1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 68 69 #include "audit.h" 70 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 75 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_aux_data { 90 struct audit_aux_data *next; 91 int type; 92 }; 93 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 96 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 struct lsm_prop target_ref[AUDIT_AUX_PIDS]; 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 106 }; 107 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 114 }; 115 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 119 }; 120 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 123 const char *s; 124 }; 125 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, 147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, 148 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 149 }; 150 151 static int audit_match_perm(struct audit_context *ctx, int mask) 152 { 153 unsigned n; 154 155 if (unlikely(!ctx)) 156 return 0; 157 n = ctx->major; 158 159 switch (audit_classify_syscall(ctx->arch, n)) { 160 case AUDITSC_NATIVE: 161 if ((mask & AUDIT_PERM_WRITE) && 162 audit_match_class(AUDIT_CLASS_WRITE, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_READ) && 165 audit_match_class(AUDIT_CLASS_READ, n)) 166 return 1; 167 if ((mask & AUDIT_PERM_ATTR) && 168 audit_match_class(AUDIT_CLASS_CHATTR, n)) 169 return 1; 170 return 0; 171 case AUDITSC_COMPAT: /* 32bit on biarch */ 172 if ((mask & AUDIT_PERM_WRITE) && 173 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_READ) && 176 audit_match_class(AUDIT_CLASS_READ_32, n)) 177 return 1; 178 if ((mask & AUDIT_PERM_ATTR) && 179 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 180 return 1; 181 return 0; 182 case AUDITSC_OPEN: 183 return mask & ACC_MODE(ctx->argv[1]); 184 case AUDITSC_OPENAT: 185 return mask & ACC_MODE(ctx->argv[2]); 186 case AUDITSC_SOCKETCALL: 187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 188 case AUDITSC_EXECVE: 189 return mask & AUDIT_PERM_EXEC; 190 case AUDITSC_OPENAT2: 191 return mask & ACC_MODE((u32)ctx->openat2.flags); 192 default: 193 return 0; 194 } 195 } 196 197 static int audit_match_filetype(struct audit_context *ctx, int val) 198 { 199 struct audit_names *n; 200 umode_t mode = (umode_t)val; 201 202 if (unlikely(!ctx)) 203 return 0; 204 205 list_for_each_entry(n, &ctx->names_list, list) { 206 if ((n->ino != AUDIT_INO_UNSET) && 207 ((n->mode & S_IFMT) == mode)) 208 return 1; 209 } 210 211 return 0; 212 } 213 214 /* 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 216 * ->first_trees points to its beginning, ->trees - to the current end of data. 217 * ->tree_count is the number of free entries in array pointed to by ->trees. 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 220 * it's going to remain 1-element for almost any setup) until we free context itself. 221 * References in it _are_ dropped - at the same time we free/drop aux stuff. 222 */ 223 224 static void audit_set_auditable(struct audit_context *ctx) 225 { 226 if (!ctx->prio) { 227 ctx->prio = 1; 228 ctx->current_state = AUDIT_STATE_RECORD; 229 } 230 } 231 232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 int left = ctx->tree_count; 236 237 if (likely(left)) { 238 p->c[--left] = chunk; 239 ctx->tree_count = left; 240 return 1; 241 } 242 if (!p) 243 return 0; 244 p = p->next; 245 if (p) { 246 p->c[30] = chunk; 247 ctx->trees = p; 248 ctx->tree_count = 30; 249 return 1; 250 } 251 return 0; 252 } 253 254 static int grow_tree_refs(struct audit_context *ctx) 255 { 256 struct audit_tree_refs *p = ctx->trees; 257 258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 259 if (!ctx->trees) { 260 ctx->trees = p; 261 return 0; 262 } 263 if (p) 264 p->next = ctx->trees; 265 else 266 ctx->first_trees = ctx->trees; 267 ctx->tree_count = 31; 268 return 1; 269 } 270 271 static void unroll_tree_refs(struct audit_context *ctx, 272 struct audit_tree_refs *p, int count) 273 { 274 struct audit_tree_refs *q; 275 int n; 276 277 if (!p) { 278 /* we started with empty chain */ 279 p = ctx->first_trees; 280 count = 31; 281 /* if the very first allocation has failed, nothing to do */ 282 if (!p) 283 return; 284 } 285 n = count; 286 for (q = p; q != ctx->trees; q = q->next, n = 31) { 287 while (n--) { 288 audit_put_chunk(q->c[n]); 289 q->c[n] = NULL; 290 } 291 } 292 while (n-- > ctx->tree_count) { 293 audit_put_chunk(q->c[n]); 294 q->c[n] = NULL; 295 } 296 ctx->trees = p; 297 ctx->tree_count = count; 298 } 299 300 static void free_tree_refs(struct audit_context *ctx) 301 { 302 struct audit_tree_refs *p, *q; 303 304 for (p = ctx->first_trees; p; p = q) { 305 q = p->next; 306 kfree(p); 307 } 308 } 309 310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 311 { 312 struct audit_tree_refs *p; 313 int n; 314 315 if (!tree) 316 return 0; 317 /* full ones */ 318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 319 for (n = 0; n < 31; n++) 320 if (audit_tree_match(p->c[n], tree)) 321 return 1; 322 } 323 /* partial */ 324 if (p) { 325 for (n = ctx->tree_count; n < 31; n++) 326 if (audit_tree_match(p->c[n], tree)) 327 return 1; 328 } 329 return 0; 330 } 331 332 static int audit_compare_uid(kuid_t uid, 333 struct audit_names *name, 334 struct audit_field *f, 335 struct audit_context *ctx) 336 { 337 struct audit_names *n; 338 int rc; 339 340 if (name) { 341 rc = audit_uid_comparator(uid, f->op, name->uid); 342 if (rc) 343 return rc; 344 } 345 346 if (ctx) { 347 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_uid_comparator(uid, f->op, n->uid); 349 if (rc) 350 return rc; 351 } 352 } 353 return 0; 354 } 355 356 static int audit_compare_gid(kgid_t gid, 357 struct audit_names *name, 358 struct audit_field *f, 359 struct audit_context *ctx) 360 { 361 struct audit_names *n; 362 int rc; 363 364 if (name) { 365 rc = audit_gid_comparator(gid, f->op, name->gid); 366 if (rc) 367 return rc; 368 } 369 370 if (ctx) { 371 list_for_each_entry(n, &ctx->names_list, list) { 372 rc = audit_gid_comparator(gid, f->op, n->gid); 373 if (rc) 374 return rc; 375 } 376 } 377 return 0; 378 } 379 380 static int audit_field_compare(struct task_struct *tsk, 381 const struct cred *cred, 382 struct audit_field *f, 383 struct audit_context *ctx, 384 struct audit_names *name) 385 { 386 switch (f->val) { 387 /* process to file object comparisons */ 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 389 return audit_compare_uid(cred->uid, name, f, ctx); 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 391 return audit_compare_gid(cred->gid, name, f, ctx); 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 393 return audit_compare_uid(cred->euid, name, f, ctx); 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 395 return audit_compare_gid(cred->egid, name, f, ctx); 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 399 return audit_compare_uid(cred->suid, name, f, ctx); 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 401 return audit_compare_gid(cred->sgid, name, f, ctx); 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 403 return audit_compare_uid(cred->fsuid, name, f, ctx); 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 405 return audit_compare_gid(cred->fsgid, name, f, ctx); 406 /* uid comparisons */ 407 case AUDIT_COMPARE_UID_TO_AUID: 408 return audit_uid_comparator(cred->uid, f->op, 409 audit_get_loginuid(tsk)); 410 case AUDIT_COMPARE_UID_TO_EUID: 411 return audit_uid_comparator(cred->uid, f->op, cred->euid); 412 case AUDIT_COMPARE_UID_TO_SUID: 413 return audit_uid_comparator(cred->uid, f->op, cred->suid); 414 case AUDIT_COMPARE_UID_TO_FSUID: 415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 416 /* auid comparisons */ 417 case AUDIT_COMPARE_AUID_TO_EUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->euid); 420 case AUDIT_COMPARE_AUID_TO_SUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->suid); 423 case AUDIT_COMPARE_AUID_TO_FSUID: 424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 425 cred->fsuid); 426 /* euid comparisons */ 427 case AUDIT_COMPARE_EUID_TO_SUID: 428 return audit_uid_comparator(cred->euid, f->op, cred->suid); 429 case AUDIT_COMPARE_EUID_TO_FSUID: 430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 431 /* suid comparisons */ 432 case AUDIT_COMPARE_SUID_TO_FSUID: 433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 434 /* gid comparisons */ 435 case AUDIT_COMPARE_GID_TO_EGID: 436 return audit_gid_comparator(cred->gid, f->op, cred->egid); 437 case AUDIT_COMPARE_GID_TO_SGID: 438 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 439 case AUDIT_COMPARE_GID_TO_FSGID: 440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 441 /* egid comparisons */ 442 case AUDIT_COMPARE_EGID_TO_SGID: 443 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 444 case AUDIT_COMPARE_EGID_TO_FSGID: 445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 446 /* sgid comparison */ 447 case AUDIT_COMPARE_SGID_TO_FSGID: 448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 449 default: 450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 451 return 0; 452 } 453 return 0; 454 } 455 456 /* Determine if any context name data matches a rule's watch data */ 457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 458 * otherwise. 459 * 460 * If task_creation is true, this is an explicit indication that we are 461 * filtering a task rule at task creation time. This and tsk == current are 462 * the only situations where tsk->cred may be accessed without an rcu read lock. 463 */ 464 static int audit_filter_rules(struct task_struct *tsk, 465 struct audit_krule *rule, 466 struct audit_context *ctx, 467 struct audit_names *name, 468 enum audit_state *state, 469 bool task_creation) 470 { 471 const struct cred *cred; 472 int i, need_sid = 1; 473 struct lsm_prop prop = { }; 474 unsigned int sessionid; 475 476 if (ctx && rule->prio <= ctx->prio) 477 return 0; 478 479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 480 481 for (i = 0; i < rule->field_count; i++) { 482 struct audit_field *f = &rule->fields[i]; 483 struct audit_names *n; 484 int result = 0; 485 pid_t pid; 486 487 switch (f->type) { 488 case AUDIT_PID: 489 pid = task_tgid_nr(tsk); 490 result = audit_comparator(pid, f->op, f->val); 491 break; 492 case AUDIT_PPID: 493 if (ctx) { 494 if (!ctx->ppid) 495 ctx->ppid = task_ppid_nr(tsk); 496 result = audit_comparator(ctx->ppid, f->op, f->val); 497 } 498 break; 499 case AUDIT_EXE: 500 result = audit_exe_compare(tsk, rule->exe); 501 if (f->op == Audit_not_equal) 502 result = !result; 503 break; 504 case AUDIT_UID: 505 result = audit_uid_comparator(cred->uid, f->op, f->uid); 506 break; 507 case AUDIT_EUID: 508 result = audit_uid_comparator(cred->euid, f->op, f->uid); 509 break; 510 case AUDIT_SUID: 511 result = audit_uid_comparator(cred->suid, f->op, f->uid); 512 break; 513 case AUDIT_FSUID: 514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 515 break; 516 case AUDIT_GID: 517 result = audit_gid_comparator(cred->gid, f->op, f->gid); 518 if (f->op == Audit_equal) { 519 if (!result) 520 result = groups_search(cred->group_info, f->gid); 521 } else if (f->op == Audit_not_equal) { 522 if (result) 523 result = !groups_search(cred->group_info, f->gid); 524 } 525 break; 526 case AUDIT_EGID: 527 result = audit_gid_comparator(cred->egid, f->op, f->gid); 528 if (f->op == Audit_equal) { 529 if (!result) 530 result = groups_search(cred->group_info, f->gid); 531 } else if (f->op == Audit_not_equal) { 532 if (result) 533 result = !groups_search(cred->group_info, f->gid); 534 } 535 break; 536 case AUDIT_SGID: 537 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 538 break; 539 case AUDIT_FSGID: 540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 541 break; 542 case AUDIT_SESSIONID: 543 sessionid = audit_get_sessionid(tsk); 544 result = audit_comparator(sessionid, f->op, f->val); 545 break; 546 case AUDIT_PERS: 547 result = audit_comparator(tsk->personality, f->op, f->val); 548 break; 549 case AUDIT_ARCH: 550 if (ctx) 551 result = audit_comparator(ctx->arch, f->op, f->val); 552 break; 553 554 case AUDIT_EXIT: 555 if (ctx && ctx->return_valid != AUDITSC_INVALID) 556 result = audit_comparator(ctx->return_code, f->op, f->val); 557 break; 558 case AUDIT_SUCCESS: 559 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 560 if (f->val) 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 562 else 563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 564 } 565 break; 566 case AUDIT_DEVMAJOR: 567 if (name) { 568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 569 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 570 ++result; 571 } else if (ctx) { 572 list_for_each_entry(n, &ctx->names_list, list) { 573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 575 ++result; 576 break; 577 } 578 } 579 } 580 break; 581 case AUDIT_DEVMINOR: 582 if (name) { 583 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 584 audit_comparator(MINOR(name->rdev), f->op, f->val)) 585 ++result; 586 } else if (ctx) { 587 list_for_each_entry(n, &ctx->names_list, list) { 588 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 589 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 590 ++result; 591 break; 592 } 593 } 594 } 595 break; 596 case AUDIT_INODE: 597 if (name) 598 result = audit_comparator(name->ino, f->op, f->val); 599 else if (ctx) { 600 list_for_each_entry(n, &ctx->names_list, list) { 601 if (audit_comparator(n->ino, f->op, f->val)) { 602 ++result; 603 break; 604 } 605 } 606 } 607 break; 608 case AUDIT_OBJ_UID: 609 if (name) { 610 result = audit_uid_comparator(name->uid, f->op, f->uid); 611 } else if (ctx) { 612 list_for_each_entry(n, &ctx->names_list, list) { 613 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 614 ++result; 615 break; 616 } 617 } 618 } 619 break; 620 case AUDIT_OBJ_GID: 621 if (name) { 622 result = audit_gid_comparator(name->gid, f->op, f->gid); 623 } else if (ctx) { 624 list_for_each_entry(n, &ctx->names_list, list) { 625 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 626 ++result; 627 break; 628 } 629 } 630 } 631 break; 632 case AUDIT_WATCH: 633 if (name) { 634 result = audit_watch_compare(rule->watch, 635 name->ino, 636 name->dev); 637 if (f->op == Audit_not_equal) 638 result = !result; 639 } 640 break; 641 case AUDIT_DIR: 642 if (ctx) { 643 result = match_tree_refs(ctx, rule->tree); 644 if (f->op == Audit_not_equal) 645 result = !result; 646 } 647 break; 648 case AUDIT_LOGINUID: 649 result = audit_uid_comparator(audit_get_loginuid(tsk), 650 f->op, f->uid); 651 break; 652 case AUDIT_LOGINUID_SET: 653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 654 break; 655 case AUDIT_SADDR_FAM: 656 if (ctx && ctx->sockaddr) 657 result = audit_comparator(ctx->sockaddr->ss_family, 658 f->op, f->val); 659 break; 660 case AUDIT_SUBJ_USER: 661 case AUDIT_SUBJ_ROLE: 662 case AUDIT_SUBJ_TYPE: 663 case AUDIT_SUBJ_SEN: 664 case AUDIT_SUBJ_CLR: 665 /* NOTE: this may return negative values indicating 666 a temporary error. We simply treat this as a 667 match for now to avoid losing information that 668 may be wanted. An error message will also be 669 logged upon error */ 670 if (f->lsm_rule) { 671 if (need_sid) { 672 /* @tsk should always be equal to 673 * @current with the exception of 674 * fork()/copy_process() in which case 675 * the new @tsk creds are still a dup 676 * of @current's creds so we can still 677 * use 678 * security_current_getlsmprop_subj() 679 * here even though it always refs 680 * @current's creds 681 */ 682 security_current_getlsmprop_subj(&prop); 683 need_sid = 0; 684 } 685 result = security_audit_rule_match(&prop, 686 f->type, 687 f->op, 688 f->lsm_rule); 689 } 690 break; 691 case AUDIT_OBJ_USER: 692 case AUDIT_OBJ_ROLE: 693 case AUDIT_OBJ_TYPE: 694 case AUDIT_OBJ_LEV_LOW: 695 case AUDIT_OBJ_LEV_HIGH: 696 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 697 also applies here */ 698 if (f->lsm_rule) { 699 /* Find files that match */ 700 if (name) { 701 result = security_audit_rule_match( 702 &name->oprop, 703 f->type, 704 f->op, 705 f->lsm_rule); 706 } else if (ctx) { 707 list_for_each_entry(n, &ctx->names_list, list) { 708 if (security_audit_rule_match( 709 &n->oprop, 710 f->type, 711 f->op, 712 f->lsm_rule)) { 713 ++result; 714 break; 715 } 716 } 717 } 718 /* Find ipc objects that match */ 719 if (!ctx || ctx->type != AUDIT_IPC) 720 break; 721 if (security_audit_rule_match(&ctx->ipc.oprop, 722 f->type, f->op, 723 f->lsm_rule)) 724 ++result; 725 } 726 break; 727 case AUDIT_ARG0: 728 case AUDIT_ARG1: 729 case AUDIT_ARG2: 730 case AUDIT_ARG3: 731 if (ctx) 732 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 733 break; 734 case AUDIT_FILTERKEY: 735 /* ignore this field for filtering */ 736 result = 1; 737 break; 738 case AUDIT_PERM: 739 result = audit_match_perm(ctx, f->val); 740 if (f->op == Audit_not_equal) 741 result = !result; 742 break; 743 case AUDIT_FILETYPE: 744 result = audit_match_filetype(ctx, f->val); 745 if (f->op == Audit_not_equal) 746 result = !result; 747 break; 748 case AUDIT_FIELD_COMPARE: 749 result = audit_field_compare(tsk, cred, f, ctx, name); 750 break; 751 } 752 if (!result) 753 return 0; 754 } 755 756 if (ctx) { 757 if (rule->filterkey) { 758 kfree(ctx->filterkey); 759 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 760 } 761 ctx->prio = rule->prio; 762 } 763 switch (rule->action) { 764 case AUDIT_NEVER: 765 *state = AUDIT_STATE_DISABLED; 766 break; 767 case AUDIT_ALWAYS: 768 *state = AUDIT_STATE_RECORD; 769 break; 770 } 771 return 1; 772 } 773 774 /* At process creation time, we can determine if system-call auditing is 775 * completely disabled for this task. Since we only have the task 776 * structure at this point, we can only check uid and gid. 777 */ 778 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 779 { 780 struct audit_entry *e; 781 enum audit_state state; 782 783 rcu_read_lock(); 784 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 785 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 786 &state, true)) { 787 if (state == AUDIT_STATE_RECORD) 788 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 789 rcu_read_unlock(); 790 return state; 791 } 792 } 793 rcu_read_unlock(); 794 return AUDIT_STATE_BUILD; 795 } 796 797 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 798 { 799 int word, bit; 800 801 if (val > 0xffffffff) 802 return false; 803 804 word = AUDIT_WORD(val); 805 if (word >= AUDIT_BITMASK_SIZE) 806 return false; 807 808 bit = AUDIT_BIT(val); 809 810 return rule->mask[word] & bit; 811 } 812 813 /** 814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 815 * @tsk: associated task 816 * @ctx: audit context 817 * @list: audit filter list 818 * @name: audit_name (can be NULL) 819 * @op: current syscall/uring_op 820 * 821 * Run the udit filters specified in @list against @tsk using @ctx, 822 * @name, and @op, as necessary; the caller is responsible for ensuring 823 * that the call is made while the RCU read lock is held. The @name 824 * parameter can be NULL, but all others must be specified. 825 * Returns 1/true if the filter finds a match, 0/false if none are found. 826 */ 827 static int __audit_filter_op(struct task_struct *tsk, 828 struct audit_context *ctx, 829 struct list_head *list, 830 struct audit_names *name, 831 unsigned long op) 832 { 833 struct audit_entry *e; 834 enum audit_state state; 835 836 list_for_each_entry_rcu(e, list, list) { 837 if (audit_in_mask(&e->rule, op) && 838 audit_filter_rules(tsk, &e->rule, ctx, name, 839 &state, false)) { 840 ctx->current_state = state; 841 return 1; 842 } 843 } 844 return 0; 845 } 846 847 /** 848 * audit_filter_uring - apply filters to an io_uring operation 849 * @tsk: associated task 850 * @ctx: audit context 851 */ 852 static void audit_filter_uring(struct task_struct *tsk, 853 struct audit_context *ctx) 854 { 855 if (auditd_test_task(tsk)) 856 return; 857 858 rcu_read_lock(); 859 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 860 NULL, ctx->uring_op); 861 rcu_read_unlock(); 862 } 863 864 /* At syscall exit time, this filter is called if the audit_state is 865 * not low enough that auditing cannot take place, but is also not 866 * high enough that we already know we have to write an audit record 867 * (i.e., the state is AUDIT_STATE_BUILD). 868 */ 869 static void audit_filter_syscall(struct task_struct *tsk, 870 struct audit_context *ctx) 871 { 872 if (auditd_test_task(tsk)) 873 return; 874 875 rcu_read_lock(); 876 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 877 NULL, ctx->major); 878 rcu_read_unlock(); 879 } 880 881 /* 882 * Given an audit_name check the inode hash table to see if they match. 883 * Called holding the rcu read lock to protect the use of audit_inode_hash 884 */ 885 static int audit_filter_inode_name(struct task_struct *tsk, 886 struct audit_names *n, 887 struct audit_context *ctx) 888 { 889 int h = audit_hash_ino((u32)n->ino); 890 struct list_head *list = &audit_inode_hash[h]; 891 892 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 893 } 894 895 /* At syscall exit time, this filter is called if any audit_names have been 896 * collected during syscall processing. We only check rules in sublists at hash 897 * buckets applicable to the inode numbers in audit_names. 898 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 899 */ 900 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 901 { 902 struct audit_names *n; 903 904 if (auditd_test_task(tsk)) 905 return; 906 907 rcu_read_lock(); 908 909 list_for_each_entry(n, &ctx->names_list, list) { 910 if (audit_filter_inode_name(tsk, n, ctx)) 911 break; 912 } 913 rcu_read_unlock(); 914 } 915 916 static inline void audit_proctitle_free(struct audit_context *context) 917 { 918 kfree(context->proctitle.value); 919 context->proctitle.value = NULL; 920 context->proctitle.len = 0; 921 } 922 923 static inline void audit_free_module(struct audit_context *context) 924 { 925 if (context->type == AUDIT_KERN_MODULE) { 926 kfree(context->module.name); 927 context->module.name = NULL; 928 } 929 } 930 static inline void audit_free_names(struct audit_context *context) 931 { 932 struct audit_names *n, *next; 933 934 list_for_each_entry_safe(n, next, &context->names_list, list) { 935 list_del(&n->list); 936 if (n->name) 937 putname(n->name); 938 if (n->should_free) 939 kfree(n); 940 } 941 context->name_count = 0; 942 path_put(&context->pwd); 943 context->pwd.dentry = NULL; 944 context->pwd.mnt = NULL; 945 } 946 947 static inline void audit_free_aux(struct audit_context *context) 948 { 949 struct audit_aux_data *aux; 950 951 while ((aux = context->aux)) { 952 context->aux = aux->next; 953 kfree(aux); 954 } 955 context->aux = NULL; 956 while ((aux = context->aux_pids)) { 957 context->aux_pids = aux->next; 958 kfree(aux); 959 } 960 context->aux_pids = NULL; 961 } 962 963 /** 964 * audit_reset_context - reset a audit_context structure 965 * @ctx: the audit_context to reset 966 * 967 * All fields in the audit_context will be reset to an initial state, all 968 * references held by fields will be dropped, and private memory will be 969 * released. When this function returns the audit_context will be suitable 970 * for reuse, so long as the passed context is not NULL or a dummy context. 971 */ 972 static void audit_reset_context(struct audit_context *ctx) 973 { 974 if (!ctx) 975 return; 976 977 /* if ctx is non-null, reset the "ctx->context" regardless */ 978 ctx->context = AUDIT_CTX_UNUSED; 979 if (ctx->dummy) 980 return; 981 982 /* 983 * NOTE: It shouldn't matter in what order we release the fields, so 984 * release them in the order in which they appear in the struct; 985 * this gives us some hope of quickly making sure we are 986 * resetting the audit_context properly. 987 * 988 * Other things worth mentioning: 989 * - we don't reset "dummy" 990 * - we don't reset "state", we do reset "current_state" 991 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 992 * - much of this is likely overkill, but play it safe for now 993 * - we really need to work on improving the audit_context struct 994 */ 995 996 ctx->current_state = ctx->state; 997 ctx->serial = 0; 998 ctx->major = 0; 999 ctx->uring_op = 0; 1000 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 1001 memset(ctx->argv, 0, sizeof(ctx->argv)); 1002 ctx->return_code = 0; 1003 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 1004 ctx->return_valid = AUDITSC_INVALID; 1005 audit_free_names(ctx); 1006 if (ctx->state != AUDIT_STATE_RECORD) { 1007 kfree(ctx->filterkey); 1008 ctx->filterkey = NULL; 1009 } 1010 audit_free_aux(ctx); 1011 kfree(ctx->sockaddr); 1012 ctx->sockaddr = NULL; 1013 ctx->sockaddr_len = 0; 1014 ctx->ppid = 0; 1015 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1016 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1017 ctx->personality = 0; 1018 ctx->arch = 0; 1019 ctx->target_pid = 0; 1020 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1021 ctx->target_sessionid = 0; 1022 lsmprop_init(&ctx->target_ref); 1023 ctx->target_comm[0] = '\0'; 1024 unroll_tree_refs(ctx, NULL, 0); 1025 WARN_ON(!list_empty(&ctx->killed_trees)); 1026 audit_free_module(ctx); 1027 ctx->fds[0] = -1; 1028 ctx->type = 0; /* reset last for audit_free_*() */ 1029 } 1030 1031 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1032 { 1033 struct audit_context *context; 1034 1035 context = kzalloc(sizeof(*context), GFP_KERNEL); 1036 if (!context) 1037 return NULL; 1038 context->context = AUDIT_CTX_UNUSED; 1039 context->state = state; 1040 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1041 INIT_LIST_HEAD(&context->killed_trees); 1042 INIT_LIST_HEAD(&context->names_list); 1043 context->fds[0] = -1; 1044 context->return_valid = AUDITSC_INVALID; 1045 return context; 1046 } 1047 1048 /** 1049 * audit_alloc - allocate an audit context block for a task 1050 * @tsk: task 1051 * 1052 * Filter on the task information and allocate a per-task audit context 1053 * if necessary. Doing so turns on system call auditing for the 1054 * specified task. This is called from copy_process, so no lock is 1055 * needed. 1056 */ 1057 int audit_alloc(struct task_struct *tsk) 1058 { 1059 struct audit_context *context; 1060 enum audit_state state; 1061 char *key = NULL; 1062 1063 if (likely(!audit_ever_enabled)) 1064 return 0; 1065 1066 state = audit_filter_task(tsk, &key); 1067 if (state == AUDIT_STATE_DISABLED) { 1068 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1069 return 0; 1070 } 1071 1072 context = audit_alloc_context(state); 1073 if (!context) { 1074 kfree(key); 1075 audit_log_lost("out of memory in audit_alloc"); 1076 return -ENOMEM; 1077 } 1078 context->filterkey = key; 1079 1080 audit_set_context(tsk, context); 1081 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1082 return 0; 1083 } 1084 1085 static inline void audit_free_context(struct audit_context *context) 1086 { 1087 /* resetting is extra work, but it is likely just noise */ 1088 audit_reset_context(context); 1089 audit_proctitle_free(context); 1090 free_tree_refs(context); 1091 kfree(context->filterkey); 1092 kfree(context); 1093 } 1094 1095 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1096 kuid_t auid, kuid_t uid, 1097 unsigned int sessionid, struct lsm_prop *prop, 1098 char *comm) 1099 { 1100 struct audit_buffer *ab; 1101 char *ctx = NULL; 1102 u32 len; 1103 int rc = 0; 1104 1105 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1106 if (!ab) 1107 return rc; 1108 1109 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1110 from_kuid(&init_user_ns, auid), 1111 from_kuid(&init_user_ns, uid), sessionid); 1112 if (lsmprop_is_set(prop)) { 1113 if (security_lsmprop_to_secctx(prop, &ctx, &len)) { 1114 audit_log_format(ab, " obj=(none)"); 1115 rc = 1; 1116 } else { 1117 audit_log_format(ab, " obj=%s", ctx); 1118 security_release_secctx(ctx, len); 1119 } 1120 } 1121 audit_log_format(ab, " ocomm="); 1122 audit_log_untrustedstring(ab, comm); 1123 audit_log_end(ab); 1124 1125 return rc; 1126 } 1127 1128 static void audit_log_execve_info(struct audit_context *context, 1129 struct audit_buffer **ab) 1130 { 1131 long len_max; 1132 long len_rem; 1133 long len_full; 1134 long len_buf; 1135 long len_abuf = 0; 1136 long len_tmp; 1137 bool require_data; 1138 bool encode; 1139 unsigned int iter; 1140 unsigned int arg; 1141 char *buf_head; 1142 char *buf; 1143 const char __user *p = (const char __user *)current->mm->arg_start; 1144 1145 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1146 * data we put in the audit record for this argument (see the 1147 * code below) ... at this point in time 96 is plenty */ 1148 char abuf[96]; 1149 1150 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1151 * current value of 7500 is not as important as the fact that it 1152 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1153 * room if we go over a little bit in the logging below */ 1154 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1155 len_max = MAX_EXECVE_AUDIT_LEN; 1156 1157 /* scratch buffer to hold the userspace args */ 1158 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1159 if (!buf_head) { 1160 audit_panic("out of memory for argv string"); 1161 return; 1162 } 1163 buf = buf_head; 1164 1165 audit_log_format(*ab, "argc=%d", context->execve.argc); 1166 1167 len_rem = len_max; 1168 len_buf = 0; 1169 len_full = 0; 1170 require_data = true; 1171 encode = false; 1172 iter = 0; 1173 arg = 0; 1174 do { 1175 /* NOTE: we don't ever want to trust this value for anything 1176 * serious, but the audit record format insists we 1177 * provide an argument length for really long arguments, 1178 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1179 * to use strncpy_from_user() to obtain this value for 1180 * recording in the log, although we don't use it 1181 * anywhere here to avoid a double-fetch problem */ 1182 if (len_full == 0) 1183 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1184 1185 /* read more data from userspace */ 1186 if (require_data) { 1187 /* can we make more room in the buffer? */ 1188 if (buf != buf_head) { 1189 memmove(buf_head, buf, len_buf); 1190 buf = buf_head; 1191 } 1192 1193 /* fetch as much as we can of the argument */ 1194 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1195 len_max - len_buf); 1196 if (len_tmp == -EFAULT) { 1197 /* unable to copy from userspace */ 1198 send_sig(SIGKILL, current, 0); 1199 goto out; 1200 } else if (len_tmp == (len_max - len_buf)) { 1201 /* buffer is not large enough */ 1202 require_data = true; 1203 /* NOTE: if we are going to span multiple 1204 * buffers force the encoding so we stand 1205 * a chance at a sane len_full value and 1206 * consistent record encoding */ 1207 encode = true; 1208 len_full = len_full * 2; 1209 p += len_tmp; 1210 } else { 1211 require_data = false; 1212 if (!encode) 1213 encode = audit_string_contains_control( 1214 buf, len_tmp); 1215 /* try to use a trusted value for len_full */ 1216 if (len_full < len_max) 1217 len_full = (encode ? 1218 len_tmp * 2 : len_tmp); 1219 p += len_tmp + 1; 1220 } 1221 len_buf += len_tmp; 1222 buf_head[len_buf] = '\0'; 1223 1224 /* length of the buffer in the audit record? */ 1225 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1226 } 1227 1228 /* write as much as we can to the audit log */ 1229 if (len_buf >= 0) { 1230 /* NOTE: some magic numbers here - basically if we 1231 * can't fit a reasonable amount of data into the 1232 * existing audit buffer, flush it and start with 1233 * a new buffer */ 1234 if ((sizeof(abuf) + 8) > len_rem) { 1235 len_rem = len_max; 1236 audit_log_end(*ab); 1237 *ab = audit_log_start(context, 1238 GFP_KERNEL, AUDIT_EXECVE); 1239 if (!*ab) 1240 goto out; 1241 } 1242 1243 /* create the non-arg portion of the arg record */ 1244 len_tmp = 0; 1245 if (require_data || (iter > 0) || 1246 ((len_abuf + sizeof(abuf)) > len_rem)) { 1247 if (iter == 0) { 1248 len_tmp += snprintf(&abuf[len_tmp], 1249 sizeof(abuf) - len_tmp, 1250 " a%d_len=%lu", 1251 arg, len_full); 1252 } 1253 len_tmp += snprintf(&abuf[len_tmp], 1254 sizeof(abuf) - len_tmp, 1255 " a%d[%d]=", arg, iter++); 1256 } else 1257 len_tmp += snprintf(&abuf[len_tmp], 1258 sizeof(abuf) - len_tmp, 1259 " a%d=", arg); 1260 WARN_ON(len_tmp >= sizeof(abuf)); 1261 abuf[sizeof(abuf) - 1] = '\0'; 1262 1263 /* log the arg in the audit record */ 1264 audit_log_format(*ab, "%s", abuf); 1265 len_rem -= len_tmp; 1266 len_tmp = len_buf; 1267 if (encode) { 1268 if (len_abuf > len_rem) 1269 len_tmp = len_rem / 2; /* encoding */ 1270 audit_log_n_hex(*ab, buf, len_tmp); 1271 len_rem -= len_tmp * 2; 1272 len_abuf -= len_tmp * 2; 1273 } else { 1274 if (len_abuf > len_rem) 1275 len_tmp = len_rem - 2; /* quotes */ 1276 audit_log_n_string(*ab, buf, len_tmp); 1277 len_rem -= len_tmp + 2; 1278 /* don't subtract the "2" because we still need 1279 * to add quotes to the remaining string */ 1280 len_abuf -= len_tmp; 1281 } 1282 len_buf -= len_tmp; 1283 buf += len_tmp; 1284 } 1285 1286 /* ready to move to the next argument? */ 1287 if ((len_buf == 0) && !require_data) { 1288 arg++; 1289 iter = 0; 1290 len_full = 0; 1291 require_data = true; 1292 encode = false; 1293 } 1294 } while (arg < context->execve.argc); 1295 1296 /* NOTE: the caller handles the final audit_log_end() call */ 1297 1298 out: 1299 kfree(buf_head); 1300 } 1301 1302 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1303 kernel_cap_t *cap) 1304 { 1305 if (cap_isclear(*cap)) { 1306 audit_log_format(ab, " %s=0", prefix); 1307 return; 1308 } 1309 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1310 } 1311 1312 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1313 { 1314 if (name->fcap_ver == -1) { 1315 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1316 return; 1317 } 1318 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1319 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1320 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1321 name->fcap.fE, name->fcap_ver, 1322 from_kuid(&init_user_ns, name->fcap.rootid)); 1323 } 1324 1325 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1326 { 1327 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1328 const struct timespec64 *tk = &context->time.tk_injoffset; 1329 static const char * const ntp_name[] = { 1330 "offset", 1331 "freq", 1332 "status", 1333 "tai", 1334 "tick", 1335 "adjust", 1336 }; 1337 int type; 1338 1339 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1340 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1341 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1342 if (!*ab) { 1343 *ab = audit_log_start(context, 1344 GFP_KERNEL, 1345 AUDIT_TIME_ADJNTPVAL); 1346 if (!*ab) 1347 return; 1348 } 1349 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1350 ntp_name[type], 1351 ntp->vals[type].oldval, 1352 ntp->vals[type].newval); 1353 audit_log_end(*ab); 1354 *ab = NULL; 1355 } 1356 } 1357 } 1358 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1359 if (!*ab) { 1360 *ab = audit_log_start(context, GFP_KERNEL, 1361 AUDIT_TIME_INJOFFSET); 1362 if (!*ab) 1363 return; 1364 } 1365 audit_log_format(*ab, "sec=%lli nsec=%li", 1366 (long long)tk->tv_sec, tk->tv_nsec); 1367 audit_log_end(*ab); 1368 *ab = NULL; 1369 } 1370 } 1371 1372 static void show_special(struct audit_context *context, int *call_panic) 1373 { 1374 struct audit_buffer *ab; 1375 int i; 1376 1377 ab = audit_log_start(context, GFP_KERNEL, context->type); 1378 if (!ab) 1379 return; 1380 1381 switch (context->type) { 1382 case AUDIT_SOCKETCALL: { 1383 int nargs = context->socketcall.nargs; 1384 1385 audit_log_format(ab, "nargs=%d", nargs); 1386 for (i = 0; i < nargs; i++) 1387 audit_log_format(ab, " a%d=%lx", i, 1388 context->socketcall.args[i]); 1389 break; } 1390 case AUDIT_IPC: 1391 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1392 from_kuid(&init_user_ns, context->ipc.uid), 1393 from_kgid(&init_user_ns, context->ipc.gid), 1394 context->ipc.mode); 1395 if (lsmprop_is_set(&context->ipc.oprop)) { 1396 char *ctx = NULL; 1397 u32 len; 1398 1399 if (security_lsmprop_to_secctx(&context->ipc.oprop, 1400 &ctx, &len)) { 1401 *call_panic = 1; 1402 } else { 1403 audit_log_format(ab, " obj=%s", ctx); 1404 security_release_secctx(ctx, len); 1405 } 1406 } 1407 if (context->ipc.has_perm) { 1408 audit_log_end(ab); 1409 ab = audit_log_start(context, GFP_KERNEL, 1410 AUDIT_IPC_SET_PERM); 1411 if (unlikely(!ab)) 1412 return; 1413 audit_log_format(ab, 1414 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1415 context->ipc.qbytes, 1416 context->ipc.perm_uid, 1417 context->ipc.perm_gid, 1418 context->ipc.perm_mode); 1419 } 1420 break; 1421 case AUDIT_MQ_OPEN: 1422 audit_log_format(ab, 1423 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1424 "mq_msgsize=%ld mq_curmsgs=%ld", 1425 context->mq_open.oflag, context->mq_open.mode, 1426 context->mq_open.attr.mq_flags, 1427 context->mq_open.attr.mq_maxmsg, 1428 context->mq_open.attr.mq_msgsize, 1429 context->mq_open.attr.mq_curmsgs); 1430 break; 1431 case AUDIT_MQ_SENDRECV: 1432 audit_log_format(ab, 1433 "mqdes=%d msg_len=%zd msg_prio=%u " 1434 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1435 context->mq_sendrecv.mqdes, 1436 context->mq_sendrecv.msg_len, 1437 context->mq_sendrecv.msg_prio, 1438 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1439 context->mq_sendrecv.abs_timeout.tv_nsec); 1440 break; 1441 case AUDIT_MQ_NOTIFY: 1442 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1443 context->mq_notify.mqdes, 1444 context->mq_notify.sigev_signo); 1445 break; 1446 case AUDIT_MQ_GETSETATTR: { 1447 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1448 1449 audit_log_format(ab, 1450 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1451 "mq_curmsgs=%ld ", 1452 context->mq_getsetattr.mqdes, 1453 attr->mq_flags, attr->mq_maxmsg, 1454 attr->mq_msgsize, attr->mq_curmsgs); 1455 break; } 1456 case AUDIT_CAPSET: 1457 audit_log_format(ab, "pid=%d", context->capset.pid); 1458 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1459 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1460 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1461 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1462 break; 1463 case AUDIT_MMAP: 1464 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1465 context->mmap.flags); 1466 break; 1467 case AUDIT_OPENAT2: 1468 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1469 context->openat2.flags, 1470 context->openat2.mode, 1471 context->openat2.resolve); 1472 break; 1473 case AUDIT_EXECVE: 1474 audit_log_execve_info(context, &ab); 1475 break; 1476 case AUDIT_KERN_MODULE: 1477 audit_log_format(ab, "name="); 1478 if (context->module.name) { 1479 audit_log_untrustedstring(ab, context->module.name); 1480 } else 1481 audit_log_format(ab, "(null)"); 1482 1483 break; 1484 case AUDIT_TIME_ADJNTPVAL: 1485 case AUDIT_TIME_INJOFFSET: 1486 /* this call deviates from the rest, eating the buffer */ 1487 audit_log_time(context, &ab); 1488 break; 1489 } 1490 audit_log_end(ab); 1491 } 1492 1493 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1494 { 1495 char *end = proctitle + len - 1; 1496 1497 while (end > proctitle && !isprint(*end)) 1498 end--; 1499 1500 /* catch the case where proctitle is only 1 non-print character */ 1501 len = end - proctitle + 1; 1502 len -= isprint(proctitle[len-1]) == 0; 1503 return len; 1504 } 1505 1506 /* 1507 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1508 * @context: audit_context for the task 1509 * @n: audit_names structure with reportable details 1510 * @path: optional path to report instead of audit_names->name 1511 * @record_num: record number to report when handling a list of names 1512 * @call_panic: optional pointer to int that will be updated if secid fails 1513 */ 1514 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1515 const struct path *path, int record_num, int *call_panic) 1516 { 1517 struct audit_buffer *ab; 1518 1519 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1520 if (!ab) 1521 return; 1522 1523 audit_log_format(ab, "item=%d", record_num); 1524 1525 if (path) 1526 audit_log_d_path(ab, " name=", path); 1527 else if (n->name) { 1528 switch (n->name_len) { 1529 case AUDIT_NAME_FULL: 1530 /* log the full path */ 1531 audit_log_format(ab, " name="); 1532 audit_log_untrustedstring(ab, n->name->name); 1533 break; 1534 case 0: 1535 /* name was specified as a relative path and the 1536 * directory component is the cwd 1537 */ 1538 if (context->pwd.dentry && context->pwd.mnt) 1539 audit_log_d_path(ab, " name=", &context->pwd); 1540 else 1541 audit_log_format(ab, " name=(null)"); 1542 break; 1543 default: 1544 /* log the name's directory component */ 1545 audit_log_format(ab, " name="); 1546 audit_log_n_untrustedstring(ab, n->name->name, 1547 n->name_len); 1548 } 1549 } else 1550 audit_log_format(ab, " name=(null)"); 1551 1552 if (n->ino != AUDIT_INO_UNSET) 1553 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1554 n->ino, 1555 MAJOR(n->dev), 1556 MINOR(n->dev), 1557 n->mode, 1558 from_kuid(&init_user_ns, n->uid), 1559 from_kgid(&init_user_ns, n->gid), 1560 MAJOR(n->rdev), 1561 MINOR(n->rdev)); 1562 if (lsmprop_is_set(&n->oprop)) { 1563 char *ctx = NULL; 1564 u32 len; 1565 1566 if (security_lsmprop_to_secctx(&n->oprop, &ctx, &len)) { 1567 if (call_panic) 1568 *call_panic = 2; 1569 } else { 1570 audit_log_format(ab, " obj=%s", ctx); 1571 security_release_secctx(ctx, len); 1572 } 1573 } 1574 1575 /* log the audit_names record type */ 1576 switch (n->type) { 1577 case AUDIT_TYPE_NORMAL: 1578 audit_log_format(ab, " nametype=NORMAL"); 1579 break; 1580 case AUDIT_TYPE_PARENT: 1581 audit_log_format(ab, " nametype=PARENT"); 1582 break; 1583 case AUDIT_TYPE_CHILD_DELETE: 1584 audit_log_format(ab, " nametype=DELETE"); 1585 break; 1586 case AUDIT_TYPE_CHILD_CREATE: 1587 audit_log_format(ab, " nametype=CREATE"); 1588 break; 1589 default: 1590 audit_log_format(ab, " nametype=UNKNOWN"); 1591 break; 1592 } 1593 1594 audit_log_fcaps(ab, n); 1595 audit_log_end(ab); 1596 } 1597 1598 static void audit_log_proctitle(void) 1599 { 1600 int res; 1601 char *buf; 1602 char *msg = "(null)"; 1603 int len = strlen(msg); 1604 struct audit_context *context = audit_context(); 1605 struct audit_buffer *ab; 1606 1607 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1608 if (!ab) 1609 return; /* audit_panic or being filtered */ 1610 1611 audit_log_format(ab, "proctitle="); 1612 1613 /* Not cached */ 1614 if (!context->proctitle.value) { 1615 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1616 if (!buf) 1617 goto out; 1618 /* Historically called this from procfs naming */ 1619 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1620 if (res == 0) { 1621 kfree(buf); 1622 goto out; 1623 } 1624 res = audit_proctitle_rtrim(buf, res); 1625 if (res == 0) { 1626 kfree(buf); 1627 goto out; 1628 } 1629 context->proctitle.value = buf; 1630 context->proctitle.len = res; 1631 } 1632 msg = context->proctitle.value; 1633 len = context->proctitle.len; 1634 out: 1635 audit_log_n_untrustedstring(ab, msg, len); 1636 audit_log_end(ab); 1637 } 1638 1639 /** 1640 * audit_log_uring - generate a AUDIT_URINGOP record 1641 * @ctx: the audit context 1642 */ 1643 static void audit_log_uring(struct audit_context *ctx) 1644 { 1645 struct audit_buffer *ab; 1646 const struct cred *cred; 1647 1648 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1649 if (!ab) 1650 return; 1651 cred = current_cred(); 1652 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1653 if (ctx->return_valid != AUDITSC_INVALID) 1654 audit_log_format(ab, " success=%s exit=%ld", 1655 str_yes_no(ctx->return_valid == 1656 AUDITSC_SUCCESS), 1657 ctx->return_code); 1658 audit_log_format(ab, 1659 " items=%d" 1660 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1661 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1662 ctx->name_count, 1663 task_ppid_nr(current), task_tgid_nr(current), 1664 from_kuid(&init_user_ns, cred->uid), 1665 from_kgid(&init_user_ns, cred->gid), 1666 from_kuid(&init_user_ns, cred->euid), 1667 from_kuid(&init_user_ns, cred->suid), 1668 from_kuid(&init_user_ns, cred->fsuid), 1669 from_kgid(&init_user_ns, cred->egid), 1670 from_kgid(&init_user_ns, cred->sgid), 1671 from_kgid(&init_user_ns, cred->fsgid)); 1672 audit_log_task_context(ab); 1673 audit_log_key(ab, ctx->filterkey); 1674 audit_log_end(ab); 1675 } 1676 1677 static void audit_log_exit(void) 1678 { 1679 int i, call_panic = 0; 1680 struct audit_context *context = audit_context(); 1681 struct audit_buffer *ab; 1682 struct audit_aux_data *aux; 1683 struct audit_names *n; 1684 1685 context->personality = current->personality; 1686 1687 switch (context->context) { 1688 case AUDIT_CTX_SYSCALL: 1689 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1690 if (!ab) 1691 return; 1692 audit_log_format(ab, "arch=%x syscall=%d", 1693 context->arch, context->major); 1694 if (context->personality != PER_LINUX) 1695 audit_log_format(ab, " per=%lx", context->personality); 1696 if (context->return_valid != AUDITSC_INVALID) 1697 audit_log_format(ab, " success=%s exit=%ld", 1698 str_yes_no(context->return_valid == 1699 AUDITSC_SUCCESS), 1700 context->return_code); 1701 audit_log_format(ab, 1702 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1703 context->argv[0], 1704 context->argv[1], 1705 context->argv[2], 1706 context->argv[3], 1707 context->name_count); 1708 audit_log_task_info(ab); 1709 audit_log_key(ab, context->filterkey); 1710 audit_log_end(ab); 1711 break; 1712 case AUDIT_CTX_URING: 1713 audit_log_uring(context); 1714 break; 1715 default: 1716 BUG(); 1717 break; 1718 } 1719 1720 for (aux = context->aux; aux; aux = aux->next) { 1721 1722 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1723 if (!ab) 1724 continue; /* audit_panic has been called */ 1725 1726 switch (aux->type) { 1727 1728 case AUDIT_BPRM_FCAPS: { 1729 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1730 1731 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1732 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1733 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1734 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1735 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1736 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1737 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1738 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1739 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1740 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1741 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1742 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1743 audit_log_format(ab, " frootid=%d", 1744 from_kuid(&init_user_ns, 1745 axs->fcap.rootid)); 1746 break; } 1747 1748 } 1749 audit_log_end(ab); 1750 } 1751 1752 if (context->type) 1753 show_special(context, &call_panic); 1754 1755 if (context->fds[0] >= 0) { 1756 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1757 if (ab) { 1758 audit_log_format(ab, "fd0=%d fd1=%d", 1759 context->fds[0], context->fds[1]); 1760 audit_log_end(ab); 1761 } 1762 } 1763 1764 if (context->sockaddr_len) { 1765 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1766 if (ab) { 1767 audit_log_format(ab, "saddr="); 1768 audit_log_n_hex(ab, (void *)context->sockaddr, 1769 context->sockaddr_len); 1770 audit_log_end(ab); 1771 } 1772 } 1773 1774 for (aux = context->aux_pids; aux; aux = aux->next) { 1775 struct audit_aux_data_pids *axs = (void *)aux; 1776 1777 for (i = 0; i < axs->pid_count; i++) 1778 if (audit_log_pid_context(context, axs->target_pid[i], 1779 axs->target_auid[i], 1780 axs->target_uid[i], 1781 axs->target_sessionid[i], 1782 &axs->target_ref[i], 1783 axs->target_comm[i])) 1784 call_panic = 1; 1785 } 1786 1787 if (context->target_pid && 1788 audit_log_pid_context(context, context->target_pid, 1789 context->target_auid, context->target_uid, 1790 context->target_sessionid, 1791 &context->target_ref, context->target_comm)) 1792 call_panic = 1; 1793 1794 if (context->pwd.dentry && context->pwd.mnt) { 1795 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1796 if (ab) { 1797 audit_log_d_path(ab, "cwd=", &context->pwd); 1798 audit_log_end(ab); 1799 } 1800 } 1801 1802 i = 0; 1803 list_for_each_entry(n, &context->names_list, list) { 1804 if (n->hidden) 1805 continue; 1806 audit_log_name(context, n, NULL, i++, &call_panic); 1807 } 1808 1809 if (context->context == AUDIT_CTX_SYSCALL) 1810 audit_log_proctitle(); 1811 1812 /* Send end of event record to help user space know we are finished */ 1813 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1814 if (ab) 1815 audit_log_end(ab); 1816 if (call_panic) 1817 audit_panic("error in audit_log_exit()"); 1818 } 1819 1820 /** 1821 * __audit_free - free a per-task audit context 1822 * @tsk: task whose audit context block to free 1823 * 1824 * Called from copy_process, do_exit, and the io_uring code 1825 */ 1826 void __audit_free(struct task_struct *tsk) 1827 { 1828 struct audit_context *context = tsk->audit_context; 1829 1830 if (!context) 1831 return; 1832 1833 /* this may generate CONFIG_CHANGE records */ 1834 if (!list_empty(&context->killed_trees)) 1835 audit_kill_trees(context); 1836 1837 /* We are called either by do_exit() or the fork() error handling code; 1838 * in the former case tsk == current and in the latter tsk is a 1839 * random task_struct that doesn't have any meaningful data we 1840 * need to log via audit_log_exit(). 1841 */ 1842 if (tsk == current && !context->dummy) { 1843 context->return_valid = AUDITSC_INVALID; 1844 context->return_code = 0; 1845 if (context->context == AUDIT_CTX_SYSCALL) { 1846 audit_filter_syscall(tsk, context); 1847 audit_filter_inodes(tsk, context); 1848 if (context->current_state == AUDIT_STATE_RECORD) 1849 audit_log_exit(); 1850 } else if (context->context == AUDIT_CTX_URING) { 1851 /* TODO: verify this case is real and valid */ 1852 audit_filter_uring(tsk, context); 1853 audit_filter_inodes(tsk, context); 1854 if (context->current_state == AUDIT_STATE_RECORD) 1855 audit_log_uring(context); 1856 } 1857 } 1858 1859 audit_set_context(tsk, NULL); 1860 audit_free_context(context); 1861 } 1862 1863 /** 1864 * audit_return_fixup - fixup the return codes in the audit_context 1865 * @ctx: the audit_context 1866 * @success: true/false value to indicate if the operation succeeded or not 1867 * @code: operation return code 1868 * 1869 * We need to fixup the return code in the audit logs if the actual return 1870 * codes are later going to be fixed by the arch specific signal handlers. 1871 */ 1872 static void audit_return_fixup(struct audit_context *ctx, 1873 int success, long code) 1874 { 1875 /* 1876 * This is actually a test for: 1877 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1878 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1879 * 1880 * but is faster than a bunch of || 1881 */ 1882 if (unlikely(code <= -ERESTARTSYS) && 1883 (code >= -ERESTART_RESTARTBLOCK) && 1884 (code != -ENOIOCTLCMD)) 1885 ctx->return_code = -EINTR; 1886 else 1887 ctx->return_code = code; 1888 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1889 } 1890 1891 /** 1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1893 * @op: the io_uring opcode 1894 * 1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1896 * operations. This function should only ever be called from 1897 * audit_uring_entry() as we rely on the audit context checking present in that 1898 * function. 1899 */ 1900 void __audit_uring_entry(u8 op) 1901 { 1902 struct audit_context *ctx = audit_context(); 1903 1904 if (ctx->state == AUDIT_STATE_DISABLED) 1905 return; 1906 1907 /* 1908 * NOTE: It's possible that we can be called from the process' context 1909 * before it returns to userspace, and before audit_syscall_exit() 1910 * is called. In this case there is not much to do, just record 1911 * the io_uring details and return. 1912 */ 1913 ctx->uring_op = op; 1914 if (ctx->context == AUDIT_CTX_SYSCALL) 1915 return; 1916 1917 ctx->dummy = !audit_n_rules; 1918 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1919 ctx->prio = 0; 1920 1921 ctx->context = AUDIT_CTX_URING; 1922 ctx->current_state = ctx->state; 1923 ktime_get_coarse_real_ts64(&ctx->ctime); 1924 } 1925 1926 /** 1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1928 * @success: true/false value to indicate if the operation succeeded or not 1929 * @code: operation return code 1930 * 1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1932 * operations. This function should only ever be called from 1933 * audit_uring_exit() as we rely on the audit context checking present in that 1934 * function. 1935 */ 1936 void __audit_uring_exit(int success, long code) 1937 { 1938 struct audit_context *ctx = audit_context(); 1939 1940 if (ctx->dummy) { 1941 if (ctx->context != AUDIT_CTX_URING) 1942 return; 1943 goto out; 1944 } 1945 1946 audit_return_fixup(ctx, success, code); 1947 if (ctx->context == AUDIT_CTX_SYSCALL) { 1948 /* 1949 * NOTE: See the note in __audit_uring_entry() about the case 1950 * where we may be called from process context before we 1951 * return to userspace via audit_syscall_exit(). In this 1952 * case we simply emit a URINGOP record and bail, the 1953 * normal syscall exit handling will take care of 1954 * everything else. 1955 * It is also worth mentioning that when we are called, 1956 * the current process creds may differ from the creds 1957 * used during the normal syscall processing; keep that 1958 * in mind if/when we move the record generation code. 1959 */ 1960 1961 /* 1962 * We need to filter on the syscall info here to decide if we 1963 * should emit a URINGOP record. I know it seems odd but this 1964 * solves the problem where users have a filter to block *all* 1965 * syscall records in the "exit" filter; we want to preserve 1966 * the behavior here. 1967 */ 1968 audit_filter_syscall(current, ctx); 1969 if (ctx->current_state != AUDIT_STATE_RECORD) 1970 audit_filter_uring(current, ctx); 1971 audit_filter_inodes(current, ctx); 1972 if (ctx->current_state != AUDIT_STATE_RECORD) 1973 return; 1974 1975 audit_log_uring(ctx); 1976 return; 1977 } 1978 1979 /* this may generate CONFIG_CHANGE records */ 1980 if (!list_empty(&ctx->killed_trees)) 1981 audit_kill_trees(ctx); 1982 1983 /* run through both filters to ensure we set the filterkey properly */ 1984 audit_filter_uring(current, ctx); 1985 audit_filter_inodes(current, ctx); 1986 if (ctx->current_state != AUDIT_STATE_RECORD) 1987 goto out; 1988 audit_log_exit(); 1989 1990 out: 1991 audit_reset_context(ctx); 1992 } 1993 1994 /** 1995 * __audit_syscall_entry - fill in an audit record at syscall entry 1996 * @major: major syscall type (function) 1997 * @a1: additional syscall register 1 1998 * @a2: additional syscall register 2 1999 * @a3: additional syscall register 3 2000 * @a4: additional syscall register 4 2001 * 2002 * Fill in audit context at syscall entry. This only happens if the 2003 * audit context was created when the task was created and the state or 2004 * filters demand the audit context be built. If the state from the 2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2006 * then the record will be written at syscall exit time (otherwise, it 2007 * will only be written if another part of the kernel requests that it 2008 * be written). 2009 */ 2010 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2011 unsigned long a3, unsigned long a4) 2012 { 2013 struct audit_context *context = audit_context(); 2014 enum audit_state state; 2015 2016 if (!audit_enabled || !context) 2017 return; 2018 2019 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2020 WARN_ON(context->name_count); 2021 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2022 audit_panic("unrecoverable error in audit_syscall_entry()"); 2023 return; 2024 } 2025 2026 state = context->state; 2027 if (state == AUDIT_STATE_DISABLED) 2028 return; 2029 2030 context->dummy = !audit_n_rules; 2031 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2032 context->prio = 0; 2033 if (auditd_test_task(current)) 2034 return; 2035 } 2036 2037 context->arch = syscall_get_arch(current); 2038 context->major = major; 2039 context->argv[0] = a1; 2040 context->argv[1] = a2; 2041 context->argv[2] = a3; 2042 context->argv[3] = a4; 2043 context->context = AUDIT_CTX_SYSCALL; 2044 context->current_state = state; 2045 ktime_get_coarse_real_ts64(&context->ctime); 2046 } 2047 2048 /** 2049 * __audit_syscall_exit - deallocate audit context after a system call 2050 * @success: success value of the syscall 2051 * @return_code: return value of the syscall 2052 * 2053 * Tear down after system call. If the audit context has been marked as 2054 * auditable (either because of the AUDIT_STATE_RECORD state from 2055 * filtering, or because some other part of the kernel wrote an audit 2056 * message), then write out the syscall information. In call cases, 2057 * free the names stored from getname(). 2058 */ 2059 void __audit_syscall_exit(int success, long return_code) 2060 { 2061 struct audit_context *context = audit_context(); 2062 2063 if (!context || context->dummy || 2064 context->context != AUDIT_CTX_SYSCALL) 2065 goto out; 2066 2067 /* this may generate CONFIG_CHANGE records */ 2068 if (!list_empty(&context->killed_trees)) 2069 audit_kill_trees(context); 2070 2071 audit_return_fixup(context, success, return_code); 2072 /* run through both filters to ensure we set the filterkey properly */ 2073 audit_filter_syscall(current, context); 2074 audit_filter_inodes(current, context); 2075 if (context->current_state != AUDIT_STATE_RECORD) 2076 goto out; 2077 2078 audit_log_exit(); 2079 2080 out: 2081 audit_reset_context(context); 2082 } 2083 2084 static inline void handle_one(const struct inode *inode) 2085 { 2086 struct audit_context *context; 2087 struct audit_tree_refs *p; 2088 struct audit_chunk *chunk; 2089 int count; 2090 2091 if (likely(!inode->i_fsnotify_marks)) 2092 return; 2093 context = audit_context(); 2094 p = context->trees; 2095 count = context->tree_count; 2096 rcu_read_lock(); 2097 chunk = audit_tree_lookup(inode); 2098 rcu_read_unlock(); 2099 if (!chunk) 2100 return; 2101 if (likely(put_tree_ref(context, chunk))) 2102 return; 2103 if (unlikely(!grow_tree_refs(context))) { 2104 pr_warn("out of memory, audit has lost a tree reference\n"); 2105 audit_set_auditable(context); 2106 audit_put_chunk(chunk); 2107 unroll_tree_refs(context, p, count); 2108 return; 2109 } 2110 put_tree_ref(context, chunk); 2111 } 2112 2113 static void handle_path(const struct dentry *dentry) 2114 { 2115 struct audit_context *context; 2116 struct audit_tree_refs *p; 2117 const struct dentry *d, *parent; 2118 struct audit_chunk *drop; 2119 unsigned long seq; 2120 int count; 2121 2122 context = audit_context(); 2123 p = context->trees; 2124 count = context->tree_count; 2125 retry: 2126 drop = NULL; 2127 d = dentry; 2128 rcu_read_lock(); 2129 seq = read_seqbegin(&rename_lock); 2130 for (;;) { 2131 struct inode *inode = d_backing_inode(d); 2132 2133 if (inode && unlikely(inode->i_fsnotify_marks)) { 2134 struct audit_chunk *chunk; 2135 2136 chunk = audit_tree_lookup(inode); 2137 if (chunk) { 2138 if (unlikely(!put_tree_ref(context, chunk))) { 2139 drop = chunk; 2140 break; 2141 } 2142 } 2143 } 2144 parent = d->d_parent; 2145 if (parent == d) 2146 break; 2147 d = parent; 2148 } 2149 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2150 rcu_read_unlock(); 2151 if (!drop) { 2152 /* just a race with rename */ 2153 unroll_tree_refs(context, p, count); 2154 goto retry; 2155 } 2156 audit_put_chunk(drop); 2157 if (grow_tree_refs(context)) { 2158 /* OK, got more space */ 2159 unroll_tree_refs(context, p, count); 2160 goto retry; 2161 } 2162 /* too bad */ 2163 pr_warn("out of memory, audit has lost a tree reference\n"); 2164 unroll_tree_refs(context, p, count); 2165 audit_set_auditable(context); 2166 return; 2167 } 2168 rcu_read_unlock(); 2169 } 2170 2171 static struct audit_names *audit_alloc_name(struct audit_context *context, 2172 unsigned char type) 2173 { 2174 struct audit_names *aname; 2175 2176 if (context->name_count < AUDIT_NAMES) { 2177 aname = &context->preallocated_names[context->name_count]; 2178 memset(aname, 0, sizeof(*aname)); 2179 } else { 2180 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2181 if (!aname) 2182 return NULL; 2183 aname->should_free = true; 2184 } 2185 2186 aname->ino = AUDIT_INO_UNSET; 2187 aname->type = type; 2188 list_add_tail(&aname->list, &context->names_list); 2189 2190 context->name_count++; 2191 if (!context->pwd.dentry) 2192 get_fs_pwd(current->fs, &context->pwd); 2193 return aname; 2194 } 2195 2196 /** 2197 * __audit_reusename - fill out filename with info from existing entry 2198 * @uptr: userland ptr to pathname 2199 * 2200 * Search the audit_names list for the current audit context. If there is an 2201 * existing entry with a matching "uptr" then return the filename 2202 * associated with that audit_name. If not, return NULL. 2203 */ 2204 struct filename * 2205 __audit_reusename(const __user char *uptr) 2206 { 2207 struct audit_context *context = audit_context(); 2208 struct audit_names *n; 2209 2210 list_for_each_entry(n, &context->names_list, list) { 2211 if (!n->name) 2212 continue; 2213 if (n->name->uptr == uptr) { 2214 atomic_inc(&n->name->refcnt); 2215 return n->name; 2216 } 2217 } 2218 return NULL; 2219 } 2220 2221 /** 2222 * __audit_getname - add a name to the list 2223 * @name: name to add 2224 * 2225 * Add a name to the list of audit names for this context. 2226 * Called from fs/namei.c:getname(). 2227 */ 2228 void __audit_getname(struct filename *name) 2229 { 2230 struct audit_context *context = audit_context(); 2231 struct audit_names *n; 2232 2233 if (context->context == AUDIT_CTX_UNUSED) 2234 return; 2235 2236 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2237 if (!n) 2238 return; 2239 2240 n->name = name; 2241 n->name_len = AUDIT_NAME_FULL; 2242 name->aname = n; 2243 atomic_inc(&name->refcnt); 2244 } 2245 2246 static inline int audit_copy_fcaps(struct audit_names *name, 2247 const struct dentry *dentry) 2248 { 2249 struct cpu_vfs_cap_data caps; 2250 int rc; 2251 2252 if (!dentry) 2253 return 0; 2254 2255 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2256 if (rc) 2257 return rc; 2258 2259 name->fcap.permitted = caps.permitted; 2260 name->fcap.inheritable = caps.inheritable; 2261 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2262 name->fcap.rootid = caps.rootid; 2263 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2264 VFS_CAP_REVISION_SHIFT; 2265 2266 return 0; 2267 } 2268 2269 /* Copy inode data into an audit_names. */ 2270 static void audit_copy_inode(struct audit_names *name, 2271 const struct dentry *dentry, 2272 struct inode *inode, unsigned int flags) 2273 { 2274 name->ino = inode->i_ino; 2275 name->dev = inode->i_sb->s_dev; 2276 name->mode = inode->i_mode; 2277 name->uid = inode->i_uid; 2278 name->gid = inode->i_gid; 2279 name->rdev = inode->i_rdev; 2280 security_inode_getlsmprop(inode, &name->oprop); 2281 if (flags & AUDIT_INODE_NOEVAL) { 2282 name->fcap_ver = -1; 2283 return; 2284 } 2285 audit_copy_fcaps(name, dentry); 2286 } 2287 2288 /** 2289 * __audit_inode - store the inode and device from a lookup 2290 * @name: name being audited 2291 * @dentry: dentry being audited 2292 * @flags: attributes for this particular entry 2293 */ 2294 void __audit_inode(struct filename *name, const struct dentry *dentry, 2295 unsigned int flags) 2296 { 2297 struct audit_context *context = audit_context(); 2298 struct inode *inode = d_backing_inode(dentry); 2299 struct audit_names *n; 2300 bool parent = flags & AUDIT_INODE_PARENT; 2301 struct audit_entry *e; 2302 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2303 int i; 2304 2305 if (context->context == AUDIT_CTX_UNUSED) 2306 return; 2307 2308 rcu_read_lock(); 2309 list_for_each_entry_rcu(e, list, list) { 2310 for (i = 0; i < e->rule.field_count; i++) { 2311 struct audit_field *f = &e->rule.fields[i]; 2312 2313 if (f->type == AUDIT_FSTYPE 2314 && audit_comparator(inode->i_sb->s_magic, 2315 f->op, f->val) 2316 && e->rule.action == AUDIT_NEVER) { 2317 rcu_read_unlock(); 2318 return; 2319 } 2320 } 2321 } 2322 rcu_read_unlock(); 2323 2324 if (!name) 2325 goto out_alloc; 2326 2327 /* 2328 * If we have a pointer to an audit_names entry already, then we can 2329 * just use it directly if the type is correct. 2330 */ 2331 n = name->aname; 2332 if (n) { 2333 if (parent) { 2334 if (n->type == AUDIT_TYPE_PARENT || 2335 n->type == AUDIT_TYPE_UNKNOWN) 2336 goto out; 2337 } else { 2338 if (n->type != AUDIT_TYPE_PARENT) 2339 goto out; 2340 } 2341 } 2342 2343 list_for_each_entry_reverse(n, &context->names_list, list) { 2344 if (n->ino) { 2345 /* valid inode number, use that for the comparison */ 2346 if (n->ino != inode->i_ino || 2347 n->dev != inode->i_sb->s_dev) 2348 continue; 2349 } else if (n->name) { 2350 /* inode number has not been set, check the name */ 2351 if (strcmp(n->name->name, name->name)) 2352 continue; 2353 } else 2354 /* no inode and no name (?!) ... this is odd ... */ 2355 continue; 2356 2357 /* match the correct record type */ 2358 if (parent) { 2359 if (n->type == AUDIT_TYPE_PARENT || 2360 n->type == AUDIT_TYPE_UNKNOWN) 2361 goto out; 2362 } else { 2363 if (n->type != AUDIT_TYPE_PARENT) 2364 goto out; 2365 } 2366 } 2367 2368 out_alloc: 2369 /* unable to find an entry with both a matching name and type */ 2370 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2371 if (!n) 2372 return; 2373 if (name) { 2374 n->name = name; 2375 atomic_inc(&name->refcnt); 2376 } 2377 2378 out: 2379 if (parent) { 2380 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2381 n->type = AUDIT_TYPE_PARENT; 2382 if (flags & AUDIT_INODE_HIDDEN) 2383 n->hidden = true; 2384 } else { 2385 n->name_len = AUDIT_NAME_FULL; 2386 n->type = AUDIT_TYPE_NORMAL; 2387 } 2388 handle_path(dentry); 2389 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2390 } 2391 2392 void __audit_file(const struct file *file) 2393 { 2394 __audit_inode(NULL, file->f_path.dentry, 0); 2395 } 2396 2397 /** 2398 * __audit_inode_child - collect inode info for created/removed objects 2399 * @parent: inode of dentry parent 2400 * @dentry: dentry being audited 2401 * @type: AUDIT_TYPE_* value that we're looking for 2402 * 2403 * For syscalls that create or remove filesystem objects, audit_inode 2404 * can only collect information for the filesystem object's parent. 2405 * This call updates the audit context with the child's information. 2406 * Syscalls that create a new filesystem object must be hooked after 2407 * the object is created. Syscalls that remove a filesystem object 2408 * must be hooked prior, in order to capture the target inode during 2409 * unsuccessful attempts. 2410 */ 2411 void __audit_inode_child(struct inode *parent, 2412 const struct dentry *dentry, 2413 const unsigned char type) 2414 { 2415 struct audit_context *context = audit_context(); 2416 struct inode *inode = d_backing_inode(dentry); 2417 const struct qstr *dname = &dentry->d_name; 2418 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2419 struct audit_entry *e; 2420 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2421 int i; 2422 2423 if (context->context == AUDIT_CTX_UNUSED) 2424 return; 2425 2426 rcu_read_lock(); 2427 list_for_each_entry_rcu(e, list, list) { 2428 for (i = 0; i < e->rule.field_count; i++) { 2429 struct audit_field *f = &e->rule.fields[i]; 2430 2431 if (f->type == AUDIT_FSTYPE 2432 && audit_comparator(parent->i_sb->s_magic, 2433 f->op, f->val) 2434 && e->rule.action == AUDIT_NEVER) { 2435 rcu_read_unlock(); 2436 return; 2437 } 2438 } 2439 } 2440 rcu_read_unlock(); 2441 2442 if (inode) 2443 handle_one(inode); 2444 2445 /* look for a parent entry first */ 2446 list_for_each_entry(n, &context->names_list, list) { 2447 if (!n->name || 2448 (n->type != AUDIT_TYPE_PARENT && 2449 n->type != AUDIT_TYPE_UNKNOWN)) 2450 continue; 2451 2452 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2453 !audit_compare_dname_path(dname, 2454 n->name->name, n->name_len)) { 2455 if (n->type == AUDIT_TYPE_UNKNOWN) 2456 n->type = AUDIT_TYPE_PARENT; 2457 found_parent = n; 2458 break; 2459 } 2460 } 2461 2462 cond_resched(); 2463 2464 /* is there a matching child entry? */ 2465 list_for_each_entry(n, &context->names_list, list) { 2466 /* can only match entries that have a name */ 2467 if (!n->name || 2468 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2469 continue; 2470 2471 if (!strcmp(dname->name, n->name->name) || 2472 !audit_compare_dname_path(dname, n->name->name, 2473 found_parent ? 2474 found_parent->name_len : 2475 AUDIT_NAME_FULL)) { 2476 if (n->type == AUDIT_TYPE_UNKNOWN) 2477 n->type = type; 2478 found_child = n; 2479 break; 2480 } 2481 } 2482 2483 if (!found_parent) { 2484 /* create a new, "anonymous" parent record */ 2485 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2486 if (!n) 2487 return; 2488 audit_copy_inode(n, NULL, parent, 0); 2489 } 2490 2491 if (!found_child) { 2492 found_child = audit_alloc_name(context, type); 2493 if (!found_child) 2494 return; 2495 2496 /* Re-use the name belonging to the slot for a matching parent 2497 * directory. All names for this context are relinquished in 2498 * audit_free_names() */ 2499 if (found_parent) { 2500 found_child->name = found_parent->name; 2501 found_child->name_len = AUDIT_NAME_FULL; 2502 atomic_inc(&found_child->name->refcnt); 2503 } 2504 } 2505 2506 if (inode) 2507 audit_copy_inode(found_child, dentry, inode, 0); 2508 else 2509 found_child->ino = AUDIT_INO_UNSET; 2510 } 2511 EXPORT_SYMBOL_GPL(__audit_inode_child); 2512 2513 /** 2514 * auditsc_get_stamp - get local copies of audit_context values 2515 * @ctx: audit_context for the task 2516 * @t: timespec64 to store time recorded in the audit_context 2517 * @serial: serial value that is recorded in the audit_context 2518 * 2519 * Also sets the context as auditable. 2520 */ 2521 int auditsc_get_stamp(struct audit_context *ctx, 2522 struct timespec64 *t, unsigned int *serial) 2523 { 2524 if (ctx->context == AUDIT_CTX_UNUSED) 2525 return 0; 2526 if (!ctx->serial) 2527 ctx->serial = audit_serial(); 2528 t->tv_sec = ctx->ctime.tv_sec; 2529 t->tv_nsec = ctx->ctime.tv_nsec; 2530 *serial = ctx->serial; 2531 if (!ctx->prio) { 2532 ctx->prio = 1; 2533 ctx->current_state = AUDIT_STATE_RECORD; 2534 } 2535 return 1; 2536 } 2537 2538 /** 2539 * __audit_mq_open - record audit data for a POSIX MQ open 2540 * @oflag: open flag 2541 * @mode: mode bits 2542 * @attr: queue attributes 2543 * 2544 */ 2545 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2546 { 2547 struct audit_context *context = audit_context(); 2548 2549 if (attr) 2550 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2551 else 2552 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2553 2554 context->mq_open.oflag = oflag; 2555 context->mq_open.mode = mode; 2556 2557 context->type = AUDIT_MQ_OPEN; 2558 } 2559 2560 /** 2561 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2562 * @mqdes: MQ descriptor 2563 * @msg_len: Message length 2564 * @msg_prio: Message priority 2565 * @abs_timeout: Message timeout in absolute time 2566 * 2567 */ 2568 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2569 const struct timespec64 *abs_timeout) 2570 { 2571 struct audit_context *context = audit_context(); 2572 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2573 2574 if (abs_timeout) 2575 memcpy(p, abs_timeout, sizeof(*p)); 2576 else 2577 memset(p, 0, sizeof(*p)); 2578 2579 context->mq_sendrecv.mqdes = mqdes; 2580 context->mq_sendrecv.msg_len = msg_len; 2581 context->mq_sendrecv.msg_prio = msg_prio; 2582 2583 context->type = AUDIT_MQ_SENDRECV; 2584 } 2585 2586 /** 2587 * __audit_mq_notify - record audit data for a POSIX MQ notify 2588 * @mqdes: MQ descriptor 2589 * @notification: Notification event 2590 * 2591 */ 2592 2593 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2594 { 2595 struct audit_context *context = audit_context(); 2596 2597 if (notification) 2598 context->mq_notify.sigev_signo = notification->sigev_signo; 2599 else 2600 context->mq_notify.sigev_signo = 0; 2601 2602 context->mq_notify.mqdes = mqdes; 2603 context->type = AUDIT_MQ_NOTIFY; 2604 } 2605 2606 /** 2607 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2608 * @mqdes: MQ descriptor 2609 * @mqstat: MQ flags 2610 * 2611 */ 2612 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2613 { 2614 struct audit_context *context = audit_context(); 2615 2616 context->mq_getsetattr.mqdes = mqdes; 2617 context->mq_getsetattr.mqstat = *mqstat; 2618 context->type = AUDIT_MQ_GETSETATTR; 2619 } 2620 2621 /** 2622 * __audit_ipc_obj - record audit data for ipc object 2623 * @ipcp: ipc permissions 2624 * 2625 */ 2626 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2627 { 2628 struct audit_context *context = audit_context(); 2629 2630 context->ipc.uid = ipcp->uid; 2631 context->ipc.gid = ipcp->gid; 2632 context->ipc.mode = ipcp->mode; 2633 context->ipc.has_perm = 0; 2634 security_ipc_getlsmprop(ipcp, &context->ipc.oprop); 2635 context->type = AUDIT_IPC; 2636 } 2637 2638 /** 2639 * __audit_ipc_set_perm - record audit data for new ipc permissions 2640 * @qbytes: msgq bytes 2641 * @uid: msgq user id 2642 * @gid: msgq group id 2643 * @mode: msgq mode (permissions) 2644 * 2645 * Called only after audit_ipc_obj(). 2646 */ 2647 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2648 { 2649 struct audit_context *context = audit_context(); 2650 2651 context->ipc.qbytes = qbytes; 2652 context->ipc.perm_uid = uid; 2653 context->ipc.perm_gid = gid; 2654 context->ipc.perm_mode = mode; 2655 context->ipc.has_perm = 1; 2656 } 2657 2658 void __audit_bprm(struct linux_binprm *bprm) 2659 { 2660 struct audit_context *context = audit_context(); 2661 2662 context->type = AUDIT_EXECVE; 2663 context->execve.argc = bprm->argc; 2664 } 2665 2666 2667 /** 2668 * __audit_socketcall - record audit data for sys_socketcall 2669 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2670 * @args: args array 2671 * 2672 */ 2673 int __audit_socketcall(int nargs, unsigned long *args) 2674 { 2675 struct audit_context *context = audit_context(); 2676 2677 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2678 return -EINVAL; 2679 context->type = AUDIT_SOCKETCALL; 2680 context->socketcall.nargs = nargs; 2681 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2682 return 0; 2683 } 2684 2685 /** 2686 * __audit_fd_pair - record audit data for pipe and socketpair 2687 * @fd1: the first file descriptor 2688 * @fd2: the second file descriptor 2689 * 2690 */ 2691 void __audit_fd_pair(int fd1, int fd2) 2692 { 2693 struct audit_context *context = audit_context(); 2694 2695 context->fds[0] = fd1; 2696 context->fds[1] = fd2; 2697 } 2698 2699 /** 2700 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2701 * @len: data length in user space 2702 * @a: data address in kernel space 2703 * 2704 * Returns 0 for success or NULL context or < 0 on error. 2705 */ 2706 int __audit_sockaddr(int len, void *a) 2707 { 2708 struct audit_context *context = audit_context(); 2709 2710 if (!context->sockaddr) { 2711 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2712 2713 if (!p) 2714 return -ENOMEM; 2715 context->sockaddr = p; 2716 } 2717 2718 context->sockaddr_len = len; 2719 memcpy(context->sockaddr, a, len); 2720 return 0; 2721 } 2722 2723 void __audit_ptrace(struct task_struct *t) 2724 { 2725 struct audit_context *context = audit_context(); 2726 2727 context->target_pid = task_tgid_nr(t); 2728 context->target_auid = audit_get_loginuid(t); 2729 context->target_uid = task_uid(t); 2730 context->target_sessionid = audit_get_sessionid(t); 2731 security_task_getlsmprop_obj(t, &context->target_ref); 2732 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2733 } 2734 2735 /** 2736 * audit_signal_info_syscall - record signal info for syscalls 2737 * @t: task being signaled 2738 * 2739 * If the audit subsystem is being terminated, record the task (pid) 2740 * and uid that is doing that. 2741 */ 2742 int audit_signal_info_syscall(struct task_struct *t) 2743 { 2744 struct audit_aux_data_pids *axp; 2745 struct audit_context *ctx = audit_context(); 2746 kuid_t t_uid = task_uid(t); 2747 2748 if (!audit_signals || audit_dummy_context()) 2749 return 0; 2750 2751 /* optimize the common case by putting first signal recipient directly 2752 * in audit_context */ 2753 if (!ctx->target_pid) { 2754 ctx->target_pid = task_tgid_nr(t); 2755 ctx->target_auid = audit_get_loginuid(t); 2756 ctx->target_uid = t_uid; 2757 ctx->target_sessionid = audit_get_sessionid(t); 2758 security_task_getlsmprop_obj(t, &ctx->target_ref); 2759 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2760 return 0; 2761 } 2762 2763 axp = (void *)ctx->aux_pids; 2764 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2765 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2766 if (!axp) 2767 return -ENOMEM; 2768 2769 axp->d.type = AUDIT_OBJ_PID; 2770 axp->d.next = ctx->aux_pids; 2771 ctx->aux_pids = (void *)axp; 2772 } 2773 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2774 2775 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2776 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2777 axp->target_uid[axp->pid_count] = t_uid; 2778 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2779 security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]); 2780 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2781 axp->pid_count++; 2782 2783 return 0; 2784 } 2785 2786 /** 2787 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2788 * @bprm: pointer to the bprm being processed 2789 * @new: the proposed new credentials 2790 * @old: the old credentials 2791 * 2792 * Simply check if the proc already has the caps given by the file and if not 2793 * store the priv escalation info for later auditing at the end of the syscall 2794 * 2795 * -Eric 2796 */ 2797 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2798 const struct cred *new, const struct cred *old) 2799 { 2800 struct audit_aux_data_bprm_fcaps *ax; 2801 struct audit_context *context = audit_context(); 2802 struct cpu_vfs_cap_data vcaps; 2803 2804 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2805 if (!ax) 2806 return -ENOMEM; 2807 2808 ax->d.type = AUDIT_BPRM_FCAPS; 2809 ax->d.next = context->aux; 2810 context->aux = (void *)ax; 2811 2812 get_vfs_caps_from_disk(&nop_mnt_idmap, 2813 bprm->file->f_path.dentry, &vcaps); 2814 2815 ax->fcap.permitted = vcaps.permitted; 2816 ax->fcap.inheritable = vcaps.inheritable; 2817 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2818 ax->fcap.rootid = vcaps.rootid; 2819 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2820 2821 ax->old_pcap.permitted = old->cap_permitted; 2822 ax->old_pcap.inheritable = old->cap_inheritable; 2823 ax->old_pcap.effective = old->cap_effective; 2824 ax->old_pcap.ambient = old->cap_ambient; 2825 2826 ax->new_pcap.permitted = new->cap_permitted; 2827 ax->new_pcap.inheritable = new->cap_inheritable; 2828 ax->new_pcap.effective = new->cap_effective; 2829 ax->new_pcap.ambient = new->cap_ambient; 2830 return 0; 2831 } 2832 2833 /** 2834 * __audit_log_capset - store information about the arguments to the capset syscall 2835 * @new: the new credentials 2836 * @old: the old (current) credentials 2837 * 2838 * Record the arguments userspace sent to sys_capset for later printing by the 2839 * audit system if applicable 2840 */ 2841 void __audit_log_capset(const struct cred *new, const struct cred *old) 2842 { 2843 struct audit_context *context = audit_context(); 2844 2845 context->capset.pid = task_tgid_nr(current); 2846 context->capset.cap.effective = new->cap_effective; 2847 context->capset.cap.inheritable = new->cap_effective; 2848 context->capset.cap.permitted = new->cap_permitted; 2849 context->capset.cap.ambient = new->cap_ambient; 2850 context->type = AUDIT_CAPSET; 2851 } 2852 2853 void __audit_mmap_fd(int fd, int flags) 2854 { 2855 struct audit_context *context = audit_context(); 2856 2857 context->mmap.fd = fd; 2858 context->mmap.flags = flags; 2859 context->type = AUDIT_MMAP; 2860 } 2861 2862 void __audit_openat2_how(struct open_how *how) 2863 { 2864 struct audit_context *context = audit_context(); 2865 2866 context->openat2.flags = how->flags; 2867 context->openat2.mode = how->mode; 2868 context->openat2.resolve = how->resolve; 2869 context->type = AUDIT_OPENAT2; 2870 } 2871 2872 void __audit_log_kern_module(char *name) 2873 { 2874 struct audit_context *context = audit_context(); 2875 2876 context->module.name = kstrdup(name, GFP_KERNEL); 2877 if (!context->module.name) 2878 audit_log_lost("out of memory in __audit_log_kern_module"); 2879 context->type = AUDIT_KERN_MODULE; 2880 } 2881 2882 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2883 { 2884 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2885 switch (friar->hdr.type) { 2886 case FAN_RESPONSE_INFO_NONE: 2887 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2888 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2889 response, FAN_RESPONSE_INFO_NONE); 2890 break; 2891 case FAN_RESPONSE_INFO_AUDIT_RULE: 2892 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2893 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2894 response, friar->hdr.type, friar->rule_number, 2895 friar->subj_trust, friar->obj_trust); 2896 } 2897 } 2898 2899 void __audit_tk_injoffset(struct timespec64 offset) 2900 { 2901 struct audit_context *context = audit_context(); 2902 2903 /* only set type if not already set by NTP */ 2904 if (!context->type) 2905 context->type = AUDIT_TIME_INJOFFSET; 2906 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2907 } 2908 2909 void __audit_ntp_log(const struct audit_ntp_data *ad) 2910 { 2911 struct audit_context *context = audit_context(); 2912 int type; 2913 2914 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2915 if (ad->vals[type].newval != ad->vals[type].oldval) { 2916 /* unconditionally set type, overwriting TK */ 2917 context->type = AUDIT_TIME_ADJNTPVAL; 2918 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2919 break; 2920 } 2921 } 2922 2923 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2924 enum audit_nfcfgop op, gfp_t gfp) 2925 { 2926 struct audit_buffer *ab; 2927 char comm[sizeof(current->comm)]; 2928 2929 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2930 if (!ab) 2931 return; 2932 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2933 name, af, nentries, audit_nfcfgs[op].s); 2934 2935 audit_log_format(ab, " pid=%u", task_tgid_nr(current)); 2936 audit_log_task_context(ab); /* subj= */ 2937 audit_log_format(ab, " comm="); 2938 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2939 audit_log_end(ab); 2940 } 2941 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2942 2943 static void audit_log_task(struct audit_buffer *ab) 2944 { 2945 kuid_t auid, uid; 2946 kgid_t gid; 2947 unsigned int sessionid; 2948 char comm[sizeof(current->comm)]; 2949 2950 auid = audit_get_loginuid(current); 2951 sessionid = audit_get_sessionid(current); 2952 current_uid_gid(&uid, &gid); 2953 2954 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2955 from_kuid(&init_user_ns, auid), 2956 from_kuid(&init_user_ns, uid), 2957 from_kgid(&init_user_ns, gid), 2958 sessionid); 2959 audit_log_task_context(ab); 2960 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2961 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2962 audit_log_d_path_exe(ab, current->mm); 2963 } 2964 2965 /** 2966 * audit_core_dumps - record information about processes that end abnormally 2967 * @signr: signal value 2968 * 2969 * If a process ends with a core dump, something fishy is going on and we 2970 * should record the event for investigation. 2971 */ 2972 void audit_core_dumps(long signr) 2973 { 2974 struct audit_buffer *ab; 2975 2976 if (!audit_enabled) 2977 return; 2978 2979 if (signr == SIGQUIT) /* don't care for those */ 2980 return; 2981 2982 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2983 if (unlikely(!ab)) 2984 return; 2985 audit_log_task(ab); 2986 audit_log_format(ab, " sig=%ld res=1", signr); 2987 audit_log_end(ab); 2988 } 2989 2990 /** 2991 * audit_seccomp - record information about a seccomp action 2992 * @syscall: syscall number 2993 * @signr: signal value 2994 * @code: the seccomp action 2995 * 2996 * Record the information associated with a seccomp action. Event filtering for 2997 * seccomp actions that are not to be logged is done in seccomp_log(). 2998 * Therefore, this function forces auditing independent of the audit_enabled 2999 * and dummy context state because seccomp actions should be logged even when 3000 * audit is not in use. 3001 */ 3002 void audit_seccomp(unsigned long syscall, long signr, int code) 3003 { 3004 struct audit_buffer *ab; 3005 3006 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3007 if (unlikely(!ab)) 3008 return; 3009 audit_log_task(ab); 3010 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3011 signr, syscall_get_arch(current), syscall, 3012 in_compat_syscall(), KSTK_EIP(current), code); 3013 audit_log_end(ab); 3014 } 3015 3016 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3017 int res) 3018 { 3019 struct audit_buffer *ab; 3020 3021 if (!audit_enabled) 3022 return; 3023 3024 ab = audit_log_start(audit_context(), GFP_KERNEL, 3025 AUDIT_CONFIG_CHANGE); 3026 if (unlikely(!ab)) 3027 return; 3028 3029 audit_log_format(ab, 3030 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3031 names, old_names, res); 3032 audit_log_end(ab); 3033 } 3034 3035 struct list_head *audit_killed_trees(void) 3036 { 3037 struct audit_context *ctx = audit_context(); 3038 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3039 return NULL; 3040 return &ctx->killed_trees; 3041 } 3042