1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/tty.h> 67 #include <linux/binfmts.h> 68 #include <linux/highmem.h> 69 #include <linux/syscalls.h> 70 #include <asm/syscall.h> 71 #include <linux/capability.h> 72 #include <linux/fs_struct.h> 73 #include <linux/compat.h> 74 #include <linux/ctype.h> 75 #include <linux/string.h> 76 #include <uapi/linux/limits.h> 77 78 #include "audit.h" 79 80 /* flags stating the success for a syscall */ 81 #define AUDITSC_INVALID 0 82 #define AUDITSC_SUCCESS 1 83 #define AUDITSC_FAILURE 2 84 85 /* no execve audit message should be longer than this (userspace limits) */ 86 #define MAX_EXECVE_AUDIT_LEN 7500 87 88 /* max length to print of cmdline/proctitle value during audit */ 89 #define MAX_PROCTITLE_AUDIT_LEN 128 90 91 /* number of audit rules */ 92 int audit_n_rules; 93 94 /* determines whether we collect data for signals sent */ 95 int audit_signals; 96 97 struct audit_aux_data { 98 struct audit_aux_data *next; 99 int type; 100 }; 101 102 #define AUDIT_AUX_IPCPERM 0 103 104 /* Number of target pids per aux struct. */ 105 #define AUDIT_AUX_PIDS 16 106 107 struct audit_aux_data_pids { 108 struct audit_aux_data d; 109 pid_t target_pid[AUDIT_AUX_PIDS]; 110 kuid_t target_auid[AUDIT_AUX_PIDS]; 111 kuid_t target_uid[AUDIT_AUX_PIDS]; 112 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 113 u32 target_sid[AUDIT_AUX_PIDS]; 114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 115 int pid_count; 116 }; 117 118 struct audit_aux_data_bprm_fcaps { 119 struct audit_aux_data d; 120 struct audit_cap_data fcap; 121 unsigned int fcap_ver; 122 struct audit_cap_data old_pcap; 123 struct audit_cap_data new_pcap; 124 }; 125 126 struct audit_tree_refs { 127 struct audit_tree_refs *next; 128 struct audit_chunk *c[31]; 129 }; 130 131 static int audit_match_perm(struct audit_context *ctx, int mask) 132 { 133 unsigned n; 134 if (unlikely(!ctx)) 135 return 0; 136 n = ctx->major; 137 138 switch (audit_classify_syscall(ctx->arch, n)) { 139 case 0: /* native */ 140 if ((mask & AUDIT_PERM_WRITE) && 141 audit_match_class(AUDIT_CLASS_WRITE, n)) 142 return 1; 143 if ((mask & AUDIT_PERM_READ) && 144 audit_match_class(AUDIT_CLASS_READ, n)) 145 return 1; 146 if ((mask & AUDIT_PERM_ATTR) && 147 audit_match_class(AUDIT_CLASS_CHATTR, n)) 148 return 1; 149 return 0; 150 case 1: /* 32bit on biarch */ 151 if ((mask & AUDIT_PERM_WRITE) && 152 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 153 return 1; 154 if ((mask & AUDIT_PERM_READ) && 155 audit_match_class(AUDIT_CLASS_READ_32, n)) 156 return 1; 157 if ((mask & AUDIT_PERM_ATTR) && 158 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 159 return 1; 160 return 0; 161 case 2: /* open */ 162 return mask & ACC_MODE(ctx->argv[1]); 163 case 3: /* openat */ 164 return mask & ACC_MODE(ctx->argv[2]); 165 case 4: /* socketcall */ 166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 167 case 5: /* execve */ 168 return mask & AUDIT_PERM_EXEC; 169 default: 170 return 0; 171 } 172 } 173 174 static int audit_match_filetype(struct audit_context *ctx, int val) 175 { 176 struct audit_names *n; 177 umode_t mode = (umode_t)val; 178 179 if (unlikely(!ctx)) 180 return 0; 181 182 list_for_each_entry(n, &ctx->names_list, list) { 183 if ((n->ino != -1) && 184 ((n->mode & S_IFMT) == mode)) 185 return 1; 186 } 187 188 return 0; 189 } 190 191 /* 192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 193 * ->first_trees points to its beginning, ->trees - to the current end of data. 194 * ->tree_count is the number of free entries in array pointed to by ->trees. 195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 197 * it's going to remain 1-element for almost any setup) until we free context itself. 198 * References in it _are_ dropped - at the same time we free/drop aux stuff. 199 */ 200 201 #ifdef CONFIG_AUDIT_TREE 202 static void audit_set_auditable(struct audit_context *ctx) 203 { 204 if (!ctx->prio) { 205 ctx->prio = 1; 206 ctx->current_state = AUDIT_RECORD_CONTEXT; 207 } 208 } 209 210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 211 { 212 struct audit_tree_refs *p = ctx->trees; 213 int left = ctx->tree_count; 214 if (likely(left)) { 215 p->c[--left] = chunk; 216 ctx->tree_count = left; 217 return 1; 218 } 219 if (!p) 220 return 0; 221 p = p->next; 222 if (p) { 223 p->c[30] = chunk; 224 ctx->trees = p; 225 ctx->tree_count = 30; 226 return 1; 227 } 228 return 0; 229 } 230 231 static int grow_tree_refs(struct audit_context *ctx) 232 { 233 struct audit_tree_refs *p = ctx->trees; 234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 235 if (!ctx->trees) { 236 ctx->trees = p; 237 return 0; 238 } 239 if (p) 240 p->next = ctx->trees; 241 else 242 ctx->first_trees = ctx->trees; 243 ctx->tree_count = 31; 244 return 1; 245 } 246 #endif 247 248 static void unroll_tree_refs(struct audit_context *ctx, 249 struct audit_tree_refs *p, int count) 250 { 251 #ifdef CONFIG_AUDIT_TREE 252 struct audit_tree_refs *q; 253 int n; 254 if (!p) { 255 /* we started with empty chain */ 256 p = ctx->first_trees; 257 count = 31; 258 /* if the very first allocation has failed, nothing to do */ 259 if (!p) 260 return; 261 } 262 n = count; 263 for (q = p; q != ctx->trees; q = q->next, n = 31) { 264 while (n--) { 265 audit_put_chunk(q->c[n]); 266 q->c[n] = NULL; 267 } 268 } 269 while (n-- > ctx->tree_count) { 270 audit_put_chunk(q->c[n]); 271 q->c[n] = NULL; 272 } 273 ctx->trees = p; 274 ctx->tree_count = count; 275 #endif 276 } 277 278 static void free_tree_refs(struct audit_context *ctx) 279 { 280 struct audit_tree_refs *p, *q; 281 for (p = ctx->first_trees; p; p = q) { 282 q = p->next; 283 kfree(p); 284 } 285 } 286 287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 288 { 289 #ifdef CONFIG_AUDIT_TREE 290 struct audit_tree_refs *p; 291 int n; 292 if (!tree) 293 return 0; 294 /* full ones */ 295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 296 for (n = 0; n < 31; n++) 297 if (audit_tree_match(p->c[n], tree)) 298 return 1; 299 } 300 /* partial */ 301 if (p) { 302 for (n = ctx->tree_count; n < 31; n++) 303 if (audit_tree_match(p->c[n], tree)) 304 return 1; 305 } 306 #endif 307 return 0; 308 } 309 310 static int audit_compare_uid(kuid_t uid, 311 struct audit_names *name, 312 struct audit_field *f, 313 struct audit_context *ctx) 314 { 315 struct audit_names *n; 316 int rc; 317 318 if (name) { 319 rc = audit_uid_comparator(uid, f->op, name->uid); 320 if (rc) 321 return rc; 322 } 323 324 if (ctx) { 325 list_for_each_entry(n, &ctx->names_list, list) { 326 rc = audit_uid_comparator(uid, f->op, n->uid); 327 if (rc) 328 return rc; 329 } 330 } 331 return 0; 332 } 333 334 static int audit_compare_gid(kgid_t gid, 335 struct audit_names *name, 336 struct audit_field *f, 337 struct audit_context *ctx) 338 { 339 struct audit_names *n; 340 int rc; 341 342 if (name) { 343 rc = audit_gid_comparator(gid, f->op, name->gid); 344 if (rc) 345 return rc; 346 } 347 348 if (ctx) { 349 list_for_each_entry(n, &ctx->names_list, list) { 350 rc = audit_gid_comparator(gid, f->op, n->gid); 351 if (rc) 352 return rc; 353 } 354 } 355 return 0; 356 } 357 358 static int audit_field_compare(struct task_struct *tsk, 359 const struct cred *cred, 360 struct audit_field *f, 361 struct audit_context *ctx, 362 struct audit_names *name) 363 { 364 switch (f->val) { 365 /* process to file object comparisons */ 366 case AUDIT_COMPARE_UID_TO_OBJ_UID: 367 return audit_compare_uid(cred->uid, name, f, ctx); 368 case AUDIT_COMPARE_GID_TO_OBJ_GID: 369 return audit_compare_gid(cred->gid, name, f, ctx); 370 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 371 return audit_compare_uid(cred->euid, name, f, ctx); 372 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 373 return audit_compare_gid(cred->egid, name, f, ctx); 374 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 375 return audit_compare_uid(tsk->loginuid, name, f, ctx); 376 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 377 return audit_compare_uid(cred->suid, name, f, ctx); 378 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 379 return audit_compare_gid(cred->sgid, name, f, ctx); 380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 381 return audit_compare_uid(cred->fsuid, name, f, ctx); 382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 383 return audit_compare_gid(cred->fsgid, name, f, ctx); 384 /* uid comparisons */ 385 case AUDIT_COMPARE_UID_TO_AUID: 386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 387 case AUDIT_COMPARE_UID_TO_EUID: 388 return audit_uid_comparator(cred->uid, f->op, cred->euid); 389 case AUDIT_COMPARE_UID_TO_SUID: 390 return audit_uid_comparator(cred->uid, f->op, cred->suid); 391 case AUDIT_COMPARE_UID_TO_FSUID: 392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 393 /* auid comparisons */ 394 case AUDIT_COMPARE_AUID_TO_EUID: 395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 396 case AUDIT_COMPARE_AUID_TO_SUID: 397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 398 case AUDIT_COMPARE_AUID_TO_FSUID: 399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 400 /* euid comparisons */ 401 case AUDIT_COMPARE_EUID_TO_SUID: 402 return audit_uid_comparator(cred->euid, f->op, cred->suid); 403 case AUDIT_COMPARE_EUID_TO_FSUID: 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 405 /* suid comparisons */ 406 case AUDIT_COMPARE_SUID_TO_FSUID: 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 408 /* gid comparisons */ 409 case AUDIT_COMPARE_GID_TO_EGID: 410 return audit_gid_comparator(cred->gid, f->op, cred->egid); 411 case AUDIT_COMPARE_GID_TO_SGID: 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 413 case AUDIT_COMPARE_GID_TO_FSGID: 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 415 /* egid comparisons */ 416 case AUDIT_COMPARE_EGID_TO_SGID: 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 418 case AUDIT_COMPARE_EGID_TO_FSGID: 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 420 /* sgid comparison */ 421 case AUDIT_COMPARE_SGID_TO_FSGID: 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 423 default: 424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 425 return 0; 426 } 427 return 0; 428 } 429 430 /* Determine if any context name data matches a rule's watch data */ 431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 432 * otherwise. 433 * 434 * If task_creation is true, this is an explicit indication that we are 435 * filtering a task rule at task creation time. This and tsk == current are 436 * the only situations where tsk->cred may be accessed without an rcu read lock. 437 */ 438 static int audit_filter_rules(struct task_struct *tsk, 439 struct audit_krule *rule, 440 struct audit_context *ctx, 441 struct audit_names *name, 442 enum audit_state *state, 443 bool task_creation) 444 { 445 const struct cred *cred; 446 int i, need_sid = 1; 447 u32 sid; 448 449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 450 451 for (i = 0; i < rule->field_count; i++) { 452 struct audit_field *f = &rule->fields[i]; 453 struct audit_names *n; 454 int result = 0; 455 pid_t pid; 456 457 switch (f->type) { 458 case AUDIT_PID: 459 pid = task_pid_nr(tsk); 460 result = audit_comparator(pid, f->op, f->val); 461 break; 462 case AUDIT_PPID: 463 if (ctx) { 464 if (!ctx->ppid) 465 ctx->ppid = task_ppid_nr(tsk); 466 result = audit_comparator(ctx->ppid, f->op, f->val); 467 } 468 break; 469 case AUDIT_UID: 470 result = audit_uid_comparator(cred->uid, f->op, f->uid); 471 break; 472 case AUDIT_EUID: 473 result = audit_uid_comparator(cred->euid, f->op, f->uid); 474 break; 475 case AUDIT_SUID: 476 result = audit_uid_comparator(cred->suid, f->op, f->uid); 477 break; 478 case AUDIT_FSUID: 479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 480 break; 481 case AUDIT_GID: 482 result = audit_gid_comparator(cred->gid, f->op, f->gid); 483 if (f->op == Audit_equal) { 484 if (!result) 485 result = in_group_p(f->gid); 486 } else if (f->op == Audit_not_equal) { 487 if (result) 488 result = !in_group_p(f->gid); 489 } 490 break; 491 case AUDIT_EGID: 492 result = audit_gid_comparator(cred->egid, f->op, f->gid); 493 if (f->op == Audit_equal) { 494 if (!result) 495 result = in_egroup_p(f->gid); 496 } else if (f->op == Audit_not_equal) { 497 if (result) 498 result = !in_egroup_p(f->gid); 499 } 500 break; 501 case AUDIT_SGID: 502 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 503 break; 504 case AUDIT_FSGID: 505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 506 break; 507 case AUDIT_PERS: 508 result = audit_comparator(tsk->personality, f->op, f->val); 509 break; 510 case AUDIT_ARCH: 511 if (ctx) 512 result = audit_comparator(ctx->arch, f->op, f->val); 513 break; 514 515 case AUDIT_EXIT: 516 if (ctx && ctx->return_valid) 517 result = audit_comparator(ctx->return_code, f->op, f->val); 518 break; 519 case AUDIT_SUCCESS: 520 if (ctx && ctx->return_valid) { 521 if (f->val) 522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 523 else 524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 525 } 526 break; 527 case AUDIT_DEVMAJOR: 528 if (name) { 529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 530 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 531 ++result; 532 } else if (ctx) { 533 list_for_each_entry(n, &ctx->names_list, list) { 534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 536 ++result; 537 break; 538 } 539 } 540 } 541 break; 542 case AUDIT_DEVMINOR: 543 if (name) { 544 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 545 audit_comparator(MINOR(name->rdev), f->op, f->val)) 546 ++result; 547 } else if (ctx) { 548 list_for_each_entry(n, &ctx->names_list, list) { 549 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 550 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 551 ++result; 552 break; 553 } 554 } 555 } 556 break; 557 case AUDIT_INODE: 558 if (name) 559 result = audit_comparator(name->ino, f->op, f->val); 560 else if (ctx) { 561 list_for_each_entry(n, &ctx->names_list, list) { 562 if (audit_comparator(n->ino, f->op, f->val)) { 563 ++result; 564 break; 565 } 566 } 567 } 568 break; 569 case AUDIT_OBJ_UID: 570 if (name) { 571 result = audit_uid_comparator(name->uid, f->op, f->uid); 572 } else if (ctx) { 573 list_for_each_entry(n, &ctx->names_list, list) { 574 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 575 ++result; 576 break; 577 } 578 } 579 } 580 break; 581 case AUDIT_OBJ_GID: 582 if (name) { 583 result = audit_gid_comparator(name->gid, f->op, f->gid); 584 } else if (ctx) { 585 list_for_each_entry(n, &ctx->names_list, list) { 586 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 587 ++result; 588 break; 589 } 590 } 591 } 592 break; 593 case AUDIT_WATCH: 594 if (name) 595 result = audit_watch_compare(rule->watch, name->ino, name->dev); 596 break; 597 case AUDIT_DIR: 598 if (ctx) 599 result = match_tree_refs(ctx, rule->tree); 600 break; 601 case AUDIT_LOGINUID: 602 result = 0; 603 if (ctx) 604 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 605 break; 606 case AUDIT_LOGINUID_SET: 607 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 608 break; 609 case AUDIT_SUBJ_USER: 610 case AUDIT_SUBJ_ROLE: 611 case AUDIT_SUBJ_TYPE: 612 case AUDIT_SUBJ_SEN: 613 case AUDIT_SUBJ_CLR: 614 /* NOTE: this may return negative values indicating 615 a temporary error. We simply treat this as a 616 match for now to avoid losing information that 617 may be wanted. An error message will also be 618 logged upon error */ 619 if (f->lsm_rule) { 620 if (need_sid) { 621 security_task_getsecid(tsk, &sid); 622 need_sid = 0; 623 } 624 result = security_audit_rule_match(sid, f->type, 625 f->op, 626 f->lsm_rule, 627 ctx); 628 } 629 break; 630 case AUDIT_OBJ_USER: 631 case AUDIT_OBJ_ROLE: 632 case AUDIT_OBJ_TYPE: 633 case AUDIT_OBJ_LEV_LOW: 634 case AUDIT_OBJ_LEV_HIGH: 635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 636 also applies here */ 637 if (f->lsm_rule) { 638 /* Find files that match */ 639 if (name) { 640 result = security_audit_rule_match( 641 name->osid, f->type, f->op, 642 f->lsm_rule, ctx); 643 } else if (ctx) { 644 list_for_each_entry(n, &ctx->names_list, list) { 645 if (security_audit_rule_match(n->osid, f->type, 646 f->op, f->lsm_rule, 647 ctx)) { 648 ++result; 649 break; 650 } 651 } 652 } 653 /* Find ipc objects that match */ 654 if (!ctx || ctx->type != AUDIT_IPC) 655 break; 656 if (security_audit_rule_match(ctx->ipc.osid, 657 f->type, f->op, 658 f->lsm_rule, ctx)) 659 ++result; 660 } 661 break; 662 case AUDIT_ARG0: 663 case AUDIT_ARG1: 664 case AUDIT_ARG2: 665 case AUDIT_ARG3: 666 if (ctx) 667 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 668 break; 669 case AUDIT_FILTERKEY: 670 /* ignore this field for filtering */ 671 result = 1; 672 break; 673 case AUDIT_PERM: 674 result = audit_match_perm(ctx, f->val); 675 break; 676 case AUDIT_FILETYPE: 677 result = audit_match_filetype(ctx, f->val); 678 break; 679 case AUDIT_FIELD_COMPARE: 680 result = audit_field_compare(tsk, cred, f, ctx, name); 681 break; 682 } 683 if (!result) 684 return 0; 685 } 686 687 if (ctx) { 688 if (rule->prio <= ctx->prio) 689 return 0; 690 if (rule->filterkey) { 691 kfree(ctx->filterkey); 692 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 693 } 694 ctx->prio = rule->prio; 695 } 696 switch (rule->action) { 697 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 698 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 699 } 700 return 1; 701 } 702 703 /* At process creation time, we can determine if system-call auditing is 704 * completely disabled for this task. Since we only have the task 705 * structure at this point, we can only check uid and gid. 706 */ 707 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 708 { 709 struct audit_entry *e; 710 enum audit_state state; 711 712 rcu_read_lock(); 713 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 714 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 715 &state, true)) { 716 if (state == AUDIT_RECORD_CONTEXT) 717 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 718 rcu_read_unlock(); 719 return state; 720 } 721 } 722 rcu_read_unlock(); 723 return AUDIT_BUILD_CONTEXT; 724 } 725 726 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 727 { 728 int word, bit; 729 730 if (val > 0xffffffff) 731 return false; 732 733 word = AUDIT_WORD(val); 734 if (word >= AUDIT_BITMASK_SIZE) 735 return false; 736 737 bit = AUDIT_BIT(val); 738 739 return rule->mask[word] & bit; 740 } 741 742 /* At syscall entry and exit time, this filter is called if the 743 * audit_state is not low enough that auditing cannot take place, but is 744 * also not high enough that we already know we have to write an audit 745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 746 */ 747 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 748 struct audit_context *ctx, 749 struct list_head *list) 750 { 751 struct audit_entry *e; 752 enum audit_state state; 753 754 if (audit_pid && tsk->tgid == audit_pid) 755 return AUDIT_DISABLED; 756 757 rcu_read_lock(); 758 if (!list_empty(list)) { 759 list_for_each_entry_rcu(e, list, list) { 760 if (audit_in_mask(&e->rule, ctx->major) && 761 audit_filter_rules(tsk, &e->rule, ctx, NULL, 762 &state, false)) { 763 rcu_read_unlock(); 764 ctx->current_state = state; 765 return state; 766 } 767 } 768 } 769 rcu_read_unlock(); 770 return AUDIT_BUILD_CONTEXT; 771 } 772 773 /* 774 * Given an audit_name check the inode hash table to see if they match. 775 * Called holding the rcu read lock to protect the use of audit_inode_hash 776 */ 777 static int audit_filter_inode_name(struct task_struct *tsk, 778 struct audit_names *n, 779 struct audit_context *ctx) { 780 int h = audit_hash_ino((u32)n->ino); 781 struct list_head *list = &audit_inode_hash[h]; 782 struct audit_entry *e; 783 enum audit_state state; 784 785 if (list_empty(list)) 786 return 0; 787 788 list_for_each_entry_rcu(e, list, list) { 789 if (audit_in_mask(&e->rule, ctx->major) && 790 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 791 ctx->current_state = state; 792 return 1; 793 } 794 } 795 796 return 0; 797 } 798 799 /* At syscall exit time, this filter is called if any audit_names have been 800 * collected during syscall processing. We only check rules in sublists at hash 801 * buckets applicable to the inode numbers in audit_names. 802 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 803 */ 804 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 805 { 806 struct audit_names *n; 807 808 if (audit_pid && tsk->tgid == audit_pid) 809 return; 810 811 rcu_read_lock(); 812 813 list_for_each_entry(n, &ctx->names_list, list) { 814 if (audit_filter_inode_name(tsk, n, ctx)) 815 break; 816 } 817 rcu_read_unlock(); 818 } 819 820 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 821 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 822 int return_valid, 823 long return_code) 824 { 825 struct audit_context *context = tsk->audit_context; 826 827 if (!context) 828 return NULL; 829 context->return_valid = return_valid; 830 831 /* 832 * we need to fix up the return code in the audit logs if the actual 833 * return codes are later going to be fixed up by the arch specific 834 * signal handlers 835 * 836 * This is actually a test for: 837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 839 * 840 * but is faster than a bunch of || 841 */ 842 if (unlikely(return_code <= -ERESTARTSYS) && 843 (return_code >= -ERESTART_RESTARTBLOCK) && 844 (return_code != -ENOIOCTLCMD)) 845 context->return_code = -EINTR; 846 else 847 context->return_code = return_code; 848 849 if (context->in_syscall && !context->dummy) { 850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 851 audit_filter_inodes(tsk, context); 852 } 853 854 tsk->audit_context = NULL; 855 return context; 856 } 857 858 static inline void audit_proctitle_free(struct audit_context *context) 859 { 860 kfree(context->proctitle.value); 861 context->proctitle.value = NULL; 862 context->proctitle.len = 0; 863 } 864 865 static inline void audit_free_names(struct audit_context *context) 866 { 867 struct audit_names *n, *next; 868 869 #if AUDIT_DEBUG == 2 870 if (context->put_count + context->ino_count != context->name_count) { 871 int i = 0; 872 873 pr_err("%s:%d(:%d): major=%d in_syscall=%d" 874 " name_count=%d put_count=%d ino_count=%d" 875 " [NOT freeing]\n", __FILE__, __LINE__, 876 context->serial, context->major, context->in_syscall, 877 context->name_count, context->put_count, 878 context->ino_count); 879 list_for_each_entry(n, &context->names_list, list) { 880 pr_err("names[%d] = %p = %s\n", i++, n->name, 881 n->name->name ?: "(null)"); 882 } 883 dump_stack(); 884 return; 885 } 886 #endif 887 #if AUDIT_DEBUG 888 context->put_count = 0; 889 context->ino_count = 0; 890 #endif 891 892 list_for_each_entry_safe(n, next, &context->names_list, list) { 893 list_del(&n->list); 894 if (n->name && n->name_put) 895 final_putname(n->name); 896 if (n->should_free) 897 kfree(n); 898 } 899 context->name_count = 0; 900 path_put(&context->pwd); 901 context->pwd.dentry = NULL; 902 context->pwd.mnt = NULL; 903 } 904 905 static inline void audit_free_aux(struct audit_context *context) 906 { 907 struct audit_aux_data *aux; 908 909 while ((aux = context->aux)) { 910 context->aux = aux->next; 911 kfree(aux); 912 } 913 while ((aux = context->aux_pids)) { 914 context->aux_pids = aux->next; 915 kfree(aux); 916 } 917 } 918 919 static inline struct audit_context *audit_alloc_context(enum audit_state state) 920 { 921 struct audit_context *context; 922 923 context = kzalloc(sizeof(*context), GFP_KERNEL); 924 if (!context) 925 return NULL; 926 context->state = state; 927 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 928 INIT_LIST_HEAD(&context->killed_trees); 929 INIT_LIST_HEAD(&context->names_list); 930 return context; 931 } 932 933 /** 934 * audit_alloc - allocate an audit context block for a task 935 * @tsk: task 936 * 937 * Filter on the task information and allocate a per-task audit context 938 * if necessary. Doing so turns on system call auditing for the 939 * specified task. This is called from copy_process, so no lock is 940 * needed. 941 */ 942 int audit_alloc(struct task_struct *tsk) 943 { 944 struct audit_context *context; 945 enum audit_state state; 946 char *key = NULL; 947 948 if (likely(!audit_ever_enabled)) 949 return 0; /* Return if not auditing. */ 950 951 state = audit_filter_task(tsk, &key); 952 if (state == AUDIT_DISABLED) { 953 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 954 return 0; 955 } 956 957 if (!(context = audit_alloc_context(state))) { 958 kfree(key); 959 audit_log_lost("out of memory in audit_alloc"); 960 return -ENOMEM; 961 } 962 context->filterkey = key; 963 964 tsk->audit_context = context; 965 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 966 return 0; 967 } 968 969 static inline void audit_free_context(struct audit_context *context) 970 { 971 audit_free_names(context); 972 unroll_tree_refs(context, NULL, 0); 973 free_tree_refs(context); 974 audit_free_aux(context); 975 kfree(context->filterkey); 976 kfree(context->sockaddr); 977 audit_proctitle_free(context); 978 kfree(context); 979 } 980 981 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 982 kuid_t auid, kuid_t uid, unsigned int sessionid, 983 u32 sid, char *comm) 984 { 985 struct audit_buffer *ab; 986 char *ctx = NULL; 987 u32 len; 988 int rc = 0; 989 990 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 991 if (!ab) 992 return rc; 993 994 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 995 from_kuid(&init_user_ns, auid), 996 from_kuid(&init_user_ns, uid), sessionid); 997 if (sid) { 998 if (security_secid_to_secctx(sid, &ctx, &len)) { 999 audit_log_format(ab, " obj=(none)"); 1000 rc = 1; 1001 } else { 1002 audit_log_format(ab, " obj=%s", ctx); 1003 security_release_secctx(ctx, len); 1004 } 1005 } 1006 audit_log_format(ab, " ocomm="); 1007 audit_log_untrustedstring(ab, comm); 1008 audit_log_end(ab); 1009 1010 return rc; 1011 } 1012 1013 /* 1014 * to_send and len_sent accounting are very loose estimates. We aren't 1015 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1016 * within about 500 bytes (next page boundary) 1017 * 1018 * why snprintf? an int is up to 12 digits long. if we just assumed when 1019 * logging that a[%d]= was going to be 16 characters long we would be wasting 1020 * space in every audit message. In one 7500 byte message we can log up to 1021 * about 1000 min size arguments. That comes down to about 50% waste of space 1022 * if we didn't do the snprintf to find out how long arg_num_len was. 1023 */ 1024 static int audit_log_single_execve_arg(struct audit_context *context, 1025 struct audit_buffer **ab, 1026 int arg_num, 1027 size_t *len_sent, 1028 const char __user *p, 1029 char *buf) 1030 { 1031 char arg_num_len_buf[12]; 1032 const char __user *tmp_p = p; 1033 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1034 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1035 size_t len, len_left, to_send; 1036 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1037 unsigned int i, has_cntl = 0, too_long = 0; 1038 int ret; 1039 1040 /* strnlen_user includes the null we don't want to send */ 1041 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1042 1043 /* 1044 * We just created this mm, if we can't find the strings 1045 * we just copied into it something is _very_ wrong. Similar 1046 * for strings that are too long, we should not have created 1047 * any. 1048 */ 1049 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1050 WARN_ON(1); 1051 send_sig(SIGKILL, current, 0); 1052 return -1; 1053 } 1054 1055 /* walk the whole argument looking for non-ascii chars */ 1056 do { 1057 if (len_left > MAX_EXECVE_AUDIT_LEN) 1058 to_send = MAX_EXECVE_AUDIT_LEN; 1059 else 1060 to_send = len_left; 1061 ret = copy_from_user(buf, tmp_p, to_send); 1062 /* 1063 * There is no reason for this copy to be short. We just 1064 * copied them here, and the mm hasn't been exposed to user- 1065 * space yet. 1066 */ 1067 if (ret) { 1068 WARN_ON(1); 1069 send_sig(SIGKILL, current, 0); 1070 return -1; 1071 } 1072 buf[to_send] = '\0'; 1073 has_cntl = audit_string_contains_control(buf, to_send); 1074 if (has_cntl) { 1075 /* 1076 * hex messages get logged as 2 bytes, so we can only 1077 * send half as much in each message 1078 */ 1079 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1080 break; 1081 } 1082 len_left -= to_send; 1083 tmp_p += to_send; 1084 } while (len_left > 0); 1085 1086 len_left = len; 1087 1088 if (len > max_execve_audit_len) 1089 too_long = 1; 1090 1091 /* rewalk the argument actually logging the message */ 1092 for (i = 0; len_left > 0; i++) { 1093 int room_left; 1094 1095 if (len_left > max_execve_audit_len) 1096 to_send = max_execve_audit_len; 1097 else 1098 to_send = len_left; 1099 1100 /* do we have space left to send this argument in this ab? */ 1101 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1102 if (has_cntl) 1103 room_left -= (to_send * 2); 1104 else 1105 room_left -= to_send; 1106 if (room_left < 0) { 1107 *len_sent = 0; 1108 audit_log_end(*ab); 1109 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1110 if (!*ab) 1111 return 0; 1112 } 1113 1114 /* 1115 * first record needs to say how long the original string was 1116 * so we can be sure nothing was lost. 1117 */ 1118 if ((i == 0) && (too_long)) 1119 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1120 has_cntl ? 2*len : len); 1121 1122 /* 1123 * normally arguments are small enough to fit and we already 1124 * filled buf above when we checked for control characters 1125 * so don't bother with another copy_from_user 1126 */ 1127 if (len >= max_execve_audit_len) 1128 ret = copy_from_user(buf, p, to_send); 1129 else 1130 ret = 0; 1131 if (ret) { 1132 WARN_ON(1); 1133 send_sig(SIGKILL, current, 0); 1134 return -1; 1135 } 1136 buf[to_send] = '\0'; 1137 1138 /* actually log it */ 1139 audit_log_format(*ab, " a%d", arg_num); 1140 if (too_long) 1141 audit_log_format(*ab, "[%d]", i); 1142 audit_log_format(*ab, "="); 1143 if (has_cntl) 1144 audit_log_n_hex(*ab, buf, to_send); 1145 else 1146 audit_log_string(*ab, buf); 1147 1148 p += to_send; 1149 len_left -= to_send; 1150 *len_sent += arg_num_len; 1151 if (has_cntl) 1152 *len_sent += to_send * 2; 1153 else 1154 *len_sent += to_send; 1155 } 1156 /* include the null we didn't log */ 1157 return len + 1; 1158 } 1159 1160 static void audit_log_execve_info(struct audit_context *context, 1161 struct audit_buffer **ab) 1162 { 1163 int i, len; 1164 size_t len_sent = 0; 1165 const char __user *p; 1166 char *buf; 1167 1168 p = (const char __user *)current->mm->arg_start; 1169 1170 audit_log_format(*ab, "argc=%d", context->execve.argc); 1171 1172 /* 1173 * we need some kernel buffer to hold the userspace args. Just 1174 * allocate one big one rather than allocating one of the right size 1175 * for every single argument inside audit_log_single_execve_arg() 1176 * should be <8k allocation so should be pretty safe. 1177 */ 1178 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1179 if (!buf) { 1180 audit_panic("out of memory for argv string"); 1181 return; 1182 } 1183 1184 for (i = 0; i < context->execve.argc; i++) { 1185 len = audit_log_single_execve_arg(context, ab, i, 1186 &len_sent, p, buf); 1187 if (len <= 0) 1188 break; 1189 p += len; 1190 } 1191 kfree(buf); 1192 } 1193 1194 static void show_special(struct audit_context *context, int *call_panic) 1195 { 1196 struct audit_buffer *ab; 1197 int i; 1198 1199 ab = audit_log_start(context, GFP_KERNEL, context->type); 1200 if (!ab) 1201 return; 1202 1203 switch (context->type) { 1204 case AUDIT_SOCKETCALL: { 1205 int nargs = context->socketcall.nargs; 1206 audit_log_format(ab, "nargs=%d", nargs); 1207 for (i = 0; i < nargs; i++) 1208 audit_log_format(ab, " a%d=%lx", i, 1209 context->socketcall.args[i]); 1210 break; } 1211 case AUDIT_IPC: { 1212 u32 osid = context->ipc.osid; 1213 1214 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1215 from_kuid(&init_user_ns, context->ipc.uid), 1216 from_kgid(&init_user_ns, context->ipc.gid), 1217 context->ipc.mode); 1218 if (osid) { 1219 char *ctx = NULL; 1220 u32 len; 1221 if (security_secid_to_secctx(osid, &ctx, &len)) { 1222 audit_log_format(ab, " osid=%u", osid); 1223 *call_panic = 1; 1224 } else { 1225 audit_log_format(ab, " obj=%s", ctx); 1226 security_release_secctx(ctx, len); 1227 } 1228 } 1229 if (context->ipc.has_perm) { 1230 audit_log_end(ab); 1231 ab = audit_log_start(context, GFP_KERNEL, 1232 AUDIT_IPC_SET_PERM); 1233 if (unlikely(!ab)) 1234 return; 1235 audit_log_format(ab, 1236 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1237 context->ipc.qbytes, 1238 context->ipc.perm_uid, 1239 context->ipc.perm_gid, 1240 context->ipc.perm_mode); 1241 } 1242 break; } 1243 case AUDIT_MQ_OPEN: { 1244 audit_log_format(ab, 1245 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1246 "mq_msgsize=%ld mq_curmsgs=%ld", 1247 context->mq_open.oflag, context->mq_open.mode, 1248 context->mq_open.attr.mq_flags, 1249 context->mq_open.attr.mq_maxmsg, 1250 context->mq_open.attr.mq_msgsize, 1251 context->mq_open.attr.mq_curmsgs); 1252 break; } 1253 case AUDIT_MQ_SENDRECV: { 1254 audit_log_format(ab, 1255 "mqdes=%d msg_len=%zd msg_prio=%u " 1256 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1257 context->mq_sendrecv.mqdes, 1258 context->mq_sendrecv.msg_len, 1259 context->mq_sendrecv.msg_prio, 1260 context->mq_sendrecv.abs_timeout.tv_sec, 1261 context->mq_sendrecv.abs_timeout.tv_nsec); 1262 break; } 1263 case AUDIT_MQ_NOTIFY: { 1264 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1265 context->mq_notify.mqdes, 1266 context->mq_notify.sigev_signo); 1267 break; } 1268 case AUDIT_MQ_GETSETATTR: { 1269 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1270 audit_log_format(ab, 1271 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1272 "mq_curmsgs=%ld ", 1273 context->mq_getsetattr.mqdes, 1274 attr->mq_flags, attr->mq_maxmsg, 1275 attr->mq_msgsize, attr->mq_curmsgs); 1276 break; } 1277 case AUDIT_CAPSET: { 1278 audit_log_format(ab, "pid=%d", context->capset.pid); 1279 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1280 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1281 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1282 break; } 1283 case AUDIT_MMAP: { 1284 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1285 context->mmap.flags); 1286 break; } 1287 case AUDIT_EXECVE: { 1288 audit_log_execve_info(context, &ab); 1289 break; } 1290 } 1291 audit_log_end(ab); 1292 } 1293 1294 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1295 { 1296 char *end = proctitle + len - 1; 1297 while (end > proctitle && !isprint(*end)) 1298 end--; 1299 1300 /* catch the case where proctitle is only 1 non-print character */ 1301 len = end - proctitle + 1; 1302 len -= isprint(proctitle[len-1]) == 0; 1303 return len; 1304 } 1305 1306 static void audit_log_proctitle(struct task_struct *tsk, 1307 struct audit_context *context) 1308 { 1309 int res; 1310 char *buf; 1311 char *msg = "(null)"; 1312 int len = strlen(msg); 1313 struct audit_buffer *ab; 1314 1315 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1316 if (!ab) 1317 return; /* audit_panic or being filtered */ 1318 1319 audit_log_format(ab, "proctitle="); 1320 1321 /* Not cached */ 1322 if (!context->proctitle.value) { 1323 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1324 if (!buf) 1325 goto out; 1326 /* Historically called this from procfs naming */ 1327 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1328 if (res == 0) { 1329 kfree(buf); 1330 goto out; 1331 } 1332 res = audit_proctitle_rtrim(buf, res); 1333 if (res == 0) { 1334 kfree(buf); 1335 goto out; 1336 } 1337 context->proctitle.value = buf; 1338 context->proctitle.len = res; 1339 } 1340 msg = context->proctitle.value; 1341 len = context->proctitle.len; 1342 out: 1343 audit_log_n_untrustedstring(ab, msg, len); 1344 audit_log_end(ab); 1345 } 1346 1347 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1348 { 1349 int i, call_panic = 0; 1350 struct audit_buffer *ab; 1351 struct audit_aux_data *aux; 1352 struct audit_names *n; 1353 1354 /* tsk == current */ 1355 context->personality = tsk->personality; 1356 1357 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1358 if (!ab) 1359 return; /* audit_panic has been called */ 1360 audit_log_format(ab, "arch=%x syscall=%d", 1361 context->arch, context->major); 1362 if (context->personality != PER_LINUX) 1363 audit_log_format(ab, " per=%lx", context->personality); 1364 if (context->return_valid) 1365 audit_log_format(ab, " success=%s exit=%ld", 1366 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1367 context->return_code); 1368 1369 audit_log_format(ab, 1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1371 context->argv[0], 1372 context->argv[1], 1373 context->argv[2], 1374 context->argv[3], 1375 context->name_count); 1376 1377 audit_log_task_info(ab, tsk); 1378 audit_log_key(ab, context->filterkey); 1379 audit_log_end(ab); 1380 1381 for (aux = context->aux; aux; aux = aux->next) { 1382 1383 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1384 if (!ab) 1385 continue; /* audit_panic has been called */ 1386 1387 switch (aux->type) { 1388 1389 case AUDIT_BPRM_FCAPS: { 1390 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1391 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1392 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1393 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1394 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1395 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1396 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1397 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1398 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1399 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1400 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1401 break; } 1402 1403 } 1404 audit_log_end(ab); 1405 } 1406 1407 if (context->type) 1408 show_special(context, &call_panic); 1409 1410 if (context->fds[0] >= 0) { 1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1412 if (ab) { 1413 audit_log_format(ab, "fd0=%d fd1=%d", 1414 context->fds[0], context->fds[1]); 1415 audit_log_end(ab); 1416 } 1417 } 1418 1419 if (context->sockaddr_len) { 1420 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1421 if (ab) { 1422 audit_log_format(ab, "saddr="); 1423 audit_log_n_hex(ab, (void *)context->sockaddr, 1424 context->sockaddr_len); 1425 audit_log_end(ab); 1426 } 1427 } 1428 1429 for (aux = context->aux_pids; aux; aux = aux->next) { 1430 struct audit_aux_data_pids *axs = (void *)aux; 1431 1432 for (i = 0; i < axs->pid_count; i++) 1433 if (audit_log_pid_context(context, axs->target_pid[i], 1434 axs->target_auid[i], 1435 axs->target_uid[i], 1436 axs->target_sessionid[i], 1437 axs->target_sid[i], 1438 axs->target_comm[i])) 1439 call_panic = 1; 1440 } 1441 1442 if (context->target_pid && 1443 audit_log_pid_context(context, context->target_pid, 1444 context->target_auid, context->target_uid, 1445 context->target_sessionid, 1446 context->target_sid, context->target_comm)) 1447 call_panic = 1; 1448 1449 if (context->pwd.dentry && context->pwd.mnt) { 1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1451 if (ab) { 1452 audit_log_d_path(ab, " cwd=", &context->pwd); 1453 audit_log_end(ab); 1454 } 1455 } 1456 1457 i = 0; 1458 list_for_each_entry(n, &context->names_list, list) { 1459 if (n->hidden) 1460 continue; 1461 audit_log_name(context, n, NULL, i++, &call_panic); 1462 } 1463 1464 audit_log_proctitle(tsk, context); 1465 1466 /* Send end of event record to help user space know we are finished */ 1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1468 if (ab) 1469 audit_log_end(ab); 1470 if (call_panic) 1471 audit_panic("error converting sid to string"); 1472 } 1473 1474 /** 1475 * audit_free - free a per-task audit context 1476 * @tsk: task whose audit context block to free 1477 * 1478 * Called from copy_process and do_exit 1479 */ 1480 void __audit_free(struct task_struct *tsk) 1481 { 1482 struct audit_context *context; 1483 1484 context = audit_take_context(tsk, 0, 0); 1485 if (!context) 1486 return; 1487 1488 /* Check for system calls that do not go through the exit 1489 * function (e.g., exit_group), then free context block. 1490 * We use GFP_ATOMIC here because we might be doing this 1491 * in the context of the idle thread */ 1492 /* that can happen only if we are called from do_exit() */ 1493 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1494 audit_log_exit(context, tsk); 1495 if (!list_empty(&context->killed_trees)) 1496 audit_kill_trees(&context->killed_trees); 1497 1498 audit_free_context(context); 1499 } 1500 1501 /** 1502 * audit_syscall_entry - fill in an audit record at syscall entry 1503 * @major: major syscall type (function) 1504 * @a1: additional syscall register 1 1505 * @a2: additional syscall register 2 1506 * @a3: additional syscall register 3 1507 * @a4: additional syscall register 4 1508 * 1509 * Fill in audit context at syscall entry. This only happens if the 1510 * audit context was created when the task was created and the state or 1511 * filters demand the audit context be built. If the state from the 1512 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1513 * then the record will be written at syscall exit time (otherwise, it 1514 * will only be written if another part of the kernel requests that it 1515 * be written). 1516 */ 1517 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1518 unsigned long a3, unsigned long a4) 1519 { 1520 struct task_struct *tsk = current; 1521 struct audit_context *context = tsk->audit_context; 1522 enum audit_state state; 1523 1524 if (!context) 1525 return; 1526 1527 BUG_ON(context->in_syscall || context->name_count); 1528 1529 if (!audit_enabled) 1530 return; 1531 1532 context->arch = syscall_get_arch(); 1533 context->major = major; 1534 context->argv[0] = a1; 1535 context->argv[1] = a2; 1536 context->argv[2] = a3; 1537 context->argv[3] = a4; 1538 1539 state = context->state; 1540 context->dummy = !audit_n_rules; 1541 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1542 context->prio = 0; 1543 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1544 } 1545 if (state == AUDIT_DISABLED) 1546 return; 1547 1548 context->serial = 0; 1549 context->ctime = CURRENT_TIME; 1550 context->in_syscall = 1; 1551 context->current_state = state; 1552 context->ppid = 0; 1553 } 1554 1555 /** 1556 * audit_syscall_exit - deallocate audit context after a system call 1557 * @success: success value of the syscall 1558 * @return_code: return value of the syscall 1559 * 1560 * Tear down after system call. If the audit context has been marked as 1561 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1562 * filtering, or because some other part of the kernel wrote an audit 1563 * message), then write out the syscall information. In call cases, 1564 * free the names stored from getname(). 1565 */ 1566 void __audit_syscall_exit(int success, long return_code) 1567 { 1568 struct task_struct *tsk = current; 1569 struct audit_context *context; 1570 1571 if (success) 1572 success = AUDITSC_SUCCESS; 1573 else 1574 success = AUDITSC_FAILURE; 1575 1576 context = audit_take_context(tsk, success, return_code); 1577 if (!context) 1578 return; 1579 1580 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1581 audit_log_exit(context, tsk); 1582 1583 context->in_syscall = 0; 1584 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1585 1586 if (!list_empty(&context->killed_trees)) 1587 audit_kill_trees(&context->killed_trees); 1588 1589 audit_free_names(context); 1590 unroll_tree_refs(context, NULL, 0); 1591 audit_free_aux(context); 1592 context->aux = NULL; 1593 context->aux_pids = NULL; 1594 context->target_pid = 0; 1595 context->target_sid = 0; 1596 context->sockaddr_len = 0; 1597 context->type = 0; 1598 context->fds[0] = -1; 1599 if (context->state != AUDIT_RECORD_CONTEXT) { 1600 kfree(context->filterkey); 1601 context->filterkey = NULL; 1602 } 1603 tsk->audit_context = context; 1604 } 1605 1606 static inline void handle_one(const struct inode *inode) 1607 { 1608 #ifdef CONFIG_AUDIT_TREE 1609 struct audit_context *context; 1610 struct audit_tree_refs *p; 1611 struct audit_chunk *chunk; 1612 int count; 1613 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1614 return; 1615 context = current->audit_context; 1616 p = context->trees; 1617 count = context->tree_count; 1618 rcu_read_lock(); 1619 chunk = audit_tree_lookup(inode); 1620 rcu_read_unlock(); 1621 if (!chunk) 1622 return; 1623 if (likely(put_tree_ref(context, chunk))) 1624 return; 1625 if (unlikely(!grow_tree_refs(context))) { 1626 pr_warn("out of memory, audit has lost a tree reference\n"); 1627 audit_set_auditable(context); 1628 audit_put_chunk(chunk); 1629 unroll_tree_refs(context, p, count); 1630 return; 1631 } 1632 put_tree_ref(context, chunk); 1633 #endif 1634 } 1635 1636 static void handle_path(const struct dentry *dentry) 1637 { 1638 #ifdef CONFIG_AUDIT_TREE 1639 struct audit_context *context; 1640 struct audit_tree_refs *p; 1641 const struct dentry *d, *parent; 1642 struct audit_chunk *drop; 1643 unsigned long seq; 1644 int count; 1645 1646 context = current->audit_context; 1647 p = context->trees; 1648 count = context->tree_count; 1649 retry: 1650 drop = NULL; 1651 d = dentry; 1652 rcu_read_lock(); 1653 seq = read_seqbegin(&rename_lock); 1654 for(;;) { 1655 struct inode *inode = d->d_inode; 1656 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1657 struct audit_chunk *chunk; 1658 chunk = audit_tree_lookup(inode); 1659 if (chunk) { 1660 if (unlikely(!put_tree_ref(context, chunk))) { 1661 drop = chunk; 1662 break; 1663 } 1664 } 1665 } 1666 parent = d->d_parent; 1667 if (parent == d) 1668 break; 1669 d = parent; 1670 } 1671 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1672 rcu_read_unlock(); 1673 if (!drop) { 1674 /* just a race with rename */ 1675 unroll_tree_refs(context, p, count); 1676 goto retry; 1677 } 1678 audit_put_chunk(drop); 1679 if (grow_tree_refs(context)) { 1680 /* OK, got more space */ 1681 unroll_tree_refs(context, p, count); 1682 goto retry; 1683 } 1684 /* too bad */ 1685 pr_warn("out of memory, audit has lost a tree reference\n"); 1686 unroll_tree_refs(context, p, count); 1687 audit_set_auditable(context); 1688 return; 1689 } 1690 rcu_read_unlock(); 1691 #endif 1692 } 1693 1694 static struct audit_names *audit_alloc_name(struct audit_context *context, 1695 unsigned char type) 1696 { 1697 struct audit_names *aname; 1698 1699 if (context->name_count < AUDIT_NAMES) { 1700 aname = &context->preallocated_names[context->name_count]; 1701 memset(aname, 0, sizeof(*aname)); 1702 } else { 1703 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1704 if (!aname) 1705 return NULL; 1706 aname->should_free = true; 1707 } 1708 1709 aname->ino = (unsigned long)-1; 1710 aname->type = type; 1711 list_add_tail(&aname->list, &context->names_list); 1712 1713 context->name_count++; 1714 #if AUDIT_DEBUG 1715 context->ino_count++; 1716 #endif 1717 return aname; 1718 } 1719 1720 /** 1721 * audit_reusename - fill out filename with info from existing entry 1722 * @uptr: userland ptr to pathname 1723 * 1724 * Search the audit_names list for the current audit context. If there is an 1725 * existing entry with a matching "uptr" then return the filename 1726 * associated with that audit_name. If not, return NULL. 1727 */ 1728 struct filename * 1729 __audit_reusename(const __user char *uptr) 1730 { 1731 struct audit_context *context = current->audit_context; 1732 struct audit_names *n; 1733 1734 list_for_each_entry(n, &context->names_list, list) { 1735 if (!n->name) 1736 continue; 1737 if (n->name->uptr == uptr) 1738 return n->name; 1739 } 1740 return NULL; 1741 } 1742 1743 /** 1744 * audit_getname - add a name to the list 1745 * @name: name to add 1746 * 1747 * Add a name to the list of audit names for this context. 1748 * Called from fs/namei.c:getname(). 1749 */ 1750 void __audit_getname(struct filename *name) 1751 { 1752 struct audit_context *context = current->audit_context; 1753 struct audit_names *n; 1754 1755 if (!context->in_syscall) { 1756 #if AUDIT_DEBUG == 2 1757 pr_err("%s:%d(:%d): ignoring getname(%p)\n", 1758 __FILE__, __LINE__, context->serial, name); 1759 dump_stack(); 1760 #endif 1761 return; 1762 } 1763 1764 #if AUDIT_DEBUG 1765 /* The filename _must_ have a populated ->name */ 1766 BUG_ON(!name->name); 1767 #endif 1768 1769 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1770 if (!n) 1771 return; 1772 1773 n->name = name; 1774 n->name_len = AUDIT_NAME_FULL; 1775 n->name_put = true; 1776 name->aname = n; 1777 1778 if (!context->pwd.dentry) 1779 get_fs_pwd(current->fs, &context->pwd); 1780 } 1781 1782 /* audit_putname - intercept a putname request 1783 * @name: name to intercept and delay for putname 1784 * 1785 * If we have stored the name from getname in the audit context, 1786 * then we delay the putname until syscall exit. 1787 * Called from include/linux/fs.h:putname(). 1788 */ 1789 void audit_putname(struct filename *name) 1790 { 1791 struct audit_context *context = current->audit_context; 1792 1793 BUG_ON(!context); 1794 if (!name->aname || !context->in_syscall) { 1795 #if AUDIT_DEBUG == 2 1796 pr_err("%s:%d(:%d): final_putname(%p)\n", 1797 __FILE__, __LINE__, context->serial, name); 1798 if (context->name_count) { 1799 struct audit_names *n; 1800 int i = 0; 1801 1802 list_for_each_entry(n, &context->names_list, list) 1803 pr_err("name[%d] = %p = %s\n", i++, n->name, 1804 n->name->name ?: "(null)"); 1805 } 1806 #endif 1807 final_putname(name); 1808 } 1809 #if AUDIT_DEBUG 1810 else { 1811 ++context->put_count; 1812 if (context->put_count > context->name_count) { 1813 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)" 1814 " name_count=%d put_count=%d\n", 1815 __FILE__, __LINE__, 1816 context->serial, context->major, 1817 context->in_syscall, name->name, 1818 context->name_count, context->put_count); 1819 dump_stack(); 1820 } 1821 } 1822 #endif 1823 } 1824 1825 /** 1826 * __audit_inode - store the inode and device from a lookup 1827 * @name: name being audited 1828 * @dentry: dentry being audited 1829 * @flags: attributes for this particular entry 1830 */ 1831 void __audit_inode(struct filename *name, const struct dentry *dentry, 1832 unsigned int flags) 1833 { 1834 struct audit_context *context = current->audit_context; 1835 const struct inode *inode = dentry->d_inode; 1836 struct audit_names *n; 1837 bool parent = flags & AUDIT_INODE_PARENT; 1838 1839 if (!context->in_syscall) 1840 return; 1841 1842 if (!name) 1843 goto out_alloc; 1844 1845 #if AUDIT_DEBUG 1846 /* The struct filename _must_ have a populated ->name */ 1847 BUG_ON(!name->name); 1848 #endif 1849 /* 1850 * If we have a pointer to an audit_names entry already, then we can 1851 * just use it directly if the type is correct. 1852 */ 1853 n = name->aname; 1854 if (n) { 1855 if (parent) { 1856 if (n->type == AUDIT_TYPE_PARENT || 1857 n->type == AUDIT_TYPE_UNKNOWN) 1858 goto out; 1859 } else { 1860 if (n->type != AUDIT_TYPE_PARENT) 1861 goto out; 1862 } 1863 } 1864 1865 list_for_each_entry_reverse(n, &context->names_list, list) { 1866 if (!n->name || strcmp(n->name->name, name->name)) 1867 continue; 1868 1869 /* match the correct record type */ 1870 if (parent) { 1871 if (n->type == AUDIT_TYPE_PARENT || 1872 n->type == AUDIT_TYPE_UNKNOWN) 1873 goto out; 1874 } else { 1875 if (n->type != AUDIT_TYPE_PARENT) 1876 goto out; 1877 } 1878 } 1879 1880 out_alloc: 1881 /* unable to find an entry with both a matching name and type */ 1882 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1883 if (!n) 1884 return; 1885 /* unfortunately, while we may have a path name to record with the 1886 * inode, we can't always rely on the string lasting until the end of 1887 * the syscall so we need to create our own copy, it may fail due to 1888 * memory allocation issues, but we do our best */ 1889 if (name) { 1890 /* we can't use getname_kernel() due to size limits */ 1891 size_t len = strlen(name->name) + 1; 1892 struct filename *new = __getname(); 1893 1894 if (unlikely(!new)) 1895 goto out; 1896 1897 if (len <= (PATH_MAX - sizeof(*new))) { 1898 new->name = (char *)(new) + sizeof(*new); 1899 new->separate = false; 1900 } else if (len <= PATH_MAX) { 1901 /* this looks odd, but is due to final_putname() */ 1902 struct filename *new2; 1903 1904 new2 = kmalloc(sizeof(*new2), GFP_KERNEL); 1905 if (unlikely(!new2)) { 1906 __putname(new); 1907 goto out; 1908 } 1909 new2->name = (char *)new; 1910 new2->separate = true; 1911 new = new2; 1912 } else { 1913 /* we should never get here, but let's be safe */ 1914 __putname(new); 1915 goto out; 1916 } 1917 strlcpy((char *)new->name, name->name, len); 1918 new->uptr = NULL; 1919 new->aname = n; 1920 n->name = new; 1921 n->name_put = true; 1922 } 1923 out: 1924 if (parent) { 1925 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1926 n->type = AUDIT_TYPE_PARENT; 1927 if (flags & AUDIT_INODE_HIDDEN) 1928 n->hidden = true; 1929 } else { 1930 n->name_len = AUDIT_NAME_FULL; 1931 n->type = AUDIT_TYPE_NORMAL; 1932 } 1933 handle_path(dentry); 1934 audit_copy_inode(n, dentry, inode); 1935 } 1936 1937 void __audit_file(const struct file *file) 1938 { 1939 __audit_inode(NULL, file->f_path.dentry, 0); 1940 } 1941 1942 /** 1943 * __audit_inode_child - collect inode info for created/removed objects 1944 * @parent: inode of dentry parent 1945 * @dentry: dentry being audited 1946 * @type: AUDIT_TYPE_* value that we're looking for 1947 * 1948 * For syscalls that create or remove filesystem objects, audit_inode 1949 * can only collect information for the filesystem object's parent. 1950 * This call updates the audit context with the child's information. 1951 * Syscalls that create a new filesystem object must be hooked after 1952 * the object is created. Syscalls that remove a filesystem object 1953 * must be hooked prior, in order to capture the target inode during 1954 * unsuccessful attempts. 1955 */ 1956 void __audit_inode_child(const struct inode *parent, 1957 const struct dentry *dentry, 1958 const unsigned char type) 1959 { 1960 struct audit_context *context = current->audit_context; 1961 const struct inode *inode = dentry->d_inode; 1962 const char *dname = dentry->d_name.name; 1963 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1964 1965 if (!context->in_syscall) 1966 return; 1967 1968 if (inode) 1969 handle_one(inode); 1970 1971 /* look for a parent entry first */ 1972 list_for_each_entry(n, &context->names_list, list) { 1973 if (!n->name || n->type != AUDIT_TYPE_PARENT) 1974 continue; 1975 1976 if (n->ino == parent->i_ino && 1977 !audit_compare_dname_path(dname, n->name->name, n->name_len)) { 1978 found_parent = n; 1979 break; 1980 } 1981 } 1982 1983 /* is there a matching child entry? */ 1984 list_for_each_entry(n, &context->names_list, list) { 1985 /* can only match entries that have a name */ 1986 if (!n->name || n->type != type) 1987 continue; 1988 1989 /* if we found a parent, make sure this one is a child of it */ 1990 if (found_parent && (n->name != found_parent->name)) 1991 continue; 1992 1993 if (!strcmp(dname, n->name->name) || 1994 !audit_compare_dname_path(dname, n->name->name, 1995 found_parent ? 1996 found_parent->name_len : 1997 AUDIT_NAME_FULL)) { 1998 found_child = n; 1999 break; 2000 } 2001 } 2002 2003 if (!found_parent) { 2004 /* create a new, "anonymous" parent record */ 2005 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2006 if (!n) 2007 return; 2008 audit_copy_inode(n, NULL, parent); 2009 } 2010 2011 if (!found_child) { 2012 found_child = audit_alloc_name(context, type); 2013 if (!found_child) 2014 return; 2015 2016 /* Re-use the name belonging to the slot for a matching parent 2017 * directory. All names for this context are relinquished in 2018 * audit_free_names() */ 2019 if (found_parent) { 2020 found_child->name = found_parent->name; 2021 found_child->name_len = AUDIT_NAME_FULL; 2022 /* don't call __putname() */ 2023 found_child->name_put = false; 2024 } 2025 } 2026 if (inode) 2027 audit_copy_inode(found_child, dentry, inode); 2028 else 2029 found_child->ino = (unsigned long)-1; 2030 } 2031 EXPORT_SYMBOL_GPL(__audit_inode_child); 2032 2033 /** 2034 * auditsc_get_stamp - get local copies of audit_context values 2035 * @ctx: audit_context for the task 2036 * @t: timespec to store time recorded in the audit_context 2037 * @serial: serial value that is recorded in the audit_context 2038 * 2039 * Also sets the context as auditable. 2040 */ 2041 int auditsc_get_stamp(struct audit_context *ctx, 2042 struct timespec *t, unsigned int *serial) 2043 { 2044 if (!ctx->in_syscall) 2045 return 0; 2046 if (!ctx->serial) 2047 ctx->serial = audit_serial(); 2048 t->tv_sec = ctx->ctime.tv_sec; 2049 t->tv_nsec = ctx->ctime.tv_nsec; 2050 *serial = ctx->serial; 2051 if (!ctx->prio) { 2052 ctx->prio = 1; 2053 ctx->current_state = AUDIT_RECORD_CONTEXT; 2054 } 2055 return 1; 2056 } 2057 2058 /* global counter which is incremented every time something logs in */ 2059 static atomic_t session_id = ATOMIC_INIT(0); 2060 2061 static int audit_set_loginuid_perm(kuid_t loginuid) 2062 { 2063 /* if we are unset, we don't need privs */ 2064 if (!audit_loginuid_set(current)) 2065 return 0; 2066 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2067 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2068 return -EPERM; 2069 /* it is set, you need permission */ 2070 if (!capable(CAP_AUDIT_CONTROL)) 2071 return -EPERM; 2072 /* reject if this is not an unset and we don't allow that */ 2073 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 2074 return -EPERM; 2075 return 0; 2076 } 2077 2078 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2079 unsigned int oldsessionid, unsigned int sessionid, 2080 int rc) 2081 { 2082 struct audit_buffer *ab; 2083 uid_t uid, oldloginuid, loginuid; 2084 2085 if (!audit_enabled) 2086 return; 2087 2088 uid = from_kuid(&init_user_ns, task_uid(current)); 2089 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2090 loginuid = from_kuid(&init_user_ns, kloginuid), 2091 2092 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2093 if (!ab) 2094 return; 2095 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid); 2096 audit_log_task_context(ab); 2097 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d", 2098 oldloginuid, loginuid, oldsessionid, sessionid, !rc); 2099 audit_log_end(ab); 2100 } 2101 2102 /** 2103 * audit_set_loginuid - set current task's audit_context loginuid 2104 * @loginuid: loginuid value 2105 * 2106 * Returns 0. 2107 * 2108 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2109 */ 2110 int audit_set_loginuid(kuid_t loginuid) 2111 { 2112 struct task_struct *task = current; 2113 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2114 kuid_t oldloginuid; 2115 int rc; 2116 2117 oldloginuid = audit_get_loginuid(current); 2118 oldsessionid = audit_get_sessionid(current); 2119 2120 rc = audit_set_loginuid_perm(loginuid); 2121 if (rc) 2122 goto out; 2123 2124 /* are we setting or clearing? */ 2125 if (uid_valid(loginuid)) 2126 sessionid = (unsigned int)atomic_inc_return(&session_id); 2127 2128 task->sessionid = sessionid; 2129 task->loginuid = loginuid; 2130 out: 2131 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2132 return rc; 2133 } 2134 2135 /** 2136 * __audit_mq_open - record audit data for a POSIX MQ open 2137 * @oflag: open flag 2138 * @mode: mode bits 2139 * @attr: queue attributes 2140 * 2141 */ 2142 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2143 { 2144 struct audit_context *context = current->audit_context; 2145 2146 if (attr) 2147 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2148 else 2149 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2150 2151 context->mq_open.oflag = oflag; 2152 context->mq_open.mode = mode; 2153 2154 context->type = AUDIT_MQ_OPEN; 2155 } 2156 2157 /** 2158 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2159 * @mqdes: MQ descriptor 2160 * @msg_len: Message length 2161 * @msg_prio: Message priority 2162 * @abs_timeout: Message timeout in absolute time 2163 * 2164 */ 2165 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2166 const struct timespec *abs_timeout) 2167 { 2168 struct audit_context *context = current->audit_context; 2169 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2170 2171 if (abs_timeout) 2172 memcpy(p, abs_timeout, sizeof(struct timespec)); 2173 else 2174 memset(p, 0, sizeof(struct timespec)); 2175 2176 context->mq_sendrecv.mqdes = mqdes; 2177 context->mq_sendrecv.msg_len = msg_len; 2178 context->mq_sendrecv.msg_prio = msg_prio; 2179 2180 context->type = AUDIT_MQ_SENDRECV; 2181 } 2182 2183 /** 2184 * __audit_mq_notify - record audit data for a POSIX MQ notify 2185 * @mqdes: MQ descriptor 2186 * @notification: Notification event 2187 * 2188 */ 2189 2190 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2191 { 2192 struct audit_context *context = current->audit_context; 2193 2194 if (notification) 2195 context->mq_notify.sigev_signo = notification->sigev_signo; 2196 else 2197 context->mq_notify.sigev_signo = 0; 2198 2199 context->mq_notify.mqdes = mqdes; 2200 context->type = AUDIT_MQ_NOTIFY; 2201 } 2202 2203 /** 2204 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2205 * @mqdes: MQ descriptor 2206 * @mqstat: MQ flags 2207 * 2208 */ 2209 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2210 { 2211 struct audit_context *context = current->audit_context; 2212 context->mq_getsetattr.mqdes = mqdes; 2213 context->mq_getsetattr.mqstat = *mqstat; 2214 context->type = AUDIT_MQ_GETSETATTR; 2215 } 2216 2217 /** 2218 * audit_ipc_obj - record audit data for ipc object 2219 * @ipcp: ipc permissions 2220 * 2221 */ 2222 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2223 { 2224 struct audit_context *context = current->audit_context; 2225 context->ipc.uid = ipcp->uid; 2226 context->ipc.gid = ipcp->gid; 2227 context->ipc.mode = ipcp->mode; 2228 context->ipc.has_perm = 0; 2229 security_ipc_getsecid(ipcp, &context->ipc.osid); 2230 context->type = AUDIT_IPC; 2231 } 2232 2233 /** 2234 * audit_ipc_set_perm - record audit data for new ipc permissions 2235 * @qbytes: msgq bytes 2236 * @uid: msgq user id 2237 * @gid: msgq group id 2238 * @mode: msgq mode (permissions) 2239 * 2240 * Called only after audit_ipc_obj(). 2241 */ 2242 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2243 { 2244 struct audit_context *context = current->audit_context; 2245 2246 context->ipc.qbytes = qbytes; 2247 context->ipc.perm_uid = uid; 2248 context->ipc.perm_gid = gid; 2249 context->ipc.perm_mode = mode; 2250 context->ipc.has_perm = 1; 2251 } 2252 2253 void __audit_bprm(struct linux_binprm *bprm) 2254 { 2255 struct audit_context *context = current->audit_context; 2256 2257 context->type = AUDIT_EXECVE; 2258 context->execve.argc = bprm->argc; 2259 } 2260 2261 2262 /** 2263 * audit_socketcall - record audit data for sys_socketcall 2264 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2265 * @args: args array 2266 * 2267 */ 2268 int __audit_socketcall(int nargs, unsigned long *args) 2269 { 2270 struct audit_context *context = current->audit_context; 2271 2272 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2273 return -EINVAL; 2274 context->type = AUDIT_SOCKETCALL; 2275 context->socketcall.nargs = nargs; 2276 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2277 return 0; 2278 } 2279 2280 /** 2281 * __audit_fd_pair - record audit data for pipe and socketpair 2282 * @fd1: the first file descriptor 2283 * @fd2: the second file descriptor 2284 * 2285 */ 2286 void __audit_fd_pair(int fd1, int fd2) 2287 { 2288 struct audit_context *context = current->audit_context; 2289 context->fds[0] = fd1; 2290 context->fds[1] = fd2; 2291 } 2292 2293 /** 2294 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2295 * @len: data length in user space 2296 * @a: data address in kernel space 2297 * 2298 * Returns 0 for success or NULL context or < 0 on error. 2299 */ 2300 int __audit_sockaddr(int len, void *a) 2301 { 2302 struct audit_context *context = current->audit_context; 2303 2304 if (!context->sockaddr) { 2305 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2306 if (!p) 2307 return -ENOMEM; 2308 context->sockaddr = p; 2309 } 2310 2311 context->sockaddr_len = len; 2312 memcpy(context->sockaddr, a, len); 2313 return 0; 2314 } 2315 2316 void __audit_ptrace(struct task_struct *t) 2317 { 2318 struct audit_context *context = current->audit_context; 2319 2320 context->target_pid = task_pid_nr(t); 2321 context->target_auid = audit_get_loginuid(t); 2322 context->target_uid = task_uid(t); 2323 context->target_sessionid = audit_get_sessionid(t); 2324 security_task_getsecid(t, &context->target_sid); 2325 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2326 } 2327 2328 /** 2329 * audit_signal_info - record signal info for shutting down audit subsystem 2330 * @sig: signal value 2331 * @t: task being signaled 2332 * 2333 * If the audit subsystem is being terminated, record the task (pid) 2334 * and uid that is doing that. 2335 */ 2336 int __audit_signal_info(int sig, struct task_struct *t) 2337 { 2338 struct audit_aux_data_pids *axp; 2339 struct task_struct *tsk = current; 2340 struct audit_context *ctx = tsk->audit_context; 2341 kuid_t uid = current_uid(), t_uid = task_uid(t); 2342 2343 if (audit_pid && t->tgid == audit_pid) { 2344 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2345 audit_sig_pid = task_pid_nr(tsk); 2346 if (uid_valid(tsk->loginuid)) 2347 audit_sig_uid = tsk->loginuid; 2348 else 2349 audit_sig_uid = uid; 2350 security_task_getsecid(tsk, &audit_sig_sid); 2351 } 2352 if (!audit_signals || audit_dummy_context()) 2353 return 0; 2354 } 2355 2356 /* optimize the common case by putting first signal recipient directly 2357 * in audit_context */ 2358 if (!ctx->target_pid) { 2359 ctx->target_pid = task_tgid_nr(t); 2360 ctx->target_auid = audit_get_loginuid(t); 2361 ctx->target_uid = t_uid; 2362 ctx->target_sessionid = audit_get_sessionid(t); 2363 security_task_getsecid(t, &ctx->target_sid); 2364 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2365 return 0; 2366 } 2367 2368 axp = (void *)ctx->aux_pids; 2369 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2370 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2371 if (!axp) 2372 return -ENOMEM; 2373 2374 axp->d.type = AUDIT_OBJ_PID; 2375 axp->d.next = ctx->aux_pids; 2376 ctx->aux_pids = (void *)axp; 2377 } 2378 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2379 2380 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2381 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2382 axp->target_uid[axp->pid_count] = t_uid; 2383 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2384 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2385 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2386 axp->pid_count++; 2387 2388 return 0; 2389 } 2390 2391 /** 2392 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2393 * @bprm: pointer to the bprm being processed 2394 * @new: the proposed new credentials 2395 * @old: the old credentials 2396 * 2397 * Simply check if the proc already has the caps given by the file and if not 2398 * store the priv escalation info for later auditing at the end of the syscall 2399 * 2400 * -Eric 2401 */ 2402 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2403 const struct cred *new, const struct cred *old) 2404 { 2405 struct audit_aux_data_bprm_fcaps *ax; 2406 struct audit_context *context = current->audit_context; 2407 struct cpu_vfs_cap_data vcaps; 2408 struct dentry *dentry; 2409 2410 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2411 if (!ax) 2412 return -ENOMEM; 2413 2414 ax->d.type = AUDIT_BPRM_FCAPS; 2415 ax->d.next = context->aux; 2416 context->aux = (void *)ax; 2417 2418 dentry = dget(bprm->file->f_path.dentry); 2419 get_vfs_caps_from_disk(dentry, &vcaps); 2420 dput(dentry); 2421 2422 ax->fcap.permitted = vcaps.permitted; 2423 ax->fcap.inheritable = vcaps.inheritable; 2424 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2425 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2426 2427 ax->old_pcap.permitted = old->cap_permitted; 2428 ax->old_pcap.inheritable = old->cap_inheritable; 2429 ax->old_pcap.effective = old->cap_effective; 2430 2431 ax->new_pcap.permitted = new->cap_permitted; 2432 ax->new_pcap.inheritable = new->cap_inheritable; 2433 ax->new_pcap.effective = new->cap_effective; 2434 return 0; 2435 } 2436 2437 /** 2438 * __audit_log_capset - store information about the arguments to the capset syscall 2439 * @new: the new credentials 2440 * @old: the old (current) credentials 2441 * 2442 * Record the arguments userspace sent to sys_capset for later printing by the 2443 * audit system if applicable 2444 */ 2445 void __audit_log_capset(const struct cred *new, const struct cred *old) 2446 { 2447 struct audit_context *context = current->audit_context; 2448 context->capset.pid = task_pid_nr(current); 2449 context->capset.cap.effective = new->cap_effective; 2450 context->capset.cap.inheritable = new->cap_effective; 2451 context->capset.cap.permitted = new->cap_permitted; 2452 context->type = AUDIT_CAPSET; 2453 } 2454 2455 void __audit_mmap_fd(int fd, int flags) 2456 { 2457 struct audit_context *context = current->audit_context; 2458 context->mmap.fd = fd; 2459 context->mmap.flags = flags; 2460 context->type = AUDIT_MMAP; 2461 } 2462 2463 static void audit_log_task(struct audit_buffer *ab) 2464 { 2465 kuid_t auid, uid; 2466 kgid_t gid; 2467 unsigned int sessionid; 2468 struct mm_struct *mm = current->mm; 2469 char comm[sizeof(current->comm)]; 2470 2471 auid = audit_get_loginuid(current); 2472 sessionid = audit_get_sessionid(current); 2473 current_uid_gid(&uid, &gid); 2474 2475 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2476 from_kuid(&init_user_ns, auid), 2477 from_kuid(&init_user_ns, uid), 2478 from_kgid(&init_user_ns, gid), 2479 sessionid); 2480 audit_log_task_context(ab); 2481 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current)); 2482 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2483 if (mm) { 2484 down_read(&mm->mmap_sem); 2485 if (mm->exe_file) 2486 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 2487 up_read(&mm->mmap_sem); 2488 } else 2489 audit_log_format(ab, " exe=(null)"); 2490 } 2491 2492 /** 2493 * audit_core_dumps - record information about processes that end abnormally 2494 * @signr: signal value 2495 * 2496 * If a process ends with a core dump, something fishy is going on and we 2497 * should record the event for investigation. 2498 */ 2499 void audit_core_dumps(long signr) 2500 { 2501 struct audit_buffer *ab; 2502 2503 if (!audit_enabled) 2504 return; 2505 2506 if (signr == SIGQUIT) /* don't care for those */ 2507 return; 2508 2509 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2510 if (unlikely(!ab)) 2511 return; 2512 audit_log_task(ab); 2513 audit_log_format(ab, " sig=%ld", signr); 2514 audit_log_end(ab); 2515 } 2516 2517 void __audit_seccomp(unsigned long syscall, long signr, int code) 2518 { 2519 struct audit_buffer *ab; 2520 2521 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2522 if (unlikely(!ab)) 2523 return; 2524 audit_log_task(ab); 2525 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2526 signr, syscall_get_arch(), syscall, is_compat_task(), 2527 KSTK_EIP(current), code); 2528 audit_log_end(ab); 2529 } 2530 2531 struct list_head *audit_killed_trees(void) 2532 { 2533 struct audit_context *ctx = current->audit_context; 2534 if (likely(!ctx || !ctx->in_syscall)) 2535 return NULL; 2536 return &ctx->killed_trees; 2537 } 2538