1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 68 69 #include "audit.h" 70 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 75 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_aux_data { 90 struct audit_aux_data *next; 91 int type; 92 }; 93 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 96 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 u32 target_sid[AUDIT_AUX_PIDS]; 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 106 }; 107 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 114 }; 115 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 119 }; 120 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 123 const char *s; 124 }; 125 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 147 }; 148 149 static int audit_match_perm(struct audit_context *ctx, int mask) 150 { 151 unsigned n; 152 153 if (unlikely(!ctx)) 154 return 0; 155 n = ctx->major; 156 157 switch (audit_classify_syscall(ctx->arch, n)) { 158 case AUDITSC_NATIVE: 159 if ((mask & AUDIT_PERM_WRITE) && 160 audit_match_class(AUDIT_CLASS_WRITE, n)) 161 return 1; 162 if ((mask & AUDIT_PERM_READ) && 163 audit_match_class(AUDIT_CLASS_READ, n)) 164 return 1; 165 if ((mask & AUDIT_PERM_ATTR) && 166 audit_match_class(AUDIT_CLASS_CHATTR, n)) 167 return 1; 168 return 0; 169 case AUDITSC_COMPAT: /* 32bit on biarch */ 170 if ((mask & AUDIT_PERM_WRITE) && 171 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 172 return 1; 173 if ((mask & AUDIT_PERM_READ) && 174 audit_match_class(AUDIT_CLASS_READ_32, n)) 175 return 1; 176 if ((mask & AUDIT_PERM_ATTR) && 177 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 178 return 1; 179 return 0; 180 case AUDITSC_OPEN: 181 return mask & ACC_MODE(ctx->argv[1]); 182 case AUDITSC_OPENAT: 183 return mask & ACC_MODE(ctx->argv[2]); 184 case AUDITSC_SOCKETCALL: 185 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 186 case AUDITSC_EXECVE: 187 return mask & AUDIT_PERM_EXEC; 188 case AUDITSC_OPENAT2: 189 return mask & ACC_MODE((u32)ctx->openat2.flags); 190 default: 191 return 0; 192 } 193 } 194 195 static int audit_match_filetype(struct audit_context *ctx, int val) 196 { 197 struct audit_names *n; 198 umode_t mode = (umode_t)val; 199 200 if (unlikely(!ctx)) 201 return 0; 202 203 list_for_each_entry(n, &ctx->names_list, list) { 204 if ((n->ino != AUDIT_INO_UNSET) && 205 ((n->mode & S_IFMT) == mode)) 206 return 1; 207 } 208 209 return 0; 210 } 211 212 /* 213 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 214 * ->first_trees points to its beginning, ->trees - to the current end of data. 215 * ->tree_count is the number of free entries in array pointed to by ->trees. 216 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 217 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 218 * it's going to remain 1-element for almost any setup) until we free context itself. 219 * References in it _are_ dropped - at the same time we free/drop aux stuff. 220 */ 221 222 static void audit_set_auditable(struct audit_context *ctx) 223 { 224 if (!ctx->prio) { 225 ctx->prio = 1; 226 ctx->current_state = AUDIT_STATE_RECORD; 227 } 228 } 229 230 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 231 { 232 struct audit_tree_refs *p = ctx->trees; 233 int left = ctx->tree_count; 234 235 if (likely(left)) { 236 p->c[--left] = chunk; 237 ctx->tree_count = left; 238 return 1; 239 } 240 if (!p) 241 return 0; 242 p = p->next; 243 if (p) { 244 p->c[30] = chunk; 245 ctx->trees = p; 246 ctx->tree_count = 30; 247 return 1; 248 } 249 return 0; 250 } 251 252 static int grow_tree_refs(struct audit_context *ctx) 253 { 254 struct audit_tree_refs *p = ctx->trees; 255 256 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 257 if (!ctx->trees) { 258 ctx->trees = p; 259 return 0; 260 } 261 if (p) 262 p->next = ctx->trees; 263 else 264 ctx->first_trees = ctx->trees; 265 ctx->tree_count = 31; 266 return 1; 267 } 268 269 static void unroll_tree_refs(struct audit_context *ctx, 270 struct audit_tree_refs *p, int count) 271 { 272 struct audit_tree_refs *q; 273 int n; 274 275 if (!p) { 276 /* we started with empty chain */ 277 p = ctx->first_trees; 278 count = 31; 279 /* if the very first allocation has failed, nothing to do */ 280 if (!p) 281 return; 282 } 283 n = count; 284 for (q = p; q != ctx->trees; q = q->next, n = 31) { 285 while (n--) { 286 audit_put_chunk(q->c[n]); 287 q->c[n] = NULL; 288 } 289 } 290 while (n-- > ctx->tree_count) { 291 audit_put_chunk(q->c[n]); 292 q->c[n] = NULL; 293 } 294 ctx->trees = p; 295 ctx->tree_count = count; 296 } 297 298 static void free_tree_refs(struct audit_context *ctx) 299 { 300 struct audit_tree_refs *p, *q; 301 302 for (p = ctx->first_trees; p; p = q) { 303 q = p->next; 304 kfree(p); 305 } 306 } 307 308 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 309 { 310 struct audit_tree_refs *p; 311 int n; 312 313 if (!tree) 314 return 0; 315 /* full ones */ 316 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 317 for (n = 0; n < 31; n++) 318 if (audit_tree_match(p->c[n], tree)) 319 return 1; 320 } 321 /* partial */ 322 if (p) { 323 for (n = ctx->tree_count; n < 31; n++) 324 if (audit_tree_match(p->c[n], tree)) 325 return 1; 326 } 327 return 0; 328 } 329 330 static int audit_compare_uid(kuid_t uid, 331 struct audit_names *name, 332 struct audit_field *f, 333 struct audit_context *ctx) 334 { 335 struct audit_names *n; 336 int rc; 337 338 if (name) { 339 rc = audit_uid_comparator(uid, f->op, name->uid); 340 if (rc) 341 return rc; 342 } 343 344 if (ctx) { 345 list_for_each_entry(n, &ctx->names_list, list) { 346 rc = audit_uid_comparator(uid, f->op, n->uid); 347 if (rc) 348 return rc; 349 } 350 } 351 return 0; 352 } 353 354 static int audit_compare_gid(kgid_t gid, 355 struct audit_names *name, 356 struct audit_field *f, 357 struct audit_context *ctx) 358 { 359 struct audit_names *n; 360 int rc; 361 362 if (name) { 363 rc = audit_gid_comparator(gid, f->op, name->gid); 364 if (rc) 365 return rc; 366 } 367 368 if (ctx) { 369 list_for_each_entry(n, &ctx->names_list, list) { 370 rc = audit_gid_comparator(gid, f->op, n->gid); 371 if (rc) 372 return rc; 373 } 374 } 375 return 0; 376 } 377 378 static int audit_field_compare(struct task_struct *tsk, 379 const struct cred *cred, 380 struct audit_field *f, 381 struct audit_context *ctx, 382 struct audit_names *name) 383 { 384 switch (f->val) { 385 /* process to file object comparisons */ 386 case AUDIT_COMPARE_UID_TO_OBJ_UID: 387 return audit_compare_uid(cred->uid, name, f, ctx); 388 case AUDIT_COMPARE_GID_TO_OBJ_GID: 389 return audit_compare_gid(cred->gid, name, f, ctx); 390 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 391 return audit_compare_uid(cred->euid, name, f, ctx); 392 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 393 return audit_compare_gid(cred->egid, name, f, ctx); 394 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 395 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 396 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 397 return audit_compare_uid(cred->suid, name, f, ctx); 398 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 399 return audit_compare_gid(cred->sgid, name, f, ctx); 400 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 401 return audit_compare_uid(cred->fsuid, name, f, ctx); 402 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 403 return audit_compare_gid(cred->fsgid, name, f, ctx); 404 /* uid comparisons */ 405 case AUDIT_COMPARE_UID_TO_AUID: 406 return audit_uid_comparator(cred->uid, f->op, 407 audit_get_loginuid(tsk)); 408 case AUDIT_COMPARE_UID_TO_EUID: 409 return audit_uid_comparator(cred->uid, f->op, cred->euid); 410 case AUDIT_COMPARE_UID_TO_SUID: 411 return audit_uid_comparator(cred->uid, f->op, cred->suid); 412 case AUDIT_COMPARE_UID_TO_FSUID: 413 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 414 /* auid comparisons */ 415 case AUDIT_COMPARE_AUID_TO_EUID: 416 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 417 cred->euid); 418 case AUDIT_COMPARE_AUID_TO_SUID: 419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 420 cred->suid); 421 case AUDIT_COMPARE_AUID_TO_FSUID: 422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 423 cred->fsuid); 424 /* euid comparisons */ 425 case AUDIT_COMPARE_EUID_TO_SUID: 426 return audit_uid_comparator(cred->euid, f->op, cred->suid); 427 case AUDIT_COMPARE_EUID_TO_FSUID: 428 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 429 /* suid comparisons */ 430 case AUDIT_COMPARE_SUID_TO_FSUID: 431 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 432 /* gid comparisons */ 433 case AUDIT_COMPARE_GID_TO_EGID: 434 return audit_gid_comparator(cred->gid, f->op, cred->egid); 435 case AUDIT_COMPARE_GID_TO_SGID: 436 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 437 case AUDIT_COMPARE_GID_TO_FSGID: 438 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 439 /* egid comparisons */ 440 case AUDIT_COMPARE_EGID_TO_SGID: 441 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 442 case AUDIT_COMPARE_EGID_TO_FSGID: 443 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 444 /* sgid comparison */ 445 case AUDIT_COMPARE_SGID_TO_FSGID: 446 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 447 default: 448 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 449 return 0; 450 } 451 return 0; 452 } 453 454 /* Determine if any context name data matches a rule's watch data */ 455 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 456 * otherwise. 457 * 458 * If task_creation is true, this is an explicit indication that we are 459 * filtering a task rule at task creation time. This and tsk == current are 460 * the only situations where tsk->cred may be accessed without an rcu read lock. 461 */ 462 static int audit_filter_rules(struct task_struct *tsk, 463 struct audit_krule *rule, 464 struct audit_context *ctx, 465 struct audit_names *name, 466 enum audit_state *state, 467 bool task_creation) 468 { 469 const struct cred *cred; 470 int i, need_sid = 1; 471 u32 sid; 472 unsigned int sessionid; 473 474 if (ctx && rule->prio <= ctx->prio) 475 return 0; 476 477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 478 479 for (i = 0; i < rule->field_count; i++) { 480 struct audit_field *f = &rule->fields[i]; 481 struct audit_names *n; 482 int result = 0; 483 pid_t pid; 484 485 switch (f->type) { 486 case AUDIT_PID: 487 pid = task_tgid_nr(tsk); 488 result = audit_comparator(pid, f->op, f->val); 489 break; 490 case AUDIT_PPID: 491 if (ctx) { 492 if (!ctx->ppid) 493 ctx->ppid = task_ppid_nr(tsk); 494 result = audit_comparator(ctx->ppid, f->op, f->val); 495 } 496 break; 497 case AUDIT_EXE: 498 result = audit_exe_compare(tsk, rule->exe); 499 if (f->op == Audit_not_equal) 500 result = !result; 501 break; 502 case AUDIT_UID: 503 result = audit_uid_comparator(cred->uid, f->op, f->uid); 504 break; 505 case AUDIT_EUID: 506 result = audit_uid_comparator(cred->euid, f->op, f->uid); 507 break; 508 case AUDIT_SUID: 509 result = audit_uid_comparator(cred->suid, f->op, f->uid); 510 break; 511 case AUDIT_FSUID: 512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 513 break; 514 case AUDIT_GID: 515 result = audit_gid_comparator(cred->gid, f->op, f->gid); 516 if (f->op == Audit_equal) { 517 if (!result) 518 result = groups_search(cred->group_info, f->gid); 519 } else if (f->op == Audit_not_equal) { 520 if (result) 521 result = !groups_search(cred->group_info, f->gid); 522 } 523 break; 524 case AUDIT_EGID: 525 result = audit_gid_comparator(cred->egid, f->op, f->gid); 526 if (f->op == Audit_equal) { 527 if (!result) 528 result = groups_search(cred->group_info, f->gid); 529 } else if (f->op == Audit_not_equal) { 530 if (result) 531 result = !groups_search(cred->group_info, f->gid); 532 } 533 break; 534 case AUDIT_SGID: 535 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 536 break; 537 case AUDIT_FSGID: 538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 539 break; 540 case AUDIT_SESSIONID: 541 sessionid = audit_get_sessionid(tsk); 542 result = audit_comparator(sessionid, f->op, f->val); 543 break; 544 case AUDIT_PERS: 545 result = audit_comparator(tsk->personality, f->op, f->val); 546 break; 547 case AUDIT_ARCH: 548 if (ctx) 549 result = audit_comparator(ctx->arch, f->op, f->val); 550 break; 551 552 case AUDIT_EXIT: 553 if (ctx && ctx->return_valid != AUDITSC_INVALID) 554 result = audit_comparator(ctx->return_code, f->op, f->val); 555 break; 556 case AUDIT_SUCCESS: 557 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 558 if (f->val) 559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 560 else 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 562 } 563 break; 564 case AUDIT_DEVMAJOR: 565 if (name) { 566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 567 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 568 ++result; 569 } else if (ctx) { 570 list_for_each_entry(n, &ctx->names_list, list) { 571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 573 ++result; 574 break; 575 } 576 } 577 } 578 break; 579 case AUDIT_DEVMINOR: 580 if (name) { 581 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 582 audit_comparator(MINOR(name->rdev), f->op, f->val)) 583 ++result; 584 } else if (ctx) { 585 list_for_each_entry(n, &ctx->names_list, list) { 586 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 587 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 588 ++result; 589 break; 590 } 591 } 592 } 593 break; 594 case AUDIT_INODE: 595 if (name) 596 result = audit_comparator(name->ino, f->op, f->val); 597 else if (ctx) { 598 list_for_each_entry(n, &ctx->names_list, list) { 599 if (audit_comparator(n->ino, f->op, f->val)) { 600 ++result; 601 break; 602 } 603 } 604 } 605 break; 606 case AUDIT_OBJ_UID: 607 if (name) { 608 result = audit_uid_comparator(name->uid, f->op, f->uid); 609 } else if (ctx) { 610 list_for_each_entry(n, &ctx->names_list, list) { 611 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 612 ++result; 613 break; 614 } 615 } 616 } 617 break; 618 case AUDIT_OBJ_GID: 619 if (name) { 620 result = audit_gid_comparator(name->gid, f->op, f->gid); 621 } else if (ctx) { 622 list_for_each_entry(n, &ctx->names_list, list) { 623 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 624 ++result; 625 break; 626 } 627 } 628 } 629 break; 630 case AUDIT_WATCH: 631 if (name) { 632 result = audit_watch_compare(rule->watch, 633 name->ino, 634 name->dev); 635 if (f->op == Audit_not_equal) 636 result = !result; 637 } 638 break; 639 case AUDIT_DIR: 640 if (ctx) { 641 result = match_tree_refs(ctx, rule->tree); 642 if (f->op == Audit_not_equal) 643 result = !result; 644 } 645 break; 646 case AUDIT_LOGINUID: 647 result = audit_uid_comparator(audit_get_loginuid(tsk), 648 f->op, f->uid); 649 break; 650 case AUDIT_LOGINUID_SET: 651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 652 break; 653 case AUDIT_SADDR_FAM: 654 if (ctx && ctx->sockaddr) 655 result = audit_comparator(ctx->sockaddr->ss_family, 656 f->op, f->val); 657 break; 658 case AUDIT_SUBJ_USER: 659 case AUDIT_SUBJ_ROLE: 660 case AUDIT_SUBJ_TYPE: 661 case AUDIT_SUBJ_SEN: 662 case AUDIT_SUBJ_CLR: 663 /* NOTE: this may return negative values indicating 664 a temporary error. We simply treat this as a 665 match for now to avoid losing information that 666 may be wanted. An error message will also be 667 logged upon error */ 668 if (f->lsm_rule) { 669 if (need_sid) { 670 /* @tsk should always be equal to 671 * @current with the exception of 672 * fork()/copy_process() in which case 673 * the new @tsk creds are still a dup 674 * of @current's creds so we can still 675 * use security_current_getsecid_subj() 676 * here even though it always refs 677 * @current's creds 678 */ 679 security_current_getsecid_subj(&sid); 680 need_sid = 0; 681 } 682 result = security_audit_rule_match(sid, f->type, 683 f->op, 684 f->lsm_rule); 685 } 686 break; 687 case AUDIT_OBJ_USER: 688 case AUDIT_OBJ_ROLE: 689 case AUDIT_OBJ_TYPE: 690 case AUDIT_OBJ_LEV_LOW: 691 case AUDIT_OBJ_LEV_HIGH: 692 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 693 also applies here */ 694 if (f->lsm_rule) { 695 /* Find files that match */ 696 if (name) { 697 result = security_audit_rule_match( 698 name->osid, 699 f->type, 700 f->op, 701 f->lsm_rule); 702 } else if (ctx) { 703 list_for_each_entry(n, &ctx->names_list, list) { 704 if (security_audit_rule_match( 705 n->osid, 706 f->type, 707 f->op, 708 f->lsm_rule)) { 709 ++result; 710 break; 711 } 712 } 713 } 714 /* Find ipc objects that match */ 715 if (!ctx || ctx->type != AUDIT_IPC) 716 break; 717 if (security_audit_rule_match(ctx->ipc.osid, 718 f->type, f->op, 719 f->lsm_rule)) 720 ++result; 721 } 722 break; 723 case AUDIT_ARG0: 724 case AUDIT_ARG1: 725 case AUDIT_ARG2: 726 case AUDIT_ARG3: 727 if (ctx) 728 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 729 break; 730 case AUDIT_FILTERKEY: 731 /* ignore this field for filtering */ 732 result = 1; 733 break; 734 case AUDIT_PERM: 735 result = audit_match_perm(ctx, f->val); 736 if (f->op == Audit_not_equal) 737 result = !result; 738 break; 739 case AUDIT_FILETYPE: 740 result = audit_match_filetype(ctx, f->val); 741 if (f->op == Audit_not_equal) 742 result = !result; 743 break; 744 case AUDIT_FIELD_COMPARE: 745 result = audit_field_compare(tsk, cred, f, ctx, name); 746 break; 747 } 748 if (!result) 749 return 0; 750 } 751 752 if (ctx) { 753 if (rule->filterkey) { 754 kfree(ctx->filterkey); 755 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 756 } 757 ctx->prio = rule->prio; 758 } 759 switch (rule->action) { 760 case AUDIT_NEVER: 761 *state = AUDIT_STATE_DISABLED; 762 break; 763 case AUDIT_ALWAYS: 764 *state = AUDIT_STATE_RECORD; 765 break; 766 } 767 return 1; 768 } 769 770 /* At process creation time, we can determine if system-call auditing is 771 * completely disabled for this task. Since we only have the task 772 * structure at this point, we can only check uid and gid. 773 */ 774 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 775 { 776 struct audit_entry *e; 777 enum audit_state state; 778 779 rcu_read_lock(); 780 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 781 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 782 &state, true)) { 783 if (state == AUDIT_STATE_RECORD) 784 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 785 rcu_read_unlock(); 786 return state; 787 } 788 } 789 rcu_read_unlock(); 790 return AUDIT_STATE_BUILD; 791 } 792 793 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 794 { 795 int word, bit; 796 797 if (val > 0xffffffff) 798 return false; 799 800 word = AUDIT_WORD(val); 801 if (word >= AUDIT_BITMASK_SIZE) 802 return false; 803 804 bit = AUDIT_BIT(val); 805 806 return rule->mask[word] & bit; 807 } 808 809 /** 810 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 811 * @tsk: associated task 812 * @ctx: audit context 813 * @list: audit filter list 814 * @name: audit_name (can be NULL) 815 * @op: current syscall/uring_op 816 * 817 * Run the udit filters specified in @list against @tsk using @ctx, 818 * @name, and @op, as necessary; the caller is responsible for ensuring 819 * that the call is made while the RCU read lock is held. The @name 820 * parameter can be NULL, but all others must be specified. 821 * Returns 1/true if the filter finds a match, 0/false if none are found. 822 */ 823 static int __audit_filter_op(struct task_struct *tsk, 824 struct audit_context *ctx, 825 struct list_head *list, 826 struct audit_names *name, 827 unsigned long op) 828 { 829 struct audit_entry *e; 830 enum audit_state state; 831 832 list_for_each_entry_rcu(e, list, list) { 833 if (audit_in_mask(&e->rule, op) && 834 audit_filter_rules(tsk, &e->rule, ctx, name, 835 &state, false)) { 836 ctx->current_state = state; 837 return 1; 838 } 839 } 840 return 0; 841 } 842 843 /** 844 * audit_filter_uring - apply filters to an io_uring operation 845 * @tsk: associated task 846 * @ctx: audit context 847 */ 848 static void audit_filter_uring(struct task_struct *tsk, 849 struct audit_context *ctx) 850 { 851 if (auditd_test_task(tsk)) 852 return; 853 854 rcu_read_lock(); 855 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 856 NULL, ctx->uring_op); 857 rcu_read_unlock(); 858 } 859 860 /* At syscall exit time, this filter is called if the audit_state is 861 * not low enough that auditing cannot take place, but is also not 862 * high enough that we already know we have to write an audit record 863 * (i.e., the state is AUDIT_STATE_BUILD). 864 */ 865 static void audit_filter_syscall(struct task_struct *tsk, 866 struct audit_context *ctx) 867 { 868 if (auditd_test_task(tsk)) 869 return; 870 871 rcu_read_lock(); 872 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 873 NULL, ctx->major); 874 rcu_read_unlock(); 875 } 876 877 /* 878 * Given an audit_name check the inode hash table to see if they match. 879 * Called holding the rcu read lock to protect the use of audit_inode_hash 880 */ 881 static int audit_filter_inode_name(struct task_struct *tsk, 882 struct audit_names *n, 883 struct audit_context *ctx) { 884 int h = audit_hash_ino((u32)n->ino); 885 struct list_head *list = &audit_inode_hash[h]; 886 887 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 888 } 889 890 /* At syscall exit time, this filter is called if any audit_names have been 891 * collected during syscall processing. We only check rules in sublists at hash 892 * buckets applicable to the inode numbers in audit_names. 893 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 894 */ 895 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 896 { 897 struct audit_names *n; 898 899 if (auditd_test_task(tsk)) 900 return; 901 902 rcu_read_lock(); 903 904 list_for_each_entry(n, &ctx->names_list, list) { 905 if (audit_filter_inode_name(tsk, n, ctx)) 906 break; 907 } 908 rcu_read_unlock(); 909 } 910 911 static inline void audit_proctitle_free(struct audit_context *context) 912 { 913 kfree(context->proctitle.value); 914 context->proctitle.value = NULL; 915 context->proctitle.len = 0; 916 } 917 918 static inline void audit_free_module(struct audit_context *context) 919 { 920 if (context->type == AUDIT_KERN_MODULE) { 921 kfree(context->module.name); 922 context->module.name = NULL; 923 } 924 } 925 static inline void audit_free_names(struct audit_context *context) 926 { 927 struct audit_names *n, *next; 928 929 list_for_each_entry_safe(n, next, &context->names_list, list) { 930 list_del(&n->list); 931 if (n->name) 932 putname(n->name); 933 if (n->should_free) 934 kfree(n); 935 } 936 context->name_count = 0; 937 path_put(&context->pwd); 938 context->pwd.dentry = NULL; 939 context->pwd.mnt = NULL; 940 } 941 942 static inline void audit_free_aux(struct audit_context *context) 943 { 944 struct audit_aux_data *aux; 945 946 while ((aux = context->aux)) { 947 context->aux = aux->next; 948 kfree(aux); 949 } 950 context->aux = NULL; 951 while ((aux = context->aux_pids)) { 952 context->aux_pids = aux->next; 953 kfree(aux); 954 } 955 context->aux_pids = NULL; 956 } 957 958 /** 959 * audit_reset_context - reset a audit_context structure 960 * @ctx: the audit_context to reset 961 * 962 * All fields in the audit_context will be reset to an initial state, all 963 * references held by fields will be dropped, and private memory will be 964 * released. When this function returns the audit_context will be suitable 965 * for reuse, so long as the passed context is not NULL or a dummy context. 966 */ 967 static void audit_reset_context(struct audit_context *ctx) 968 { 969 if (!ctx) 970 return; 971 972 /* if ctx is non-null, reset the "ctx->context" regardless */ 973 ctx->context = AUDIT_CTX_UNUSED; 974 if (ctx->dummy) 975 return; 976 977 /* 978 * NOTE: It shouldn't matter in what order we release the fields, so 979 * release them in the order in which they appear in the struct; 980 * this gives us some hope of quickly making sure we are 981 * resetting the audit_context properly. 982 * 983 * Other things worth mentioning: 984 * - we don't reset "dummy" 985 * - we don't reset "state", we do reset "current_state" 986 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 987 * - much of this is likely overkill, but play it safe for now 988 * - we really need to work on improving the audit_context struct 989 */ 990 991 ctx->current_state = ctx->state; 992 ctx->serial = 0; 993 ctx->major = 0; 994 ctx->uring_op = 0; 995 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 996 memset(ctx->argv, 0, sizeof(ctx->argv)); 997 ctx->return_code = 0; 998 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 999 ctx->return_valid = AUDITSC_INVALID; 1000 audit_free_names(ctx); 1001 if (ctx->state != AUDIT_STATE_RECORD) { 1002 kfree(ctx->filterkey); 1003 ctx->filterkey = NULL; 1004 } 1005 audit_free_aux(ctx); 1006 kfree(ctx->sockaddr); 1007 ctx->sockaddr = NULL; 1008 ctx->sockaddr_len = 0; 1009 ctx->ppid = 0; 1010 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1011 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1012 ctx->personality = 0; 1013 ctx->arch = 0; 1014 ctx->target_pid = 0; 1015 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1016 ctx->target_sessionid = 0; 1017 ctx->target_sid = 0; 1018 ctx->target_comm[0] = '\0'; 1019 unroll_tree_refs(ctx, NULL, 0); 1020 WARN_ON(!list_empty(&ctx->killed_trees)); 1021 audit_free_module(ctx); 1022 ctx->fds[0] = -1; 1023 ctx->type = 0; /* reset last for audit_free_*() */ 1024 } 1025 1026 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1027 { 1028 struct audit_context *context; 1029 1030 context = kzalloc(sizeof(*context), GFP_KERNEL); 1031 if (!context) 1032 return NULL; 1033 context->context = AUDIT_CTX_UNUSED; 1034 context->state = state; 1035 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1036 INIT_LIST_HEAD(&context->killed_trees); 1037 INIT_LIST_HEAD(&context->names_list); 1038 context->fds[0] = -1; 1039 context->return_valid = AUDITSC_INVALID; 1040 return context; 1041 } 1042 1043 /** 1044 * audit_alloc - allocate an audit context block for a task 1045 * @tsk: task 1046 * 1047 * Filter on the task information and allocate a per-task audit context 1048 * if necessary. Doing so turns on system call auditing for the 1049 * specified task. This is called from copy_process, so no lock is 1050 * needed. 1051 */ 1052 int audit_alloc(struct task_struct *tsk) 1053 { 1054 struct audit_context *context; 1055 enum audit_state state; 1056 char *key = NULL; 1057 1058 if (likely(!audit_ever_enabled)) 1059 return 0; 1060 1061 state = audit_filter_task(tsk, &key); 1062 if (state == AUDIT_STATE_DISABLED) { 1063 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1064 return 0; 1065 } 1066 1067 if (!(context = audit_alloc_context(state))) { 1068 kfree(key); 1069 audit_log_lost("out of memory in audit_alloc"); 1070 return -ENOMEM; 1071 } 1072 context->filterkey = key; 1073 1074 audit_set_context(tsk, context); 1075 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1076 return 0; 1077 } 1078 1079 static inline void audit_free_context(struct audit_context *context) 1080 { 1081 /* resetting is extra work, but it is likely just noise */ 1082 audit_reset_context(context); 1083 audit_proctitle_free(context); 1084 free_tree_refs(context); 1085 kfree(context->filterkey); 1086 kfree(context); 1087 } 1088 1089 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1090 kuid_t auid, kuid_t uid, unsigned int sessionid, 1091 u32 sid, char *comm) 1092 { 1093 struct audit_buffer *ab; 1094 char *ctx = NULL; 1095 u32 len; 1096 int rc = 0; 1097 1098 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1099 if (!ab) 1100 return rc; 1101 1102 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1103 from_kuid(&init_user_ns, auid), 1104 from_kuid(&init_user_ns, uid), sessionid); 1105 if (sid) { 1106 if (security_secid_to_secctx(sid, &ctx, &len)) { 1107 audit_log_format(ab, " obj=(none)"); 1108 rc = 1; 1109 } else { 1110 audit_log_format(ab, " obj=%s", ctx); 1111 security_release_secctx(ctx, len); 1112 } 1113 } 1114 audit_log_format(ab, " ocomm="); 1115 audit_log_untrustedstring(ab, comm); 1116 audit_log_end(ab); 1117 1118 return rc; 1119 } 1120 1121 static void audit_log_execve_info(struct audit_context *context, 1122 struct audit_buffer **ab) 1123 { 1124 long len_max; 1125 long len_rem; 1126 long len_full; 1127 long len_buf; 1128 long len_abuf = 0; 1129 long len_tmp; 1130 bool require_data; 1131 bool encode; 1132 unsigned int iter; 1133 unsigned int arg; 1134 char *buf_head; 1135 char *buf; 1136 const char __user *p = (const char __user *)current->mm->arg_start; 1137 1138 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1139 * data we put in the audit record for this argument (see the 1140 * code below) ... at this point in time 96 is plenty */ 1141 char abuf[96]; 1142 1143 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1144 * current value of 7500 is not as important as the fact that it 1145 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1146 * room if we go over a little bit in the logging below */ 1147 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1148 len_max = MAX_EXECVE_AUDIT_LEN; 1149 1150 /* scratch buffer to hold the userspace args */ 1151 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1152 if (!buf_head) { 1153 audit_panic("out of memory for argv string"); 1154 return; 1155 } 1156 buf = buf_head; 1157 1158 audit_log_format(*ab, "argc=%d", context->execve.argc); 1159 1160 len_rem = len_max; 1161 len_buf = 0; 1162 len_full = 0; 1163 require_data = true; 1164 encode = false; 1165 iter = 0; 1166 arg = 0; 1167 do { 1168 /* NOTE: we don't ever want to trust this value for anything 1169 * serious, but the audit record format insists we 1170 * provide an argument length for really long arguments, 1171 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1172 * to use strncpy_from_user() to obtain this value for 1173 * recording in the log, although we don't use it 1174 * anywhere here to avoid a double-fetch problem */ 1175 if (len_full == 0) 1176 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1177 1178 /* read more data from userspace */ 1179 if (require_data) { 1180 /* can we make more room in the buffer? */ 1181 if (buf != buf_head) { 1182 memmove(buf_head, buf, len_buf); 1183 buf = buf_head; 1184 } 1185 1186 /* fetch as much as we can of the argument */ 1187 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1188 len_max - len_buf); 1189 if (len_tmp == -EFAULT) { 1190 /* unable to copy from userspace */ 1191 send_sig(SIGKILL, current, 0); 1192 goto out; 1193 } else if (len_tmp == (len_max - len_buf)) { 1194 /* buffer is not large enough */ 1195 require_data = true; 1196 /* NOTE: if we are going to span multiple 1197 * buffers force the encoding so we stand 1198 * a chance at a sane len_full value and 1199 * consistent record encoding */ 1200 encode = true; 1201 len_full = len_full * 2; 1202 p += len_tmp; 1203 } else { 1204 require_data = false; 1205 if (!encode) 1206 encode = audit_string_contains_control( 1207 buf, len_tmp); 1208 /* try to use a trusted value for len_full */ 1209 if (len_full < len_max) 1210 len_full = (encode ? 1211 len_tmp * 2 : len_tmp); 1212 p += len_tmp + 1; 1213 } 1214 len_buf += len_tmp; 1215 buf_head[len_buf] = '\0'; 1216 1217 /* length of the buffer in the audit record? */ 1218 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1219 } 1220 1221 /* write as much as we can to the audit log */ 1222 if (len_buf >= 0) { 1223 /* NOTE: some magic numbers here - basically if we 1224 * can't fit a reasonable amount of data into the 1225 * existing audit buffer, flush it and start with 1226 * a new buffer */ 1227 if ((sizeof(abuf) + 8) > len_rem) { 1228 len_rem = len_max; 1229 audit_log_end(*ab); 1230 *ab = audit_log_start(context, 1231 GFP_KERNEL, AUDIT_EXECVE); 1232 if (!*ab) 1233 goto out; 1234 } 1235 1236 /* create the non-arg portion of the arg record */ 1237 len_tmp = 0; 1238 if (require_data || (iter > 0) || 1239 ((len_abuf + sizeof(abuf)) > len_rem)) { 1240 if (iter == 0) { 1241 len_tmp += snprintf(&abuf[len_tmp], 1242 sizeof(abuf) - len_tmp, 1243 " a%d_len=%lu", 1244 arg, len_full); 1245 } 1246 len_tmp += snprintf(&abuf[len_tmp], 1247 sizeof(abuf) - len_tmp, 1248 " a%d[%d]=", arg, iter++); 1249 } else 1250 len_tmp += snprintf(&abuf[len_tmp], 1251 sizeof(abuf) - len_tmp, 1252 " a%d=", arg); 1253 WARN_ON(len_tmp >= sizeof(abuf)); 1254 abuf[sizeof(abuf) - 1] = '\0'; 1255 1256 /* log the arg in the audit record */ 1257 audit_log_format(*ab, "%s", abuf); 1258 len_rem -= len_tmp; 1259 len_tmp = len_buf; 1260 if (encode) { 1261 if (len_abuf > len_rem) 1262 len_tmp = len_rem / 2; /* encoding */ 1263 audit_log_n_hex(*ab, buf, len_tmp); 1264 len_rem -= len_tmp * 2; 1265 len_abuf -= len_tmp * 2; 1266 } else { 1267 if (len_abuf > len_rem) 1268 len_tmp = len_rem - 2; /* quotes */ 1269 audit_log_n_string(*ab, buf, len_tmp); 1270 len_rem -= len_tmp + 2; 1271 /* don't subtract the "2" because we still need 1272 * to add quotes to the remaining string */ 1273 len_abuf -= len_tmp; 1274 } 1275 len_buf -= len_tmp; 1276 buf += len_tmp; 1277 } 1278 1279 /* ready to move to the next argument? */ 1280 if ((len_buf == 0) && !require_data) { 1281 arg++; 1282 iter = 0; 1283 len_full = 0; 1284 require_data = true; 1285 encode = false; 1286 } 1287 } while (arg < context->execve.argc); 1288 1289 /* NOTE: the caller handles the final audit_log_end() call */ 1290 1291 out: 1292 kfree(buf_head); 1293 } 1294 1295 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1296 kernel_cap_t *cap) 1297 { 1298 if (cap_isclear(*cap)) { 1299 audit_log_format(ab, " %s=0", prefix); 1300 return; 1301 } 1302 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1303 } 1304 1305 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1306 { 1307 if (name->fcap_ver == -1) { 1308 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1309 return; 1310 } 1311 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1312 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1313 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1314 name->fcap.fE, name->fcap_ver, 1315 from_kuid(&init_user_ns, name->fcap.rootid)); 1316 } 1317 1318 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1319 { 1320 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1321 const struct timespec64 *tk = &context->time.tk_injoffset; 1322 static const char * const ntp_name[] = { 1323 "offset", 1324 "freq", 1325 "status", 1326 "tai", 1327 "tick", 1328 "adjust", 1329 }; 1330 int type; 1331 1332 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1333 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1334 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1335 if (!*ab) { 1336 *ab = audit_log_start(context, 1337 GFP_KERNEL, 1338 AUDIT_TIME_ADJNTPVAL); 1339 if (!*ab) 1340 return; 1341 } 1342 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1343 ntp_name[type], 1344 ntp->vals[type].oldval, 1345 ntp->vals[type].newval); 1346 audit_log_end(*ab); 1347 *ab = NULL; 1348 } 1349 } 1350 } 1351 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1352 if (!*ab) { 1353 *ab = audit_log_start(context, GFP_KERNEL, 1354 AUDIT_TIME_INJOFFSET); 1355 if (!*ab) 1356 return; 1357 } 1358 audit_log_format(*ab, "sec=%lli nsec=%li", 1359 (long long)tk->tv_sec, tk->tv_nsec); 1360 audit_log_end(*ab); 1361 *ab = NULL; 1362 } 1363 } 1364 1365 static void show_special(struct audit_context *context, int *call_panic) 1366 { 1367 struct audit_buffer *ab; 1368 int i; 1369 1370 ab = audit_log_start(context, GFP_KERNEL, context->type); 1371 if (!ab) 1372 return; 1373 1374 switch (context->type) { 1375 case AUDIT_SOCKETCALL: { 1376 int nargs = context->socketcall.nargs; 1377 1378 audit_log_format(ab, "nargs=%d", nargs); 1379 for (i = 0; i < nargs; i++) 1380 audit_log_format(ab, " a%d=%lx", i, 1381 context->socketcall.args[i]); 1382 break; } 1383 case AUDIT_IPC: { 1384 u32 osid = context->ipc.osid; 1385 1386 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1387 from_kuid(&init_user_ns, context->ipc.uid), 1388 from_kgid(&init_user_ns, context->ipc.gid), 1389 context->ipc.mode); 1390 if (osid) { 1391 char *ctx = NULL; 1392 u32 len; 1393 1394 if (security_secid_to_secctx(osid, &ctx, &len)) { 1395 audit_log_format(ab, " osid=%u", osid); 1396 *call_panic = 1; 1397 } else { 1398 audit_log_format(ab, " obj=%s", ctx); 1399 security_release_secctx(ctx, len); 1400 } 1401 } 1402 if (context->ipc.has_perm) { 1403 audit_log_end(ab); 1404 ab = audit_log_start(context, GFP_KERNEL, 1405 AUDIT_IPC_SET_PERM); 1406 if (unlikely(!ab)) 1407 return; 1408 audit_log_format(ab, 1409 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1410 context->ipc.qbytes, 1411 context->ipc.perm_uid, 1412 context->ipc.perm_gid, 1413 context->ipc.perm_mode); 1414 } 1415 break; } 1416 case AUDIT_MQ_OPEN: 1417 audit_log_format(ab, 1418 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1419 "mq_msgsize=%ld mq_curmsgs=%ld", 1420 context->mq_open.oflag, context->mq_open.mode, 1421 context->mq_open.attr.mq_flags, 1422 context->mq_open.attr.mq_maxmsg, 1423 context->mq_open.attr.mq_msgsize, 1424 context->mq_open.attr.mq_curmsgs); 1425 break; 1426 case AUDIT_MQ_SENDRECV: 1427 audit_log_format(ab, 1428 "mqdes=%d msg_len=%zd msg_prio=%u " 1429 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1430 context->mq_sendrecv.mqdes, 1431 context->mq_sendrecv.msg_len, 1432 context->mq_sendrecv.msg_prio, 1433 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1434 context->mq_sendrecv.abs_timeout.tv_nsec); 1435 break; 1436 case AUDIT_MQ_NOTIFY: 1437 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1438 context->mq_notify.mqdes, 1439 context->mq_notify.sigev_signo); 1440 break; 1441 case AUDIT_MQ_GETSETATTR: { 1442 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1443 1444 audit_log_format(ab, 1445 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1446 "mq_curmsgs=%ld ", 1447 context->mq_getsetattr.mqdes, 1448 attr->mq_flags, attr->mq_maxmsg, 1449 attr->mq_msgsize, attr->mq_curmsgs); 1450 break; } 1451 case AUDIT_CAPSET: 1452 audit_log_format(ab, "pid=%d", context->capset.pid); 1453 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1454 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1455 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1456 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1457 break; 1458 case AUDIT_MMAP: 1459 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1460 context->mmap.flags); 1461 break; 1462 case AUDIT_OPENAT2: 1463 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1464 context->openat2.flags, 1465 context->openat2.mode, 1466 context->openat2.resolve); 1467 break; 1468 case AUDIT_EXECVE: 1469 audit_log_execve_info(context, &ab); 1470 break; 1471 case AUDIT_KERN_MODULE: 1472 audit_log_format(ab, "name="); 1473 if (context->module.name) { 1474 audit_log_untrustedstring(ab, context->module.name); 1475 } else 1476 audit_log_format(ab, "(null)"); 1477 1478 break; 1479 case AUDIT_TIME_ADJNTPVAL: 1480 case AUDIT_TIME_INJOFFSET: 1481 /* this call deviates from the rest, eating the buffer */ 1482 audit_log_time(context, &ab); 1483 break; 1484 } 1485 audit_log_end(ab); 1486 } 1487 1488 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1489 { 1490 char *end = proctitle + len - 1; 1491 1492 while (end > proctitle && !isprint(*end)) 1493 end--; 1494 1495 /* catch the case where proctitle is only 1 non-print character */ 1496 len = end - proctitle + 1; 1497 len -= isprint(proctitle[len-1]) == 0; 1498 return len; 1499 } 1500 1501 /* 1502 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1503 * @context: audit_context for the task 1504 * @n: audit_names structure with reportable details 1505 * @path: optional path to report instead of audit_names->name 1506 * @record_num: record number to report when handling a list of names 1507 * @call_panic: optional pointer to int that will be updated if secid fails 1508 */ 1509 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1510 const struct path *path, int record_num, int *call_panic) 1511 { 1512 struct audit_buffer *ab; 1513 1514 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1515 if (!ab) 1516 return; 1517 1518 audit_log_format(ab, "item=%d", record_num); 1519 1520 if (path) 1521 audit_log_d_path(ab, " name=", path); 1522 else if (n->name) { 1523 switch (n->name_len) { 1524 case AUDIT_NAME_FULL: 1525 /* log the full path */ 1526 audit_log_format(ab, " name="); 1527 audit_log_untrustedstring(ab, n->name->name); 1528 break; 1529 case 0: 1530 /* name was specified as a relative path and the 1531 * directory component is the cwd 1532 */ 1533 if (context->pwd.dentry && context->pwd.mnt) 1534 audit_log_d_path(ab, " name=", &context->pwd); 1535 else 1536 audit_log_format(ab, " name=(null)"); 1537 break; 1538 default: 1539 /* log the name's directory component */ 1540 audit_log_format(ab, " name="); 1541 audit_log_n_untrustedstring(ab, n->name->name, 1542 n->name_len); 1543 } 1544 } else 1545 audit_log_format(ab, " name=(null)"); 1546 1547 if (n->ino != AUDIT_INO_UNSET) 1548 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1549 n->ino, 1550 MAJOR(n->dev), 1551 MINOR(n->dev), 1552 n->mode, 1553 from_kuid(&init_user_ns, n->uid), 1554 from_kgid(&init_user_ns, n->gid), 1555 MAJOR(n->rdev), 1556 MINOR(n->rdev)); 1557 if (n->osid != 0) { 1558 char *ctx = NULL; 1559 u32 len; 1560 1561 if (security_secid_to_secctx( 1562 n->osid, &ctx, &len)) { 1563 audit_log_format(ab, " osid=%u", n->osid); 1564 if (call_panic) 1565 *call_panic = 2; 1566 } else { 1567 audit_log_format(ab, " obj=%s", ctx); 1568 security_release_secctx(ctx, len); 1569 } 1570 } 1571 1572 /* log the audit_names record type */ 1573 switch (n->type) { 1574 case AUDIT_TYPE_NORMAL: 1575 audit_log_format(ab, " nametype=NORMAL"); 1576 break; 1577 case AUDIT_TYPE_PARENT: 1578 audit_log_format(ab, " nametype=PARENT"); 1579 break; 1580 case AUDIT_TYPE_CHILD_DELETE: 1581 audit_log_format(ab, " nametype=DELETE"); 1582 break; 1583 case AUDIT_TYPE_CHILD_CREATE: 1584 audit_log_format(ab, " nametype=CREATE"); 1585 break; 1586 default: 1587 audit_log_format(ab, " nametype=UNKNOWN"); 1588 break; 1589 } 1590 1591 audit_log_fcaps(ab, n); 1592 audit_log_end(ab); 1593 } 1594 1595 static void audit_log_proctitle(void) 1596 { 1597 int res; 1598 char *buf; 1599 char *msg = "(null)"; 1600 int len = strlen(msg); 1601 struct audit_context *context = audit_context(); 1602 struct audit_buffer *ab; 1603 1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1605 if (!ab) 1606 return; /* audit_panic or being filtered */ 1607 1608 audit_log_format(ab, "proctitle="); 1609 1610 /* Not cached */ 1611 if (!context->proctitle.value) { 1612 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1613 if (!buf) 1614 goto out; 1615 /* Historically called this from procfs naming */ 1616 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1617 if (res == 0) { 1618 kfree(buf); 1619 goto out; 1620 } 1621 res = audit_proctitle_rtrim(buf, res); 1622 if (res == 0) { 1623 kfree(buf); 1624 goto out; 1625 } 1626 context->proctitle.value = buf; 1627 context->proctitle.len = res; 1628 } 1629 msg = context->proctitle.value; 1630 len = context->proctitle.len; 1631 out: 1632 audit_log_n_untrustedstring(ab, msg, len); 1633 audit_log_end(ab); 1634 } 1635 1636 /** 1637 * audit_log_uring - generate a AUDIT_URINGOP record 1638 * @ctx: the audit context 1639 */ 1640 static void audit_log_uring(struct audit_context *ctx) 1641 { 1642 struct audit_buffer *ab; 1643 const struct cred *cred; 1644 1645 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1646 if (!ab) 1647 return; 1648 cred = current_cred(); 1649 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1650 if (ctx->return_valid != AUDITSC_INVALID) 1651 audit_log_format(ab, " success=%s exit=%ld", 1652 (ctx->return_valid == AUDITSC_SUCCESS ? 1653 "yes" : "no"), 1654 ctx->return_code); 1655 audit_log_format(ab, 1656 " items=%d" 1657 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1658 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1659 ctx->name_count, 1660 task_ppid_nr(current), task_tgid_nr(current), 1661 from_kuid(&init_user_ns, cred->uid), 1662 from_kgid(&init_user_ns, cred->gid), 1663 from_kuid(&init_user_ns, cred->euid), 1664 from_kuid(&init_user_ns, cred->suid), 1665 from_kuid(&init_user_ns, cred->fsuid), 1666 from_kgid(&init_user_ns, cred->egid), 1667 from_kgid(&init_user_ns, cred->sgid), 1668 from_kgid(&init_user_ns, cred->fsgid)); 1669 audit_log_task_context(ab); 1670 audit_log_key(ab, ctx->filterkey); 1671 audit_log_end(ab); 1672 } 1673 1674 static void audit_log_exit(void) 1675 { 1676 int i, call_panic = 0; 1677 struct audit_context *context = audit_context(); 1678 struct audit_buffer *ab; 1679 struct audit_aux_data *aux; 1680 struct audit_names *n; 1681 1682 context->personality = current->personality; 1683 1684 switch (context->context) { 1685 case AUDIT_CTX_SYSCALL: 1686 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1687 if (!ab) 1688 return; 1689 audit_log_format(ab, "arch=%x syscall=%d", 1690 context->arch, context->major); 1691 if (context->personality != PER_LINUX) 1692 audit_log_format(ab, " per=%lx", context->personality); 1693 if (context->return_valid != AUDITSC_INVALID) 1694 audit_log_format(ab, " success=%s exit=%ld", 1695 (context->return_valid == AUDITSC_SUCCESS ? 1696 "yes" : "no"), 1697 context->return_code); 1698 audit_log_format(ab, 1699 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1700 context->argv[0], 1701 context->argv[1], 1702 context->argv[2], 1703 context->argv[3], 1704 context->name_count); 1705 audit_log_task_info(ab); 1706 audit_log_key(ab, context->filterkey); 1707 audit_log_end(ab); 1708 break; 1709 case AUDIT_CTX_URING: 1710 audit_log_uring(context); 1711 break; 1712 default: 1713 BUG(); 1714 break; 1715 } 1716 1717 for (aux = context->aux; aux; aux = aux->next) { 1718 1719 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1720 if (!ab) 1721 continue; /* audit_panic has been called */ 1722 1723 switch (aux->type) { 1724 1725 case AUDIT_BPRM_FCAPS: { 1726 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1727 1728 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1729 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1730 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1731 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1732 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1733 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1734 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1735 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1736 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1737 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1738 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1739 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1740 audit_log_format(ab, " frootid=%d", 1741 from_kuid(&init_user_ns, 1742 axs->fcap.rootid)); 1743 break; } 1744 1745 } 1746 audit_log_end(ab); 1747 } 1748 1749 if (context->type) 1750 show_special(context, &call_panic); 1751 1752 if (context->fds[0] >= 0) { 1753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1754 if (ab) { 1755 audit_log_format(ab, "fd0=%d fd1=%d", 1756 context->fds[0], context->fds[1]); 1757 audit_log_end(ab); 1758 } 1759 } 1760 1761 if (context->sockaddr_len) { 1762 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1763 if (ab) { 1764 audit_log_format(ab, "saddr="); 1765 audit_log_n_hex(ab, (void *)context->sockaddr, 1766 context->sockaddr_len); 1767 audit_log_end(ab); 1768 } 1769 } 1770 1771 for (aux = context->aux_pids; aux; aux = aux->next) { 1772 struct audit_aux_data_pids *axs = (void *)aux; 1773 1774 for (i = 0; i < axs->pid_count; i++) 1775 if (audit_log_pid_context(context, axs->target_pid[i], 1776 axs->target_auid[i], 1777 axs->target_uid[i], 1778 axs->target_sessionid[i], 1779 axs->target_sid[i], 1780 axs->target_comm[i])) 1781 call_panic = 1; 1782 } 1783 1784 if (context->target_pid && 1785 audit_log_pid_context(context, context->target_pid, 1786 context->target_auid, context->target_uid, 1787 context->target_sessionid, 1788 context->target_sid, context->target_comm)) 1789 call_panic = 1; 1790 1791 if (context->pwd.dentry && context->pwd.mnt) { 1792 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1793 if (ab) { 1794 audit_log_d_path(ab, "cwd=", &context->pwd); 1795 audit_log_end(ab); 1796 } 1797 } 1798 1799 i = 0; 1800 list_for_each_entry(n, &context->names_list, list) { 1801 if (n->hidden) 1802 continue; 1803 audit_log_name(context, n, NULL, i++, &call_panic); 1804 } 1805 1806 if (context->context == AUDIT_CTX_SYSCALL) 1807 audit_log_proctitle(); 1808 1809 /* Send end of event record to help user space know we are finished */ 1810 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1811 if (ab) 1812 audit_log_end(ab); 1813 if (call_panic) 1814 audit_panic("error in audit_log_exit()"); 1815 } 1816 1817 /** 1818 * __audit_free - free a per-task audit context 1819 * @tsk: task whose audit context block to free 1820 * 1821 * Called from copy_process, do_exit, and the io_uring code 1822 */ 1823 void __audit_free(struct task_struct *tsk) 1824 { 1825 struct audit_context *context = tsk->audit_context; 1826 1827 if (!context) 1828 return; 1829 1830 /* this may generate CONFIG_CHANGE records */ 1831 if (!list_empty(&context->killed_trees)) 1832 audit_kill_trees(context); 1833 1834 /* We are called either by do_exit() or the fork() error handling code; 1835 * in the former case tsk == current and in the latter tsk is a 1836 * random task_struct that doesn't have any meaningful data we 1837 * need to log via audit_log_exit(). 1838 */ 1839 if (tsk == current && !context->dummy) { 1840 context->return_valid = AUDITSC_INVALID; 1841 context->return_code = 0; 1842 if (context->context == AUDIT_CTX_SYSCALL) { 1843 audit_filter_syscall(tsk, context); 1844 audit_filter_inodes(tsk, context); 1845 if (context->current_state == AUDIT_STATE_RECORD) 1846 audit_log_exit(); 1847 } else if (context->context == AUDIT_CTX_URING) { 1848 /* TODO: verify this case is real and valid */ 1849 audit_filter_uring(tsk, context); 1850 audit_filter_inodes(tsk, context); 1851 if (context->current_state == AUDIT_STATE_RECORD) 1852 audit_log_uring(context); 1853 } 1854 } 1855 1856 audit_set_context(tsk, NULL); 1857 audit_free_context(context); 1858 } 1859 1860 /** 1861 * audit_return_fixup - fixup the return codes in the audit_context 1862 * @ctx: the audit_context 1863 * @success: true/false value to indicate if the operation succeeded or not 1864 * @code: operation return code 1865 * 1866 * We need to fixup the return code in the audit logs if the actual return 1867 * codes are later going to be fixed by the arch specific signal handlers. 1868 */ 1869 static void audit_return_fixup(struct audit_context *ctx, 1870 int success, long code) 1871 { 1872 /* 1873 * This is actually a test for: 1874 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1875 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1876 * 1877 * but is faster than a bunch of || 1878 */ 1879 if (unlikely(code <= -ERESTARTSYS) && 1880 (code >= -ERESTART_RESTARTBLOCK) && 1881 (code != -ENOIOCTLCMD)) 1882 ctx->return_code = -EINTR; 1883 else 1884 ctx->return_code = code; 1885 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1886 } 1887 1888 /** 1889 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1890 * @op: the io_uring opcode 1891 * 1892 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1893 * operations. This function should only ever be called from 1894 * audit_uring_entry() as we rely on the audit context checking present in that 1895 * function. 1896 */ 1897 void __audit_uring_entry(u8 op) 1898 { 1899 struct audit_context *ctx = audit_context(); 1900 1901 if (ctx->state == AUDIT_STATE_DISABLED) 1902 return; 1903 1904 /* 1905 * NOTE: It's possible that we can be called from the process' context 1906 * before it returns to userspace, and before audit_syscall_exit() 1907 * is called. In this case there is not much to do, just record 1908 * the io_uring details and return. 1909 */ 1910 ctx->uring_op = op; 1911 if (ctx->context == AUDIT_CTX_SYSCALL) 1912 return; 1913 1914 ctx->dummy = !audit_n_rules; 1915 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1916 ctx->prio = 0; 1917 1918 ctx->context = AUDIT_CTX_URING; 1919 ctx->current_state = ctx->state; 1920 ktime_get_coarse_real_ts64(&ctx->ctime); 1921 } 1922 1923 /** 1924 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1925 * @success: true/false value to indicate if the operation succeeded or not 1926 * @code: operation return code 1927 * 1928 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1929 * operations. This function should only ever be called from 1930 * audit_uring_exit() as we rely on the audit context checking present in that 1931 * function. 1932 */ 1933 void __audit_uring_exit(int success, long code) 1934 { 1935 struct audit_context *ctx = audit_context(); 1936 1937 if (ctx->dummy) { 1938 if (ctx->context != AUDIT_CTX_URING) 1939 return; 1940 goto out; 1941 } 1942 1943 audit_return_fixup(ctx, success, code); 1944 if (ctx->context == AUDIT_CTX_SYSCALL) { 1945 /* 1946 * NOTE: See the note in __audit_uring_entry() about the case 1947 * where we may be called from process context before we 1948 * return to userspace via audit_syscall_exit(). In this 1949 * case we simply emit a URINGOP record and bail, the 1950 * normal syscall exit handling will take care of 1951 * everything else. 1952 * It is also worth mentioning that when we are called, 1953 * the current process creds may differ from the creds 1954 * used during the normal syscall processing; keep that 1955 * in mind if/when we move the record generation code. 1956 */ 1957 1958 /* 1959 * We need to filter on the syscall info here to decide if we 1960 * should emit a URINGOP record. I know it seems odd but this 1961 * solves the problem where users have a filter to block *all* 1962 * syscall records in the "exit" filter; we want to preserve 1963 * the behavior here. 1964 */ 1965 audit_filter_syscall(current, ctx); 1966 if (ctx->current_state != AUDIT_STATE_RECORD) 1967 audit_filter_uring(current, ctx); 1968 audit_filter_inodes(current, ctx); 1969 if (ctx->current_state != AUDIT_STATE_RECORD) 1970 return; 1971 1972 audit_log_uring(ctx); 1973 return; 1974 } 1975 1976 /* this may generate CONFIG_CHANGE records */ 1977 if (!list_empty(&ctx->killed_trees)) 1978 audit_kill_trees(ctx); 1979 1980 /* run through both filters to ensure we set the filterkey properly */ 1981 audit_filter_uring(current, ctx); 1982 audit_filter_inodes(current, ctx); 1983 if (ctx->current_state != AUDIT_STATE_RECORD) 1984 goto out; 1985 audit_log_exit(); 1986 1987 out: 1988 audit_reset_context(ctx); 1989 } 1990 1991 /** 1992 * __audit_syscall_entry - fill in an audit record at syscall entry 1993 * @major: major syscall type (function) 1994 * @a1: additional syscall register 1 1995 * @a2: additional syscall register 2 1996 * @a3: additional syscall register 3 1997 * @a4: additional syscall register 4 1998 * 1999 * Fill in audit context at syscall entry. This only happens if the 2000 * audit context was created when the task was created and the state or 2001 * filters demand the audit context be built. If the state from the 2002 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2003 * then the record will be written at syscall exit time (otherwise, it 2004 * will only be written if another part of the kernel requests that it 2005 * be written). 2006 */ 2007 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2008 unsigned long a3, unsigned long a4) 2009 { 2010 struct audit_context *context = audit_context(); 2011 enum audit_state state; 2012 2013 if (!audit_enabled || !context) 2014 return; 2015 2016 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2017 WARN_ON(context->name_count); 2018 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2019 audit_panic("unrecoverable error in audit_syscall_entry()"); 2020 return; 2021 } 2022 2023 state = context->state; 2024 if (state == AUDIT_STATE_DISABLED) 2025 return; 2026 2027 context->dummy = !audit_n_rules; 2028 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2029 context->prio = 0; 2030 if (auditd_test_task(current)) 2031 return; 2032 } 2033 2034 context->arch = syscall_get_arch(current); 2035 context->major = major; 2036 context->argv[0] = a1; 2037 context->argv[1] = a2; 2038 context->argv[2] = a3; 2039 context->argv[3] = a4; 2040 context->context = AUDIT_CTX_SYSCALL; 2041 context->current_state = state; 2042 ktime_get_coarse_real_ts64(&context->ctime); 2043 } 2044 2045 /** 2046 * __audit_syscall_exit - deallocate audit context after a system call 2047 * @success: success value of the syscall 2048 * @return_code: return value of the syscall 2049 * 2050 * Tear down after system call. If the audit context has been marked as 2051 * auditable (either because of the AUDIT_STATE_RECORD state from 2052 * filtering, or because some other part of the kernel wrote an audit 2053 * message), then write out the syscall information. In call cases, 2054 * free the names stored from getname(). 2055 */ 2056 void __audit_syscall_exit(int success, long return_code) 2057 { 2058 struct audit_context *context = audit_context(); 2059 2060 if (!context || context->dummy || 2061 context->context != AUDIT_CTX_SYSCALL) 2062 goto out; 2063 2064 /* this may generate CONFIG_CHANGE records */ 2065 if (!list_empty(&context->killed_trees)) 2066 audit_kill_trees(context); 2067 2068 audit_return_fixup(context, success, return_code); 2069 /* run through both filters to ensure we set the filterkey properly */ 2070 audit_filter_syscall(current, context); 2071 audit_filter_inodes(current, context); 2072 if (context->current_state != AUDIT_STATE_RECORD) 2073 goto out; 2074 2075 audit_log_exit(); 2076 2077 out: 2078 audit_reset_context(context); 2079 } 2080 2081 static inline void handle_one(const struct inode *inode) 2082 { 2083 struct audit_context *context; 2084 struct audit_tree_refs *p; 2085 struct audit_chunk *chunk; 2086 int count; 2087 2088 if (likely(!inode->i_fsnotify_marks)) 2089 return; 2090 context = audit_context(); 2091 p = context->trees; 2092 count = context->tree_count; 2093 rcu_read_lock(); 2094 chunk = audit_tree_lookup(inode); 2095 rcu_read_unlock(); 2096 if (!chunk) 2097 return; 2098 if (likely(put_tree_ref(context, chunk))) 2099 return; 2100 if (unlikely(!grow_tree_refs(context))) { 2101 pr_warn("out of memory, audit has lost a tree reference\n"); 2102 audit_set_auditable(context); 2103 audit_put_chunk(chunk); 2104 unroll_tree_refs(context, p, count); 2105 return; 2106 } 2107 put_tree_ref(context, chunk); 2108 } 2109 2110 static void handle_path(const struct dentry *dentry) 2111 { 2112 struct audit_context *context; 2113 struct audit_tree_refs *p; 2114 const struct dentry *d, *parent; 2115 struct audit_chunk *drop; 2116 unsigned long seq; 2117 int count; 2118 2119 context = audit_context(); 2120 p = context->trees; 2121 count = context->tree_count; 2122 retry: 2123 drop = NULL; 2124 d = dentry; 2125 rcu_read_lock(); 2126 seq = read_seqbegin(&rename_lock); 2127 for(;;) { 2128 struct inode *inode = d_backing_inode(d); 2129 2130 if (inode && unlikely(inode->i_fsnotify_marks)) { 2131 struct audit_chunk *chunk; 2132 2133 chunk = audit_tree_lookup(inode); 2134 if (chunk) { 2135 if (unlikely(!put_tree_ref(context, chunk))) { 2136 drop = chunk; 2137 break; 2138 } 2139 } 2140 } 2141 parent = d->d_parent; 2142 if (parent == d) 2143 break; 2144 d = parent; 2145 } 2146 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2147 rcu_read_unlock(); 2148 if (!drop) { 2149 /* just a race with rename */ 2150 unroll_tree_refs(context, p, count); 2151 goto retry; 2152 } 2153 audit_put_chunk(drop); 2154 if (grow_tree_refs(context)) { 2155 /* OK, got more space */ 2156 unroll_tree_refs(context, p, count); 2157 goto retry; 2158 } 2159 /* too bad */ 2160 pr_warn("out of memory, audit has lost a tree reference\n"); 2161 unroll_tree_refs(context, p, count); 2162 audit_set_auditable(context); 2163 return; 2164 } 2165 rcu_read_unlock(); 2166 } 2167 2168 static struct audit_names *audit_alloc_name(struct audit_context *context, 2169 unsigned char type) 2170 { 2171 struct audit_names *aname; 2172 2173 if (context->name_count < AUDIT_NAMES) { 2174 aname = &context->preallocated_names[context->name_count]; 2175 memset(aname, 0, sizeof(*aname)); 2176 } else { 2177 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2178 if (!aname) 2179 return NULL; 2180 aname->should_free = true; 2181 } 2182 2183 aname->ino = AUDIT_INO_UNSET; 2184 aname->type = type; 2185 list_add_tail(&aname->list, &context->names_list); 2186 2187 context->name_count++; 2188 if (!context->pwd.dentry) 2189 get_fs_pwd(current->fs, &context->pwd); 2190 return aname; 2191 } 2192 2193 /** 2194 * __audit_reusename - fill out filename with info from existing entry 2195 * @uptr: userland ptr to pathname 2196 * 2197 * Search the audit_names list for the current audit context. If there is an 2198 * existing entry with a matching "uptr" then return the filename 2199 * associated with that audit_name. If not, return NULL. 2200 */ 2201 struct filename * 2202 __audit_reusename(const __user char *uptr) 2203 { 2204 struct audit_context *context = audit_context(); 2205 struct audit_names *n; 2206 2207 list_for_each_entry(n, &context->names_list, list) { 2208 if (!n->name) 2209 continue; 2210 if (n->name->uptr == uptr) { 2211 n->name->refcnt++; 2212 return n->name; 2213 } 2214 } 2215 return NULL; 2216 } 2217 2218 /** 2219 * __audit_getname - add a name to the list 2220 * @name: name to add 2221 * 2222 * Add a name to the list of audit names for this context. 2223 * Called from fs/namei.c:getname(). 2224 */ 2225 void __audit_getname(struct filename *name) 2226 { 2227 struct audit_context *context = audit_context(); 2228 struct audit_names *n; 2229 2230 if (context->context == AUDIT_CTX_UNUSED) 2231 return; 2232 2233 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2234 if (!n) 2235 return; 2236 2237 n->name = name; 2238 n->name_len = AUDIT_NAME_FULL; 2239 name->aname = n; 2240 name->refcnt++; 2241 } 2242 2243 static inline int audit_copy_fcaps(struct audit_names *name, 2244 const struct dentry *dentry) 2245 { 2246 struct cpu_vfs_cap_data caps; 2247 int rc; 2248 2249 if (!dentry) 2250 return 0; 2251 2252 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2253 if (rc) 2254 return rc; 2255 2256 name->fcap.permitted = caps.permitted; 2257 name->fcap.inheritable = caps.inheritable; 2258 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2259 name->fcap.rootid = caps.rootid; 2260 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2261 VFS_CAP_REVISION_SHIFT; 2262 2263 return 0; 2264 } 2265 2266 /* Copy inode data into an audit_names. */ 2267 static void audit_copy_inode(struct audit_names *name, 2268 const struct dentry *dentry, 2269 struct inode *inode, unsigned int flags) 2270 { 2271 name->ino = inode->i_ino; 2272 name->dev = inode->i_sb->s_dev; 2273 name->mode = inode->i_mode; 2274 name->uid = inode->i_uid; 2275 name->gid = inode->i_gid; 2276 name->rdev = inode->i_rdev; 2277 security_inode_getsecid(inode, &name->osid); 2278 if (flags & AUDIT_INODE_NOEVAL) { 2279 name->fcap_ver = -1; 2280 return; 2281 } 2282 audit_copy_fcaps(name, dentry); 2283 } 2284 2285 /** 2286 * __audit_inode - store the inode and device from a lookup 2287 * @name: name being audited 2288 * @dentry: dentry being audited 2289 * @flags: attributes for this particular entry 2290 */ 2291 void __audit_inode(struct filename *name, const struct dentry *dentry, 2292 unsigned int flags) 2293 { 2294 struct audit_context *context = audit_context(); 2295 struct inode *inode = d_backing_inode(dentry); 2296 struct audit_names *n; 2297 bool parent = flags & AUDIT_INODE_PARENT; 2298 struct audit_entry *e; 2299 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2300 int i; 2301 2302 if (context->context == AUDIT_CTX_UNUSED) 2303 return; 2304 2305 rcu_read_lock(); 2306 list_for_each_entry_rcu(e, list, list) { 2307 for (i = 0; i < e->rule.field_count; i++) { 2308 struct audit_field *f = &e->rule.fields[i]; 2309 2310 if (f->type == AUDIT_FSTYPE 2311 && audit_comparator(inode->i_sb->s_magic, 2312 f->op, f->val) 2313 && e->rule.action == AUDIT_NEVER) { 2314 rcu_read_unlock(); 2315 return; 2316 } 2317 } 2318 } 2319 rcu_read_unlock(); 2320 2321 if (!name) 2322 goto out_alloc; 2323 2324 /* 2325 * If we have a pointer to an audit_names entry already, then we can 2326 * just use it directly if the type is correct. 2327 */ 2328 n = name->aname; 2329 if (n) { 2330 if (parent) { 2331 if (n->type == AUDIT_TYPE_PARENT || 2332 n->type == AUDIT_TYPE_UNKNOWN) 2333 goto out; 2334 } else { 2335 if (n->type != AUDIT_TYPE_PARENT) 2336 goto out; 2337 } 2338 } 2339 2340 list_for_each_entry_reverse(n, &context->names_list, list) { 2341 if (n->ino) { 2342 /* valid inode number, use that for the comparison */ 2343 if (n->ino != inode->i_ino || 2344 n->dev != inode->i_sb->s_dev) 2345 continue; 2346 } else if (n->name) { 2347 /* inode number has not been set, check the name */ 2348 if (strcmp(n->name->name, name->name)) 2349 continue; 2350 } else 2351 /* no inode and no name (?!) ... this is odd ... */ 2352 continue; 2353 2354 /* match the correct record type */ 2355 if (parent) { 2356 if (n->type == AUDIT_TYPE_PARENT || 2357 n->type == AUDIT_TYPE_UNKNOWN) 2358 goto out; 2359 } else { 2360 if (n->type != AUDIT_TYPE_PARENT) 2361 goto out; 2362 } 2363 } 2364 2365 out_alloc: 2366 /* unable to find an entry with both a matching name and type */ 2367 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2368 if (!n) 2369 return; 2370 if (name) { 2371 n->name = name; 2372 name->refcnt++; 2373 } 2374 2375 out: 2376 if (parent) { 2377 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2378 n->type = AUDIT_TYPE_PARENT; 2379 if (flags & AUDIT_INODE_HIDDEN) 2380 n->hidden = true; 2381 } else { 2382 n->name_len = AUDIT_NAME_FULL; 2383 n->type = AUDIT_TYPE_NORMAL; 2384 } 2385 handle_path(dentry); 2386 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2387 } 2388 2389 void __audit_file(const struct file *file) 2390 { 2391 __audit_inode(NULL, file->f_path.dentry, 0); 2392 } 2393 2394 /** 2395 * __audit_inode_child - collect inode info for created/removed objects 2396 * @parent: inode of dentry parent 2397 * @dentry: dentry being audited 2398 * @type: AUDIT_TYPE_* value that we're looking for 2399 * 2400 * For syscalls that create or remove filesystem objects, audit_inode 2401 * can only collect information for the filesystem object's parent. 2402 * This call updates the audit context with the child's information. 2403 * Syscalls that create a new filesystem object must be hooked after 2404 * the object is created. Syscalls that remove a filesystem object 2405 * must be hooked prior, in order to capture the target inode during 2406 * unsuccessful attempts. 2407 */ 2408 void __audit_inode_child(struct inode *parent, 2409 const struct dentry *dentry, 2410 const unsigned char type) 2411 { 2412 struct audit_context *context = audit_context(); 2413 struct inode *inode = d_backing_inode(dentry); 2414 const struct qstr *dname = &dentry->d_name; 2415 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2416 struct audit_entry *e; 2417 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2418 int i; 2419 2420 if (context->context == AUDIT_CTX_UNUSED) 2421 return; 2422 2423 rcu_read_lock(); 2424 list_for_each_entry_rcu(e, list, list) { 2425 for (i = 0; i < e->rule.field_count; i++) { 2426 struct audit_field *f = &e->rule.fields[i]; 2427 2428 if (f->type == AUDIT_FSTYPE 2429 && audit_comparator(parent->i_sb->s_magic, 2430 f->op, f->val) 2431 && e->rule.action == AUDIT_NEVER) { 2432 rcu_read_unlock(); 2433 return; 2434 } 2435 } 2436 } 2437 rcu_read_unlock(); 2438 2439 if (inode) 2440 handle_one(inode); 2441 2442 /* look for a parent entry first */ 2443 list_for_each_entry(n, &context->names_list, list) { 2444 if (!n->name || 2445 (n->type != AUDIT_TYPE_PARENT && 2446 n->type != AUDIT_TYPE_UNKNOWN)) 2447 continue; 2448 2449 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2450 !audit_compare_dname_path(dname, 2451 n->name->name, n->name_len)) { 2452 if (n->type == AUDIT_TYPE_UNKNOWN) 2453 n->type = AUDIT_TYPE_PARENT; 2454 found_parent = n; 2455 break; 2456 } 2457 } 2458 2459 /* is there a matching child entry? */ 2460 list_for_each_entry(n, &context->names_list, list) { 2461 /* can only match entries that have a name */ 2462 if (!n->name || 2463 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2464 continue; 2465 2466 if (!strcmp(dname->name, n->name->name) || 2467 !audit_compare_dname_path(dname, n->name->name, 2468 found_parent ? 2469 found_parent->name_len : 2470 AUDIT_NAME_FULL)) { 2471 if (n->type == AUDIT_TYPE_UNKNOWN) 2472 n->type = type; 2473 found_child = n; 2474 break; 2475 } 2476 } 2477 2478 if (!found_parent) { 2479 /* create a new, "anonymous" parent record */ 2480 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2481 if (!n) 2482 return; 2483 audit_copy_inode(n, NULL, parent, 0); 2484 } 2485 2486 if (!found_child) { 2487 found_child = audit_alloc_name(context, type); 2488 if (!found_child) 2489 return; 2490 2491 /* Re-use the name belonging to the slot for a matching parent 2492 * directory. All names for this context are relinquished in 2493 * audit_free_names() */ 2494 if (found_parent) { 2495 found_child->name = found_parent->name; 2496 found_child->name_len = AUDIT_NAME_FULL; 2497 found_child->name->refcnt++; 2498 } 2499 } 2500 2501 if (inode) 2502 audit_copy_inode(found_child, dentry, inode, 0); 2503 else 2504 found_child->ino = AUDIT_INO_UNSET; 2505 } 2506 EXPORT_SYMBOL_GPL(__audit_inode_child); 2507 2508 /** 2509 * auditsc_get_stamp - get local copies of audit_context values 2510 * @ctx: audit_context for the task 2511 * @t: timespec64 to store time recorded in the audit_context 2512 * @serial: serial value that is recorded in the audit_context 2513 * 2514 * Also sets the context as auditable. 2515 */ 2516 int auditsc_get_stamp(struct audit_context *ctx, 2517 struct timespec64 *t, unsigned int *serial) 2518 { 2519 if (ctx->context == AUDIT_CTX_UNUSED) 2520 return 0; 2521 if (!ctx->serial) 2522 ctx->serial = audit_serial(); 2523 t->tv_sec = ctx->ctime.tv_sec; 2524 t->tv_nsec = ctx->ctime.tv_nsec; 2525 *serial = ctx->serial; 2526 if (!ctx->prio) { 2527 ctx->prio = 1; 2528 ctx->current_state = AUDIT_STATE_RECORD; 2529 } 2530 return 1; 2531 } 2532 2533 /** 2534 * __audit_mq_open - record audit data for a POSIX MQ open 2535 * @oflag: open flag 2536 * @mode: mode bits 2537 * @attr: queue attributes 2538 * 2539 */ 2540 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2541 { 2542 struct audit_context *context = audit_context(); 2543 2544 if (attr) 2545 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2546 else 2547 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2548 2549 context->mq_open.oflag = oflag; 2550 context->mq_open.mode = mode; 2551 2552 context->type = AUDIT_MQ_OPEN; 2553 } 2554 2555 /** 2556 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2557 * @mqdes: MQ descriptor 2558 * @msg_len: Message length 2559 * @msg_prio: Message priority 2560 * @abs_timeout: Message timeout in absolute time 2561 * 2562 */ 2563 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2564 const struct timespec64 *abs_timeout) 2565 { 2566 struct audit_context *context = audit_context(); 2567 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2568 2569 if (abs_timeout) 2570 memcpy(p, abs_timeout, sizeof(*p)); 2571 else 2572 memset(p, 0, sizeof(*p)); 2573 2574 context->mq_sendrecv.mqdes = mqdes; 2575 context->mq_sendrecv.msg_len = msg_len; 2576 context->mq_sendrecv.msg_prio = msg_prio; 2577 2578 context->type = AUDIT_MQ_SENDRECV; 2579 } 2580 2581 /** 2582 * __audit_mq_notify - record audit data for a POSIX MQ notify 2583 * @mqdes: MQ descriptor 2584 * @notification: Notification event 2585 * 2586 */ 2587 2588 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2589 { 2590 struct audit_context *context = audit_context(); 2591 2592 if (notification) 2593 context->mq_notify.sigev_signo = notification->sigev_signo; 2594 else 2595 context->mq_notify.sigev_signo = 0; 2596 2597 context->mq_notify.mqdes = mqdes; 2598 context->type = AUDIT_MQ_NOTIFY; 2599 } 2600 2601 /** 2602 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2603 * @mqdes: MQ descriptor 2604 * @mqstat: MQ flags 2605 * 2606 */ 2607 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2608 { 2609 struct audit_context *context = audit_context(); 2610 2611 context->mq_getsetattr.mqdes = mqdes; 2612 context->mq_getsetattr.mqstat = *mqstat; 2613 context->type = AUDIT_MQ_GETSETATTR; 2614 } 2615 2616 /** 2617 * __audit_ipc_obj - record audit data for ipc object 2618 * @ipcp: ipc permissions 2619 * 2620 */ 2621 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2622 { 2623 struct audit_context *context = audit_context(); 2624 2625 context->ipc.uid = ipcp->uid; 2626 context->ipc.gid = ipcp->gid; 2627 context->ipc.mode = ipcp->mode; 2628 context->ipc.has_perm = 0; 2629 security_ipc_getsecid(ipcp, &context->ipc.osid); 2630 context->type = AUDIT_IPC; 2631 } 2632 2633 /** 2634 * __audit_ipc_set_perm - record audit data for new ipc permissions 2635 * @qbytes: msgq bytes 2636 * @uid: msgq user id 2637 * @gid: msgq group id 2638 * @mode: msgq mode (permissions) 2639 * 2640 * Called only after audit_ipc_obj(). 2641 */ 2642 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2643 { 2644 struct audit_context *context = audit_context(); 2645 2646 context->ipc.qbytes = qbytes; 2647 context->ipc.perm_uid = uid; 2648 context->ipc.perm_gid = gid; 2649 context->ipc.perm_mode = mode; 2650 context->ipc.has_perm = 1; 2651 } 2652 2653 void __audit_bprm(struct linux_binprm *bprm) 2654 { 2655 struct audit_context *context = audit_context(); 2656 2657 context->type = AUDIT_EXECVE; 2658 context->execve.argc = bprm->argc; 2659 } 2660 2661 2662 /** 2663 * __audit_socketcall - record audit data for sys_socketcall 2664 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2665 * @args: args array 2666 * 2667 */ 2668 int __audit_socketcall(int nargs, unsigned long *args) 2669 { 2670 struct audit_context *context = audit_context(); 2671 2672 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2673 return -EINVAL; 2674 context->type = AUDIT_SOCKETCALL; 2675 context->socketcall.nargs = nargs; 2676 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2677 return 0; 2678 } 2679 2680 /** 2681 * __audit_fd_pair - record audit data for pipe and socketpair 2682 * @fd1: the first file descriptor 2683 * @fd2: the second file descriptor 2684 * 2685 */ 2686 void __audit_fd_pair(int fd1, int fd2) 2687 { 2688 struct audit_context *context = audit_context(); 2689 2690 context->fds[0] = fd1; 2691 context->fds[1] = fd2; 2692 } 2693 2694 /** 2695 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2696 * @len: data length in user space 2697 * @a: data address in kernel space 2698 * 2699 * Returns 0 for success or NULL context or < 0 on error. 2700 */ 2701 int __audit_sockaddr(int len, void *a) 2702 { 2703 struct audit_context *context = audit_context(); 2704 2705 if (!context->sockaddr) { 2706 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2707 2708 if (!p) 2709 return -ENOMEM; 2710 context->sockaddr = p; 2711 } 2712 2713 context->sockaddr_len = len; 2714 memcpy(context->sockaddr, a, len); 2715 return 0; 2716 } 2717 2718 void __audit_ptrace(struct task_struct *t) 2719 { 2720 struct audit_context *context = audit_context(); 2721 2722 context->target_pid = task_tgid_nr(t); 2723 context->target_auid = audit_get_loginuid(t); 2724 context->target_uid = task_uid(t); 2725 context->target_sessionid = audit_get_sessionid(t); 2726 security_task_getsecid_obj(t, &context->target_sid); 2727 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2728 } 2729 2730 /** 2731 * audit_signal_info_syscall - record signal info for syscalls 2732 * @t: task being signaled 2733 * 2734 * If the audit subsystem is being terminated, record the task (pid) 2735 * and uid that is doing that. 2736 */ 2737 int audit_signal_info_syscall(struct task_struct *t) 2738 { 2739 struct audit_aux_data_pids *axp; 2740 struct audit_context *ctx = audit_context(); 2741 kuid_t t_uid = task_uid(t); 2742 2743 if (!audit_signals || audit_dummy_context()) 2744 return 0; 2745 2746 /* optimize the common case by putting first signal recipient directly 2747 * in audit_context */ 2748 if (!ctx->target_pid) { 2749 ctx->target_pid = task_tgid_nr(t); 2750 ctx->target_auid = audit_get_loginuid(t); 2751 ctx->target_uid = t_uid; 2752 ctx->target_sessionid = audit_get_sessionid(t); 2753 security_task_getsecid_obj(t, &ctx->target_sid); 2754 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2755 return 0; 2756 } 2757 2758 axp = (void *)ctx->aux_pids; 2759 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2760 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2761 if (!axp) 2762 return -ENOMEM; 2763 2764 axp->d.type = AUDIT_OBJ_PID; 2765 axp->d.next = ctx->aux_pids; 2766 ctx->aux_pids = (void *)axp; 2767 } 2768 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2769 2770 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2771 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2772 axp->target_uid[axp->pid_count] = t_uid; 2773 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2774 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2775 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2776 axp->pid_count++; 2777 2778 return 0; 2779 } 2780 2781 /** 2782 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2783 * @bprm: pointer to the bprm being processed 2784 * @new: the proposed new credentials 2785 * @old: the old credentials 2786 * 2787 * Simply check if the proc already has the caps given by the file and if not 2788 * store the priv escalation info for later auditing at the end of the syscall 2789 * 2790 * -Eric 2791 */ 2792 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2793 const struct cred *new, const struct cred *old) 2794 { 2795 struct audit_aux_data_bprm_fcaps *ax; 2796 struct audit_context *context = audit_context(); 2797 struct cpu_vfs_cap_data vcaps; 2798 2799 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2800 if (!ax) 2801 return -ENOMEM; 2802 2803 ax->d.type = AUDIT_BPRM_FCAPS; 2804 ax->d.next = context->aux; 2805 context->aux = (void *)ax; 2806 2807 get_vfs_caps_from_disk(&nop_mnt_idmap, 2808 bprm->file->f_path.dentry, &vcaps); 2809 2810 ax->fcap.permitted = vcaps.permitted; 2811 ax->fcap.inheritable = vcaps.inheritable; 2812 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2813 ax->fcap.rootid = vcaps.rootid; 2814 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2815 2816 ax->old_pcap.permitted = old->cap_permitted; 2817 ax->old_pcap.inheritable = old->cap_inheritable; 2818 ax->old_pcap.effective = old->cap_effective; 2819 ax->old_pcap.ambient = old->cap_ambient; 2820 2821 ax->new_pcap.permitted = new->cap_permitted; 2822 ax->new_pcap.inheritable = new->cap_inheritable; 2823 ax->new_pcap.effective = new->cap_effective; 2824 ax->new_pcap.ambient = new->cap_ambient; 2825 return 0; 2826 } 2827 2828 /** 2829 * __audit_log_capset - store information about the arguments to the capset syscall 2830 * @new: the new credentials 2831 * @old: the old (current) credentials 2832 * 2833 * Record the arguments userspace sent to sys_capset for later printing by the 2834 * audit system if applicable 2835 */ 2836 void __audit_log_capset(const struct cred *new, const struct cred *old) 2837 { 2838 struct audit_context *context = audit_context(); 2839 2840 context->capset.pid = task_tgid_nr(current); 2841 context->capset.cap.effective = new->cap_effective; 2842 context->capset.cap.inheritable = new->cap_effective; 2843 context->capset.cap.permitted = new->cap_permitted; 2844 context->capset.cap.ambient = new->cap_ambient; 2845 context->type = AUDIT_CAPSET; 2846 } 2847 2848 void __audit_mmap_fd(int fd, int flags) 2849 { 2850 struct audit_context *context = audit_context(); 2851 2852 context->mmap.fd = fd; 2853 context->mmap.flags = flags; 2854 context->type = AUDIT_MMAP; 2855 } 2856 2857 void __audit_openat2_how(struct open_how *how) 2858 { 2859 struct audit_context *context = audit_context(); 2860 2861 context->openat2.flags = how->flags; 2862 context->openat2.mode = how->mode; 2863 context->openat2.resolve = how->resolve; 2864 context->type = AUDIT_OPENAT2; 2865 } 2866 2867 void __audit_log_kern_module(char *name) 2868 { 2869 struct audit_context *context = audit_context(); 2870 2871 context->module.name = kstrdup(name, GFP_KERNEL); 2872 if (!context->module.name) 2873 audit_log_lost("out of memory in __audit_log_kern_module"); 2874 context->type = AUDIT_KERN_MODULE; 2875 } 2876 2877 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2878 { 2879 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2880 switch (friar->hdr.type) { 2881 case FAN_RESPONSE_INFO_NONE: 2882 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2883 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2884 response, FAN_RESPONSE_INFO_NONE); 2885 break; 2886 case FAN_RESPONSE_INFO_AUDIT_RULE: 2887 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2888 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2889 response, friar->hdr.type, friar->rule_number, 2890 friar->subj_trust, friar->obj_trust); 2891 } 2892 } 2893 2894 void __audit_tk_injoffset(struct timespec64 offset) 2895 { 2896 struct audit_context *context = audit_context(); 2897 2898 /* only set type if not already set by NTP */ 2899 if (!context->type) 2900 context->type = AUDIT_TIME_INJOFFSET; 2901 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2902 } 2903 2904 void __audit_ntp_log(const struct audit_ntp_data *ad) 2905 { 2906 struct audit_context *context = audit_context(); 2907 int type; 2908 2909 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2910 if (ad->vals[type].newval != ad->vals[type].oldval) { 2911 /* unconditionally set type, overwriting TK */ 2912 context->type = AUDIT_TIME_ADJNTPVAL; 2913 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2914 break; 2915 } 2916 } 2917 2918 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2919 enum audit_nfcfgop op, gfp_t gfp) 2920 { 2921 struct audit_buffer *ab; 2922 char comm[sizeof(current->comm)]; 2923 2924 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2925 if (!ab) 2926 return; 2927 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2928 name, af, nentries, audit_nfcfgs[op].s); 2929 2930 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2931 audit_log_task_context(ab); /* subj= */ 2932 audit_log_format(ab, " comm="); 2933 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2934 audit_log_end(ab); 2935 } 2936 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2937 2938 static void audit_log_task(struct audit_buffer *ab) 2939 { 2940 kuid_t auid, uid; 2941 kgid_t gid; 2942 unsigned int sessionid; 2943 char comm[sizeof(current->comm)]; 2944 2945 auid = audit_get_loginuid(current); 2946 sessionid = audit_get_sessionid(current); 2947 current_uid_gid(&uid, &gid); 2948 2949 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2950 from_kuid(&init_user_ns, auid), 2951 from_kuid(&init_user_ns, uid), 2952 from_kgid(&init_user_ns, gid), 2953 sessionid); 2954 audit_log_task_context(ab); 2955 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2956 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2957 audit_log_d_path_exe(ab, current->mm); 2958 } 2959 2960 /** 2961 * audit_core_dumps - record information about processes that end abnormally 2962 * @signr: signal value 2963 * 2964 * If a process ends with a core dump, something fishy is going on and we 2965 * should record the event for investigation. 2966 */ 2967 void audit_core_dumps(long signr) 2968 { 2969 struct audit_buffer *ab; 2970 2971 if (!audit_enabled) 2972 return; 2973 2974 if (signr == SIGQUIT) /* don't care for those */ 2975 return; 2976 2977 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2978 if (unlikely(!ab)) 2979 return; 2980 audit_log_task(ab); 2981 audit_log_format(ab, " sig=%ld res=1", signr); 2982 audit_log_end(ab); 2983 } 2984 2985 /** 2986 * audit_seccomp - record information about a seccomp action 2987 * @syscall: syscall number 2988 * @signr: signal value 2989 * @code: the seccomp action 2990 * 2991 * Record the information associated with a seccomp action. Event filtering for 2992 * seccomp actions that are not to be logged is done in seccomp_log(). 2993 * Therefore, this function forces auditing independent of the audit_enabled 2994 * and dummy context state because seccomp actions should be logged even when 2995 * audit is not in use. 2996 */ 2997 void audit_seccomp(unsigned long syscall, long signr, int code) 2998 { 2999 struct audit_buffer *ab; 3000 3001 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3002 if (unlikely(!ab)) 3003 return; 3004 audit_log_task(ab); 3005 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3006 signr, syscall_get_arch(current), syscall, 3007 in_compat_syscall(), KSTK_EIP(current), code); 3008 audit_log_end(ab); 3009 } 3010 3011 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3012 int res) 3013 { 3014 struct audit_buffer *ab; 3015 3016 if (!audit_enabled) 3017 return; 3018 3019 ab = audit_log_start(audit_context(), GFP_KERNEL, 3020 AUDIT_CONFIG_CHANGE); 3021 if (unlikely(!ab)) 3022 return; 3023 3024 audit_log_format(ab, 3025 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3026 names, old_names, res); 3027 audit_log_end(ab); 3028 } 3029 3030 struct list_head *audit_killed_trees(void) 3031 { 3032 struct audit_context *ctx = audit_context(); 3033 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3034 return NULL; 3035 return &ctx->killed_trees; 3036 } 3037