1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <linux/uaccess.h> 76 #include <uapi/linux/limits.h> 77 78 #include "audit.h" 79 80 /* flags stating the success for a syscall */ 81 #define AUDITSC_INVALID 0 82 #define AUDITSC_SUCCESS 1 83 #define AUDITSC_FAILURE 2 84 85 /* no execve audit message should be longer than this (userspace limits), 86 * see the note near the top of audit_log_execve_info() about this value */ 87 #define MAX_EXECVE_AUDIT_LEN 7500 88 89 /* max length to print of cmdline/proctitle value during audit */ 90 #define MAX_PROCTITLE_AUDIT_LEN 128 91 92 /* number of audit rules */ 93 int audit_n_rules; 94 95 /* determines whether we collect data for signals sent */ 96 int audit_signals; 97 98 struct audit_aux_data { 99 struct audit_aux_data *next; 100 int type; 101 }; 102 103 #define AUDIT_AUX_IPCPERM 0 104 105 /* Number of target pids per aux struct. */ 106 #define AUDIT_AUX_PIDS 16 107 108 struct audit_aux_data_pids { 109 struct audit_aux_data d; 110 pid_t target_pid[AUDIT_AUX_PIDS]; 111 kuid_t target_auid[AUDIT_AUX_PIDS]; 112 kuid_t target_uid[AUDIT_AUX_PIDS]; 113 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 114 u32 target_sid[AUDIT_AUX_PIDS]; 115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 116 int pid_count; 117 }; 118 119 struct audit_aux_data_bprm_fcaps { 120 struct audit_aux_data d; 121 struct audit_cap_data fcap; 122 unsigned int fcap_ver; 123 struct audit_cap_data old_pcap; 124 struct audit_cap_data new_pcap; 125 }; 126 127 struct audit_tree_refs { 128 struct audit_tree_refs *next; 129 struct audit_chunk *c[31]; 130 }; 131 132 static int audit_match_perm(struct audit_context *ctx, int mask) 133 { 134 unsigned n; 135 if (unlikely(!ctx)) 136 return 0; 137 n = ctx->major; 138 139 switch (audit_classify_syscall(ctx->arch, n)) { 140 case 0: /* native */ 141 if ((mask & AUDIT_PERM_WRITE) && 142 audit_match_class(AUDIT_CLASS_WRITE, n)) 143 return 1; 144 if ((mask & AUDIT_PERM_READ) && 145 audit_match_class(AUDIT_CLASS_READ, n)) 146 return 1; 147 if ((mask & AUDIT_PERM_ATTR) && 148 audit_match_class(AUDIT_CLASS_CHATTR, n)) 149 return 1; 150 return 0; 151 case 1: /* 32bit on biarch */ 152 if ((mask & AUDIT_PERM_WRITE) && 153 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 154 return 1; 155 if ((mask & AUDIT_PERM_READ) && 156 audit_match_class(AUDIT_CLASS_READ_32, n)) 157 return 1; 158 if ((mask & AUDIT_PERM_ATTR) && 159 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 160 return 1; 161 return 0; 162 case 2: /* open */ 163 return mask & ACC_MODE(ctx->argv[1]); 164 case 3: /* openat */ 165 return mask & ACC_MODE(ctx->argv[2]); 166 case 4: /* socketcall */ 167 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 168 case 5: /* execve */ 169 return mask & AUDIT_PERM_EXEC; 170 default: 171 return 0; 172 } 173 } 174 175 static int audit_match_filetype(struct audit_context *ctx, int val) 176 { 177 struct audit_names *n; 178 umode_t mode = (umode_t)val; 179 180 if (unlikely(!ctx)) 181 return 0; 182 183 list_for_each_entry(n, &ctx->names_list, list) { 184 if ((n->ino != AUDIT_INO_UNSET) && 185 ((n->mode & S_IFMT) == mode)) 186 return 1; 187 } 188 189 return 0; 190 } 191 192 /* 193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 194 * ->first_trees points to its beginning, ->trees - to the current end of data. 195 * ->tree_count is the number of free entries in array pointed to by ->trees. 196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 197 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 198 * it's going to remain 1-element for almost any setup) until we free context itself. 199 * References in it _are_ dropped - at the same time we free/drop aux stuff. 200 */ 201 202 #ifdef CONFIG_AUDIT_TREE 203 static void audit_set_auditable(struct audit_context *ctx) 204 { 205 if (!ctx->prio) { 206 ctx->prio = 1; 207 ctx->current_state = AUDIT_RECORD_CONTEXT; 208 } 209 } 210 211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 212 { 213 struct audit_tree_refs *p = ctx->trees; 214 int left = ctx->tree_count; 215 if (likely(left)) { 216 p->c[--left] = chunk; 217 ctx->tree_count = left; 218 return 1; 219 } 220 if (!p) 221 return 0; 222 p = p->next; 223 if (p) { 224 p->c[30] = chunk; 225 ctx->trees = p; 226 ctx->tree_count = 30; 227 return 1; 228 } 229 return 0; 230 } 231 232 static int grow_tree_refs(struct audit_context *ctx) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 236 if (!ctx->trees) { 237 ctx->trees = p; 238 return 0; 239 } 240 if (p) 241 p->next = ctx->trees; 242 else 243 ctx->first_trees = ctx->trees; 244 ctx->tree_count = 31; 245 return 1; 246 } 247 #endif 248 249 static void unroll_tree_refs(struct audit_context *ctx, 250 struct audit_tree_refs *p, int count) 251 { 252 #ifdef CONFIG_AUDIT_TREE 253 struct audit_tree_refs *q; 254 int n; 255 if (!p) { 256 /* we started with empty chain */ 257 p = ctx->first_trees; 258 count = 31; 259 /* if the very first allocation has failed, nothing to do */ 260 if (!p) 261 return; 262 } 263 n = count; 264 for (q = p; q != ctx->trees; q = q->next, n = 31) { 265 while (n--) { 266 audit_put_chunk(q->c[n]); 267 q->c[n] = NULL; 268 } 269 } 270 while (n-- > ctx->tree_count) { 271 audit_put_chunk(q->c[n]); 272 q->c[n] = NULL; 273 } 274 ctx->trees = p; 275 ctx->tree_count = count; 276 #endif 277 } 278 279 static void free_tree_refs(struct audit_context *ctx) 280 { 281 struct audit_tree_refs *p, *q; 282 for (p = ctx->first_trees; p; p = q) { 283 q = p->next; 284 kfree(p); 285 } 286 } 287 288 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 289 { 290 #ifdef CONFIG_AUDIT_TREE 291 struct audit_tree_refs *p; 292 int n; 293 if (!tree) 294 return 0; 295 /* full ones */ 296 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 297 for (n = 0; n < 31; n++) 298 if (audit_tree_match(p->c[n], tree)) 299 return 1; 300 } 301 /* partial */ 302 if (p) { 303 for (n = ctx->tree_count; n < 31; n++) 304 if (audit_tree_match(p->c[n], tree)) 305 return 1; 306 } 307 #endif 308 return 0; 309 } 310 311 static int audit_compare_uid(kuid_t uid, 312 struct audit_names *name, 313 struct audit_field *f, 314 struct audit_context *ctx) 315 { 316 struct audit_names *n; 317 int rc; 318 319 if (name) { 320 rc = audit_uid_comparator(uid, f->op, name->uid); 321 if (rc) 322 return rc; 323 } 324 325 if (ctx) { 326 list_for_each_entry(n, &ctx->names_list, list) { 327 rc = audit_uid_comparator(uid, f->op, n->uid); 328 if (rc) 329 return rc; 330 } 331 } 332 return 0; 333 } 334 335 static int audit_compare_gid(kgid_t gid, 336 struct audit_names *name, 337 struct audit_field *f, 338 struct audit_context *ctx) 339 { 340 struct audit_names *n; 341 int rc; 342 343 if (name) { 344 rc = audit_gid_comparator(gid, f->op, name->gid); 345 if (rc) 346 return rc; 347 } 348 349 if (ctx) { 350 list_for_each_entry(n, &ctx->names_list, list) { 351 rc = audit_gid_comparator(gid, f->op, n->gid); 352 if (rc) 353 return rc; 354 } 355 } 356 return 0; 357 } 358 359 static int audit_field_compare(struct task_struct *tsk, 360 const struct cred *cred, 361 struct audit_field *f, 362 struct audit_context *ctx, 363 struct audit_names *name) 364 { 365 switch (f->val) { 366 /* process to file object comparisons */ 367 case AUDIT_COMPARE_UID_TO_OBJ_UID: 368 return audit_compare_uid(cred->uid, name, f, ctx); 369 case AUDIT_COMPARE_GID_TO_OBJ_GID: 370 return audit_compare_gid(cred->gid, name, f, ctx); 371 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 372 return audit_compare_uid(cred->euid, name, f, ctx); 373 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 374 return audit_compare_gid(cred->egid, name, f, ctx); 375 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 376 return audit_compare_uid(tsk->loginuid, name, f, ctx); 377 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 378 return audit_compare_uid(cred->suid, name, f, ctx); 379 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 380 return audit_compare_gid(cred->sgid, name, f, ctx); 381 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 382 return audit_compare_uid(cred->fsuid, name, f, ctx); 383 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 384 return audit_compare_gid(cred->fsgid, name, f, ctx); 385 /* uid comparisons */ 386 case AUDIT_COMPARE_UID_TO_AUID: 387 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 388 case AUDIT_COMPARE_UID_TO_EUID: 389 return audit_uid_comparator(cred->uid, f->op, cred->euid); 390 case AUDIT_COMPARE_UID_TO_SUID: 391 return audit_uid_comparator(cred->uid, f->op, cred->suid); 392 case AUDIT_COMPARE_UID_TO_FSUID: 393 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 394 /* auid comparisons */ 395 case AUDIT_COMPARE_AUID_TO_EUID: 396 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 397 case AUDIT_COMPARE_AUID_TO_SUID: 398 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 399 case AUDIT_COMPARE_AUID_TO_FSUID: 400 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 401 /* euid comparisons */ 402 case AUDIT_COMPARE_EUID_TO_SUID: 403 return audit_uid_comparator(cred->euid, f->op, cred->suid); 404 case AUDIT_COMPARE_EUID_TO_FSUID: 405 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 406 /* suid comparisons */ 407 case AUDIT_COMPARE_SUID_TO_FSUID: 408 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 409 /* gid comparisons */ 410 case AUDIT_COMPARE_GID_TO_EGID: 411 return audit_gid_comparator(cred->gid, f->op, cred->egid); 412 case AUDIT_COMPARE_GID_TO_SGID: 413 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 414 case AUDIT_COMPARE_GID_TO_FSGID: 415 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 416 /* egid comparisons */ 417 case AUDIT_COMPARE_EGID_TO_SGID: 418 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 419 case AUDIT_COMPARE_EGID_TO_FSGID: 420 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 421 /* sgid comparison */ 422 case AUDIT_COMPARE_SGID_TO_FSGID: 423 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 424 default: 425 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 426 return 0; 427 } 428 return 0; 429 } 430 431 /* Determine if any context name data matches a rule's watch data */ 432 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 433 * otherwise. 434 * 435 * If task_creation is true, this is an explicit indication that we are 436 * filtering a task rule at task creation time. This and tsk == current are 437 * the only situations where tsk->cred may be accessed without an rcu read lock. 438 */ 439 static int audit_filter_rules(struct task_struct *tsk, 440 struct audit_krule *rule, 441 struct audit_context *ctx, 442 struct audit_names *name, 443 enum audit_state *state, 444 bool task_creation) 445 { 446 const struct cred *cred; 447 int i, need_sid = 1; 448 u32 sid; 449 unsigned int sessionid; 450 451 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 452 453 for (i = 0; i < rule->field_count; i++) { 454 struct audit_field *f = &rule->fields[i]; 455 struct audit_names *n; 456 int result = 0; 457 pid_t pid; 458 459 switch (f->type) { 460 case AUDIT_PID: 461 pid = task_tgid_nr(tsk); 462 result = audit_comparator(pid, f->op, f->val); 463 break; 464 case AUDIT_PPID: 465 if (ctx) { 466 if (!ctx->ppid) 467 ctx->ppid = task_ppid_nr(tsk); 468 result = audit_comparator(ctx->ppid, f->op, f->val); 469 } 470 break; 471 case AUDIT_EXE: 472 result = audit_exe_compare(tsk, rule->exe); 473 break; 474 case AUDIT_UID: 475 result = audit_uid_comparator(cred->uid, f->op, f->uid); 476 break; 477 case AUDIT_EUID: 478 result = audit_uid_comparator(cred->euid, f->op, f->uid); 479 break; 480 case AUDIT_SUID: 481 result = audit_uid_comparator(cred->suid, f->op, f->uid); 482 break; 483 case AUDIT_FSUID: 484 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 485 break; 486 case AUDIT_GID: 487 result = audit_gid_comparator(cred->gid, f->op, f->gid); 488 if (f->op == Audit_equal) { 489 if (!result) 490 result = in_group_p(f->gid); 491 } else if (f->op == Audit_not_equal) { 492 if (result) 493 result = !in_group_p(f->gid); 494 } 495 break; 496 case AUDIT_EGID: 497 result = audit_gid_comparator(cred->egid, f->op, f->gid); 498 if (f->op == Audit_equal) { 499 if (!result) 500 result = in_egroup_p(f->gid); 501 } else if (f->op == Audit_not_equal) { 502 if (result) 503 result = !in_egroup_p(f->gid); 504 } 505 break; 506 case AUDIT_SGID: 507 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 508 break; 509 case AUDIT_FSGID: 510 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 511 break; 512 case AUDIT_SESSIONID: 513 sessionid = audit_get_sessionid(current); 514 result = audit_comparator(sessionid, f->op, f->val); 515 break; 516 case AUDIT_PERS: 517 result = audit_comparator(tsk->personality, f->op, f->val); 518 break; 519 case AUDIT_ARCH: 520 if (ctx) 521 result = audit_comparator(ctx->arch, f->op, f->val); 522 break; 523 524 case AUDIT_EXIT: 525 if (ctx && ctx->return_valid) 526 result = audit_comparator(ctx->return_code, f->op, f->val); 527 break; 528 case AUDIT_SUCCESS: 529 if (ctx && ctx->return_valid) { 530 if (f->val) 531 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 532 else 533 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 534 } 535 break; 536 case AUDIT_DEVMAJOR: 537 if (name) { 538 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 539 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 540 ++result; 541 } else if (ctx) { 542 list_for_each_entry(n, &ctx->names_list, list) { 543 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 544 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 545 ++result; 546 break; 547 } 548 } 549 } 550 break; 551 case AUDIT_DEVMINOR: 552 if (name) { 553 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 554 audit_comparator(MINOR(name->rdev), f->op, f->val)) 555 ++result; 556 } else if (ctx) { 557 list_for_each_entry(n, &ctx->names_list, list) { 558 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 559 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 560 ++result; 561 break; 562 } 563 } 564 } 565 break; 566 case AUDIT_INODE: 567 if (name) 568 result = audit_comparator(name->ino, f->op, f->val); 569 else if (ctx) { 570 list_for_each_entry(n, &ctx->names_list, list) { 571 if (audit_comparator(n->ino, f->op, f->val)) { 572 ++result; 573 break; 574 } 575 } 576 } 577 break; 578 case AUDIT_OBJ_UID: 579 if (name) { 580 result = audit_uid_comparator(name->uid, f->op, f->uid); 581 } else if (ctx) { 582 list_for_each_entry(n, &ctx->names_list, list) { 583 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 584 ++result; 585 break; 586 } 587 } 588 } 589 break; 590 case AUDIT_OBJ_GID: 591 if (name) { 592 result = audit_gid_comparator(name->gid, f->op, f->gid); 593 } else if (ctx) { 594 list_for_each_entry(n, &ctx->names_list, list) { 595 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 596 ++result; 597 break; 598 } 599 } 600 } 601 break; 602 case AUDIT_WATCH: 603 if (name) 604 result = audit_watch_compare(rule->watch, name->ino, name->dev); 605 break; 606 case AUDIT_DIR: 607 if (ctx) 608 result = match_tree_refs(ctx, rule->tree); 609 break; 610 case AUDIT_LOGINUID: 611 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 612 break; 613 case AUDIT_LOGINUID_SET: 614 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 615 break; 616 case AUDIT_SUBJ_USER: 617 case AUDIT_SUBJ_ROLE: 618 case AUDIT_SUBJ_TYPE: 619 case AUDIT_SUBJ_SEN: 620 case AUDIT_SUBJ_CLR: 621 /* NOTE: this may return negative values indicating 622 a temporary error. We simply treat this as a 623 match for now to avoid losing information that 624 may be wanted. An error message will also be 625 logged upon error */ 626 if (f->lsm_rule) { 627 if (need_sid) { 628 security_task_getsecid(tsk, &sid); 629 need_sid = 0; 630 } 631 result = security_audit_rule_match(sid, f->type, 632 f->op, 633 f->lsm_rule, 634 ctx); 635 } 636 break; 637 case AUDIT_OBJ_USER: 638 case AUDIT_OBJ_ROLE: 639 case AUDIT_OBJ_TYPE: 640 case AUDIT_OBJ_LEV_LOW: 641 case AUDIT_OBJ_LEV_HIGH: 642 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 643 also applies here */ 644 if (f->lsm_rule) { 645 /* Find files that match */ 646 if (name) { 647 result = security_audit_rule_match( 648 name->osid, f->type, f->op, 649 f->lsm_rule, ctx); 650 } else if (ctx) { 651 list_for_each_entry(n, &ctx->names_list, list) { 652 if (security_audit_rule_match(n->osid, f->type, 653 f->op, f->lsm_rule, 654 ctx)) { 655 ++result; 656 break; 657 } 658 } 659 } 660 /* Find ipc objects that match */ 661 if (!ctx || ctx->type != AUDIT_IPC) 662 break; 663 if (security_audit_rule_match(ctx->ipc.osid, 664 f->type, f->op, 665 f->lsm_rule, ctx)) 666 ++result; 667 } 668 break; 669 case AUDIT_ARG0: 670 case AUDIT_ARG1: 671 case AUDIT_ARG2: 672 case AUDIT_ARG3: 673 if (ctx) 674 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 675 break; 676 case AUDIT_FILTERKEY: 677 /* ignore this field for filtering */ 678 result = 1; 679 break; 680 case AUDIT_PERM: 681 result = audit_match_perm(ctx, f->val); 682 break; 683 case AUDIT_FILETYPE: 684 result = audit_match_filetype(ctx, f->val); 685 break; 686 case AUDIT_FIELD_COMPARE: 687 result = audit_field_compare(tsk, cred, f, ctx, name); 688 break; 689 } 690 if (!result) 691 return 0; 692 } 693 694 if (ctx) { 695 if (rule->prio <= ctx->prio) 696 return 0; 697 if (rule->filterkey) { 698 kfree(ctx->filterkey); 699 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 700 } 701 ctx->prio = rule->prio; 702 } 703 switch (rule->action) { 704 case AUDIT_NEVER: 705 *state = AUDIT_DISABLED; 706 break; 707 case AUDIT_ALWAYS: 708 *state = AUDIT_RECORD_CONTEXT; 709 break; 710 } 711 return 1; 712 } 713 714 /* At process creation time, we can determine if system-call auditing is 715 * completely disabled for this task. Since we only have the task 716 * structure at this point, we can only check uid and gid. 717 */ 718 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 719 { 720 struct audit_entry *e; 721 enum audit_state state; 722 723 rcu_read_lock(); 724 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 725 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 726 &state, true)) { 727 if (state == AUDIT_RECORD_CONTEXT) 728 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 729 rcu_read_unlock(); 730 return state; 731 } 732 } 733 rcu_read_unlock(); 734 return AUDIT_BUILD_CONTEXT; 735 } 736 737 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 738 { 739 int word, bit; 740 741 if (val > 0xffffffff) 742 return false; 743 744 word = AUDIT_WORD(val); 745 if (word >= AUDIT_BITMASK_SIZE) 746 return false; 747 748 bit = AUDIT_BIT(val); 749 750 return rule->mask[word] & bit; 751 } 752 753 /* At syscall entry and exit time, this filter is called if the 754 * audit_state is not low enough that auditing cannot take place, but is 755 * also not high enough that we already know we have to write an audit 756 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 757 */ 758 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 759 struct audit_context *ctx, 760 struct list_head *list) 761 { 762 struct audit_entry *e; 763 enum audit_state state; 764 765 if (audit_pid && tsk->tgid == audit_pid) 766 return AUDIT_DISABLED; 767 768 rcu_read_lock(); 769 if (!list_empty(list)) { 770 list_for_each_entry_rcu(e, list, list) { 771 if (audit_in_mask(&e->rule, ctx->major) && 772 audit_filter_rules(tsk, &e->rule, ctx, NULL, 773 &state, false)) { 774 rcu_read_unlock(); 775 ctx->current_state = state; 776 return state; 777 } 778 } 779 } 780 rcu_read_unlock(); 781 return AUDIT_BUILD_CONTEXT; 782 } 783 784 /* 785 * Given an audit_name check the inode hash table to see if they match. 786 * Called holding the rcu read lock to protect the use of audit_inode_hash 787 */ 788 static int audit_filter_inode_name(struct task_struct *tsk, 789 struct audit_names *n, 790 struct audit_context *ctx) { 791 int h = audit_hash_ino((u32)n->ino); 792 struct list_head *list = &audit_inode_hash[h]; 793 struct audit_entry *e; 794 enum audit_state state; 795 796 if (list_empty(list)) 797 return 0; 798 799 list_for_each_entry_rcu(e, list, list) { 800 if (audit_in_mask(&e->rule, ctx->major) && 801 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 802 ctx->current_state = state; 803 return 1; 804 } 805 } 806 807 return 0; 808 } 809 810 /* At syscall exit time, this filter is called if any audit_names have been 811 * collected during syscall processing. We only check rules in sublists at hash 812 * buckets applicable to the inode numbers in audit_names. 813 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 814 */ 815 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 816 { 817 struct audit_names *n; 818 819 if (audit_pid && tsk->tgid == audit_pid) 820 return; 821 822 rcu_read_lock(); 823 824 list_for_each_entry(n, &ctx->names_list, list) { 825 if (audit_filter_inode_name(tsk, n, ctx)) 826 break; 827 } 828 rcu_read_unlock(); 829 } 830 831 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 832 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 833 int return_valid, 834 long return_code) 835 { 836 struct audit_context *context = tsk->audit_context; 837 838 if (!context) 839 return NULL; 840 context->return_valid = return_valid; 841 842 /* 843 * we need to fix up the return code in the audit logs if the actual 844 * return codes are later going to be fixed up by the arch specific 845 * signal handlers 846 * 847 * This is actually a test for: 848 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 849 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 850 * 851 * but is faster than a bunch of || 852 */ 853 if (unlikely(return_code <= -ERESTARTSYS) && 854 (return_code >= -ERESTART_RESTARTBLOCK) && 855 (return_code != -ENOIOCTLCMD)) 856 context->return_code = -EINTR; 857 else 858 context->return_code = return_code; 859 860 if (context->in_syscall && !context->dummy) { 861 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 862 audit_filter_inodes(tsk, context); 863 } 864 865 tsk->audit_context = NULL; 866 return context; 867 } 868 869 static inline void audit_proctitle_free(struct audit_context *context) 870 { 871 kfree(context->proctitle.value); 872 context->proctitle.value = NULL; 873 context->proctitle.len = 0; 874 } 875 876 static inline void audit_free_names(struct audit_context *context) 877 { 878 struct audit_names *n, *next; 879 880 list_for_each_entry_safe(n, next, &context->names_list, list) { 881 list_del(&n->list); 882 if (n->name) 883 putname(n->name); 884 if (n->should_free) 885 kfree(n); 886 } 887 context->name_count = 0; 888 path_put(&context->pwd); 889 context->pwd.dentry = NULL; 890 context->pwd.mnt = NULL; 891 } 892 893 static inline void audit_free_aux(struct audit_context *context) 894 { 895 struct audit_aux_data *aux; 896 897 while ((aux = context->aux)) { 898 context->aux = aux->next; 899 kfree(aux); 900 } 901 while ((aux = context->aux_pids)) { 902 context->aux_pids = aux->next; 903 kfree(aux); 904 } 905 } 906 907 static inline struct audit_context *audit_alloc_context(enum audit_state state) 908 { 909 struct audit_context *context; 910 911 context = kzalloc(sizeof(*context), GFP_KERNEL); 912 if (!context) 913 return NULL; 914 context->state = state; 915 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 916 INIT_LIST_HEAD(&context->killed_trees); 917 INIT_LIST_HEAD(&context->names_list); 918 return context; 919 } 920 921 /** 922 * audit_alloc - allocate an audit context block for a task 923 * @tsk: task 924 * 925 * Filter on the task information and allocate a per-task audit context 926 * if necessary. Doing so turns on system call auditing for the 927 * specified task. This is called from copy_process, so no lock is 928 * needed. 929 */ 930 int audit_alloc(struct task_struct *tsk) 931 { 932 struct audit_context *context; 933 enum audit_state state; 934 char *key = NULL; 935 936 if (likely(!audit_ever_enabled)) 937 return 0; /* Return if not auditing. */ 938 939 state = audit_filter_task(tsk, &key); 940 if (state == AUDIT_DISABLED) { 941 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 942 return 0; 943 } 944 945 if (!(context = audit_alloc_context(state))) { 946 kfree(key); 947 audit_log_lost("out of memory in audit_alloc"); 948 return -ENOMEM; 949 } 950 context->filterkey = key; 951 952 tsk->audit_context = context; 953 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 954 return 0; 955 } 956 957 static inline void audit_free_context(struct audit_context *context) 958 { 959 audit_free_names(context); 960 unroll_tree_refs(context, NULL, 0); 961 free_tree_refs(context); 962 audit_free_aux(context); 963 kfree(context->filterkey); 964 kfree(context->sockaddr); 965 audit_proctitle_free(context); 966 kfree(context); 967 } 968 969 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 970 kuid_t auid, kuid_t uid, unsigned int sessionid, 971 u32 sid, char *comm) 972 { 973 struct audit_buffer *ab; 974 char *ctx = NULL; 975 u32 len; 976 int rc = 0; 977 978 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 979 if (!ab) 980 return rc; 981 982 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 983 from_kuid(&init_user_ns, auid), 984 from_kuid(&init_user_ns, uid), sessionid); 985 if (sid) { 986 if (security_secid_to_secctx(sid, &ctx, &len)) { 987 audit_log_format(ab, " obj=(none)"); 988 rc = 1; 989 } else { 990 audit_log_format(ab, " obj=%s", ctx); 991 security_release_secctx(ctx, len); 992 } 993 } 994 audit_log_format(ab, " ocomm="); 995 audit_log_untrustedstring(ab, comm); 996 audit_log_end(ab); 997 998 return rc; 999 } 1000 1001 static void audit_log_execve_info(struct audit_context *context, 1002 struct audit_buffer **ab) 1003 { 1004 long len_max; 1005 long len_rem; 1006 long len_full; 1007 long len_buf; 1008 long len_abuf = 0; 1009 long len_tmp; 1010 bool require_data; 1011 bool encode; 1012 unsigned int iter; 1013 unsigned int arg; 1014 char *buf_head; 1015 char *buf; 1016 const char __user *p = (const char __user *)current->mm->arg_start; 1017 1018 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1019 * data we put in the audit record for this argument (see the 1020 * code below) ... at this point in time 96 is plenty */ 1021 char abuf[96]; 1022 1023 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1024 * current value of 7500 is not as important as the fact that it 1025 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1026 * room if we go over a little bit in the logging below */ 1027 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1028 len_max = MAX_EXECVE_AUDIT_LEN; 1029 1030 /* scratch buffer to hold the userspace args */ 1031 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1032 if (!buf_head) { 1033 audit_panic("out of memory for argv string"); 1034 return; 1035 } 1036 buf = buf_head; 1037 1038 audit_log_format(*ab, "argc=%d", context->execve.argc); 1039 1040 len_rem = len_max; 1041 len_buf = 0; 1042 len_full = 0; 1043 require_data = true; 1044 encode = false; 1045 iter = 0; 1046 arg = 0; 1047 do { 1048 /* NOTE: we don't ever want to trust this value for anything 1049 * serious, but the audit record format insists we 1050 * provide an argument length for really long arguments, 1051 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1052 * to use strncpy_from_user() to obtain this value for 1053 * recording in the log, although we don't use it 1054 * anywhere here to avoid a double-fetch problem */ 1055 if (len_full == 0) 1056 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1057 1058 /* read more data from userspace */ 1059 if (require_data) { 1060 /* can we make more room in the buffer? */ 1061 if (buf != buf_head) { 1062 memmove(buf_head, buf, len_buf); 1063 buf = buf_head; 1064 } 1065 1066 /* fetch as much as we can of the argument */ 1067 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1068 len_max - len_buf); 1069 if (len_tmp == -EFAULT) { 1070 /* unable to copy from userspace */ 1071 send_sig(SIGKILL, current, 0); 1072 goto out; 1073 } else if (len_tmp == (len_max - len_buf)) { 1074 /* buffer is not large enough */ 1075 require_data = true; 1076 /* NOTE: if we are going to span multiple 1077 * buffers force the encoding so we stand 1078 * a chance at a sane len_full value and 1079 * consistent record encoding */ 1080 encode = true; 1081 len_full = len_full * 2; 1082 p += len_tmp; 1083 } else { 1084 require_data = false; 1085 if (!encode) 1086 encode = audit_string_contains_control( 1087 buf, len_tmp); 1088 /* try to use a trusted value for len_full */ 1089 if (len_full < len_max) 1090 len_full = (encode ? 1091 len_tmp * 2 : len_tmp); 1092 p += len_tmp + 1; 1093 } 1094 len_buf += len_tmp; 1095 buf_head[len_buf] = '\0'; 1096 1097 /* length of the buffer in the audit record? */ 1098 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1099 } 1100 1101 /* write as much as we can to the audit log */ 1102 if (len_buf > 0) { 1103 /* NOTE: some magic numbers here - basically if we 1104 * can't fit a reasonable amount of data into the 1105 * existing audit buffer, flush it and start with 1106 * a new buffer */ 1107 if ((sizeof(abuf) + 8) > len_rem) { 1108 len_rem = len_max; 1109 audit_log_end(*ab); 1110 *ab = audit_log_start(context, 1111 GFP_KERNEL, AUDIT_EXECVE); 1112 if (!*ab) 1113 goto out; 1114 } 1115 1116 /* create the non-arg portion of the arg record */ 1117 len_tmp = 0; 1118 if (require_data || (iter > 0) || 1119 ((len_abuf + sizeof(abuf)) > len_rem)) { 1120 if (iter == 0) { 1121 len_tmp += snprintf(&abuf[len_tmp], 1122 sizeof(abuf) - len_tmp, 1123 " a%d_len=%lu", 1124 arg, len_full); 1125 } 1126 len_tmp += snprintf(&abuf[len_tmp], 1127 sizeof(abuf) - len_tmp, 1128 " a%d[%d]=", arg, iter++); 1129 } else 1130 len_tmp += snprintf(&abuf[len_tmp], 1131 sizeof(abuf) - len_tmp, 1132 " a%d=", arg); 1133 WARN_ON(len_tmp >= sizeof(abuf)); 1134 abuf[sizeof(abuf) - 1] = '\0'; 1135 1136 /* log the arg in the audit record */ 1137 audit_log_format(*ab, "%s", abuf); 1138 len_rem -= len_tmp; 1139 len_tmp = len_buf; 1140 if (encode) { 1141 if (len_abuf > len_rem) 1142 len_tmp = len_rem / 2; /* encoding */ 1143 audit_log_n_hex(*ab, buf, len_tmp); 1144 len_rem -= len_tmp * 2; 1145 len_abuf -= len_tmp * 2; 1146 } else { 1147 if (len_abuf > len_rem) 1148 len_tmp = len_rem - 2; /* quotes */ 1149 audit_log_n_string(*ab, buf, len_tmp); 1150 len_rem -= len_tmp + 2; 1151 /* don't subtract the "2" because we still need 1152 * to add quotes to the remaining string */ 1153 len_abuf -= len_tmp; 1154 } 1155 len_buf -= len_tmp; 1156 buf += len_tmp; 1157 } 1158 1159 /* ready to move to the next argument? */ 1160 if ((len_buf == 0) && !require_data) { 1161 arg++; 1162 iter = 0; 1163 len_full = 0; 1164 require_data = true; 1165 encode = false; 1166 } 1167 } while (arg < context->execve.argc); 1168 1169 /* NOTE: the caller handles the final audit_log_end() call */ 1170 1171 out: 1172 kfree(buf_head); 1173 } 1174 1175 static void show_special(struct audit_context *context, int *call_panic) 1176 { 1177 struct audit_buffer *ab; 1178 int i; 1179 1180 ab = audit_log_start(context, GFP_KERNEL, context->type); 1181 if (!ab) 1182 return; 1183 1184 switch (context->type) { 1185 case AUDIT_SOCKETCALL: { 1186 int nargs = context->socketcall.nargs; 1187 audit_log_format(ab, "nargs=%d", nargs); 1188 for (i = 0; i < nargs; i++) 1189 audit_log_format(ab, " a%d=%lx", i, 1190 context->socketcall.args[i]); 1191 break; } 1192 case AUDIT_IPC: { 1193 u32 osid = context->ipc.osid; 1194 1195 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1196 from_kuid(&init_user_ns, context->ipc.uid), 1197 from_kgid(&init_user_ns, context->ipc.gid), 1198 context->ipc.mode); 1199 if (osid) { 1200 char *ctx = NULL; 1201 u32 len; 1202 if (security_secid_to_secctx(osid, &ctx, &len)) { 1203 audit_log_format(ab, " osid=%u", osid); 1204 *call_panic = 1; 1205 } else { 1206 audit_log_format(ab, " obj=%s", ctx); 1207 security_release_secctx(ctx, len); 1208 } 1209 } 1210 if (context->ipc.has_perm) { 1211 audit_log_end(ab); 1212 ab = audit_log_start(context, GFP_KERNEL, 1213 AUDIT_IPC_SET_PERM); 1214 if (unlikely(!ab)) 1215 return; 1216 audit_log_format(ab, 1217 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1218 context->ipc.qbytes, 1219 context->ipc.perm_uid, 1220 context->ipc.perm_gid, 1221 context->ipc.perm_mode); 1222 } 1223 break; } 1224 case AUDIT_MQ_OPEN: 1225 audit_log_format(ab, 1226 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1227 "mq_msgsize=%ld mq_curmsgs=%ld", 1228 context->mq_open.oflag, context->mq_open.mode, 1229 context->mq_open.attr.mq_flags, 1230 context->mq_open.attr.mq_maxmsg, 1231 context->mq_open.attr.mq_msgsize, 1232 context->mq_open.attr.mq_curmsgs); 1233 break; 1234 case AUDIT_MQ_SENDRECV: 1235 audit_log_format(ab, 1236 "mqdes=%d msg_len=%zd msg_prio=%u " 1237 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1238 context->mq_sendrecv.mqdes, 1239 context->mq_sendrecv.msg_len, 1240 context->mq_sendrecv.msg_prio, 1241 context->mq_sendrecv.abs_timeout.tv_sec, 1242 context->mq_sendrecv.abs_timeout.tv_nsec); 1243 break; 1244 case AUDIT_MQ_NOTIFY: 1245 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1246 context->mq_notify.mqdes, 1247 context->mq_notify.sigev_signo); 1248 break; 1249 case AUDIT_MQ_GETSETATTR: { 1250 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1251 audit_log_format(ab, 1252 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1253 "mq_curmsgs=%ld ", 1254 context->mq_getsetattr.mqdes, 1255 attr->mq_flags, attr->mq_maxmsg, 1256 attr->mq_msgsize, attr->mq_curmsgs); 1257 break; } 1258 case AUDIT_CAPSET: 1259 audit_log_format(ab, "pid=%d", context->capset.pid); 1260 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1261 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1262 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1263 break; 1264 case AUDIT_MMAP: 1265 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1266 context->mmap.flags); 1267 break; 1268 case AUDIT_EXECVE: 1269 audit_log_execve_info(context, &ab); 1270 break; 1271 case AUDIT_KERN_MODULE: 1272 audit_log_format(ab, "name="); 1273 audit_log_untrustedstring(ab, context->module.name); 1274 kfree(context->module.name); 1275 break; 1276 } 1277 audit_log_end(ab); 1278 } 1279 1280 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1281 { 1282 char *end = proctitle + len - 1; 1283 while (end > proctitle && !isprint(*end)) 1284 end--; 1285 1286 /* catch the case where proctitle is only 1 non-print character */ 1287 len = end - proctitle + 1; 1288 len -= isprint(proctitle[len-1]) == 0; 1289 return len; 1290 } 1291 1292 static void audit_log_proctitle(struct task_struct *tsk, 1293 struct audit_context *context) 1294 { 1295 int res; 1296 char *buf; 1297 char *msg = "(null)"; 1298 int len = strlen(msg); 1299 struct audit_buffer *ab; 1300 1301 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1302 if (!ab) 1303 return; /* audit_panic or being filtered */ 1304 1305 audit_log_format(ab, "proctitle="); 1306 1307 /* Not cached */ 1308 if (!context->proctitle.value) { 1309 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1310 if (!buf) 1311 goto out; 1312 /* Historically called this from procfs naming */ 1313 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1314 if (res == 0) { 1315 kfree(buf); 1316 goto out; 1317 } 1318 res = audit_proctitle_rtrim(buf, res); 1319 if (res == 0) { 1320 kfree(buf); 1321 goto out; 1322 } 1323 context->proctitle.value = buf; 1324 context->proctitle.len = res; 1325 } 1326 msg = context->proctitle.value; 1327 len = context->proctitle.len; 1328 out: 1329 audit_log_n_untrustedstring(ab, msg, len); 1330 audit_log_end(ab); 1331 } 1332 1333 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1334 { 1335 int i, call_panic = 0; 1336 struct audit_buffer *ab; 1337 struct audit_aux_data *aux; 1338 struct audit_names *n; 1339 1340 /* tsk == current */ 1341 context->personality = tsk->personality; 1342 1343 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1344 if (!ab) 1345 return; /* audit_panic has been called */ 1346 audit_log_format(ab, "arch=%x syscall=%d", 1347 context->arch, context->major); 1348 if (context->personality != PER_LINUX) 1349 audit_log_format(ab, " per=%lx", context->personality); 1350 if (context->return_valid) 1351 audit_log_format(ab, " success=%s exit=%ld", 1352 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1353 context->return_code); 1354 1355 audit_log_format(ab, 1356 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1357 context->argv[0], 1358 context->argv[1], 1359 context->argv[2], 1360 context->argv[3], 1361 context->name_count); 1362 1363 audit_log_task_info(ab, tsk); 1364 audit_log_key(ab, context->filterkey); 1365 audit_log_end(ab); 1366 1367 for (aux = context->aux; aux; aux = aux->next) { 1368 1369 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1370 if (!ab) 1371 continue; /* audit_panic has been called */ 1372 1373 switch (aux->type) { 1374 1375 case AUDIT_BPRM_FCAPS: { 1376 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1377 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1378 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1379 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1380 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1381 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1382 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1383 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1384 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1385 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1386 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1387 break; } 1388 1389 } 1390 audit_log_end(ab); 1391 } 1392 1393 if (context->type) 1394 show_special(context, &call_panic); 1395 1396 if (context->fds[0] >= 0) { 1397 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1398 if (ab) { 1399 audit_log_format(ab, "fd0=%d fd1=%d", 1400 context->fds[0], context->fds[1]); 1401 audit_log_end(ab); 1402 } 1403 } 1404 1405 if (context->sockaddr_len) { 1406 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1407 if (ab) { 1408 audit_log_format(ab, "saddr="); 1409 audit_log_n_hex(ab, (void *)context->sockaddr, 1410 context->sockaddr_len); 1411 audit_log_end(ab); 1412 } 1413 } 1414 1415 for (aux = context->aux_pids; aux; aux = aux->next) { 1416 struct audit_aux_data_pids *axs = (void *)aux; 1417 1418 for (i = 0; i < axs->pid_count; i++) 1419 if (audit_log_pid_context(context, axs->target_pid[i], 1420 axs->target_auid[i], 1421 axs->target_uid[i], 1422 axs->target_sessionid[i], 1423 axs->target_sid[i], 1424 axs->target_comm[i])) 1425 call_panic = 1; 1426 } 1427 1428 if (context->target_pid && 1429 audit_log_pid_context(context, context->target_pid, 1430 context->target_auid, context->target_uid, 1431 context->target_sessionid, 1432 context->target_sid, context->target_comm)) 1433 call_panic = 1; 1434 1435 if (context->pwd.dentry && context->pwd.mnt) { 1436 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1437 if (ab) { 1438 audit_log_d_path(ab, "cwd=", &context->pwd); 1439 audit_log_end(ab); 1440 } 1441 } 1442 1443 i = 0; 1444 list_for_each_entry(n, &context->names_list, list) { 1445 if (n->hidden) 1446 continue; 1447 audit_log_name(context, n, NULL, i++, &call_panic); 1448 } 1449 1450 audit_log_proctitle(tsk, context); 1451 1452 /* Send end of event record to help user space know we are finished */ 1453 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1454 if (ab) 1455 audit_log_end(ab); 1456 if (call_panic) 1457 audit_panic("error converting sid to string"); 1458 } 1459 1460 /** 1461 * audit_free - free a per-task audit context 1462 * @tsk: task whose audit context block to free 1463 * 1464 * Called from copy_process and do_exit 1465 */ 1466 void __audit_free(struct task_struct *tsk) 1467 { 1468 struct audit_context *context; 1469 1470 context = audit_take_context(tsk, 0, 0); 1471 if (!context) 1472 return; 1473 1474 /* Check for system calls that do not go through the exit 1475 * function (e.g., exit_group), then free context block. 1476 * We use GFP_ATOMIC here because we might be doing this 1477 * in the context of the idle thread */ 1478 /* that can happen only if we are called from do_exit() */ 1479 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1480 audit_log_exit(context, tsk); 1481 if (!list_empty(&context->killed_trees)) 1482 audit_kill_trees(&context->killed_trees); 1483 1484 audit_free_context(context); 1485 } 1486 1487 /** 1488 * audit_syscall_entry - fill in an audit record at syscall entry 1489 * @major: major syscall type (function) 1490 * @a1: additional syscall register 1 1491 * @a2: additional syscall register 2 1492 * @a3: additional syscall register 3 1493 * @a4: additional syscall register 4 1494 * 1495 * Fill in audit context at syscall entry. This only happens if the 1496 * audit context was created when the task was created and the state or 1497 * filters demand the audit context be built. If the state from the 1498 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1499 * then the record will be written at syscall exit time (otherwise, it 1500 * will only be written if another part of the kernel requests that it 1501 * be written). 1502 */ 1503 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1504 unsigned long a3, unsigned long a4) 1505 { 1506 struct task_struct *tsk = current; 1507 struct audit_context *context = tsk->audit_context; 1508 enum audit_state state; 1509 1510 if (!context) 1511 return; 1512 1513 BUG_ON(context->in_syscall || context->name_count); 1514 1515 if (!audit_enabled) 1516 return; 1517 1518 context->arch = syscall_get_arch(); 1519 context->major = major; 1520 context->argv[0] = a1; 1521 context->argv[1] = a2; 1522 context->argv[2] = a3; 1523 context->argv[3] = a4; 1524 1525 state = context->state; 1526 context->dummy = !audit_n_rules; 1527 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1528 context->prio = 0; 1529 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1530 } 1531 if (state == AUDIT_DISABLED) 1532 return; 1533 1534 context->serial = 0; 1535 context->ctime = CURRENT_TIME; 1536 context->in_syscall = 1; 1537 context->current_state = state; 1538 context->ppid = 0; 1539 } 1540 1541 /** 1542 * audit_syscall_exit - deallocate audit context after a system call 1543 * @success: success value of the syscall 1544 * @return_code: return value of the syscall 1545 * 1546 * Tear down after system call. If the audit context has been marked as 1547 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1548 * filtering, or because some other part of the kernel wrote an audit 1549 * message), then write out the syscall information. In call cases, 1550 * free the names stored from getname(). 1551 */ 1552 void __audit_syscall_exit(int success, long return_code) 1553 { 1554 struct task_struct *tsk = current; 1555 struct audit_context *context; 1556 1557 if (success) 1558 success = AUDITSC_SUCCESS; 1559 else 1560 success = AUDITSC_FAILURE; 1561 1562 context = audit_take_context(tsk, success, return_code); 1563 if (!context) 1564 return; 1565 1566 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1567 audit_log_exit(context, tsk); 1568 1569 context->in_syscall = 0; 1570 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1571 1572 if (!list_empty(&context->killed_trees)) 1573 audit_kill_trees(&context->killed_trees); 1574 1575 audit_free_names(context); 1576 unroll_tree_refs(context, NULL, 0); 1577 audit_free_aux(context); 1578 context->aux = NULL; 1579 context->aux_pids = NULL; 1580 context->target_pid = 0; 1581 context->target_sid = 0; 1582 context->sockaddr_len = 0; 1583 context->type = 0; 1584 context->fds[0] = -1; 1585 if (context->state != AUDIT_RECORD_CONTEXT) { 1586 kfree(context->filterkey); 1587 context->filterkey = NULL; 1588 } 1589 tsk->audit_context = context; 1590 } 1591 1592 static inline void handle_one(const struct inode *inode) 1593 { 1594 #ifdef CONFIG_AUDIT_TREE 1595 struct audit_context *context; 1596 struct audit_tree_refs *p; 1597 struct audit_chunk *chunk; 1598 int count; 1599 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1600 return; 1601 context = current->audit_context; 1602 p = context->trees; 1603 count = context->tree_count; 1604 rcu_read_lock(); 1605 chunk = audit_tree_lookup(inode); 1606 rcu_read_unlock(); 1607 if (!chunk) 1608 return; 1609 if (likely(put_tree_ref(context, chunk))) 1610 return; 1611 if (unlikely(!grow_tree_refs(context))) { 1612 pr_warn("out of memory, audit has lost a tree reference\n"); 1613 audit_set_auditable(context); 1614 audit_put_chunk(chunk); 1615 unroll_tree_refs(context, p, count); 1616 return; 1617 } 1618 put_tree_ref(context, chunk); 1619 #endif 1620 } 1621 1622 static void handle_path(const struct dentry *dentry) 1623 { 1624 #ifdef CONFIG_AUDIT_TREE 1625 struct audit_context *context; 1626 struct audit_tree_refs *p; 1627 const struct dentry *d, *parent; 1628 struct audit_chunk *drop; 1629 unsigned long seq; 1630 int count; 1631 1632 context = current->audit_context; 1633 p = context->trees; 1634 count = context->tree_count; 1635 retry: 1636 drop = NULL; 1637 d = dentry; 1638 rcu_read_lock(); 1639 seq = read_seqbegin(&rename_lock); 1640 for(;;) { 1641 struct inode *inode = d_backing_inode(d); 1642 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1643 struct audit_chunk *chunk; 1644 chunk = audit_tree_lookup(inode); 1645 if (chunk) { 1646 if (unlikely(!put_tree_ref(context, chunk))) { 1647 drop = chunk; 1648 break; 1649 } 1650 } 1651 } 1652 parent = d->d_parent; 1653 if (parent == d) 1654 break; 1655 d = parent; 1656 } 1657 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1658 rcu_read_unlock(); 1659 if (!drop) { 1660 /* just a race with rename */ 1661 unroll_tree_refs(context, p, count); 1662 goto retry; 1663 } 1664 audit_put_chunk(drop); 1665 if (grow_tree_refs(context)) { 1666 /* OK, got more space */ 1667 unroll_tree_refs(context, p, count); 1668 goto retry; 1669 } 1670 /* too bad */ 1671 pr_warn("out of memory, audit has lost a tree reference\n"); 1672 unroll_tree_refs(context, p, count); 1673 audit_set_auditable(context); 1674 return; 1675 } 1676 rcu_read_unlock(); 1677 #endif 1678 } 1679 1680 static struct audit_names *audit_alloc_name(struct audit_context *context, 1681 unsigned char type) 1682 { 1683 struct audit_names *aname; 1684 1685 if (context->name_count < AUDIT_NAMES) { 1686 aname = &context->preallocated_names[context->name_count]; 1687 memset(aname, 0, sizeof(*aname)); 1688 } else { 1689 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1690 if (!aname) 1691 return NULL; 1692 aname->should_free = true; 1693 } 1694 1695 aname->ino = AUDIT_INO_UNSET; 1696 aname->type = type; 1697 list_add_tail(&aname->list, &context->names_list); 1698 1699 context->name_count++; 1700 return aname; 1701 } 1702 1703 /** 1704 * audit_reusename - fill out filename with info from existing entry 1705 * @uptr: userland ptr to pathname 1706 * 1707 * Search the audit_names list for the current audit context. If there is an 1708 * existing entry with a matching "uptr" then return the filename 1709 * associated with that audit_name. If not, return NULL. 1710 */ 1711 struct filename * 1712 __audit_reusename(const __user char *uptr) 1713 { 1714 struct audit_context *context = current->audit_context; 1715 struct audit_names *n; 1716 1717 list_for_each_entry(n, &context->names_list, list) { 1718 if (!n->name) 1719 continue; 1720 if (n->name->uptr == uptr) { 1721 n->name->refcnt++; 1722 return n->name; 1723 } 1724 } 1725 return NULL; 1726 } 1727 1728 /** 1729 * audit_getname - add a name to the list 1730 * @name: name to add 1731 * 1732 * Add a name to the list of audit names for this context. 1733 * Called from fs/namei.c:getname(). 1734 */ 1735 void __audit_getname(struct filename *name) 1736 { 1737 struct audit_context *context = current->audit_context; 1738 struct audit_names *n; 1739 1740 if (!context->in_syscall) 1741 return; 1742 1743 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1744 if (!n) 1745 return; 1746 1747 n->name = name; 1748 n->name_len = AUDIT_NAME_FULL; 1749 name->aname = n; 1750 name->refcnt++; 1751 1752 if (!context->pwd.dentry) 1753 get_fs_pwd(current->fs, &context->pwd); 1754 } 1755 1756 /** 1757 * __audit_inode - store the inode and device from a lookup 1758 * @name: name being audited 1759 * @dentry: dentry being audited 1760 * @flags: attributes for this particular entry 1761 */ 1762 void __audit_inode(struct filename *name, const struct dentry *dentry, 1763 unsigned int flags) 1764 { 1765 struct audit_context *context = current->audit_context; 1766 struct inode *inode = d_backing_inode(dentry); 1767 struct audit_names *n; 1768 bool parent = flags & AUDIT_INODE_PARENT; 1769 1770 if (!context->in_syscall) 1771 return; 1772 1773 if (!name) 1774 goto out_alloc; 1775 1776 /* 1777 * If we have a pointer to an audit_names entry already, then we can 1778 * just use it directly if the type is correct. 1779 */ 1780 n = name->aname; 1781 if (n) { 1782 if (parent) { 1783 if (n->type == AUDIT_TYPE_PARENT || 1784 n->type == AUDIT_TYPE_UNKNOWN) 1785 goto out; 1786 } else { 1787 if (n->type != AUDIT_TYPE_PARENT) 1788 goto out; 1789 } 1790 } 1791 1792 list_for_each_entry_reverse(n, &context->names_list, list) { 1793 if (n->ino) { 1794 /* valid inode number, use that for the comparison */ 1795 if (n->ino != inode->i_ino || 1796 n->dev != inode->i_sb->s_dev) 1797 continue; 1798 } else if (n->name) { 1799 /* inode number has not been set, check the name */ 1800 if (strcmp(n->name->name, name->name)) 1801 continue; 1802 } else 1803 /* no inode and no name (?!) ... this is odd ... */ 1804 continue; 1805 1806 /* match the correct record type */ 1807 if (parent) { 1808 if (n->type == AUDIT_TYPE_PARENT || 1809 n->type == AUDIT_TYPE_UNKNOWN) 1810 goto out; 1811 } else { 1812 if (n->type != AUDIT_TYPE_PARENT) 1813 goto out; 1814 } 1815 } 1816 1817 out_alloc: 1818 /* unable to find an entry with both a matching name and type */ 1819 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1820 if (!n) 1821 return; 1822 if (name) { 1823 n->name = name; 1824 name->refcnt++; 1825 } 1826 1827 out: 1828 if (parent) { 1829 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1830 n->type = AUDIT_TYPE_PARENT; 1831 if (flags & AUDIT_INODE_HIDDEN) 1832 n->hidden = true; 1833 } else { 1834 n->name_len = AUDIT_NAME_FULL; 1835 n->type = AUDIT_TYPE_NORMAL; 1836 } 1837 handle_path(dentry); 1838 audit_copy_inode(n, dentry, inode); 1839 } 1840 1841 void __audit_file(const struct file *file) 1842 { 1843 __audit_inode(NULL, file->f_path.dentry, 0); 1844 } 1845 1846 /** 1847 * __audit_inode_child - collect inode info for created/removed objects 1848 * @parent: inode of dentry parent 1849 * @dentry: dentry being audited 1850 * @type: AUDIT_TYPE_* value that we're looking for 1851 * 1852 * For syscalls that create or remove filesystem objects, audit_inode 1853 * can only collect information for the filesystem object's parent. 1854 * This call updates the audit context with the child's information. 1855 * Syscalls that create a new filesystem object must be hooked after 1856 * the object is created. Syscalls that remove a filesystem object 1857 * must be hooked prior, in order to capture the target inode during 1858 * unsuccessful attempts. 1859 */ 1860 void __audit_inode_child(struct inode *parent, 1861 const struct dentry *dentry, 1862 const unsigned char type) 1863 { 1864 struct audit_context *context = current->audit_context; 1865 struct inode *inode = d_backing_inode(dentry); 1866 const char *dname = dentry->d_name.name; 1867 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1868 1869 if (!context->in_syscall) 1870 return; 1871 1872 if (inode) 1873 handle_one(inode); 1874 1875 /* look for a parent entry first */ 1876 list_for_each_entry(n, &context->names_list, list) { 1877 if (!n->name || 1878 (n->type != AUDIT_TYPE_PARENT && 1879 n->type != AUDIT_TYPE_UNKNOWN)) 1880 continue; 1881 1882 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 1883 !audit_compare_dname_path(dname, 1884 n->name->name, n->name_len)) { 1885 if (n->type == AUDIT_TYPE_UNKNOWN) 1886 n->type = AUDIT_TYPE_PARENT; 1887 found_parent = n; 1888 break; 1889 } 1890 } 1891 1892 /* is there a matching child entry? */ 1893 list_for_each_entry(n, &context->names_list, list) { 1894 /* can only match entries that have a name */ 1895 if (!n->name || 1896 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 1897 continue; 1898 1899 if (!strcmp(dname, n->name->name) || 1900 !audit_compare_dname_path(dname, n->name->name, 1901 found_parent ? 1902 found_parent->name_len : 1903 AUDIT_NAME_FULL)) { 1904 if (n->type == AUDIT_TYPE_UNKNOWN) 1905 n->type = type; 1906 found_child = n; 1907 break; 1908 } 1909 } 1910 1911 if (!found_parent) { 1912 /* create a new, "anonymous" parent record */ 1913 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1914 if (!n) 1915 return; 1916 audit_copy_inode(n, NULL, parent); 1917 } 1918 1919 if (!found_child) { 1920 found_child = audit_alloc_name(context, type); 1921 if (!found_child) 1922 return; 1923 1924 /* Re-use the name belonging to the slot for a matching parent 1925 * directory. All names for this context are relinquished in 1926 * audit_free_names() */ 1927 if (found_parent) { 1928 found_child->name = found_parent->name; 1929 found_child->name_len = AUDIT_NAME_FULL; 1930 found_child->name->refcnt++; 1931 } 1932 } 1933 1934 if (inode) 1935 audit_copy_inode(found_child, dentry, inode); 1936 else 1937 found_child->ino = AUDIT_INO_UNSET; 1938 } 1939 EXPORT_SYMBOL_GPL(__audit_inode_child); 1940 1941 /** 1942 * auditsc_get_stamp - get local copies of audit_context values 1943 * @ctx: audit_context for the task 1944 * @t: timespec to store time recorded in the audit_context 1945 * @serial: serial value that is recorded in the audit_context 1946 * 1947 * Also sets the context as auditable. 1948 */ 1949 int auditsc_get_stamp(struct audit_context *ctx, 1950 struct timespec *t, unsigned int *serial) 1951 { 1952 if (!ctx->in_syscall) 1953 return 0; 1954 if (!ctx->serial) 1955 ctx->serial = audit_serial(); 1956 t->tv_sec = ctx->ctime.tv_sec; 1957 t->tv_nsec = ctx->ctime.tv_nsec; 1958 *serial = ctx->serial; 1959 if (!ctx->prio) { 1960 ctx->prio = 1; 1961 ctx->current_state = AUDIT_RECORD_CONTEXT; 1962 } 1963 return 1; 1964 } 1965 1966 /* global counter which is incremented every time something logs in */ 1967 static atomic_t session_id = ATOMIC_INIT(0); 1968 1969 static int audit_set_loginuid_perm(kuid_t loginuid) 1970 { 1971 /* if we are unset, we don't need privs */ 1972 if (!audit_loginuid_set(current)) 1973 return 0; 1974 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 1975 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 1976 return -EPERM; 1977 /* it is set, you need permission */ 1978 if (!capable(CAP_AUDIT_CONTROL)) 1979 return -EPERM; 1980 /* reject if this is not an unset and we don't allow that */ 1981 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 1982 return -EPERM; 1983 return 0; 1984 } 1985 1986 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 1987 unsigned int oldsessionid, unsigned int sessionid, 1988 int rc) 1989 { 1990 struct audit_buffer *ab; 1991 uid_t uid, oldloginuid, loginuid; 1992 struct tty_struct *tty; 1993 1994 if (!audit_enabled) 1995 return; 1996 1997 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1998 if (!ab) 1999 return; 2000 2001 uid = from_kuid(&init_user_ns, task_uid(current)); 2002 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2003 loginuid = from_kuid(&init_user_ns, kloginuid), 2004 tty = audit_get_tty(current); 2005 2006 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2007 audit_log_task_context(ab); 2008 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2009 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2010 oldsessionid, sessionid, !rc); 2011 audit_put_tty(tty); 2012 audit_log_end(ab); 2013 } 2014 2015 /** 2016 * audit_set_loginuid - set current task's audit_context loginuid 2017 * @loginuid: loginuid value 2018 * 2019 * Returns 0. 2020 * 2021 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2022 */ 2023 int audit_set_loginuid(kuid_t loginuid) 2024 { 2025 struct task_struct *task = current; 2026 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2027 kuid_t oldloginuid; 2028 int rc; 2029 2030 oldloginuid = audit_get_loginuid(current); 2031 oldsessionid = audit_get_sessionid(current); 2032 2033 rc = audit_set_loginuid_perm(loginuid); 2034 if (rc) 2035 goto out; 2036 2037 /* are we setting or clearing? */ 2038 if (uid_valid(loginuid)) { 2039 sessionid = (unsigned int)atomic_inc_return(&session_id); 2040 if (unlikely(sessionid == (unsigned int)-1)) 2041 sessionid = (unsigned int)atomic_inc_return(&session_id); 2042 } 2043 2044 task->sessionid = sessionid; 2045 task->loginuid = loginuid; 2046 out: 2047 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2048 return rc; 2049 } 2050 2051 /** 2052 * __audit_mq_open - record audit data for a POSIX MQ open 2053 * @oflag: open flag 2054 * @mode: mode bits 2055 * @attr: queue attributes 2056 * 2057 */ 2058 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2059 { 2060 struct audit_context *context = current->audit_context; 2061 2062 if (attr) 2063 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2064 else 2065 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2066 2067 context->mq_open.oflag = oflag; 2068 context->mq_open.mode = mode; 2069 2070 context->type = AUDIT_MQ_OPEN; 2071 } 2072 2073 /** 2074 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2075 * @mqdes: MQ descriptor 2076 * @msg_len: Message length 2077 * @msg_prio: Message priority 2078 * @abs_timeout: Message timeout in absolute time 2079 * 2080 */ 2081 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2082 const struct timespec *abs_timeout) 2083 { 2084 struct audit_context *context = current->audit_context; 2085 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2086 2087 if (abs_timeout) 2088 memcpy(p, abs_timeout, sizeof(struct timespec)); 2089 else 2090 memset(p, 0, sizeof(struct timespec)); 2091 2092 context->mq_sendrecv.mqdes = mqdes; 2093 context->mq_sendrecv.msg_len = msg_len; 2094 context->mq_sendrecv.msg_prio = msg_prio; 2095 2096 context->type = AUDIT_MQ_SENDRECV; 2097 } 2098 2099 /** 2100 * __audit_mq_notify - record audit data for a POSIX MQ notify 2101 * @mqdes: MQ descriptor 2102 * @notification: Notification event 2103 * 2104 */ 2105 2106 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2107 { 2108 struct audit_context *context = current->audit_context; 2109 2110 if (notification) 2111 context->mq_notify.sigev_signo = notification->sigev_signo; 2112 else 2113 context->mq_notify.sigev_signo = 0; 2114 2115 context->mq_notify.mqdes = mqdes; 2116 context->type = AUDIT_MQ_NOTIFY; 2117 } 2118 2119 /** 2120 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2121 * @mqdes: MQ descriptor 2122 * @mqstat: MQ flags 2123 * 2124 */ 2125 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2126 { 2127 struct audit_context *context = current->audit_context; 2128 context->mq_getsetattr.mqdes = mqdes; 2129 context->mq_getsetattr.mqstat = *mqstat; 2130 context->type = AUDIT_MQ_GETSETATTR; 2131 } 2132 2133 /** 2134 * audit_ipc_obj - record audit data for ipc object 2135 * @ipcp: ipc permissions 2136 * 2137 */ 2138 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2139 { 2140 struct audit_context *context = current->audit_context; 2141 context->ipc.uid = ipcp->uid; 2142 context->ipc.gid = ipcp->gid; 2143 context->ipc.mode = ipcp->mode; 2144 context->ipc.has_perm = 0; 2145 security_ipc_getsecid(ipcp, &context->ipc.osid); 2146 context->type = AUDIT_IPC; 2147 } 2148 2149 /** 2150 * audit_ipc_set_perm - record audit data for new ipc permissions 2151 * @qbytes: msgq bytes 2152 * @uid: msgq user id 2153 * @gid: msgq group id 2154 * @mode: msgq mode (permissions) 2155 * 2156 * Called only after audit_ipc_obj(). 2157 */ 2158 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2159 { 2160 struct audit_context *context = current->audit_context; 2161 2162 context->ipc.qbytes = qbytes; 2163 context->ipc.perm_uid = uid; 2164 context->ipc.perm_gid = gid; 2165 context->ipc.perm_mode = mode; 2166 context->ipc.has_perm = 1; 2167 } 2168 2169 void __audit_bprm(struct linux_binprm *bprm) 2170 { 2171 struct audit_context *context = current->audit_context; 2172 2173 context->type = AUDIT_EXECVE; 2174 context->execve.argc = bprm->argc; 2175 } 2176 2177 2178 /** 2179 * audit_socketcall - record audit data for sys_socketcall 2180 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2181 * @args: args array 2182 * 2183 */ 2184 int __audit_socketcall(int nargs, unsigned long *args) 2185 { 2186 struct audit_context *context = current->audit_context; 2187 2188 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2189 return -EINVAL; 2190 context->type = AUDIT_SOCKETCALL; 2191 context->socketcall.nargs = nargs; 2192 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2193 return 0; 2194 } 2195 2196 /** 2197 * __audit_fd_pair - record audit data for pipe and socketpair 2198 * @fd1: the first file descriptor 2199 * @fd2: the second file descriptor 2200 * 2201 */ 2202 void __audit_fd_pair(int fd1, int fd2) 2203 { 2204 struct audit_context *context = current->audit_context; 2205 context->fds[0] = fd1; 2206 context->fds[1] = fd2; 2207 } 2208 2209 /** 2210 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2211 * @len: data length in user space 2212 * @a: data address in kernel space 2213 * 2214 * Returns 0 for success or NULL context or < 0 on error. 2215 */ 2216 int __audit_sockaddr(int len, void *a) 2217 { 2218 struct audit_context *context = current->audit_context; 2219 2220 if (!context->sockaddr) { 2221 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2222 if (!p) 2223 return -ENOMEM; 2224 context->sockaddr = p; 2225 } 2226 2227 context->sockaddr_len = len; 2228 memcpy(context->sockaddr, a, len); 2229 return 0; 2230 } 2231 2232 void __audit_ptrace(struct task_struct *t) 2233 { 2234 struct audit_context *context = current->audit_context; 2235 2236 context->target_pid = task_tgid_nr(t); 2237 context->target_auid = audit_get_loginuid(t); 2238 context->target_uid = task_uid(t); 2239 context->target_sessionid = audit_get_sessionid(t); 2240 security_task_getsecid(t, &context->target_sid); 2241 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2242 } 2243 2244 /** 2245 * audit_signal_info - record signal info for shutting down audit subsystem 2246 * @sig: signal value 2247 * @t: task being signaled 2248 * 2249 * If the audit subsystem is being terminated, record the task (pid) 2250 * and uid that is doing that. 2251 */ 2252 int __audit_signal_info(int sig, struct task_struct *t) 2253 { 2254 struct audit_aux_data_pids *axp; 2255 struct task_struct *tsk = current; 2256 struct audit_context *ctx = tsk->audit_context; 2257 kuid_t uid = current_uid(), t_uid = task_uid(t); 2258 2259 if (audit_pid && t->tgid == audit_pid) { 2260 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2261 audit_sig_pid = task_tgid_nr(tsk); 2262 if (uid_valid(tsk->loginuid)) 2263 audit_sig_uid = tsk->loginuid; 2264 else 2265 audit_sig_uid = uid; 2266 security_task_getsecid(tsk, &audit_sig_sid); 2267 } 2268 if (!audit_signals || audit_dummy_context()) 2269 return 0; 2270 } 2271 2272 /* optimize the common case by putting first signal recipient directly 2273 * in audit_context */ 2274 if (!ctx->target_pid) { 2275 ctx->target_pid = task_tgid_nr(t); 2276 ctx->target_auid = audit_get_loginuid(t); 2277 ctx->target_uid = t_uid; 2278 ctx->target_sessionid = audit_get_sessionid(t); 2279 security_task_getsecid(t, &ctx->target_sid); 2280 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2281 return 0; 2282 } 2283 2284 axp = (void *)ctx->aux_pids; 2285 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2286 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2287 if (!axp) 2288 return -ENOMEM; 2289 2290 axp->d.type = AUDIT_OBJ_PID; 2291 axp->d.next = ctx->aux_pids; 2292 ctx->aux_pids = (void *)axp; 2293 } 2294 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2295 2296 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2297 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2298 axp->target_uid[axp->pid_count] = t_uid; 2299 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2300 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2301 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2302 axp->pid_count++; 2303 2304 return 0; 2305 } 2306 2307 /** 2308 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2309 * @bprm: pointer to the bprm being processed 2310 * @new: the proposed new credentials 2311 * @old: the old credentials 2312 * 2313 * Simply check if the proc already has the caps given by the file and if not 2314 * store the priv escalation info for later auditing at the end of the syscall 2315 * 2316 * -Eric 2317 */ 2318 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2319 const struct cred *new, const struct cred *old) 2320 { 2321 struct audit_aux_data_bprm_fcaps *ax; 2322 struct audit_context *context = current->audit_context; 2323 struct cpu_vfs_cap_data vcaps; 2324 2325 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2326 if (!ax) 2327 return -ENOMEM; 2328 2329 ax->d.type = AUDIT_BPRM_FCAPS; 2330 ax->d.next = context->aux; 2331 context->aux = (void *)ax; 2332 2333 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2334 2335 ax->fcap.permitted = vcaps.permitted; 2336 ax->fcap.inheritable = vcaps.inheritable; 2337 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2338 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2339 2340 ax->old_pcap.permitted = old->cap_permitted; 2341 ax->old_pcap.inheritable = old->cap_inheritable; 2342 ax->old_pcap.effective = old->cap_effective; 2343 2344 ax->new_pcap.permitted = new->cap_permitted; 2345 ax->new_pcap.inheritable = new->cap_inheritable; 2346 ax->new_pcap.effective = new->cap_effective; 2347 return 0; 2348 } 2349 2350 /** 2351 * __audit_log_capset - store information about the arguments to the capset syscall 2352 * @new: the new credentials 2353 * @old: the old (current) credentials 2354 * 2355 * Record the arguments userspace sent to sys_capset for later printing by the 2356 * audit system if applicable 2357 */ 2358 void __audit_log_capset(const struct cred *new, const struct cred *old) 2359 { 2360 struct audit_context *context = current->audit_context; 2361 context->capset.pid = task_tgid_nr(current); 2362 context->capset.cap.effective = new->cap_effective; 2363 context->capset.cap.inheritable = new->cap_effective; 2364 context->capset.cap.permitted = new->cap_permitted; 2365 context->type = AUDIT_CAPSET; 2366 } 2367 2368 void __audit_mmap_fd(int fd, int flags) 2369 { 2370 struct audit_context *context = current->audit_context; 2371 context->mmap.fd = fd; 2372 context->mmap.flags = flags; 2373 context->type = AUDIT_MMAP; 2374 } 2375 2376 void __audit_log_kern_module(char *name) 2377 { 2378 struct audit_context *context = current->audit_context; 2379 2380 context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL); 2381 strcpy(context->module.name, name); 2382 context->type = AUDIT_KERN_MODULE; 2383 } 2384 2385 static void audit_log_task(struct audit_buffer *ab) 2386 { 2387 kuid_t auid, uid; 2388 kgid_t gid; 2389 unsigned int sessionid; 2390 char comm[sizeof(current->comm)]; 2391 2392 auid = audit_get_loginuid(current); 2393 sessionid = audit_get_sessionid(current); 2394 current_uid_gid(&uid, &gid); 2395 2396 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2397 from_kuid(&init_user_ns, auid), 2398 from_kuid(&init_user_ns, uid), 2399 from_kgid(&init_user_ns, gid), 2400 sessionid); 2401 audit_log_task_context(ab); 2402 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2403 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2404 audit_log_d_path_exe(ab, current->mm); 2405 } 2406 2407 /** 2408 * audit_core_dumps - record information about processes that end abnormally 2409 * @signr: signal value 2410 * 2411 * If a process ends with a core dump, something fishy is going on and we 2412 * should record the event for investigation. 2413 */ 2414 void audit_core_dumps(long signr) 2415 { 2416 struct audit_buffer *ab; 2417 2418 if (!audit_enabled) 2419 return; 2420 2421 if (signr == SIGQUIT) /* don't care for those */ 2422 return; 2423 2424 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2425 if (unlikely(!ab)) 2426 return; 2427 audit_log_task(ab); 2428 audit_log_format(ab, " sig=%ld res=1", signr); 2429 audit_log_end(ab); 2430 } 2431 2432 void __audit_seccomp(unsigned long syscall, long signr, int code) 2433 { 2434 struct audit_buffer *ab; 2435 2436 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2437 if (unlikely(!ab)) 2438 return; 2439 audit_log_task(ab); 2440 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2441 signr, syscall_get_arch(), syscall, 2442 in_compat_syscall(), KSTK_EIP(current), code); 2443 audit_log_end(ab); 2444 } 2445 2446 struct list_head *audit_killed_trees(void) 2447 { 2448 struct audit_context *ctx = current->audit_context; 2449 if (likely(!ctx || !ctx->in_syscall)) 2450 return NULL; 2451 return &ctx->killed_trees; 2452 } 2453