xref: /linux/kernel/auditsc.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * All Rights Reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
22  *
23  * Many of the ideas implemented here are from Stephen C. Tweedie,
24  * especially the idea of avoiding a copy by using getname.
25  *
26  * The method for actual interception of syscall entry and exit (not in
27  * this file -- see entry.S) is based on a GPL'd patch written by
28  * okir@suse.de and Copyright 2003 SuSE Linux AG.
29  *
30  */
31 
32 #include <linux/init.h>
33 #include <asm/atomic.h>
34 #include <asm/types.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/mount.h>
38 #include <linux/socket.h>
39 #include <linux/audit.h>
40 #include <linux/personality.h>
41 #include <linux/time.h>
42 #include <asm/unistd.h>
43 
44 /* 0 = no checking
45    1 = put_count checking
46    2 = verbose put_count checking
47 */
48 #define AUDIT_DEBUG 0
49 
50 /* No syscall auditing will take place unless audit_enabled != 0. */
51 extern int audit_enabled;
52 
53 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
54  * for saving names from getname(). */
55 #define AUDIT_NAMES    20
56 
57 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
58  * audit_context from being used for nameless inodes from
59  * path_lookup. */
60 #define AUDIT_NAMES_RESERVED 7
61 
62 /* At task start time, the audit_state is set in the audit_context using
63    a per-task filter.  At syscall entry, the audit_state is augmented by
64    the syscall filter. */
65 enum audit_state {
66 	AUDIT_DISABLED,		/* Do not create per-task audit_context.
67 				 * No syscall-specific audit records can
68 				 * be generated. */
69 	AUDIT_SETUP_CONTEXT,	/* Create the per-task audit_context,
70 				 * but don't necessarily fill it in at
71 				 * syscall entry time (i.e., filter
72 				 * instead). */
73 	AUDIT_BUILD_CONTEXT,	/* Create the per-task audit_context,
74 				 * and always fill it in at syscall
75 				 * entry time.  This makes a full
76 				 * syscall record available if some
77 				 * other part of the kernel decides it
78 				 * should be recorded. */
79 	AUDIT_RECORD_CONTEXT	/* Create the per-task audit_context,
80 				 * always fill it in at syscall entry
81 				 * time, and always write out the audit
82 				 * record at syscall exit time.  */
83 };
84 
85 /* When fs/namei.c:getname() is called, we store the pointer in name and
86  * we don't let putname() free it (instead we free all of the saved
87  * pointers at syscall exit time).
88  *
89  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
90 struct audit_names {
91 	const char	*name;
92 	unsigned long	ino;
93 	dev_t		dev;
94 	umode_t		mode;
95 	uid_t		uid;
96 	gid_t		gid;
97 	dev_t		rdev;
98 };
99 
100 struct audit_aux_data {
101 	struct audit_aux_data	*next;
102 	int			type;
103 };
104 
105 #define AUDIT_AUX_IPCPERM	0
106 
107 struct audit_aux_data_ipcctl {
108 	struct audit_aux_data	d;
109 	struct ipc_perm		p;
110 	unsigned long		qbytes;
111 	uid_t			uid;
112 	gid_t			gid;
113 	mode_t			mode;
114 };
115 
116 struct audit_aux_data_socketcall {
117 	struct audit_aux_data	d;
118 	int			nargs;
119 	unsigned long		args[0];
120 };
121 
122 struct audit_aux_data_sockaddr {
123 	struct audit_aux_data	d;
124 	int			len;
125 	char			a[0];
126 };
127 
128 struct audit_aux_data_path {
129 	struct audit_aux_data	d;
130 	struct dentry		*dentry;
131 	struct vfsmount		*mnt;
132 };
133 
134 /* The per-task audit context. */
135 struct audit_context {
136 	int		    in_syscall;	/* 1 if task is in a syscall */
137 	enum audit_state    state;
138 	unsigned int	    serial;     /* serial number for record */
139 	struct timespec	    ctime;      /* time of syscall entry */
140 	uid_t		    loginuid;   /* login uid (identity) */
141 	int		    major;      /* syscall number */
142 	unsigned long	    argv[4];    /* syscall arguments */
143 	int		    return_valid; /* return code is valid */
144 	long		    return_code;/* syscall return code */
145 	int		    auditable;  /* 1 if record should be written */
146 	int		    name_count;
147 	struct audit_names  names[AUDIT_NAMES];
148 	struct dentry *	    pwd;
149 	struct vfsmount *   pwdmnt;
150 	struct audit_context *previous; /* For nested syscalls */
151 	struct audit_aux_data *aux;
152 
153 				/* Save things to print about task_struct */
154 	pid_t		    pid;
155 	uid_t		    uid, euid, suid, fsuid;
156 	gid_t		    gid, egid, sgid, fsgid;
157 	unsigned long	    personality;
158 	int		    arch;
159 
160 #if AUDIT_DEBUG
161 	int		    put_count;
162 	int		    ino_count;
163 #endif
164 };
165 
166 				/* Public API */
167 /* There are three lists of rules -- one to search at task creation
168  * time, one to search at syscall entry time, and another to search at
169  * syscall exit time. */
170 static LIST_HEAD(audit_tsklist);
171 static LIST_HEAD(audit_entlist);
172 static LIST_HEAD(audit_extlist);
173 
174 struct audit_entry {
175 	struct list_head  list;
176 	struct rcu_head   rcu;
177 	struct audit_rule rule;
178 };
179 
180 extern int audit_pid;
181 
182 /* Check to see if two rules are identical.  It is called from
183  * audit_del_rule during AUDIT_DEL. */
184 static int audit_compare_rule(struct audit_rule *a, struct audit_rule *b)
185 {
186 	int i;
187 
188 	if (a->flags != b->flags)
189 		return 1;
190 
191 	if (a->action != b->action)
192 		return 1;
193 
194 	if (a->field_count != b->field_count)
195 		return 1;
196 
197 	for (i = 0; i < a->field_count; i++) {
198 		if (a->fields[i] != b->fields[i]
199 		    || a->values[i] != b->values[i])
200 			return 1;
201 	}
202 
203 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
204 		if (a->mask[i] != b->mask[i])
205 			return 1;
206 
207 	return 0;
208 }
209 
210 /* Note that audit_add_rule and audit_del_rule are called via
211  * audit_receive() in audit.c, and are protected by
212  * audit_netlink_sem. */
213 static inline int audit_add_rule(struct audit_entry *entry,
214 				 struct list_head *list)
215 {
216 	if (entry->rule.flags & AUDIT_PREPEND) {
217 		entry->rule.flags &= ~AUDIT_PREPEND;
218 		list_add_rcu(&entry->list, list);
219 	} else {
220 		list_add_tail_rcu(&entry->list, list);
221 	}
222 	return 0;
223 }
224 
225 static void audit_free_rule(struct rcu_head *head)
226 {
227 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
228 	kfree(e);
229 }
230 
231 /* Note that audit_add_rule and audit_del_rule are called via
232  * audit_receive() in audit.c, and are protected by
233  * audit_netlink_sem. */
234 static inline int audit_del_rule(struct audit_rule *rule,
235 				 struct list_head *list)
236 {
237 	struct audit_entry  *e;
238 
239 	/* Do not use the _rcu iterator here, since this is the only
240 	 * deletion routine. */
241 	list_for_each_entry(e, list, list) {
242 		if (!audit_compare_rule(rule, &e->rule)) {
243 			list_del_rcu(&e->list);
244 			call_rcu(&e->rcu, audit_free_rule);
245 			return 0;
246 		}
247 	}
248 	return -EFAULT;		/* No matching rule */
249 }
250 
251 /* Copy rule from user-space to kernel-space.  Called during
252  * AUDIT_ADD. */
253 static int audit_copy_rule(struct audit_rule *d, struct audit_rule *s)
254 {
255 	int i;
256 
257 	if (s->action != AUDIT_NEVER
258 	    && s->action != AUDIT_POSSIBLE
259 	    && s->action != AUDIT_ALWAYS)
260 		return -1;
261 	if (s->field_count < 0 || s->field_count > AUDIT_MAX_FIELDS)
262 		return -1;
263 
264 	d->flags	= s->flags;
265 	d->action	= s->action;
266 	d->field_count	= s->field_count;
267 	for (i = 0; i < d->field_count; i++) {
268 		d->fields[i] = s->fields[i];
269 		d->values[i] = s->values[i];
270 	}
271 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) d->mask[i] = s->mask[i];
272 	return 0;
273 }
274 
275 int audit_receive_filter(int type, int pid, int uid, int seq, void *data,
276 							uid_t loginuid)
277 {
278 	u32		   flags;
279 	struct audit_entry *entry;
280 	int		   err = 0;
281 
282 	switch (type) {
283 	case AUDIT_LIST:
284 		/* The *_rcu iterators not needed here because we are
285 		   always called with audit_netlink_sem held. */
286 		list_for_each_entry(entry, &audit_tsklist, list)
287 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
288 					 &entry->rule, sizeof(entry->rule));
289 		list_for_each_entry(entry, &audit_entlist, list)
290 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
291 					 &entry->rule, sizeof(entry->rule));
292 		list_for_each_entry(entry, &audit_extlist, list)
293 			audit_send_reply(pid, seq, AUDIT_LIST, 0, 1,
294 					 &entry->rule, sizeof(entry->rule));
295 		audit_send_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
296 		break;
297 	case AUDIT_ADD:
298 		if (!(entry = kmalloc(sizeof(*entry), GFP_KERNEL)))
299 			return -ENOMEM;
300 		if (audit_copy_rule(&entry->rule, data)) {
301 			kfree(entry);
302 			return -EINVAL;
303 		}
304 		flags = entry->rule.flags;
305 		if (!err && (flags & AUDIT_PER_TASK))
306 			err = audit_add_rule(entry, &audit_tsklist);
307 		if (!err && (flags & AUDIT_AT_ENTRY))
308 			err = audit_add_rule(entry, &audit_entlist);
309 		if (!err && (flags & AUDIT_AT_EXIT))
310 			err = audit_add_rule(entry, &audit_extlist);
311 		audit_log(NULL, AUDIT_CONFIG_CHANGE,
312 				"auid=%u added an audit rule\n", loginuid);
313 		break;
314 	case AUDIT_DEL:
315 		flags =((struct audit_rule *)data)->flags;
316 		if (!err && (flags & AUDIT_PER_TASK))
317 			err = audit_del_rule(data, &audit_tsklist);
318 		if (!err && (flags & AUDIT_AT_ENTRY))
319 			err = audit_del_rule(data, &audit_entlist);
320 		if (!err && (flags & AUDIT_AT_EXIT))
321 			err = audit_del_rule(data, &audit_extlist);
322 		audit_log(NULL, AUDIT_CONFIG_CHANGE,
323 				"auid=%u removed an audit rule\n", loginuid);
324 		break;
325 	default:
326 		return -EINVAL;
327 	}
328 
329 	return err;
330 }
331 
332 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
333  * otherwise. */
334 static int audit_filter_rules(struct task_struct *tsk,
335 			      struct audit_rule *rule,
336 			      struct audit_context *ctx,
337 			      enum audit_state *state)
338 {
339 	int i, j;
340 
341 	for (i = 0; i < rule->field_count; i++) {
342 		u32 field  = rule->fields[i] & ~AUDIT_NEGATE;
343 		u32 value  = rule->values[i];
344 		int result = 0;
345 
346 		switch (field) {
347 		case AUDIT_PID:
348 			result = (tsk->pid == value);
349 			break;
350 		case AUDIT_UID:
351 			result = (tsk->uid == value);
352 			break;
353 		case AUDIT_EUID:
354 			result = (tsk->euid == value);
355 			break;
356 		case AUDIT_SUID:
357 			result = (tsk->suid == value);
358 			break;
359 		case AUDIT_FSUID:
360 			result = (tsk->fsuid == value);
361 			break;
362 		case AUDIT_GID:
363 			result = (tsk->gid == value);
364 			break;
365 		case AUDIT_EGID:
366 			result = (tsk->egid == value);
367 			break;
368 		case AUDIT_SGID:
369 			result = (tsk->sgid == value);
370 			break;
371 		case AUDIT_FSGID:
372 			result = (tsk->fsgid == value);
373 			break;
374 		case AUDIT_PERS:
375 			result = (tsk->personality == value);
376 			break;
377 		case AUDIT_ARCH:
378 			if (ctx)
379 				result = (ctx->arch == value);
380 			break;
381 
382 		case AUDIT_EXIT:
383 			if (ctx && ctx->return_valid)
384 				result = (ctx->return_code == value);
385 			break;
386 		case AUDIT_SUCCESS:
387 			if (ctx && ctx->return_valid)
388 				result = (ctx->return_valid == AUDITSC_SUCCESS);
389 			break;
390 		case AUDIT_DEVMAJOR:
391 			if (ctx) {
392 				for (j = 0; j < ctx->name_count; j++) {
393 					if (MAJOR(ctx->names[j].dev)==value) {
394 						++result;
395 						break;
396 					}
397 				}
398 			}
399 			break;
400 		case AUDIT_DEVMINOR:
401 			if (ctx) {
402 				for (j = 0; j < ctx->name_count; j++) {
403 					if (MINOR(ctx->names[j].dev)==value) {
404 						++result;
405 						break;
406 					}
407 				}
408 			}
409 			break;
410 		case AUDIT_INODE:
411 			if (ctx) {
412 				for (j = 0; j < ctx->name_count; j++) {
413 					if (ctx->names[j].ino == value) {
414 						++result;
415 						break;
416 					}
417 				}
418 			}
419 			break;
420 		case AUDIT_LOGINUID:
421 			result = 0;
422 			if (ctx)
423 				result = (ctx->loginuid == value);
424 			break;
425 		case AUDIT_ARG0:
426 		case AUDIT_ARG1:
427 		case AUDIT_ARG2:
428 		case AUDIT_ARG3:
429 			if (ctx)
430 				result = (ctx->argv[field-AUDIT_ARG0]==value);
431 			break;
432 		}
433 
434 		if (rule->fields[i] & AUDIT_NEGATE)
435 			result = !result;
436 		if (!result)
437 			return 0;
438 	}
439 	switch (rule->action) {
440 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
441 	case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT;  break;
442 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
443 	}
444 	return 1;
445 }
446 
447 /* At process creation time, we can determine if system-call auditing is
448  * completely disabled for this task.  Since we only have the task
449  * structure at this point, we can only check uid and gid.
450  */
451 static enum audit_state audit_filter_task(struct task_struct *tsk)
452 {
453 	struct audit_entry *e;
454 	enum audit_state   state;
455 
456 	rcu_read_lock();
457 	list_for_each_entry_rcu(e, &audit_tsklist, list) {
458 		if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
459 			rcu_read_unlock();
460 			return state;
461 		}
462 	}
463 	rcu_read_unlock();
464 	return AUDIT_BUILD_CONTEXT;
465 }
466 
467 /* At syscall entry and exit time, this filter is called if the
468  * audit_state is not low enough that auditing cannot take place, but is
469  * also not high enough that we already know we have to write an audit
470  * record (i.e., the state is AUDIT_SETUP_CONTEXT or  AUDIT_BUILD_CONTEXT).
471  */
472 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
473 					     struct audit_context *ctx,
474 					     struct list_head *list)
475 {
476 	struct audit_entry *e;
477 	enum audit_state   state;
478 	int		   word = AUDIT_WORD(ctx->major);
479 	int		   bit  = AUDIT_BIT(ctx->major);
480 
481 	rcu_read_lock();
482 	list_for_each_entry_rcu(e, list, list) {
483 		if ((e->rule.mask[word] & bit) == bit
484  		    && audit_filter_rules(tsk, &e->rule, ctx, &state)) {
485 			rcu_read_unlock();
486 			return state;
487 		}
488 	}
489 	rcu_read_unlock();
490 	return AUDIT_BUILD_CONTEXT;
491 }
492 
493 /* This should be called with task_lock() held. */
494 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
495 						      int return_valid,
496 						      int return_code)
497 {
498 	struct audit_context *context = tsk->audit_context;
499 
500 	if (likely(!context))
501 		return NULL;
502 	context->return_valid = return_valid;
503 	context->return_code  = return_code;
504 
505 	if (context->in_syscall && !context->auditable) {
506 		enum audit_state state;
507 		state = audit_filter_syscall(tsk, context, &audit_extlist);
508 		if (state == AUDIT_RECORD_CONTEXT)
509 			context->auditable = 1;
510 	}
511 
512 	context->pid = tsk->pid;
513 	context->uid = tsk->uid;
514 	context->gid = tsk->gid;
515 	context->euid = tsk->euid;
516 	context->suid = tsk->suid;
517 	context->fsuid = tsk->fsuid;
518 	context->egid = tsk->egid;
519 	context->sgid = tsk->sgid;
520 	context->fsgid = tsk->fsgid;
521 	context->personality = tsk->personality;
522 	tsk->audit_context = NULL;
523 	return context;
524 }
525 
526 static inline void audit_free_names(struct audit_context *context)
527 {
528 	int i;
529 
530 #if AUDIT_DEBUG == 2
531 	if (context->auditable
532 	    ||context->put_count + context->ino_count != context->name_count) {
533 		printk(KERN_ERR "audit.c:%d(:%d): major=%d in_syscall=%d"
534 		       " name_count=%d put_count=%d"
535 		       " ino_count=%d [NOT freeing]\n",
536 		       __LINE__,
537 		       context->serial, context->major, context->in_syscall,
538 		       context->name_count, context->put_count,
539 		       context->ino_count);
540 		for (i = 0; i < context->name_count; i++)
541 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
542 			       context->names[i].name,
543 			       context->names[i].name);
544 		dump_stack();
545 		return;
546 	}
547 #endif
548 #if AUDIT_DEBUG
549 	context->put_count  = 0;
550 	context->ino_count  = 0;
551 #endif
552 
553 	for (i = 0; i < context->name_count; i++)
554 		if (context->names[i].name)
555 			__putname(context->names[i].name);
556 	context->name_count = 0;
557 	if (context->pwd)
558 		dput(context->pwd);
559 	if (context->pwdmnt)
560 		mntput(context->pwdmnt);
561 	context->pwd = NULL;
562 	context->pwdmnt = NULL;
563 }
564 
565 static inline void audit_free_aux(struct audit_context *context)
566 {
567 	struct audit_aux_data *aux;
568 
569 	while ((aux = context->aux)) {
570 		if (aux->type == AUDIT_AVC_PATH) {
571 			struct audit_aux_data_path *axi = (void *)aux;
572 			dput(axi->dentry);
573 			mntput(axi->mnt);
574 		}
575 		context->aux = aux->next;
576 		kfree(aux);
577 	}
578 }
579 
580 static inline void audit_zero_context(struct audit_context *context,
581 				      enum audit_state state)
582 {
583 	uid_t loginuid = context->loginuid;
584 
585 	memset(context, 0, sizeof(*context));
586 	context->state      = state;
587 	context->loginuid   = loginuid;
588 }
589 
590 static inline struct audit_context *audit_alloc_context(enum audit_state state)
591 {
592 	struct audit_context *context;
593 
594 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
595 		return NULL;
596 	audit_zero_context(context, state);
597 	return context;
598 }
599 
600 /* Filter on the task information and allocate a per-task audit context
601  * if necessary.  Doing so turns on system call auditing for the
602  * specified task.  This is called from copy_process, so no lock is
603  * needed. */
604 int audit_alloc(struct task_struct *tsk)
605 {
606 	struct audit_context *context;
607 	enum audit_state     state;
608 
609 	if (likely(!audit_enabled))
610 		return 0; /* Return if not auditing. */
611 
612 	state = audit_filter_task(tsk);
613 	if (likely(state == AUDIT_DISABLED))
614 		return 0;
615 
616 	if (!(context = audit_alloc_context(state))) {
617 		audit_log_lost("out of memory in audit_alloc");
618 		return -ENOMEM;
619 	}
620 
621 				/* Preserve login uid */
622 	context->loginuid = -1;
623 	if (current->audit_context)
624 		context->loginuid = current->audit_context->loginuid;
625 
626 	tsk->audit_context  = context;
627 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
628 	return 0;
629 }
630 
631 static inline void audit_free_context(struct audit_context *context)
632 {
633 	struct audit_context *previous;
634 	int		     count = 0;
635 
636 	do {
637 		previous = context->previous;
638 		if (previous || (count &&  count < 10)) {
639 			++count;
640 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
641 			       " freeing multiple contexts (%d)\n",
642 			       context->serial, context->major,
643 			       context->name_count, count);
644 		}
645 		audit_free_names(context);
646 		audit_free_aux(context);
647 		kfree(context);
648 		context  = previous;
649 	} while (context);
650 	if (count >= 10)
651 		printk(KERN_ERR "audit: freed %d contexts\n", count);
652 }
653 
654 static void audit_log_task_info(struct audit_buffer *ab)
655 {
656 	char name[sizeof(current->comm)];
657 	struct mm_struct *mm = current->mm;
658 	struct vm_area_struct *vma;
659 
660 	get_task_comm(name, current);
661 	audit_log_format(ab, " comm=");
662 	audit_log_untrustedstring(ab, name);
663 
664 	if (!mm)
665 		return;
666 
667 	down_read(&mm->mmap_sem);
668 	vma = mm->mmap;
669 	while (vma) {
670 		if ((vma->vm_flags & VM_EXECUTABLE) &&
671 		    vma->vm_file) {
672 			audit_log_d_path(ab, "exe=",
673 					 vma->vm_file->f_dentry,
674 					 vma->vm_file->f_vfsmnt);
675 			break;
676 		}
677 		vma = vma->vm_next;
678 	}
679 	up_read(&mm->mmap_sem);
680 }
681 
682 static void audit_log_exit(struct audit_context *context)
683 {
684 	int i;
685 	struct audit_buffer *ab;
686 	struct audit_aux_data *aux;
687 
688 	ab = audit_log_start(context, AUDIT_SYSCALL);
689 	if (!ab)
690 		return;		/* audit_panic has been called */
691 	audit_log_format(ab, "arch=%x syscall=%d",
692 			 context->arch, context->major);
693 	if (context->personality != PER_LINUX)
694 		audit_log_format(ab, " per=%lx", context->personality);
695 	if (context->return_valid)
696 		audit_log_format(ab, " success=%s exit=%ld",
697 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
698 				 context->return_code);
699 	audit_log_format(ab,
700 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
701 		  " pid=%d auid=%u uid=%u gid=%u"
702 		  " euid=%u suid=%u fsuid=%u"
703 		  " egid=%u sgid=%u fsgid=%u",
704 		  context->argv[0],
705 		  context->argv[1],
706 		  context->argv[2],
707 		  context->argv[3],
708 		  context->name_count,
709 		  context->pid,
710 		  context->loginuid,
711 		  context->uid,
712 		  context->gid,
713 		  context->euid, context->suid, context->fsuid,
714 		  context->egid, context->sgid, context->fsgid);
715 	audit_log_task_info(ab);
716 	audit_log_end(ab);
717 
718 	for (aux = context->aux; aux; aux = aux->next) {
719 
720 		ab = audit_log_start(context, aux->type);
721 		if (!ab)
722 			continue; /* audit_panic has been called */
723 
724 		switch (aux->type) {
725 		case AUDIT_IPC: {
726 			struct audit_aux_data_ipcctl *axi = (void *)aux;
727 			audit_log_format(ab,
728 					 " qbytes=%lx iuid=%u igid=%u mode=%x",
729 					 axi->qbytes, axi->uid, axi->gid, axi->mode);
730 			break; }
731 
732 		case AUDIT_SOCKETCALL: {
733 			int i;
734 			struct audit_aux_data_socketcall *axs = (void *)aux;
735 			audit_log_format(ab, "nargs=%d", axs->nargs);
736 			for (i=0; i<axs->nargs; i++)
737 				audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
738 			break; }
739 
740 		case AUDIT_SOCKADDR: {
741 			struct audit_aux_data_sockaddr *axs = (void *)aux;
742 
743 			audit_log_format(ab, "saddr=");
744 			audit_log_hex(ab, axs->a, axs->len);
745 			break; }
746 
747 		case AUDIT_AVC_PATH: {
748 			struct audit_aux_data_path *axi = (void *)aux;
749 			audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
750 			break; }
751 
752 		}
753 		audit_log_end(ab);
754 	}
755 
756 	if (context->pwd && context->pwdmnt) {
757 		ab = audit_log_start(context, AUDIT_CWD);
758 		if (ab) {
759 			audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
760 			audit_log_end(ab);
761 		}
762 	}
763 	for (i = 0; i < context->name_count; i++) {
764 		ab = audit_log_start(context, AUDIT_PATH);
765 		if (!ab)
766 			continue; /* audit_panic has been called */
767 
768 		audit_log_format(ab, "item=%d", i);
769 		if (context->names[i].name) {
770 			audit_log_format(ab, " name=");
771 			audit_log_untrustedstring(ab, context->names[i].name);
772 		}
773 		if (context->names[i].ino != (unsigned long)-1)
774 			audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#o"
775 					     " ouid=%u ogid=%u rdev=%02x:%02x",
776 					 context->names[i].ino,
777 					 MAJOR(context->names[i].dev),
778 					 MINOR(context->names[i].dev),
779 					 context->names[i].mode,
780 					 context->names[i].uid,
781 					 context->names[i].gid,
782 					 MAJOR(context->names[i].rdev),
783 					 MINOR(context->names[i].rdev));
784 		audit_log_end(ab);
785 	}
786 }
787 
788 /* Free a per-task audit context.  Called from copy_process and
789  * __put_task_struct. */
790 void audit_free(struct task_struct *tsk)
791 {
792 	struct audit_context *context;
793 
794 	task_lock(tsk);
795 	context = audit_get_context(tsk, 0, 0);
796 	task_unlock(tsk);
797 
798 	if (likely(!context))
799 		return;
800 
801 	/* Check for system calls that do not go through the exit
802 	 * function (e.g., exit_group), then free context block. */
803 	if (context->in_syscall && context->auditable && context->pid != audit_pid)
804 		audit_log_exit(context);
805 
806 	audit_free_context(context);
807 }
808 
809 /* Fill in audit context at syscall entry.  This only happens if the
810  * audit context was created when the task was created and the state or
811  * filters demand the audit context be built.  If the state from the
812  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
813  * then the record will be written at syscall exit time (otherwise, it
814  * will only be written if another part of the kernel requests that it
815  * be written). */
816 void audit_syscall_entry(struct task_struct *tsk, int arch, int major,
817 			 unsigned long a1, unsigned long a2,
818 			 unsigned long a3, unsigned long a4)
819 {
820 	struct audit_context *context = tsk->audit_context;
821 	enum audit_state     state;
822 
823 	BUG_ON(!context);
824 
825 	/* This happens only on certain architectures that make system
826 	 * calls in kernel_thread via the entry.S interface, instead of
827 	 * with direct calls.  (If you are porting to a new
828 	 * architecture, hitting this condition can indicate that you
829 	 * got the _exit/_leave calls backward in entry.S.)
830 	 *
831 	 * i386     no
832 	 * x86_64   no
833 	 * ppc64    yes (see arch/ppc64/kernel/misc.S)
834 	 *
835 	 * This also happens with vm86 emulation in a non-nested manner
836 	 * (entries without exits), so this case must be caught.
837 	 */
838 	if (context->in_syscall) {
839 		struct audit_context *newctx;
840 
841 #if defined(__NR_vm86) && defined(__NR_vm86old)
842 		/* vm86 mode should only be entered once */
843 		if (major == __NR_vm86 || major == __NR_vm86old)
844 			return;
845 #endif
846 #if AUDIT_DEBUG
847 		printk(KERN_ERR
848 		       "audit(:%d) pid=%d in syscall=%d;"
849 		       " entering syscall=%d\n",
850 		       context->serial, tsk->pid, context->major, major);
851 #endif
852 		newctx = audit_alloc_context(context->state);
853 		if (newctx) {
854 			newctx->previous   = context;
855 			context		   = newctx;
856 			tsk->audit_context = newctx;
857 		} else	{
858 			/* If we can't alloc a new context, the best we
859 			 * can do is to leak memory (any pending putname
860 			 * will be lost).  The only other alternative is
861 			 * to abandon auditing. */
862 			audit_zero_context(context, context->state);
863 		}
864 	}
865 	BUG_ON(context->in_syscall || context->name_count);
866 
867 	if (!audit_enabled)
868 		return;
869 
870 	context->arch	    = arch;
871 	context->major      = major;
872 	context->argv[0]    = a1;
873 	context->argv[1]    = a2;
874 	context->argv[2]    = a3;
875 	context->argv[3]    = a4;
876 
877 	state = context->state;
878 	if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)
879 		state = audit_filter_syscall(tsk, context, &audit_entlist);
880 	if (likely(state == AUDIT_DISABLED))
881 		return;
882 
883 	context->serial     = audit_serial();
884 	context->ctime      = CURRENT_TIME;
885 	context->in_syscall = 1;
886 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
887 }
888 
889 /* Tear down after system call.  If the audit context has been marked as
890  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
891  * filtering, or because some other part of the kernel write an audit
892  * message), then write out the syscall information.  In call cases,
893  * free the names stored from getname(). */
894 void audit_syscall_exit(struct task_struct *tsk, int valid, long return_code)
895 {
896 	struct audit_context *context;
897 
898 	get_task_struct(tsk);
899 	task_lock(tsk);
900 	context = audit_get_context(tsk, valid, return_code);
901 	task_unlock(tsk);
902 
903 	/* Not having a context here is ok, since the parent may have
904 	 * called __put_task_struct. */
905 	if (likely(!context))
906 		return;
907 
908 	if (context->in_syscall && context->auditable && context->pid != audit_pid)
909 		audit_log_exit(context);
910 
911 	context->in_syscall = 0;
912 	context->auditable  = 0;
913 
914 	if (context->previous) {
915 		struct audit_context *new_context = context->previous;
916 		context->previous  = NULL;
917 		audit_free_context(context);
918 		tsk->audit_context = new_context;
919 	} else {
920 		audit_free_names(context);
921 		audit_free_aux(context);
922 		audit_zero_context(context, context->state);
923 		tsk->audit_context = context;
924 	}
925 	put_task_struct(tsk);
926 }
927 
928 /* Add a name to the list.  Called from fs/namei.c:getname(). */
929 void audit_getname(const char *name)
930 {
931 	struct audit_context *context = current->audit_context;
932 
933 	if (!context || IS_ERR(name) || !name)
934 		return;
935 
936 	if (!context->in_syscall) {
937 #if AUDIT_DEBUG == 2
938 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
939 		       __FILE__, __LINE__, context->serial, name);
940 		dump_stack();
941 #endif
942 		return;
943 	}
944 	BUG_ON(context->name_count >= AUDIT_NAMES);
945 	context->names[context->name_count].name = name;
946 	context->names[context->name_count].ino  = (unsigned long)-1;
947 	++context->name_count;
948 	if (!context->pwd) {
949 		read_lock(&current->fs->lock);
950 		context->pwd = dget(current->fs->pwd);
951 		context->pwdmnt = mntget(current->fs->pwdmnt);
952 		read_unlock(&current->fs->lock);
953 	}
954 
955 }
956 
957 /* Intercept a putname request.  Called from
958  * include/linux/fs.h:putname().  If we have stored the name from
959  * getname in the audit context, then we delay the putname until syscall
960  * exit. */
961 void audit_putname(const char *name)
962 {
963 	struct audit_context *context = current->audit_context;
964 
965 	BUG_ON(!context);
966 	if (!context->in_syscall) {
967 #if AUDIT_DEBUG == 2
968 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
969 		       __FILE__, __LINE__, context->serial, name);
970 		if (context->name_count) {
971 			int i;
972 			for (i = 0; i < context->name_count; i++)
973 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
974 				       context->names[i].name,
975 				       context->names[i].name);
976 		}
977 #endif
978 		__putname(name);
979 	}
980 #if AUDIT_DEBUG
981 	else {
982 		++context->put_count;
983 		if (context->put_count > context->name_count) {
984 			printk(KERN_ERR "%s:%d(:%d): major=%d"
985 			       " in_syscall=%d putname(%p) name_count=%d"
986 			       " put_count=%d\n",
987 			       __FILE__, __LINE__,
988 			       context->serial, context->major,
989 			       context->in_syscall, name, context->name_count,
990 			       context->put_count);
991 			dump_stack();
992 		}
993 	}
994 #endif
995 }
996 
997 /* Store the inode and device from a lookup.  Called from
998  * fs/namei.c:path_lookup(). */
999 void audit_inode(const char *name, const struct inode *inode)
1000 {
1001 	int idx;
1002 	struct audit_context *context = current->audit_context;
1003 
1004 	if (!context->in_syscall)
1005 		return;
1006 	if (context->name_count
1007 	    && context->names[context->name_count-1].name
1008 	    && context->names[context->name_count-1].name == name)
1009 		idx = context->name_count - 1;
1010 	else if (context->name_count > 1
1011 		 && context->names[context->name_count-2].name
1012 		 && context->names[context->name_count-2].name == name)
1013 		idx = context->name_count - 2;
1014 	else {
1015 		/* FIXME: how much do we care about inodes that have no
1016 		 * associated name? */
1017 		if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1018 			return;
1019 		idx = context->name_count++;
1020 		context->names[idx].name = NULL;
1021 #if AUDIT_DEBUG
1022 		++context->ino_count;
1023 #endif
1024 	}
1025 	context->names[idx].ino  = inode->i_ino;
1026 	context->names[idx].dev	 = inode->i_sb->s_dev;
1027 	context->names[idx].mode = inode->i_mode;
1028 	context->names[idx].uid  = inode->i_uid;
1029 	context->names[idx].gid  = inode->i_gid;
1030 	context->names[idx].rdev = inode->i_rdev;
1031 }
1032 
1033 void auditsc_get_stamp(struct audit_context *ctx,
1034 		       struct timespec *t, unsigned int *serial)
1035 {
1036 	t->tv_sec  = ctx->ctime.tv_sec;
1037 	t->tv_nsec = ctx->ctime.tv_nsec;
1038 	*serial    = ctx->serial;
1039 	ctx->auditable = 1;
1040 }
1041 
1042 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1043 {
1044 	if (task->audit_context) {
1045 		struct audit_buffer *ab;
1046 
1047 		ab = audit_log_start(NULL, AUDIT_LOGIN);
1048 		if (ab) {
1049 			audit_log_format(ab, "login pid=%d uid=%u "
1050 				"old auid=%u new auid=%u",
1051 				task->pid, task->uid,
1052 				task->audit_context->loginuid, loginuid);
1053 			audit_log_end(ab);
1054 		}
1055 		task->audit_context->loginuid = loginuid;
1056 	}
1057 	return 0;
1058 }
1059 
1060 uid_t audit_get_loginuid(struct audit_context *ctx)
1061 {
1062 	return ctx ? ctx->loginuid : -1;
1063 }
1064 
1065 int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1066 {
1067 	struct audit_aux_data_ipcctl *ax;
1068 	struct audit_context *context = current->audit_context;
1069 
1070 	if (likely(!context))
1071 		return 0;
1072 
1073 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1074 	if (!ax)
1075 		return -ENOMEM;
1076 
1077 	ax->qbytes = qbytes;
1078 	ax->uid = uid;
1079 	ax->gid = gid;
1080 	ax->mode = mode;
1081 
1082 	ax->d.type = AUDIT_IPC;
1083 	ax->d.next = context->aux;
1084 	context->aux = (void *)ax;
1085 	return 0;
1086 }
1087 
1088 int audit_socketcall(int nargs, unsigned long *args)
1089 {
1090 	struct audit_aux_data_socketcall *ax;
1091 	struct audit_context *context = current->audit_context;
1092 
1093 	if (likely(!context))
1094 		return 0;
1095 
1096 	ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1097 	if (!ax)
1098 		return -ENOMEM;
1099 
1100 	ax->nargs = nargs;
1101 	memcpy(ax->args, args, nargs * sizeof(unsigned long));
1102 
1103 	ax->d.type = AUDIT_SOCKETCALL;
1104 	ax->d.next = context->aux;
1105 	context->aux = (void *)ax;
1106 	return 0;
1107 }
1108 
1109 int audit_sockaddr(int len, void *a)
1110 {
1111 	struct audit_aux_data_sockaddr *ax;
1112 	struct audit_context *context = current->audit_context;
1113 
1114 	if (likely(!context))
1115 		return 0;
1116 
1117 	ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1118 	if (!ax)
1119 		return -ENOMEM;
1120 
1121 	ax->len = len;
1122 	memcpy(ax->a, a, len);
1123 
1124 	ax->d.type = AUDIT_SOCKADDR;
1125 	ax->d.next = context->aux;
1126 	context->aux = (void *)ax;
1127 	return 0;
1128 }
1129 
1130 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1131 {
1132 	struct audit_aux_data_path *ax;
1133 	struct audit_context *context = current->audit_context;
1134 
1135 	if (likely(!context))
1136 		return 0;
1137 
1138 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1139 	if (!ax)
1140 		return -ENOMEM;
1141 
1142 	ax->dentry = dget(dentry);
1143 	ax->mnt = mntget(mnt);
1144 
1145 	ax->d.type = AUDIT_AVC_PATH;
1146 	ax->d.next = context->aux;
1147 	context->aux = (void *)ax;
1148 	return 0;
1149 }
1150 
1151 void audit_signal_info(int sig, struct task_struct *t)
1152 {
1153 	extern pid_t audit_sig_pid;
1154 	extern uid_t audit_sig_uid;
1155 
1156 	if (unlikely(audit_pid && t->pid == audit_pid)) {
1157 		if (sig == SIGTERM || sig == SIGHUP) {
1158 			struct audit_context *ctx = current->audit_context;
1159 			audit_sig_pid = current->pid;
1160 			if (ctx)
1161 				audit_sig_uid = ctx->loginuid;
1162 			else
1163 				audit_sig_uid = current->uid;
1164 		}
1165 	}
1166 }
1167 
1168