need 1286 * to add quotes to the remaining string */ 1287 len_abuf -= len_tmp; 1288 } 1289 len_buf -= len_tmp; 1290 buf += len_tmp; 1291 } 1292 1293 /* ready to move to the next argument? */ 1294 if ((len_buf == 0) && !require_data) { 1295 arg++; 1296 iter = 0; 1297 len_full = 0; 1298 require_data = true; 1299 encode = false; 1300 } 1301 } while (arg < context->execve.argc); 1302 1303 /* NOTE: the caller handles the final audit_log_end() call */ 1304 1305 out: 1306 kfree(buf_head); 1307 } 1308 1309 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1310 kernel_cap_t *cap) 1311 { 1312 if (cap_isclear(*cap)) { 1313 audit_log_format(ab, " %s=0", prefix); 1314 return; 1315 } 1316 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1317 } 1318 1319 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1320 { 1321 if (name->fcap_ver == -1) { 1322 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1323 return; 1324 } 1325 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1326 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1327 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1328 name->fcap.fE, name->fcap_ver, 1329 from_kuid(&init_user_ns, name->fcap.rootid)); 1330 } 1331 1332 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1333 { 1334 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1335 const struct timespec64 *tk = &context->time.tk_injoffset; 1336 static const char * const ntp_name[] = { 1337 "offset", 1338 "freq", 1339 "status", 1340 "tai", 1341 "tick", 1342 "adjust", 1343 }; 1344 int type; 1345 1346 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1347 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1348 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1349 if (!*ab) { 1350 *ab = audit_log_start(context, 1351 GFP_KERNEL, 1352 AUDIT_TIME_ADJNTPVAL); 1353 if (!*ab) 1354 return; 1355 } 1356 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1357 ntp_name[type], 1358 ntp->vals[type].oldval, 1359 ntp->vals[type].newval); 1360 audit_log_end(*ab); 1361 *ab = NULL; 1362 } 1363 } 1364 } 1365 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1366 if (!*ab) { 1367 *ab = audit_log_start(context, GFP_KERNEL, 1368 AUDIT_TIME_INJOFFSET); 1369 if (!*ab) 1370 return; 1371 } 1372 audit_log_format(*ab, "sec=%lli nsec=%li", 1373 (long long)tk->tv_sec, tk->tv_nsec); 1374 audit_log_end(*ab); 1375 *ab = NULL; 1376 } 1377 } 1378 1379 static void show_special(struct audit_context *context, int *call_panic) 1380 { 1381 struct audit_buffer *ab; 1382 int i; 1383 1384 ab = audit_log_start(context, GFP_KERNEL, context->type); 1385 if (!ab) 1386 return; 1387 1388 switch (context->type) { 1389 case AUDIT_SOCKETCALL: { 1390 int nargs = context->socketcall.nargs; 1391 1392 audit_log_format(ab, "nargs=%d", nargs); 1393 for (i = 0; i < nargs; i++) 1394 audit_log_format(ab, " a%d=%lx", i, 1395 context->socketcall.args[i]); 1396 break; } 1397 case AUDIT_IPC: { 1398 u32 osid = context->ipc.osid; 1399 1400 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1401 from_kuid(&init_user_ns, context->ipc.uid), 1402 from_kgid(&init_user_ns, context->ipc.gid), 1403 context->ipc.mode); 1404 if (osid) { 1405 char *ctx = NULL; 1406 u32 len; 1407 1408 if (security_secid_to_secctx(osid, &ctx, &len)) { 1409 audit_log_format(ab, " osid=%u", osid); 1410 *call_panic = 1; 1411 } else { 1412 audit_log_format(ab, " obj=%s", ctx); 1413 security_release_secctx(ctx, len); 1414 } 1415 } 1416 if (context->ipc.has_perm) { 1417 audit_log_end(ab); 1418 ab = audit_log_start(context, GFP_KERNEL, 1419 AUDIT_IPC_SET_PERM); 1420 if (unlikely(!ab)) 1421 return; 1422 audit_log_format(ab, 1423 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1424 context->ipc.qbytes, 1425 context->ipc.perm_uid, 1426 context->ipc.perm_gid, 1427 context->ipc.perm_mode); 1428 } 1429 break; } 1430 case AUDIT_MQ_OPEN: 1431 audit_log_format(ab, 1432 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1433 "mq_msgsize=%ld mq_curmsgs=%ld", 1434 context->mq_open.oflag, context->mq_open.mode, 1435 context->mq_open.attr.mq_flags, 1436 context->mq_open.attr.mq_maxmsg, 1437 context->mq_open.attr.mq_msgsize, 1438 context->mq_open.attr.mq_curmsgs); 1439 break; 1440 case AUDIT_MQ_SENDRECV: 1441 audit_log_format(ab, 1442 "mqdes=%d msg_len=%zd msg_prio=%u " 1443 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1444 context->mq_sendrecv.mqdes, 1445 context->mq_sendrecv.msg_len, 1446 context->mq_sendrecv.msg_prio, 1447 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1448 context->mq_sendrecv.abs_timeout.tv_nsec); 1449 break; 1450 case AUDIT_MQ_NOTIFY: 1451 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1452 context->mq_notify.mqdes, 1453 context->mq_notify.sigev_signo); 1454 break; 1455 case AUDIT_MQ_GETSETATTR: { 1456 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1457 1458 audit_log_format(ab, 1459 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1460 "mq_curmsgs=%ld ", 1461 context->mq_getsetattr.mqdes, 1462 attr->mq_flags, attr->mq_maxmsg, 1463 attr->mq_msgsize, attr->mq_curmsgs); 1464 break; } 1465 case AUDIT_CAPSET: 1466 audit_log_format(ab, "pid=%d", context->capset.pid); 1467 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1468 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1469 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1470 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1471 break; 1472 case AUDIT_MMAP: 1473 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1474 context->mmap.flags); 1475 break; 1476 case AUDIT_OPENAT2: 1477 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1478 context->openat2.flags, 1479 context->openat2.mode, 1480 context->openat2.resolve); 1481 break; 1482 case AUDIT_EXECVE: 1483 audit_log_execve_info(context, &ab); 1484 break; 1485 case AUDIT_KERN_MODULE: 1486 audit_log_format(ab, "name="); 1487 if (context->module.name) { 1488 audit_log_untrustedstring(ab, context->module.name); 1489 } else 1490 audit_log_format(ab, "(null)"); 1491 1492 break; 1493 case AUDIT_TIME_ADJNTPVAL: 1494 case AUDIT_TIME_INJOFFSET: 1495 /* this call deviates from the rest, eating the buffer */ 1496 audit_log_time(context, &ab); 1497 break; 1498 } 1499 audit_log_end(ab); 1500 } 1501 1502 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1503 { 1504 char *end = proctitle + len - 1; 1505 1506 while (end > proctitle && !isprint(*end)) 1507 end--; 1508 1509 /* catch the case where proctitle is only 1 non-print character */ 1510 len = end - proctitle + 1; 1511 len -= isprint(proctitle[len-1]) == 0; 1512 return len; 1513 } 1514 1515 /* 1516 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1517 * @context: audit_context for the task 1518 * @n: audit_names structure with reportable details 1519 * @path: optional path to report instead of audit_names->name 1520 * @record_num: record number to report when handling a list of names 1521 * @call_panic: optional pointer to int that will be updated if secid fails 1522 */ 1523 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1524 const struct path *path, int record_num, int *call_panic) 1525 { 1526 struct audit_buffer *ab; 1527 1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1529 if (!ab) 1530 return; 1531 1532 audit_log_format(ab, "item=%d", record_num); 1533 1534 if (path) 1535 audit_log_d_path(ab, " name=", path); 1536 else if (n->name) { 1537 switch (n->name_len) { 1538 case AUDIT_NAME_FULL: 1539 /* log the full path */ 1540 audit_log_format(ab, " name="); 1541 audit_log_untrustedstring(ab, n->name->name); 1542 break; 1543 case 0: 1544 /* name was specified as a relative path and the 1545 * directory component is the cwd 1546 */ 1547 if (context->pwd.dentry && context->pwd.mnt) 1548 audit_log_d_path(ab, " name=", &context->pwd); 1549 else 1550 audit_log_format(ab, " name=(null)"); 1551 break; 1552 default: 1553 /* log the name's directory component */ 1554 audit_log_format(ab, " name="); 1555 audit_log_n_untrustedstring(ab, n->name->name, 1556 n->name_len); 1557 } 1558 } else 1559 audit_log_format(ab, " name=(null)"); 1560 1561 if (n->ino != AUDIT_INO_UNSET) 1562 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1563 n->ino, 1564 MAJOR(n->dev), 1565 MINOR(n->dev), 1566 n->mode, 1567 from_kuid(&init_user_ns, n->uid), 1568 from_kgid(&init_user_ns, n->gid), 1569 MAJOR(n->rdev), 1570 MINOR(n->rdev)); 1571 if (n->osid != 0) { 1572 char *ctx = NULL; 1573 u32 len; 1574 1575 if (security_secid_to_secctx( 1576 n->osid, &ctx, &len)) { 1577 audit_log_format(ab, " osid=%u", n->osid); 1578 if (call_panic) 1579 *call_panic = 2; 1580 } else { 1581 audit_log_format(ab, " obj=%s", ctx); 1582 security_release_secctx(ctx, len); 1583 } 1584 } 1585 1586 /* log the audit_names record type */ 1587 switch (n->type) { 1588 case AUDIT_TYPE_NORMAL: 1589 audit_log_format(ab, " nametype=NORMAL"); 1590 break; 1591 case AUDIT_TYPE_PARENT: 1592 audit_log_format(ab, " nametype=PARENT"); 1593 break; 1594 case AUDIT_TYPE_CHILD_DELETE: 1595 audit_log_format(ab, " nametype=DELETE"); 1596 break; 1597 case AUDIT_TYPE_CHILD_CREATE: 1598 audit_log_format(ab, " nametype=CREATE"); 1599 break; 1600 default: 1601 audit_log_format(ab, " nametype=UNKNOWN"); 1602 break; 1603 } 1604 1605 audit_log_fcaps(ab, n); 1606 audit_log_end(ab); 1607 } 1608 1609 static void audit_log_proctitle(void) 1610 { 1611 int res; 1612 char *buf; 1613 char *msg = "(null)"; 1614 int len = strlen(msg); 1615 struct audit_context *context = audit_context(); 1616 struct audit_buffer *ab; 1617 1618 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1619 if (!ab) 1620 return; /* audit_panic or being filtered */ 1621 1622 audit_log_format(ab, "proctitle="); 1623 1624 /* Not cached */ 1625 if (!context->proctitle.value) { 1626 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1627 if (!buf) 1628 goto out; 1629 /* Historically called this from procfs naming */ 1630 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1631 if (res == 0) { 1632 kfree(buf); 1633 goto out; 1634 } 1635 res = audit_proctitle_rtrim(buf, res); 1636 if (res == 0) { 1637 kfree(buf); 1638 goto out; 1639 } 1640 context->proctitle.value = buf; 1641 context->proctitle.len = res; 1642 } 1643 msg = context->proctitle.value; 1644 len = context->proctitle.len; 1645 out: 1646 audit_log_n_untrustedstring(ab, msg, len); 1647 audit_log_end(ab); 1648 } 1649 1650 /** 1651 * audit_log_uring - generate a AUDIT_URINGOP record 1652 * @ctx: the audit context 1653 */ 1654 static void audit_log_uring(struct audit_context *ctx) 1655 { 1656 struct audit_buffer *ab; 1657 const struct cred *cred; 1658 1659 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1660 if (!ab) 1661 return; 1662 cred = current_cred(); 1663 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1664 if (ctx->return_valid != AUDITSC_INVALID) 1665 audit_log_format(ab, " success=%s exit=%ld", 1666 (ctx->return_valid == AUDITSC_SUCCESS ? 1667 "yes" : "no"), 1668 ctx->return_code); 1669 audit_log_format(ab, 1670 " items=%d" 1671 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1672 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1673 ctx->name_count, 1674 task_ppid_nr(current), task_tgid_nr(current), 1675 from_kuid(&init_user_ns, cred->uid), 1676 from_kgid(&init_user_ns, cred->gid), 1677 from_kuid(&init_user_ns, cred->euid), 1678 from_kuid(&init_user_ns, cred->suid), 1679 from_kuid(&init_user_ns, cred->fsuid), 1680 from_kgid(&init_user_ns, cred->egid), 1681 from_kgid(&init_user_ns, cred->sgid), 1682 from_kgid(&init_user_ns, cred->fsgid)); 1683 audit_log_task_context(ab); 1684 audit_log_key(ab, ctx->filterkey); 1685 audit_log_end(ab); 1686 } 1687 1688 static void audit_log_exit(void) 1689 { 1690 int i, call_panic = 0; 1691 struct audit_context *context = audit_context(); 1692 struct audit_buffer *ab; 1693 struct audit_aux_data *aux; 1694 struct audit_names *n; 1695 1696 context->personality = current->personality; 1697 1698 switch (context->context) { 1699 case AUDIT_CTX_SYSCALL: 1700 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1701 if (!ab) 1702 return; 1703 audit_log_format(ab, "arch=%x syscall=%d", 1704 context->arch, context->major); 1705 if (context->personality != PER_LINUX) 1706 audit_log_format(ab, " per=%lx", context->personality); 1707 if (context->return_valid != AUDITSC_INVALID) 1708 audit_log_format(ab, " success=%s exit=%ld", 1709 (context->return_valid == AUDITSC_SUCCESS ? 1710 "yes" : "no"), 1711 context->return_code); 1712 audit_log_format(ab, 1713 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1714 context->argv[0], 1715 context->argv[1], 1716 context->argv[2], 1717 context->argv[3], 1718 context->name_count); 1719 audit_log_task_info(ab); 1720 audit_log_key(ab, context->filterkey); 1721 audit_log_end(ab); 1722 break; 1723 case AUDIT_CTX_URING: 1724 audit_log_uring(context); 1725 break; 1726 default: 1727 BUG(); 1728 break; 1729 } 1730 1731 for (aux = context->aux; aux; aux = aux->next) { 1732 1733 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1734 if (!ab) 1735 continue; /* audit_panic has been called */ 1736 1737 switch (aux->type) { 1738 1739 case AUDIT_BPRM_FCAPS: { 1740 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1741 1742 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1743 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1744 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1745 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1746 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1747 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1748 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1749 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1750 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1751 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1752 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1753 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1754 audit_log_format(ab, " frootid=%d", 1755 from_kuid(&init_user_ns, 1756 axs->fcap.rootid)); 1757 break; } 1758 1759 } 1760 audit_log_end(ab); 1761 } 1762 1763 if (context->type) 1764 show_special(context, &call_panic); 1765 1766 if (context->fds[0] >= 0) { 1767 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1768 if (ab) { 1769 audit_log_format(ab, "fd0=%d fd1=%d", 1770 context->fds[0], context->fds[1]); 1771 audit_log_end(ab); 1772 } 1773 } 1774 1775 if (context->sockaddr_len) { 1776 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1777 if (ab) { 1778 audit_log_format(ab, "saddr="); 1779 audit_log_n_hex(ab, (void *)context->sockaddr, 1780 context->sockaddr_len); 1781 audit_log_end(ab); 1782 } 1783 } 1784 1785 for (aux = context->aux_pids; aux; aux = aux->next) { 1786 struct audit_aux_data_pids *axs = (void *)aux; 1787 1788 for (i = 0; i < axs->pid_count; i++) 1789 if (audit_log_pid_context(context, axs->target_pid[i], 1790 axs->target_auid[i], 1791 axs->target_uid[i], 1792 axs->target_sessionid[i], 1793 axs->target_sid[i], 1794 axs->target_comm[i])) 1795 call_panic = 1; 1796 } 1797 1798 if (context->target_pid && 1799 audit_log_pid_context(context, context->target_pid, 1800 context->target_auid, context->target_uid, 1801 context->target_sessionid, 1802 context->target_sid, context->target_comm)) 1803 call_panic = 1; 1804 1805 if (context->pwd.dentry && context->pwd.mnt) { 1806 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1807 if (ab) { 1808 audit_log_d_path(ab, "cwd=", &context->pwd); 1809 audit_log_end(ab); 1810 } 1811 } 1812 1813 i = 0; 1814 list_for_each_entry(n, &context->names_list, list) { 1815 if (n->hidden) 1816 continue; 1817 audit_log_name(context, n, NULL, i++, &call_panic); 1818 } 1819 1820 if (context->context == AUDIT_CTX_SYSCALL) 1821 audit_log_proctitle(); 1822 1823 /* Send end of event record to help user space know we are finished */ 1824 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1825 if (ab) 1826 audit_log_end(ab); 1827 if (call_panic) 1828 audit_panic("error in audit_log_exit()"); 1829 } 1830 1831 /** 1832 * __audit_free - free a per-task audit context 1833 * @tsk: task whose audit context block to free 1834 * 1835 * Called from copy_process, do_exit, and the io_uring code 1836 */ 1837 void __audit_free(struct task_struct *tsk) 1838 { 1839 struct audit_context *context = tsk->audit_context; 1840 1841 if (!context) 1842 return; 1843 1844 /* this may generate CONFIG_CHANGE records */ 1845 if (!list_empty(&context->killed_trees)) 1846 audit_kill_trees(context); 1847 1848 /* We are called either by do_exit() or the fork() error handling code; 1849 * in the former case tsk == current and in the latter tsk is a 1850 * random task_struct that doesn't have any meaningful data we 1851 * need to log via audit_log_exit(). 1852 */ 1853 if (tsk == current && !context->dummy) { 1854 context->return_valid = AUDITSC_INVALID; 1855 context->return_code = 0; 1856 if (context->context == AUDIT_CTX_SYSCALL) { 1857 audit_filter_syscall(tsk, context); 1858 audit_filter_inodes(tsk, context); 1859 if (context->current_state == AUDIT_STATE_RECORD) 1860 audit_log_exit(); 1861 } else if (context->context == AUDIT_CTX_URING) { 1862 /* TODO: verify this case is real and valid */ 1863 audit_filter_uring(tsk, context); 1864 audit_filter_inodes(tsk, context); 1865 if (context->current_state == AUDIT_STATE_RECORD) 1866 audit_log_uring(context); 1867 } 1868 } 1869 1870 audit_set_context(tsk, NULL); 1871 audit_free_context(context); 1872 } 1873 1874 /** 1875 * audit_return_fixup - fixup the return codes in the audit_context 1876 * @ctx: the audit_context 1877 * @success: true/false value to indicate if the operation succeeded or not 1878 * @code: operation return code 1879 * 1880 * We need to fixup the return code in the audit logs if the actual return 1881 * codes are later going to be fixed by the arch specific signal handlers. 1882 */ 1883 static void audit_return_fixup(struct audit_context *ctx, 1884 int success, long code) 1885 { 1886 /* 1887 * This is actually a test for: 1888 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1889 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1890 * 1891 * but is faster than a bunch of || 1892 */ 1893 if (unlikely(code <= -ERESTARTSYS) && 1894 (code >= -ERESTART_RESTARTBLOCK) && 1895 (code != -ENOIOCTLCMD)) 1896 ctx->return_code = -EINTR; 1897 else 1898 ctx->return_code = code; 1899 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1900 } 1901 1902 /** 1903 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1904 * @op: the io_uring opcode 1905 * 1906 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1907 * operations. This function should only ever be called from 1908 * audit_uring_entry() as we rely on the audit context checking present in that 1909 * function. 1910 */ 1911 void __audit_uring_entry(u8 op) 1912 { 1913 struct audit_context *ctx = audit_context(); 1914 1915 if (ctx->state == AUDIT_STATE_DISABLED) 1916 return; 1917 1918 /* 1919 * NOTE: It's possible that we can be called from the process' context 1920 * before it returns to userspace, and before audit_syscall_exit() 1921 * is called. In this case there is not much to do, just record 1922 * the io_uring details and return. 1923 */ 1924 ctx->uring_op = op; 1925 if (ctx->context == AUDIT_CTX_SYSCALL) 1926 return; 1927 1928 ctx->dummy = !audit_n_rules; 1929 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1930 ctx->prio = 0; 1931 1932 ctx->context = AUDIT_CTX_URING; 1933 ctx->current_state = ctx->state; 1934 ktime_get_coarse_real_ts64(&ctx->ctime); 1935 } 1936 1937 /** 1938 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1939 * @success: true/false value to indicate if the operation succeeded or not 1940 * @code: operation return code 1941 * 1942 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1943 * operations. This function should only ever be called from 1944 * audit_uring_exit() as we rely on the audit context checking present in that 1945 * function. 1946 */ 1947 void __audit_uring_exit(int success, long code) 1948 { 1949 struct audit_context *ctx = audit_context(); 1950 1951 if (ctx->dummy) { 1952 if (ctx->context != AUDIT_CTX_URING) 1953 return; 1954 goto out; 1955 } 1956 1957 audit_return_fixup(ctx, success, code); 1958 if (ctx->context == AUDIT_CTX_SYSCALL) { 1959 /* 1960 * NOTE: See the note in __audit_uring_entry() about the case 1961 * where we may be called from process context before we 1962 * return to userspace via audit_syscall_exit(). In this 1963 * case we simply emit a URINGOP record and bail, the 1964 * normal syscall exit handling will take care of 1965 * everything else. 1966 * It is also worth mentioning that when we are called, 1967 * the current process creds may differ from the creds 1968 * used during the normal syscall processing; keep that 1969 * in mind if/when we move the record generation code. 1970 */ 1971 1972 /* 1973 * We need to filter on the syscall info here to decide if we 1974 * should emit a URINGOP record. I know it seems odd but this 1975 * solves the problem where users have a filter to block *all* 1976 * syscall records in the "exit" filter; we want to preserve 1977 * the behavior here. 1978 */ 1979 audit_filter_syscall(current, ctx); 1980 if (ctx->current_state != AUDIT_STATE_RECORD) 1981 audit_filter_uring(current, ctx); 1982 audit_filter_inodes(current, ctx); 1983 if (ctx->current_state != AUDIT_STATE_RECORD) 1984 return; 1985 1986 audit_log_uring(ctx); 1987 return; 1988 } 1989 1990 /* this may generate CONFIG_CHANGE records */ 1991 if (!list_empty(&ctx->killed_trees)) 1992 audit_kill_trees(ctx); 1993 1994 /* run through both filters to ensure we set the filterkey properly */ 1995 audit_filter_uring(current, ctx); 1996 audit_filter_inodes(current, ctx); 1997 if (ctx->current_state != AUDIT_STATE_RECORD) 1998 goto out; 1999 audit_log_exit(); 2000 2001 out: 2002 audit_reset_context(ctx); 2003 } 2004 2005 /** 2006 * __audit_syscall_entry - fill in an audit record at syscall entry 2007 * @major: major syscall type (function) 2008 * @a1: additional syscall register 1 2009 * @a2: additional syscall register 2 2010 * @a3: additional syscall register 3 2011 * @a4: additional syscall register 4 2012 * 2013 * Fill in audit context at syscall entry. This only happens if the 2014 * audit context was created when the task was created and the state or 2015 * filters demand the audit context be built. If the state from the 2016 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2017 * then the record will be written at syscall exit time (otherwise, it 2018 * will only be written if another part of the kernel requests that it 2019 * be written). 2020 */ 2021 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2022 unsigned long a3, unsigned long a4) 2023 { 2024 struct audit_context *context = audit_context(); 2025 enum audit_state state; 2026 2027 if (!audit_enabled || !context) 2028 return; 2029 2030 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2031 WARN_ON(context->name_count); 2032 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2033 audit_panic("unrecoverable error in audit_syscall_entry()"); 2034 return; 2035 } 2036 2037 state = context->state; 2038 if (state == AUDIT_STATE_DISABLED) 2039 return; 2040 2041 context->dummy = !audit_n_rules; 2042 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2043 context->prio = 0; 2044 if (auditd_test_task(current)) 2045 return; 2046 } 2047 2048 context->arch = syscall_get_arch(current); 2049 context->major = major; 2050 context->argv[0] = a1; 2051 context->argv[1] = a2; 2052 context->argv[2] = a3; 2053 context->argv[3] = a4; 2054 context->context = AUDIT_CTX_SYSCALL; 2055 context->current_state = state; 2056 ktime_get_coarse_real_ts64(&context->ctime); 2057 } 2058 2059 /** 2060 * __audit_syscall_exit - deallocate audit context after a system call 2061 * @success: success value of the syscall 2062 * @return_code: return value of the syscall 2063 * 2064 * Tear down after system call. If the audit context has been marked as 2065 * auditable (either because of the AUDIT_STATE_RECORD state from 2066 * filtering, or because some other part of the kernel wrote an audit 2067 * message), then write out the syscall information. In call cases, 2068 * free the names stored from getname(). 2069 */ 2070 void __audit_syscall_exit(int success, long return_code) 2071 { 2072 struct audit_context *context = audit_context(); 2073 2074 if (!context || context->dummy || 2075 context->context != AUDIT_CTX_SYSCALL) 2076 goto out; 2077 2078 /* this may generate CONFIG_CHANGE records */ 2079 if (!list_empty(&context->killed_trees)) 2080 audit_kill_trees(context); 2081 2082 audit_return_fixup(context, success, return_code); 2083 /* run through both filters to ensure we set the filterkey properly */ 2084 audit_filter_syscall(current, context); 2085 audit_filter_inodes(current, context); 2086 if (context->current_state != AUDIT_STATE_RECORD) 2087 goto out; 2088 2089 audit_log_exit(); 2090 2091 out: 2092 audit_reset_context(context); 2093 } 2094 2095 static inline void handle_one(const struct inode *inode) 2096 { 2097 struct audit_context *context; 2098 struct audit_tree_refs *p; 2099 struct audit_chunk *chunk; 2100 int count; 2101 2102 if (likely(!inode->i_fsnotify_marks)) 2103 return; 2104 context = audit_context(); 2105 p = context->trees; 2106 count = context->tree_count; 2107 rcu_read_lock(); 2108 chunk = audit_tree_lookup(inode); 2109 rcu_read_unlock(); 2110 if (!chunk) 2111 return; 2112 if (likely(put_tree_ref(context, chunk))) 2113 return; 2114 if (unlikely(!grow_tree_refs(context))) { 2115 pr_warn("out of memory, audit has lost a tree reference\n"); 2116 audit_set_auditable(context); 2117 audit_put_chunk(chunk); 2118 unroll_tree_refs(context, p, count); 2119 return; 2120 } 2121 put_tree_ref(context, chunk); 2122 } 2123 2124 static void handle_path(const struct dentry *dentry) 2125 { 2126 struct audit_context *context; 2127 struct audit_tree_refs *p; 2128 const struct dentry *d, *parent; 2129 struct audit_chunk *drop; 2130 unsigned long seq; 2131 int count; 2132 2133 context = audit_context(); 2134 p = context->trees; 2135 count = context->tree_count; 2136 retry: 2137 drop = NULL; 2138 d = dentry; 2139 rcu_read_lock(); 2140 seq = read_seqbegin(&rename_lock); 2141 for (;;) { 2142 struct inode *inode = d_backing_inode(d); 2143 2144 if (inode && unlikely(inode->i_fsnotify_marks)) { 2145 struct audit_chunk *chunk; 2146 2147 chunk = audit_tree_lookup(inode); 2148 if (chunk) { 2149 if (unlikely(!put_tree_ref(context, chunk))) { 2150 drop = chunk; 2151 break; 2152 } 2153 } 2154 } 2155 parent = d->d_parent; 2156 if (parent == d) 2157 break; 2158 d = parent; 2159 } 2160 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2161 rcu_read_unlock(); 2162 if (!drop) { 2163 /* just a race with rename */ 2164 unroll_tree_refs(context, p, count); 2165 goto retry; 2166 } 2167 audit_put_chunk(drop); 2168 if (grow_tree_refs(context)) { 2169 /* OK, got more space */ 2170 unroll_tree_refs(context, p, count); 2171 goto retry; 2172 } 2173 /* too bad */ 2174 pr_warn("out of memory, audit has lost a tree reference\n"); 2175 unroll_tree_refs(context, p, count); 2176 audit_set_auditable(context); 2177 return; 2178 } 2179 rcu_read_unlock(); 2180 } 2181 2182 static struct audit_names *audit_alloc_name(struct audit_context *context, 2183 unsigned char type) 2184 { 2185 struct audit_names *aname; 2186 2187 if (context->name_count < AUDIT_NAMES) { 2188 aname = &context->preallocated_names[context->name_count]; 2189 memset(aname, 0, sizeof(*aname)); 2190 } else { 2191 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2192 if (!aname) 2193 return NULL; 2194 aname->should_free = true; 2195 } 2196 2197 aname->ino = AUDIT_INO_UNSET; 2198 aname->type = type; 2199 list_add_tail(&aname->list, &context->names_list); 2200 2201 context->name_count++; 2202 if (!context->pwd.dentry) 2203 get_fs_pwd(current->fs, &context->pwd); 2204 return aname; 2205 } 2206 2207 /** 2208 * __audit_reusename - fill out filename with info from existing entry 2209 * @uptr: userland ptr to pathname 2210 * 2211 * Search the audit_names list for the current audit context. If there is an 2212 * existing entry with a matching "uptr" then return the filename 2213 * associated with that audit_name. If not, return NULL. 2214 */ 2215 struct filename * 2216 __audit_reusename(const __user char *uptr) 2217 { 2218 struct audit_context *context = audit_context(); 2219 struct audit_names *n; 2220 2221 list_for_each_entry(n, &context->names_list, list) { 2222 if (!n->name) 2223 continue; 2224 if (n->name->uptr == uptr) { 2225 atomic_inc(&n->name->refcnt); 2226 return n->name; 2227 } 2228 } 2229 return NULL; 2230 } 2231 2232 /** 2233 * __audit_getname - add a name to the list 2234 * @name: name to add 2235 * 2236 * Add a name to the list of audit names for this context. 2237 * Called from fs/namei.c:getname(). 2238 */ 2239 void __audit_getname(struct filename *name) 2240 { 2241 struct audit_context *context = audit_context(); 2242 struct audit_names *n; 2243 2244 if (context->context == AUDIT_CTX_UNUSED) 2245 return; 2246 2247 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2248 if (!n) 2249 return; 2250 2251 n->name = name; 2252 n->name_len = AUDIT_NAME_FULL; 2253 name->aname = n; 2254 atomic_inc(&name->refcnt); 2255 } 2256 2257 static inline int audit_copy_fcaps(struct audit_names *name, 2258 const struct dentry *dentry) 2259 { 2260 struct cpu_vfs_cap_data caps; 2261 int rc; 2262 2263 if (!dentry) 2264 return 0; 2265 2266 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2267 if (rc) 2268 return rc; 2269 2270 name->fcap.permitted = caps.permitted; 2271 name->fcap.inheritable = caps.inheritable; 2272 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2273 name->fcap.rootid = caps.rootid; 2274 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2275 VFS_CAP_REVISION_SHIFT; 2276 2277 return 0; 2278 } 2279 2280 /* Copy inode data into an audit_names. */ 2281 static void audit_copy_inode(struct audit_names *name, 2282 const struct dentry *dentry, 2283 struct inode *inode, unsigned int flags) 2284 { 2285 name->ino = inode->i_ino; 2286 name->dev = inode->i_sb->s_dev; 2287 name->mode = inode->i_mode; 2288 name->uid = inode->i_uid; 2289 name->gid = inode->i_gid; 2290 name->rdev = inode->i_rdev; 2291 security_inode_getsecid(inode, &name->osid); 2292 if (flags & AUDIT_INODE_NOEVAL) { 2293 name->fcap_ver = -1; 2294 return; 2295 } 2296 audit_copy_fcaps(name, dentry); 2297 } 2298 2299 /** 2300 * __audit_inode - store the inode and device from a lookup 2301 * @name: name being audited 2302 * @dentry: dentry being audited 2303 * @flags: attributes for this particular entry 2304 */ 2305 void __audit_inode(struct filename *name, const struct dentry *dentry, 2306 unsigned int flags) 2307 { 2308 struct audit_context *context = audit_context(); 2309 struct inode *inode = d_backing_inode(dentry); 2310 struct audit_names *n; 2311 bool parent = flags & AUDIT_INODE_PARENT; 2312 struct audit_entry *e; 2313 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2314 int i; 2315 2316 if (context->context == AUDIT_CTX_UNUSED) 2317 return; 2318 2319 rcu_read_lock(); 2320 list_for_each_entry_rcu(e, list, list) { 2321 for (i = 0; i < e->rule.field_count; i++) { 2322 struct audit_field *f = &e->rule.fields[i]; 2323 2324 if (f->type == AUDIT_FSTYPE 2325 && audit_comparator(inode->i_sb->s_magic, 2326 f->op, f->val) 2327 && e->rule.action == AUDIT_NEVER) { 2328 rcu_read_unlock(); 2329 return; 2330 } 2331 } 2332 } 2333 rcu_read_unlock(); 2334 2335 if (!name) 2336 goto out_alloc; 2337 2338 /* 2339 * If we have a pointer to an audit_names entry already, then we can 2340 * just use it directly if the type is correct. 2341 */ 2342 n = name->aname; 2343 if (n) { 2344 if (parent) { 2345 if (n->type == AUDIT_TYPE_PARENT || 2346 n->type == AUDIT_TYPE_UNKNOWN) 2347 goto out; 2348 } else { 2349 if (n->type != AUDIT_TYPE_PARENT) 2350 goto out; 2351 } 2352 } 2353 2354 list_for_each_entry_reverse(n, &context->names_list, list) { 2355 if (n->ino) { 2356 /* valid inode number, use that for the comparison */ 2357 if (n->ino != inode->i_ino || 2358 n->dev != inode->i_sb->s_dev) 2359 continue; 2360 } else if (n->name) { 2361 /* inode number has not been set, check the name */ 2362 if (strcmp(n->name->name, name->name)) 2363 continue; 2364 } else 2365 /* no inode and no name (?!) ... this is odd ... */ 2366 continue; 2367 2368 /* match the correct record type */ 2369 if (parent) { 2370 if (n->type == AUDIT_TYPE_PARENT || 2371 n->type == AUDIT_TYPE_UNKNOWN) 2372 goto out; 2373 } else { 2374 if (n->type != AUDIT_TYPE_PARENT) 2375 goto out; 2376 } 2377 } 2378 2379 out_alloc: 2380 /* unable to find an entry with both a matching name and type */ 2381 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2382 if (!n) 2383 return; 2384 if (name) { 2385 n->name = name; 2386 atomic_inc(&name->refcnt); 2387 } 2388 2389 out: 2390 if (parent) { 2391 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2392 n->type = AUDIT_TYPE_PARENT; 2393 if (flags & AUDIT_INODE_HIDDEN) 2394 n->hidden = true; 2395 } else { 2396 n->name_len = AUDIT_NAME_FULL; 2397 n->type = AUDIT_TYPE_NORMAL; 2398 } 2399 handle_path(dentry); 2400 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2401 } 2402 2403 void __audit_file(const struct file *file) 2404 { 2405 __audit_inode(NULL, file->f_path.dentry, 0); 2406 } 2407 2408 /** 2409 * __audit_inode_child - collect inode info for created/removed objects 2410 * @parent: inode of dentry parent 2411 * @dentry: dentry being audited 2412 * @type: AUDIT_TYPE_* value that we're looking for 2413 * 2414 * For syscalls that create or remove filesystem objects, audit_inode 2415 * can only collect information for the filesystem object's parent. 2416 * This call updates the audit context with the child's information. 2417 * Syscalls that create a new filesystem object must be hooked after 2418 * the object is created. Syscalls that remove a filesystem object 2419 * must be hooked prior, in order to capture the target inode during 2420 * unsuccessful attempts. 2421 */ 2422 void __audit_inode_child(struct inode *parent, 2423 const struct dentry *dentry, 2424 const unsigned char type) 2425 { 2426 struct audit_context *context = audit_context(); 2427 struct inode *inode = d_backing_inode(dentry); 2428 const struct qstr *dname = &dentry->d_name; 2429 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2430 struct audit_entry *e; 2431 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2432 int i; 2433 2434 if (context->context == AUDIT_CTX_UNUSED) 2435 return; 2436 2437 rcu_read_lock(); 2438 list_for_each_entry_rcu(e, list, list) { 2439 for (i = 0; i < e->rule.field_count; i++) { 2440 struct audit_field *f = &e->rule.fields[i]; 2441 2442 if (f->type == AUDIT_FSTYPE 2443 && audit_comparator(parent->i_sb->s_magic, 2444 f->op, f->val) 2445 && e->rule.action == AUDIT_NEVER) { 2446 rcu_read_unlock(); 2447 return; 2448 } 2449 } 2450 } 2451 rcu_read_unlock(); 2452 2453 if (inode) 2454 handle_one(inode); 2455 2456 /* look for a parent entry first */ 2457 list_for_each_entry(n, &context->names_list, list) { 2458 if (!n->name || 2459 (n->type != AUDIT_TYPE_PARENT && 2460 n->type != AUDIT_TYPE_UNKNOWN)) 2461 continue; 2462 2463 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2464 !audit_compare_dname_path(dname, 2465 n->name->name, n->name_len)) { 2466 if (n->type == AUDIT_TYPE_UNKNOWN) 2467 n->type = AUDIT_TYPE_PARENT; 2468 found_parent = n; 2469 break; 2470 } 2471 } 2472 2473 cond_resched(); 2474 2475 /* is there a matching child entry? */ 2476 list_for_each_entry(n, &context->names_list, list) { 2477 /* can only match entries that have a name */ 2478 if (!n->name || 2479 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2480 continue; 2481 2482 if (!strcmp(dname->name, n->name->name) || 2483 !audit_compare_dname_path(dname, n->name->name, 2484 found_parent ? 2485 found_parent->name_len : 2486 AUDIT_NAME_FULL)) { 2487 if (n->type == AUDIT_TYPE_UNKNOWN) 2488 n->type = type; 2489 found_child = n; 2490 break; 2491 } 2492 } 2493 2494 if (!found_parent) { 2495 /* create a new, "anonymous" parent record */ 2496 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2497 if (!n) 2498 return; 2499 audit_copy_inode(n, NULL, parent, 0); 2500 } 2501 2502 if (!found_child) { 2503 found_child = audit_alloc_name(context, type); 2504 if (!found_child) 2505 return; 2506 2507 /* Re-use the name belonging to the slot for a matching parent 2508 * directory. All names for this context are relinquished in 2509 * audit_free_names() */ 2510 if (found_parent) { 2511 found_child->name = found_parent->name; 2512 found_child->name_len = AUDIT_NAME_FULL; 2513 atomic_inc(&found_child->name->refcnt); 2514 } 2515 } 2516 2517 if (inode) 2518 audit_copy_inode(found_child, dentry, inode, 0); 2519 else 2520 found_child->ino = AUDIT_INO_UNSET; 2521 } 2522 EXPORT_SYMBOL_GPL(__audit_inode_child); 2523 2524 /** 2525 * auditsc_get_stamp - get local copies of audit_context values 2526 * @ctx: audit_context for the task 2527 * @t: timespec64 to store time recorded in the audit_context 2528 * @serial: serial value that is recorded in the audit_context 2529 * 2530 * Also sets the context as auditable. 2531 */ 2532 int auditsc_get_stamp(struct audit_context *ctx, 2533 struct timespec64 *t, unsigned int *serial) 2534 { 2535 if (ctx->context == AUDIT_CTX_UNUSED) 2536 return 0; 2537 if (!ctx->serial) 2538 ctx->serial = audit_serial(); 2539 t->tv_sec = ctx->ctime.tv_sec; 2540 t->tv_nsec = ctx->ctime.tv_nsec; 2541 *serial = ctx->serial; 2542 if (!ctx->prio) { 2543 ctx->prio = 1; 2544 ctx->current_state = AUDIT_STATE_RECORD; 2545 } 2546 return 1; 2547 } 2548 2549 /** 2550 * __audit_mq_open - record audit data for a POSIX MQ open 2551 * @oflag: open flag 2552 * @mode: mode bits 2553 * @attr: queue attributes 2554 * 2555 */ 2556 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2557 { 2558 struct audit_context *context = audit_context(); 2559 2560 if (attr) 2561 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2562 else 2563 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2564 2565 context->mq_open.oflag = oflag; 2566 context->mq_open.mode = mode; 2567 2568 context->type = AUDIT_MQ_OPEN; 2569 } 2570 2571 /** 2572 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2573 * @mqdes: MQ descriptor 2574 * @msg_len: Message length 2575 * @msg_prio: Message priority 2576 * @abs_timeout: Message timeout in absolute time 2577 * 2578 */ 2579 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2580 const struct timespec64 *abs_timeout) 2581 { 2582 struct audit_context *context = audit_context(); 2583 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2584 2585 if (abs_timeout) 2586 memcpy(p, abs_timeout, sizeof(*p)); 2587 else 2588 memset(p, 0, sizeof(*p)); 2589 2590 context->mq_sendrecv.mqdes = mqdes; 2591 context->mq_sendrecv.msg_len = msg_len; 2592 context->mq_sendrecv.msg_prio = msg_prio; 2593 2594 context->type = AUDIT_MQ_SENDRECV; 2595 } 2596 2597 /** 2598 * __audit_mq_notify - record audit data for a POSIX MQ notify 2599 * @mqdes: MQ descriptor 2600 * @notification: Notification event 2601 * 2602 */ 2603 2604 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2605 { 2606 struct audit_context *context = audit_context(); 2607 2608 if (notification) 2609 context->mq_notify.sigev_signo = notification->sigev_signo; 2610 else 2611 context->mq_notify.sigev_signo = 0; 2612 2613 context->mq_notify.mqdes = mqdes; 2614 context->type = AUDIT_MQ_NOTIFY; 2615 } 2616 2617 /** 2618 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2619 * @mqdes: MQ descriptor 2620 * @mqstat: MQ flags 2621 * 2622 */ 2623 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2624 { 2625 struct audit_context *context = audit_context(); 2626 2627 context->mq_getsetattr.mqdes = mqdes; 2628 context->mq_getsetattr.mqstat = *mqstat; 2629 context->type = AUDIT_MQ_GETSETATTR; 2630 } 2631 2632 /** 2633 * __audit_ipc_obj - record audit data for ipc object 2634 * @ipcp: ipc permissions 2635 * 2636 */ 2637 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2638 { 2639 struct audit_context *context = audit_context(); 2640 2641 context->ipc.uid = ipcp->uid; 2642 context->ipc.gid = ipcp->gid; 2643 context->ipc.mode = ipcp->mode; 2644 context->ipc.has_perm = 0; 2645 security_ipc_getsecid(ipcp, &context->ipc.osid); 2646 context->type = AUDIT_IPC; 2647 } 2648 2649 /** 2650 * __audit_ipc_set_perm - record audit data for new ipc permissions 2651 * @qbytes: msgq bytes 2652 * @uid: msgq user id 2653 * @gid: msgq group id 2654 * @mode: msgq mode (permissions) 2655 * 2656 * Called only after audit_ipc_obj(). 2657 */ 2658 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2659 { 2660 struct audit_context *context = audit_context(); 2661 2662 context->ipc.qbytes = qbytes; 2663 context->ipc.perm_uid = uid; 2664 context->ipc.perm_gid = gid; 2665 context->ipc.perm_mode = mode; 2666 context->ipc.has_perm = 1; 2667 } 2668 2669 void __audit_bprm(struct linux_binprm *bprm) 2670 { 2671 struct audit_context *context = audit_context(); 2672 2673 context->type = AUDIT_EXECVE; 2674 context->execve.argc = bprm->argc; 2675 } 2676 2677 2678 /** 2679 * __audit_socketcall - record audit data for sys_socketcall 2680 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2681 * @args: args array 2682 * 2683 */ 2684 int __audit_socketcall(int nargs, unsigned long *args) 2685 { 2686 struct audit_context *context = audit_context(); 2687 2688 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2689 return -EINVAL; 2690 context->type = AUDIT_SOCKETCALL; 2691 context->socketcall.nargs = nargs; 2692 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2693 return 0; 2694 } 2695 2696 /** 2697 * __audit_fd_pair - record audit data for pipe and socketpair 2698 * @fd1: the first file descriptor 2699 * @fd2: the second file descriptor 2700 * 2701 */ 2702 void __audit_fd_pair(int fd1, int fd2) 2703 { 2704 struct audit_context *context = audit_context(); 2705 2706 context->fds[0] = fd1; 2707 context->fds[1] = fd2; 2708 } 2709 2710 /** 2711 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2712 * @len: data length in user space 2713 * @a: data address in kernel space 2714 * 2715 * Returns 0 for success or NULL context or < 0 on error. 2716 */ 2717 int __audit_sockaddr(int len, void *a) 2718 { 2719 struct audit_context *context = audit_context(); 2720 2721 if (!context->sockaddr) { 2722 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2723 2724 if (!p) 2725 return -ENOMEM; 2726 context->sockaddr = p; 2727 } 2728 2729 context->sockaddr_len = len; 2730 memcpy(context->sockaddr, a, len); 2731 return 0; 2732 } 2733 2734 void __audit_ptrace(struct task_struct *t) 2735 { 2736 struct audit_context *context = audit_context(); 2737 2738 context->target_pid = task_tgid_nr(t); 2739 context->target_auid = audit_get_loginuid(t); 2740 context->target_uid = task_uid(t); 2741 context->target_sessionid = audit_get_sessionid(t); 2742 security_task_getsecid_obj(t, &context->target_sid); 2743 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2744 } 2745 2746 /** 2747 * audit_signal_info_syscall - record signal info for syscalls 2748 * @t: task being signaled 2749 * 2750 * If the audit subsystem is being terminated, record the task (pid) 2751 * and uid that is doing that. 2752 */ 2753 int audit_signal_info_syscall(struct task_struct *t) 2754 { 2755 struct audit_aux_data_pids *axp; 2756 struct audit_context *ctx = audit_context(); 2757 kuid_t t_uid = task_uid(t); 2758 2759 if (!audit_signals || audit_dummy_context()) 2760 return 0; 2761 2762 /* optimize the common case by putting first signal recipient directly 2763 * in audit_context */ 2764 if (!ctx->target_pid) { 2765 ctx->target_pid = task_tgid_nr(t); 2766 ctx->target_auid = audit_get_loginuid(t); 2767 ctx->target_uid = t_uid; 2768 ctx->target_sessionid = audit_get_sessionid(t); 2769 security_task_getsecid_obj(t, &ctx->target_sid); 2770 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2771 return 0; 2772 } 2773 2774 axp = (void *)ctx->aux_pids; 2775 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2776 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2777 if (!axp) 2778 return -ENOMEM; 2779 2780 axp->d.type = AUDIT_OBJ_PID; 2781 axp->d.next = ctx->aux_pids; 2782 ctx->aux_pids = (void *)axp; 2783 } 2784 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2785 2786 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2787 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2788 axp->target_uid[axp->pid_count] = t_uid; 2789 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2790 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2791 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2792 axp->pid_count++; 2793 2794 return 0; 2795 } 2796 2797 /** 2798 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2799 * @bprm: pointer to the bprm being processed 2800 * @new: the proposed new credentials 2801 * @old: the old credentials 2802 * 2803 * Simply check if the proc already has the caps given by the file and if not 2804 * store the priv escalation info for later auditing at the end of the syscall 2805 * 2806 * -Eric 2807 */ 2808 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2809 const struct cred *new, const struct cred *old) 2810 { 2811 struct audit_aux_data_bprm_fcaps *ax; 2812 struct audit_context *context = audit_context(); 2813 struct cpu_vfs_cap_data vcaps; 2814 2815 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2816 if (!ax) 2817 return -ENOMEM; 2818 2819 ax->d.type = AUDIT_BPRM_FCAPS; 2820 ax->d.next = context->aux; 2821 context->aux = (void *)ax; 2822 2823 get_vfs_caps_from_disk(&nop_mnt_idmap, 2824 bprm->file->f_path.dentry, &vcaps); 2825 2826 ax->fcap.permitted = vcaps.permitted; 2827 ax->fcap.inheritable = vcaps.inheritable; 2828 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2829 ax->fcap.rootid = vcaps.rootid; 2830 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2831 2832 ax->old_pcap.permitted = old->cap_permitted; 2833 ax->old_pcap.inheritable = old->cap_inheritable; 2834 ax->old_pcap.effective = old->cap_effective; 2835 ax->old_pcap.ambient = old->cap_ambient; 2836 2837 ax->new_pcap.permitted = new->cap_permitted; 2838 ax->new_pcap.inheritable = new->cap_inheritable; 2839 ax->new_pcap.effective = new->cap_effective; 2840 ax->new_pcap.ambient = new->cap_ambient; 2841 return 0; 2842 } 2843 2844 /** 2845 * __audit_log_capset - store information about the arguments to the capset syscall 2846 * @new: the new credentials 2847 * @old: the old (current) credentials 2848 * 2849 * Record the arguments userspace sent to sys_capset for later printing by the 2850 * audit system if applicable 2851 */ 2852 void __audit_log_capset(const struct cred *new, const struct cred *old) 2853 { 2854 struct audit_context *context = audit_context(); 2855 2856 context->capset.pid = task_tgid_nr(current); 2857 context->capset.cap.effective = new->cap_effective; 2858 context->capset.cap.inheritable = new->cap_effective; 2859 context->capset.cap.permitted = new->cap_permitted; 2860 context->capset.cap.ambient = new->cap_ambient; 2861 context->type = AUDIT_CAPSET; 2862 } 2863 2864 void __audit_mmap_fd(int fd, int flags) 2865 { 2866 struct audit_context *context = audit_context(); 2867 2868 context->mmap.fd = fd; 2869 context->mmap.flags = flags; 2870 context->type = AUDIT_MMAP; 2871 } 2872 2873 void __audit_openat2_how(struct open_how *how) 2874 { 2875 struct audit_context *context = audit_context(); 2876 2877 context->openat2.flags = how->flags; 2878 context->openat2.mode = how->mode; 2879 context->openat2.resolve = how->resolve; 2880 context->type = AUDIT_OPENAT2; 2881 } 2882 2883 void __audit_log_kern_module(char *name) 2884 { 2885 struct audit_context *context = audit_context(); 2886 2887 context->module.name = kstrdup(name, GFP_KERNEL); 2888 if (!context->module.name) 2889 audit_log_lost("out of memory in __audit_log_kern_module"); 2890 context->type = AUDIT_KERN_MODULE; 2891 } 2892 2893 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2894 { 2895 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2896 switch (friar->hdr.type) { 2897 case FAN_RESPONSE_INFO_NONE: 2898 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2899 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2900 response, FAN_RESPONSE_INFO_NONE); 2901 break; 2902 case FAN_RESPONSE_INFO_AUDIT_RULE: 2903 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2904 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2905 response, friar->hdr.type, friar->rule_number, 2906 friar->subj_trust, friar->obj_trust); 2907 } 2908 } 2909 2910 void __audit_tk_injoffset(struct timespec64 offset) 2911 { 2912 struct audit_context *context = audit_context(); 2913 2914 /* only set type if not already set by NTP */ 2915 if (!context->type) 2916 context->type = AUDIT_TIME_INJOFFSET; 2917 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2918 } 2919 2920 void __audit_ntp_log(const struct audit_ntp_data *ad) 2921 { 2922 struct audit_context *context = audit_context(); 2923 int type; 2924 2925 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2926 if (ad->vals[type].newval != ad->vals[type].oldval) { 2927 /* unconditionally set type, overwriting TK */ 2928 context->type = AUDIT_TIME_ADJNTPVAL; 2929 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2930 break; 2931 } 2932 } 2933 2934 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2935 enum audit_nfcfgop op, gfp_t gfp) 2936 { 2937 struct audit_buffer *ab; 2938 char comm[sizeof(current->comm)]; 2939 2940 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2941 if (!ab) 2942 return; 2943 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2944 name, af, nentries, audit_nfcfgs[op].s); 2945 2946 audit_log_format(ab, " pid=%u", task_tgid_nr(current)); 2947 audit_log_task_context(ab); /* subj= */ 2948 audit_log_format(ab, " comm="); 2949 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2950 audit_log_end(ab); 2951 } 2952 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2953 2954 static void audit_log_task(struct audit_buffer *ab) 2955 { 2956 kuid_t auid, uid; 2957 kgid_t gid; 2958 unsigned int sessionid; 2959 char comm[sizeof(current->comm)]; 2960 2961 auid = audit_get_loginuid(current); 2962 sessionid = audit_get_sessionid(current); 2963 current_uid_gid(&uid, &gid); 2964 2965 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2966 from_kuid(&init_user_ns, auid), 2967 from_kuid(&init_user_ns, uid), 2968 from_kgid(&init_user_ns, gid), 2969 sessionid); 2970 audit_log_task_context(ab); 2971 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2972 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2973 audit_log_d_path_exe(ab, current->mm); 2974 } 2975 2976 /** 2977 * audit_core_dumps - record information about processes that end abnormally 2978 * @signr: signal value 2979 * 2980 * If a process ends with a core dump, something fishy is going on and we 2981 * should record the event for investigation. 2982 */ 2983 void audit_core_dumps(long signr) 2984 { 2985 struct audit_buffer *ab; 2986 2987 if (!audit_enabled) 2988 return; 2989 2990 if (signr == SIGQUIT) /* don't care for those */ 2991 return; 2992 2993 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2994 if (unlikely(!ab)) 2995 return; 2996 audit_log_task(ab); 2997 audit_log_format(ab, " sig=%ld res=1", signr); 2998 audit_log_end(ab); 2999 } 3000 3001 /** 3002 * audit_seccomp - record information about a seccomp action 3003 * @syscall: syscall number 3004 * @signr: signal value 3005 * @code: the seccomp action 3006 * 3007 * Record the information associated with a seccomp action. Event filtering for 3008 * seccomp actions that are not to be logged is done in seccomp_log(). 3009 * Therefore, this function forces auditing independent of the audit_enabled 3010 * and dummy context state because seccomp actions should be logged even when 3011 * audit is not in use. 3012 */ 3013 void audit_seccomp(unsigned long syscall, long signr, int code) 3014 { 3015 struct audit_buffer *ab; 3016 3017 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3018 if (unlikely(!ab)) 3019 return; 3020 audit_log_task(ab); 3021 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3022 signr, syscall_get_arch(current), syscall, 3023 in_compat_syscall(), KSTK_EIP(current), code); 3024 audit_log_end(ab); 3025 } 3026 3027 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3028 int res) 3029 { 3030 struct audit_buffer *ab; 3031 3032 if (!audit_enabled) 3033 return; 3034 3035 ab = audit_log_start(audit_context(), GFP_KERNEL, 3036 AUDIT_CONFIG_CHANGE); 3037 if (unlikely(!ab)) 3038 return; 3039 3040 audit_log_format(ab, 3041 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3042 names, old_names, res); 3043 audit_log_end(ab); 3044 } 3045 3046 struct list_head *audit_killed_trees(void) 3047 { 3048 struct audit_context *ctx = audit_context(); 3049 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3050 return NULL; 3051 return &ctx->killed_trees; 3052 } 3053