xref: /linux/kernel/auditsc.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * All Rights Reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
22  *
23  * Many of the ideas implemented here are from Stephen C. Tweedie,
24  * especially the idea of avoiding a copy by using getname.
25  *
26  * The method for actual interception of syscall entry and exit (not in
27  * this file -- see entry.S) is based on a GPL'd patch written by
28  * okir@suse.de and Copyright 2003 SuSE Linux AG.
29  *
30  */
31 
32 #include <linux/init.h>
33 #include <asm/atomic.h>
34 #include <asm/types.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 
38 #include <linux/audit.h>
39 #include <linux/personality.h>
40 #include <linux/time.h>
41 #include <asm/unistd.h>
42 
43 /* 0 = no checking
44    1 = put_count checking
45    2 = verbose put_count checking
46 */
47 #define AUDIT_DEBUG 0
48 
49 /* No syscall auditing will take place unless audit_enabled != 0. */
50 extern int audit_enabled;
51 
52 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
53  * for saving names from getname(). */
54 #define AUDIT_NAMES    20
55 
56 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
57  * audit_context from being used for nameless inodes from
58  * path_lookup. */
59 #define AUDIT_NAMES_RESERVED 7
60 
61 /* At task start time, the audit_state is set in the audit_context using
62    a per-task filter.  At syscall entry, the audit_state is augmented by
63    the syscall filter. */
64 enum audit_state {
65 	AUDIT_DISABLED,		/* Do not create per-task audit_context.
66 				 * No syscall-specific audit records can
67 				 * be generated. */
68 	AUDIT_SETUP_CONTEXT,	/* Create the per-task audit_context,
69 				 * but don't necessarily fill it in at
70 				 * syscall entry time (i.e., filter
71 				 * instead). */
72 	AUDIT_BUILD_CONTEXT,	/* Create the per-task audit_context,
73 				 * and always fill it in at syscall
74 				 * entry time.  This makes a full
75 				 * syscall record available if some
76 				 * other part of the kernel decides it
77 				 * should be recorded. */
78 	AUDIT_RECORD_CONTEXT	/* Create the per-task audit_context,
79 				 * always fill it in at syscall entry
80 				 * time, and always write out the audit
81 				 * record at syscall exit time.  */
82 };
83 
84 /* When fs/namei.c:getname() is called, we store the pointer in name and
85  * we don't let putname() free it (instead we free all of the saved
86  * pointers at syscall exit time).
87  *
88  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
89 struct audit_names {
90 	const char	*name;
91 	unsigned long	ino;
92 	dev_t		dev;
93 	umode_t		mode;
94 	uid_t		uid;
95 	gid_t		gid;
96 	dev_t		rdev;
97 };
98 
99 struct audit_aux_data {
100 	struct audit_aux_data	*next;
101 	int			type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM	0
105 
106 struct audit_aux_data_ipcctl {
107 	struct audit_aux_data	d;
108 	struct ipc_perm		p;
109 	unsigned long		qbytes;
110 	uid_t			uid;
111 	gid_t			gid;
112 	mode_t			mode;
113 };
114 
115 
116 /* The per-task audit context. */
117 struct audit_context {
118 	int		    in_syscall;	/* 1 if task is in a syscall */
119 	enum audit_state    state;
120 	unsigned int	    serial;     /* serial number for record */
121 	struct timespec	    ctime;      /* time of syscall entry */
122 	uid_t		    loginuid;   /* login uid (identity) */
123 	int		    major;      /* syscall number */
124 	unsigned long	    argv[4];    /* syscall arguments */
125 	int		    return_valid; /* return code is valid */
126 	long		    return_code;/* syscall return code */
127 	int		    auditable;  /* 1 if record should be written */
128 	int		    name_count;
129 	struct audit_names  names[AUDIT_NAMES];
130 	struct audit_context *previous; /* For nested syscalls */
131 	struct audit_aux_data *aux;
132 
133 				/* Save things to print about task_struct */
134 	pid_t		    pid;
135 	uid_t		    uid, euid, suid, fsuid;
136 	gid_t		    gid, egid, sgid, fsgid;
137 	unsigned long	    personality;
138 	int		    arch;
139 
140 #if AUDIT_DEBUG
141 	int		    put_count;
142 	int		    ino_count;
143 #endif
144 };
145 
146 				/* Public API */
147 /* There are three lists of rules -- one to search at task creation
148  * time, one to search at syscall entry time, and another to search at
149  * syscall exit time. */
150 static LIST_HEAD(audit_tsklist);
151 static LIST_HEAD(audit_entlist);
152 static LIST_HEAD(audit_extlist);
153 
154 struct audit_entry {
155 	struct list_head  list;
156 	struct rcu_head   rcu;
157 	struct audit_rule rule;
158 };
159 
160 /* Check to see if two rules are identical.  It is called from
161  * audit_del_rule during AUDIT_DEL. */
162 static int audit_compare_rule(struct audit_rule *a, struct audit_rule *b)
163 {
164 	int i;
165 
166 	if (a->flags != b->flags)
167 		return 1;
168 
169 	if (a->action != b->action)
170 		return 1;
171 
172 	if (a->field_count != b->field_count)
173 		return 1;
174 
175 	for (i = 0; i < a->field_count; i++) {
176 		if (a->fields[i] != b->fields[i]
177 		    || a->values[i] != b->values[i])
178 			return 1;
179 	}
180 
181 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
182 		if (a->mask[i] != b->mask[i])
183 			return 1;
184 
185 	return 0;
186 }
187 
188 /* Note that audit_add_rule and audit_del_rule are called via
189  * audit_receive() in audit.c, and are protected by
190  * audit_netlink_sem. */
191 static inline int audit_add_rule(struct audit_entry *entry,
192 				 struct list_head *list)
193 {
194 	if (entry->rule.flags & AUDIT_PREPEND) {
195 		entry->rule.flags &= ~AUDIT_PREPEND;
196 		list_add_rcu(&entry->list, list);
197 	} else {
198 		list_add_tail_rcu(&entry->list, list);
199 	}
200 	return 0;
201 }
202 
203 static void audit_free_rule(struct rcu_head *head)
204 {
205 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
206 	kfree(e);
207 }
208 
209 /* Note that audit_add_rule and audit_del_rule are called via
210  * audit_receive() in audit.c, and are protected by
211  * audit_netlink_sem. */
212 static inline int audit_del_rule(struct audit_rule *rule,
213 				 struct list_head *list)
214 {
215 	struct audit_entry  *e;
216 
217 	/* Do not use the _rcu iterator here, since this is the only
218 	 * deletion routine. */
219 	list_for_each_entry(e, list, list) {
220 		if (!audit_compare_rule(rule, &e->rule)) {
221 			list_del_rcu(&e->list);
222 			call_rcu(&e->rcu, audit_free_rule);
223 			return 0;
224 		}
225 	}
226 	return -EFAULT;		/* No matching rule */
227 }
228 
229 #ifdef CONFIG_NET
230 /* Copy rule from user-space to kernel-space.  Called during
231  * AUDIT_ADD. */
232 static int audit_copy_rule(struct audit_rule *d, struct audit_rule *s)
233 {
234 	int i;
235 
236 	if (s->action != AUDIT_NEVER
237 	    && s->action != AUDIT_POSSIBLE
238 	    && s->action != AUDIT_ALWAYS)
239 		return -1;
240 	if (s->field_count < 0 || s->field_count > AUDIT_MAX_FIELDS)
241 		return -1;
242 
243 	d->flags	= s->flags;
244 	d->action	= s->action;
245 	d->field_count	= s->field_count;
246 	for (i = 0; i < d->field_count; i++) {
247 		d->fields[i] = s->fields[i];
248 		d->values[i] = s->values[i];
249 	}
250 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) d->mask[i] = s->mask[i];
251 	return 0;
252 }
253 
254 int audit_receive_filter(int type, int pid, int uid, int seq, void *data,
255 							uid_t loginuid)
256 {
257 	u32		   flags;
258 	struct audit_entry *entry;
259 	int		   err = 0;
260 
261 	switch (type) {
262 	case AUDIT_LIST:
263 		/* The *_rcu iterators not needed here because we are
264 		   always called with audit_netlink_sem held. */
265 		list_for_each_entry(entry, &audit_tsklist, list)
266 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
267 					 &entry->rule, sizeof(entry->rule));
268 		list_for_each_entry(entry, &audit_entlist, list)
269 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
270 					 &entry->rule, sizeof(entry->rule));
271 		list_for_each_entry(entry, &audit_extlist, list)
272 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
273 					 &entry->rule, sizeof(entry->rule));
274 		audit_send_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
275 		break;
276 	case AUDIT_ADD:
277 		if (!(entry = kmalloc(sizeof(*entry), GFP_KERNEL)))
278 			return -ENOMEM;
279 		if (audit_copy_rule(&entry->rule, data)) {
280 			kfree(entry);
281 			return -EINVAL;
282 		}
283 		flags = entry->rule.flags;
284 		if (!err && (flags & AUDIT_PER_TASK))
285 			err = audit_add_rule(entry, &audit_tsklist);
286 		if (!err && (flags & AUDIT_AT_ENTRY))
287 			err = audit_add_rule(entry, &audit_entlist);
288 		if (!err && (flags & AUDIT_AT_EXIT))
289 			err = audit_add_rule(entry, &audit_extlist);
290 		audit_log(NULL, "auid %u added an audit rule\n", loginuid);
291 		break;
292 	case AUDIT_DEL:
293 		flags =((struct audit_rule *)data)->flags;
294 		if (!err && (flags & AUDIT_PER_TASK))
295 			err = audit_del_rule(data, &audit_tsklist);
296 		if (!err && (flags & AUDIT_AT_ENTRY))
297 			err = audit_del_rule(data, &audit_entlist);
298 		if (!err && (flags & AUDIT_AT_EXIT))
299 			err = audit_del_rule(data, &audit_extlist);
300 		audit_log(NULL, "auid %u removed an audit rule\n", loginuid);
301 		break;
302 	default:
303 		return -EINVAL;
304 	}
305 
306 	return err;
307 }
308 #endif
309 
310 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
311  * otherwise. */
312 static int audit_filter_rules(struct task_struct *tsk,
313 			      struct audit_rule *rule,
314 			      struct audit_context *ctx,
315 			      enum audit_state *state)
316 {
317 	int i, j;
318 
319 	for (i = 0; i < rule->field_count; i++) {
320 		u32 field  = rule->fields[i] & ~AUDIT_NEGATE;
321 		u32 value  = rule->values[i];
322 		int result = 0;
323 
324 		switch (field) {
325 		case AUDIT_PID:
326 			result = (tsk->pid == value);
327 			break;
328 		case AUDIT_UID:
329 			result = (tsk->uid == value);
330 			break;
331 		case AUDIT_EUID:
332 			result = (tsk->euid == value);
333 			break;
334 		case AUDIT_SUID:
335 			result = (tsk->suid == value);
336 			break;
337 		case AUDIT_FSUID:
338 			result = (tsk->fsuid == value);
339 			break;
340 		case AUDIT_GID:
341 			result = (tsk->gid == value);
342 			break;
343 		case AUDIT_EGID:
344 			result = (tsk->egid == value);
345 			break;
346 		case AUDIT_SGID:
347 			result = (tsk->sgid == value);
348 			break;
349 		case AUDIT_FSGID:
350 			result = (tsk->fsgid == value);
351 			break;
352 		case AUDIT_PERS:
353 			result = (tsk->personality == value);
354 			break;
355 		case AUDIT_ARCH:
356 			if (ctx)
357 				result = (ctx->arch == value);
358 			break;
359 
360 		case AUDIT_EXIT:
361 			if (ctx && ctx->return_valid)
362 				result = (ctx->return_code == value);
363 			break;
364 		case AUDIT_SUCCESS:
365 			if (ctx && ctx->return_valid)
366 				result = (ctx->return_valid == AUDITSC_SUCCESS);
367 			break;
368 		case AUDIT_DEVMAJOR:
369 			if (ctx) {
370 				for (j = 0; j < ctx->name_count; j++) {
371 					if (MAJOR(ctx->names[j].dev)==value) {
372 						++result;
373 						break;
374 					}
375 				}
376 			}
377 			break;
378 		case AUDIT_DEVMINOR:
379 			if (ctx) {
380 				for (j = 0; j < ctx->name_count; j++) {
381 					if (MINOR(ctx->names[j].dev)==value) {
382 						++result;
383 						break;
384 					}
385 				}
386 			}
387 			break;
388 		case AUDIT_INODE:
389 			if (ctx) {
390 				for (j = 0; j < ctx->name_count; j++) {
391 					if (ctx->names[j].ino == value) {
392 						++result;
393 						break;
394 					}
395 				}
396 			}
397 			break;
398 		case AUDIT_LOGINUID:
399 			result = 0;
400 			if (ctx)
401 				result = (ctx->loginuid == value);
402 			break;
403 		case AUDIT_ARG0:
404 		case AUDIT_ARG1:
405 		case AUDIT_ARG2:
406 		case AUDIT_ARG3:
407 			if (ctx)
408 				result = (ctx->argv[field-AUDIT_ARG0]==value);
409 			break;
410 		}
411 
412 		if (rule->fields[i] & AUDIT_NEGATE)
413 			result = !result;
414 		if (!result)
415 			return 0;
416 	}
417 	switch (rule->action) {
418 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
419 	case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT;  break;
420 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
421 	}
422 	return 1;
423 }
424 
425 /* At process creation time, we can determine if system-call auditing is
426  * completely disabled for this task.  Since we only have the task
427  * structure at this point, we can only check uid and gid.
428  */
429 static enum audit_state audit_filter_task(struct task_struct *tsk)
430 {
431 	struct audit_entry *e;
432 	enum audit_state   state;
433 
434 	rcu_read_lock();
435 	list_for_each_entry_rcu(e, &audit_tsklist, list) {
436 		if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
437 			rcu_read_unlock();
438 			return state;
439 		}
440 	}
441 	rcu_read_unlock();
442 	return AUDIT_BUILD_CONTEXT;
443 }
444 
445 /* At syscall entry and exit time, this filter is called if the
446  * audit_state is not low enough that auditing cannot take place, but is
447  * also not high enough that we already know we have to write and audit
448  * record (i.e., the state is AUDIT_SETUP_CONTEXT or  AUDIT_BUILD_CONTEXT).
449  */
450 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
451 					     struct audit_context *ctx,
452 					     struct list_head *list)
453 {
454 	struct audit_entry *e;
455 	enum audit_state   state;
456 	int		   word = AUDIT_WORD(ctx->major);
457 	int		   bit  = AUDIT_BIT(ctx->major);
458 
459 	rcu_read_lock();
460 	list_for_each_entry_rcu(e, list, list) {
461 		if ((e->rule.mask[word] & bit) == bit
462  		    && audit_filter_rules(tsk, &e->rule, ctx, &state)) {
463 			rcu_read_unlock();
464 			return state;
465 		}
466 	}
467 	rcu_read_unlock();
468 	return AUDIT_BUILD_CONTEXT;
469 }
470 
471 /* This should be called with task_lock() held. */
472 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
473 						      int return_valid,
474 						      int return_code)
475 {
476 	struct audit_context *context = tsk->audit_context;
477 
478 	if (likely(!context))
479 		return NULL;
480 	context->return_valid = return_valid;
481 	context->return_code  = return_code;
482 
483 	if (context->in_syscall && !context->auditable) {
484 		enum audit_state state;
485 		state = audit_filter_syscall(tsk, context, &audit_extlist);
486 		if (state == AUDIT_RECORD_CONTEXT)
487 			context->auditable = 1;
488 	}
489 
490 	context->pid = tsk->pid;
491 	context->uid = tsk->uid;
492 	context->gid = tsk->gid;
493 	context->euid = tsk->euid;
494 	context->suid = tsk->suid;
495 	context->fsuid = tsk->fsuid;
496 	context->egid = tsk->egid;
497 	context->sgid = tsk->sgid;
498 	context->fsgid = tsk->fsgid;
499 	context->personality = tsk->personality;
500 	tsk->audit_context = NULL;
501 	return context;
502 }
503 
504 static inline void audit_free_names(struct audit_context *context)
505 {
506 	int i;
507 
508 #if AUDIT_DEBUG == 2
509 	if (context->auditable
510 	    ||context->put_count + context->ino_count != context->name_count) {
511 		printk(KERN_ERR "audit.c:%d(:%d): major=%d in_syscall=%d"
512 		       " name_count=%d put_count=%d"
513 		       " ino_count=%d [NOT freeing]\n",
514 		       __LINE__,
515 		       context->serial, context->major, context->in_syscall,
516 		       context->name_count, context->put_count,
517 		       context->ino_count);
518 		for (i = 0; i < context->name_count; i++)
519 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
520 			       context->names[i].name,
521 			       context->names[i].name);
522 		dump_stack();
523 		return;
524 	}
525 #endif
526 #if AUDIT_DEBUG
527 	context->put_count  = 0;
528 	context->ino_count  = 0;
529 #endif
530 
531 	for (i = 0; i < context->name_count; i++)
532 		if (context->names[i].name)
533 			__putname(context->names[i].name);
534 	context->name_count = 0;
535 }
536 
537 static inline void audit_free_aux(struct audit_context *context)
538 {
539 	struct audit_aux_data *aux;
540 
541 	while ((aux = context->aux)) {
542 		context->aux = aux->next;
543 		kfree(aux);
544 	}
545 }
546 
547 static inline void audit_zero_context(struct audit_context *context,
548 				      enum audit_state state)
549 {
550 	uid_t loginuid = context->loginuid;
551 
552 	memset(context, 0, sizeof(*context));
553 	context->state      = state;
554 	context->loginuid   = loginuid;
555 }
556 
557 static inline struct audit_context *audit_alloc_context(enum audit_state state)
558 {
559 	struct audit_context *context;
560 
561 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
562 		return NULL;
563 	audit_zero_context(context, state);
564 	return context;
565 }
566 
567 /* Filter on the task information and allocate a per-task audit context
568  * if necessary.  Doing so turns on system call auditing for the
569  * specified task.  This is called from copy_process, so no lock is
570  * needed. */
571 int audit_alloc(struct task_struct *tsk)
572 {
573 	struct audit_context *context;
574 	enum audit_state     state;
575 
576 	if (likely(!audit_enabled))
577 		return 0; /* Return if not auditing. */
578 
579 	state = audit_filter_task(tsk);
580 	if (likely(state == AUDIT_DISABLED))
581 		return 0;
582 
583 	if (!(context = audit_alloc_context(state))) {
584 		audit_log_lost("out of memory in audit_alloc");
585 		return -ENOMEM;
586 	}
587 
588 				/* Preserve login uid */
589 	context->loginuid = -1;
590 	if (current->audit_context)
591 		context->loginuid = current->audit_context->loginuid;
592 
593 	tsk->audit_context  = context;
594 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
595 	return 0;
596 }
597 
598 static inline void audit_free_context(struct audit_context *context)
599 {
600 	struct audit_context *previous;
601 	int		     count = 0;
602 
603 	do {
604 		previous = context->previous;
605 		if (previous || (count &&  count < 10)) {
606 			++count;
607 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
608 			       " freeing multiple contexts (%d)\n",
609 			       context->serial, context->major,
610 			       context->name_count, count);
611 		}
612 		audit_free_names(context);
613 		audit_free_aux(context);
614 		kfree(context);
615 		context  = previous;
616 	} while (context);
617 	if (count >= 10)
618 		printk(KERN_ERR "audit: freed %d contexts\n", count);
619 }
620 
621 static void audit_log_task_info(struct audit_buffer *ab)
622 {
623 	char name[sizeof(current->comm)];
624 	struct mm_struct *mm = current->mm;
625 	struct vm_area_struct *vma;
626 
627 	get_task_comm(name, current);
628 	audit_log_format(ab, " comm=%s", name);
629 
630 	if (!mm)
631 		return;
632 
633 	down_read(&mm->mmap_sem);
634 	vma = mm->mmap;
635 	while (vma) {
636 		if ((vma->vm_flags & VM_EXECUTABLE) &&
637 		    vma->vm_file) {
638 			audit_log_d_path(ab, "exe=",
639 					 vma->vm_file->f_dentry,
640 					 vma->vm_file->f_vfsmnt);
641 			break;
642 		}
643 		vma = vma->vm_next;
644 	}
645 	up_read(&mm->mmap_sem);
646 }
647 
648 static void audit_log_exit(struct audit_context *context)
649 {
650 	int i;
651 	struct audit_buffer *ab;
652 
653 	ab = audit_log_start(context);
654 	if (!ab)
655 		return;		/* audit_panic has been called */
656 	audit_log_format(ab, "syscall=%d", context->major);
657 	if (context->personality != PER_LINUX)
658 		audit_log_format(ab, " per=%lx", context->personality);
659 	audit_log_format(ab, " arch=%x", context->arch);
660 	if (context->return_valid)
661 		audit_log_format(ab, " success=%s exit=%ld",
662 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
663 				 context->return_code);
664 	audit_log_format(ab,
665 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
666 		  " pid=%d loginuid=%d uid=%d gid=%d"
667 		  " euid=%d suid=%d fsuid=%d"
668 		  " egid=%d sgid=%d fsgid=%d",
669 		  context->argv[0],
670 		  context->argv[1],
671 		  context->argv[2],
672 		  context->argv[3],
673 		  context->name_count,
674 		  context->pid,
675 		  context->loginuid,
676 		  context->uid,
677 		  context->gid,
678 		  context->euid, context->suid, context->fsuid,
679 		  context->egid, context->sgid, context->fsgid);
680 	audit_log_task_info(ab);
681 	audit_log_end(ab);
682 	while (context->aux) {
683 		struct audit_aux_data *aux;
684 
685 		ab = audit_log_start(context);
686 		if (!ab)
687 			continue; /* audit_panic has been called */
688 
689 		aux = context->aux;
690 		context->aux = aux->next;
691 
692 		audit_log_format(ab, "auxitem=%d", aux->type);
693 		switch (aux->type) {
694 		case AUDIT_AUX_IPCPERM: {
695 			struct audit_aux_data_ipcctl *axi = (void *)aux;
696 			audit_log_format(ab,
697 					 " qbytes=%lx uid=%d gid=%d mode=%x",
698 					 axi->qbytes, axi->uid, axi->gid, axi->mode);
699 			}
700 		}
701 		audit_log_end(ab);
702 		kfree(aux);
703 	}
704 
705 	for (i = 0; i < context->name_count; i++) {
706 		ab = audit_log_start(context);
707 		if (!ab)
708 			continue; /* audit_panic has been called */
709 		audit_log_format(ab, "item=%d", i);
710 		if (context->names[i].name) {
711 			audit_log_format(ab, " name=");
712 			audit_log_untrustedstring(ab, context->names[i].name);
713 		}
714 		if (context->names[i].ino != (unsigned long)-1)
715 			audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#o"
716 					     " uid=%d gid=%d rdev=%02x:%02x",
717 					 context->names[i].ino,
718 					 MAJOR(context->names[i].dev),
719 					 MINOR(context->names[i].dev),
720 					 context->names[i].mode,
721 					 context->names[i].uid,
722 					 context->names[i].gid,
723 					 MAJOR(context->names[i].rdev),
724 					 MINOR(context->names[i].rdev));
725 		audit_log_end(ab);
726 	}
727 }
728 
729 /* Free a per-task audit context.  Called from copy_process and
730  * __put_task_struct. */
731 void audit_free(struct task_struct *tsk)
732 {
733 	struct audit_context *context;
734 
735 	task_lock(tsk);
736 	context = audit_get_context(tsk, 0, 0);
737 	task_unlock(tsk);
738 
739 	if (likely(!context))
740 		return;
741 
742 	/* Check for system calls that do not go through the exit
743 	 * function (e.g., exit_group), then free context block. */
744 	if (context->in_syscall && context->auditable)
745 		audit_log_exit(context);
746 
747 	audit_free_context(context);
748 }
749 
750 /* Compute a serial number for the audit record.  Audit records are
751  * written to user-space as soon as they are generated, so a complete
752  * audit record may be written in several pieces.  The timestamp of the
753  * record and this serial number are used by the user-space daemon to
754  * determine which pieces belong to the same audit record.  The
755  * (timestamp,serial) tuple is unique for each syscall and is live from
756  * syscall entry to syscall exit.
757  *
758  * Atomic values are only guaranteed to be 24-bit, so we count down.
759  *
760  * NOTE: Another possibility is to store the formatted records off the
761  * audit context (for those records that have a context), and emit them
762  * all at syscall exit.  However, this could delay the reporting of
763  * significant errors until syscall exit (or never, if the system
764  * halts). */
765 static inline unsigned int audit_serial(void)
766 {
767 	static atomic_t serial = ATOMIC_INIT(0xffffff);
768 	unsigned int a, b;
769 
770 	do {
771 		a = atomic_read(&serial);
772 		if (atomic_dec_and_test(&serial))
773 			atomic_set(&serial, 0xffffff);
774 		b = atomic_read(&serial);
775 	} while (b != a - 1);
776 
777 	return 0xffffff - b;
778 }
779 
780 /* Fill in audit context at syscall entry.  This only happens if the
781  * audit context was created when the task was created and the state or
782  * filters demand the audit context be built.  If the state from the
783  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
784  * then the record will be written at syscall exit time (otherwise, it
785  * will only be written if another part of the kernel requests that it
786  * be written). */
787 void audit_syscall_entry(struct task_struct *tsk, int arch, int major,
788 			 unsigned long a1, unsigned long a2,
789 			 unsigned long a3, unsigned long a4)
790 {
791 	struct audit_context *context = tsk->audit_context;
792 	enum audit_state     state;
793 
794 	BUG_ON(!context);
795 
796 	/* This happens only on certain architectures that make system
797 	 * calls in kernel_thread via the entry.S interface, instead of
798 	 * with direct calls.  (If you are porting to a new
799 	 * architecture, hitting this condition can indicate that you
800 	 * got the _exit/_leave calls backward in entry.S.)
801 	 *
802 	 * i386     no
803 	 * x86_64   no
804 	 * ppc64    yes (see arch/ppc64/kernel/misc.S)
805 	 *
806 	 * This also happens with vm86 emulation in a non-nested manner
807 	 * (entries without exits), so this case must be caught.
808 	 */
809 	if (context->in_syscall) {
810 		struct audit_context *newctx;
811 
812 #if defined(__NR_vm86) && defined(__NR_vm86old)
813 		/* vm86 mode should only be entered once */
814 		if (major == __NR_vm86 || major == __NR_vm86old)
815 			return;
816 #endif
817 #if AUDIT_DEBUG
818 		printk(KERN_ERR
819 		       "audit(:%d) pid=%d in syscall=%d;"
820 		       " entering syscall=%d\n",
821 		       context->serial, tsk->pid, context->major, major);
822 #endif
823 		newctx = audit_alloc_context(context->state);
824 		if (newctx) {
825 			newctx->previous   = context;
826 			context		   = newctx;
827 			tsk->audit_context = newctx;
828 		} else	{
829 			/* If we can't alloc a new context, the best we
830 			 * can do is to leak memory (any pending putname
831 			 * will be lost).  The only other alternative is
832 			 * to abandon auditing. */
833 			audit_zero_context(context, context->state);
834 		}
835 	}
836 	BUG_ON(context->in_syscall || context->name_count);
837 
838 	if (!audit_enabled)
839 		return;
840 
841 	context->arch	    = arch;
842 	context->major      = major;
843 	context->argv[0]    = a1;
844 	context->argv[1]    = a2;
845 	context->argv[2]    = a3;
846 	context->argv[3]    = a4;
847 
848 	state = context->state;
849 	if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)
850 		state = audit_filter_syscall(tsk, context, &audit_entlist);
851 	if (likely(state == AUDIT_DISABLED))
852 		return;
853 
854 	context->serial     = audit_serial();
855 	context->ctime      = CURRENT_TIME;
856 	context->in_syscall = 1;
857 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
858 }
859 
860 /* Tear down after system call.  If the audit context has been marked as
861  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
862  * filtering, or because some other part of the kernel write an audit
863  * message), then write out the syscall information.  In call cases,
864  * free the names stored from getname(). */
865 void audit_syscall_exit(struct task_struct *tsk, int valid, long return_code)
866 {
867 	struct audit_context *context;
868 
869 	get_task_struct(tsk);
870 	task_lock(tsk);
871 	context = audit_get_context(tsk, valid, return_code);
872 	task_unlock(tsk);
873 
874 	/* Not having a context here is ok, since the parent may have
875 	 * called __put_task_struct. */
876 	if (likely(!context))
877 		return;
878 
879 	if (context->in_syscall && context->auditable)
880 		audit_log_exit(context);
881 
882 	context->in_syscall = 0;
883 	context->auditable  = 0;
884 
885 	if (context->previous) {
886 		struct audit_context *new_context = context->previous;
887 		context->previous  = NULL;
888 		audit_free_context(context);
889 		tsk->audit_context = new_context;
890 	} else {
891 		audit_free_names(context);
892 		audit_free_aux(context);
893 		audit_zero_context(context, context->state);
894 		tsk->audit_context = context;
895 	}
896 	put_task_struct(tsk);
897 }
898 
899 /* Add a name to the list.  Called from fs/namei.c:getname(). */
900 void audit_getname(const char *name)
901 {
902 	struct audit_context *context = current->audit_context;
903 
904 	if (!context || IS_ERR(name) || !name)
905 		return;
906 
907 	if (!context->in_syscall) {
908 #if AUDIT_DEBUG == 2
909 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
910 		       __FILE__, __LINE__, context->serial, name);
911 		dump_stack();
912 #endif
913 		return;
914 	}
915 	BUG_ON(context->name_count >= AUDIT_NAMES);
916 	context->names[context->name_count].name = name;
917 	context->names[context->name_count].ino  = (unsigned long)-1;
918 	++context->name_count;
919 }
920 
921 /* Intercept a putname request.  Called from
922  * include/linux/fs.h:putname().  If we have stored the name from
923  * getname in the audit context, then we delay the putname until syscall
924  * exit. */
925 void audit_putname(const char *name)
926 {
927 	struct audit_context *context = current->audit_context;
928 
929 	BUG_ON(!context);
930 	if (!context->in_syscall) {
931 #if AUDIT_DEBUG == 2
932 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
933 		       __FILE__, __LINE__, context->serial, name);
934 		if (context->name_count) {
935 			int i;
936 			for (i = 0; i < context->name_count; i++)
937 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
938 				       context->names[i].name,
939 				       context->names[i].name);
940 		}
941 #endif
942 		__putname(name);
943 	}
944 #if AUDIT_DEBUG
945 	else {
946 		++context->put_count;
947 		if (context->put_count > context->name_count) {
948 			printk(KERN_ERR "%s:%d(:%d): major=%d"
949 			       " in_syscall=%d putname(%p) name_count=%d"
950 			       " put_count=%d\n",
951 			       __FILE__, __LINE__,
952 			       context->serial, context->major,
953 			       context->in_syscall, name, context->name_count,
954 			       context->put_count);
955 			dump_stack();
956 		}
957 	}
958 #endif
959 }
960 
961 /* Store the inode and device from a lookup.  Called from
962  * fs/namei.c:path_lookup(). */
963 void audit_inode(const char *name, const struct inode *inode)
964 {
965 	int idx;
966 	struct audit_context *context = current->audit_context;
967 
968 	if (!context->in_syscall)
969 		return;
970 	if (context->name_count
971 	    && context->names[context->name_count-1].name
972 	    && context->names[context->name_count-1].name == name)
973 		idx = context->name_count - 1;
974 	else if (context->name_count > 1
975 		 && context->names[context->name_count-2].name
976 		 && context->names[context->name_count-2].name == name)
977 		idx = context->name_count - 2;
978 	else {
979 		/* FIXME: how much do we care about inodes that have no
980 		 * associated name? */
981 		if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
982 			return;
983 		idx = context->name_count++;
984 		context->names[idx].name = NULL;
985 #if AUDIT_DEBUG
986 		++context->ino_count;
987 #endif
988 	}
989 	context->names[idx].ino  = inode->i_ino;
990 	context->names[idx].dev	 = inode->i_sb->s_dev;
991 	context->names[idx].mode = inode->i_mode;
992 	context->names[idx].uid  = inode->i_uid;
993 	context->names[idx].gid  = inode->i_gid;
994 	context->names[idx].rdev = inode->i_rdev;
995 }
996 
997 void audit_get_stamp(struct audit_context *ctx,
998 		     struct timespec *t, unsigned int *serial)
999 {
1000 	if (ctx) {
1001 		t->tv_sec  = ctx->ctime.tv_sec;
1002 		t->tv_nsec = ctx->ctime.tv_nsec;
1003 		*serial    = ctx->serial;
1004 		ctx->auditable = 1;
1005 	} else {
1006 		*t      = CURRENT_TIME;
1007 		*serial = 0;
1008 	}
1009 }
1010 
1011 extern int audit_set_type(struct audit_buffer *ab, int type);
1012 
1013 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1014 {
1015 	if (task->audit_context) {
1016 		struct audit_buffer *ab;
1017 
1018 		ab = audit_log_start(NULL);
1019 		if (ab) {
1020 			audit_log_format(ab, "login pid=%d uid=%u "
1021 				"old loginuid=%u new loginuid=%u",
1022 				task->pid, task->uid,
1023 				task->audit_context->loginuid, loginuid);
1024 			audit_set_type(ab, AUDIT_LOGIN);
1025 			audit_log_end(ab);
1026 		}
1027 		task->audit_context->loginuid = loginuid;
1028 	}
1029 	return 0;
1030 }
1031 
1032 uid_t audit_get_loginuid(struct audit_context *ctx)
1033 {
1034 	return ctx ? ctx->loginuid : -1;
1035 }
1036 
1037 int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1038 {
1039 	struct audit_aux_data_ipcctl *ax;
1040 	struct audit_context *context = current->audit_context;
1041 
1042 	if (likely(!context))
1043 		return 0;
1044 
1045 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1046 	if (!ax)
1047 		return -ENOMEM;
1048 
1049 	ax->qbytes = qbytes;
1050 	ax->uid = uid;
1051 	ax->gid = gid;
1052 	ax->mode = mode;
1053 
1054 	ax->d.type = AUDIT_AUX_IPCPERM;
1055 	ax->d.next = context->aux;
1056 	context->aux = (void *)ax;
1057 	return 0;
1058 }
1059