1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <asm/atomic.h> 48 #include <asm/types.h> 49 #include <linux/fs.h> 50 #include <linux/namei.h> 51 #include <linux/mm.h> 52 #include <linux/module.h> 53 #include <linux/mount.h> 54 #include <linux/socket.h> 55 #include <linux/mqueue.h> 56 #include <linux/audit.h> 57 #include <linux/personality.h> 58 #include <linux/time.h> 59 #include <linux/netlink.h> 60 #include <linux/compiler.h> 61 #include <asm/unistd.h> 62 #include <linux/security.h> 63 #include <linux/list.h> 64 #include <linux/tty.h> 65 #include <linux/selinux.h> 66 #include <linux/binfmts.h> 67 #include <linux/syscalls.h> 68 69 #include "audit.h" 70 71 extern struct list_head audit_filter_list[]; 72 73 /* No syscall auditing will take place unless audit_enabled != 0. */ 74 extern int audit_enabled; 75 76 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 77 * for saving names from getname(). */ 78 #define AUDIT_NAMES 20 79 80 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the 81 * audit_context from being used for nameless inodes from 82 * path_lookup. */ 83 #define AUDIT_NAMES_RESERVED 7 84 85 /* Indicates that audit should log the full pathname. */ 86 #define AUDIT_NAME_FULL -1 87 88 /* When fs/namei.c:getname() is called, we store the pointer in name and 89 * we don't let putname() free it (instead we free all of the saved 90 * pointers at syscall exit time). 91 * 92 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 93 struct audit_names { 94 const char *name; 95 int name_len; /* number of name's characters to log */ 96 unsigned name_put; /* call __putname() for this name */ 97 unsigned long ino; 98 dev_t dev; 99 umode_t mode; 100 uid_t uid; 101 gid_t gid; 102 dev_t rdev; 103 u32 osid; 104 }; 105 106 struct audit_aux_data { 107 struct audit_aux_data *next; 108 int type; 109 }; 110 111 #define AUDIT_AUX_IPCPERM 0 112 113 struct audit_aux_data_mq_open { 114 struct audit_aux_data d; 115 int oflag; 116 mode_t mode; 117 struct mq_attr attr; 118 }; 119 120 struct audit_aux_data_mq_sendrecv { 121 struct audit_aux_data d; 122 mqd_t mqdes; 123 size_t msg_len; 124 unsigned int msg_prio; 125 struct timespec abs_timeout; 126 }; 127 128 struct audit_aux_data_mq_notify { 129 struct audit_aux_data d; 130 mqd_t mqdes; 131 struct sigevent notification; 132 }; 133 134 struct audit_aux_data_mq_getsetattr { 135 struct audit_aux_data d; 136 mqd_t mqdes; 137 struct mq_attr mqstat; 138 }; 139 140 struct audit_aux_data_ipcctl { 141 struct audit_aux_data d; 142 struct ipc_perm p; 143 unsigned long qbytes; 144 uid_t uid; 145 gid_t gid; 146 mode_t mode; 147 u32 osid; 148 }; 149 150 struct audit_aux_data_execve { 151 struct audit_aux_data d; 152 int argc; 153 int envc; 154 char mem[0]; 155 }; 156 157 struct audit_aux_data_socketcall { 158 struct audit_aux_data d; 159 int nargs; 160 unsigned long args[0]; 161 }; 162 163 struct audit_aux_data_sockaddr { 164 struct audit_aux_data d; 165 int len; 166 char a[0]; 167 }; 168 169 struct audit_aux_data_path { 170 struct audit_aux_data d; 171 struct dentry *dentry; 172 struct vfsmount *mnt; 173 }; 174 175 /* The per-task audit context. */ 176 struct audit_context { 177 int in_syscall; /* 1 if task is in a syscall */ 178 enum audit_state state; 179 unsigned int serial; /* serial number for record */ 180 struct timespec ctime; /* time of syscall entry */ 181 uid_t loginuid; /* login uid (identity) */ 182 int major; /* syscall number */ 183 unsigned long argv[4]; /* syscall arguments */ 184 int return_valid; /* return code is valid */ 185 long return_code;/* syscall return code */ 186 int auditable; /* 1 if record should be written */ 187 int name_count; 188 struct audit_names names[AUDIT_NAMES]; 189 char * filterkey; /* key for rule that triggered record */ 190 struct dentry * pwd; 191 struct vfsmount * pwdmnt; 192 struct audit_context *previous; /* For nested syscalls */ 193 struct audit_aux_data *aux; 194 195 /* Save things to print about task_struct */ 196 pid_t pid, ppid; 197 uid_t uid, euid, suid, fsuid; 198 gid_t gid, egid, sgid, fsgid; 199 unsigned long personality; 200 int arch; 201 202 #if AUDIT_DEBUG 203 int put_count; 204 int ino_count; 205 #endif 206 }; 207 208 /* Determine if any context name data matches a rule's watch data */ 209 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 210 * otherwise. */ 211 static int audit_filter_rules(struct task_struct *tsk, 212 struct audit_krule *rule, 213 struct audit_context *ctx, 214 struct audit_names *name, 215 enum audit_state *state) 216 { 217 int i, j, need_sid = 1; 218 u32 sid; 219 220 for (i = 0; i < rule->field_count; i++) { 221 struct audit_field *f = &rule->fields[i]; 222 int result = 0; 223 224 switch (f->type) { 225 case AUDIT_PID: 226 result = audit_comparator(tsk->pid, f->op, f->val); 227 break; 228 case AUDIT_PPID: 229 if (ctx) 230 result = audit_comparator(ctx->ppid, f->op, f->val); 231 break; 232 case AUDIT_UID: 233 result = audit_comparator(tsk->uid, f->op, f->val); 234 break; 235 case AUDIT_EUID: 236 result = audit_comparator(tsk->euid, f->op, f->val); 237 break; 238 case AUDIT_SUID: 239 result = audit_comparator(tsk->suid, f->op, f->val); 240 break; 241 case AUDIT_FSUID: 242 result = audit_comparator(tsk->fsuid, f->op, f->val); 243 break; 244 case AUDIT_GID: 245 result = audit_comparator(tsk->gid, f->op, f->val); 246 break; 247 case AUDIT_EGID: 248 result = audit_comparator(tsk->egid, f->op, f->val); 249 break; 250 case AUDIT_SGID: 251 result = audit_comparator(tsk->sgid, f->op, f->val); 252 break; 253 case AUDIT_FSGID: 254 result = audit_comparator(tsk->fsgid, f->op, f->val); 255 break; 256 case AUDIT_PERS: 257 result = audit_comparator(tsk->personality, f->op, f->val); 258 break; 259 case AUDIT_ARCH: 260 if (ctx) 261 result = audit_comparator(ctx->arch, f->op, f->val); 262 break; 263 264 case AUDIT_EXIT: 265 if (ctx && ctx->return_valid) 266 result = audit_comparator(ctx->return_code, f->op, f->val); 267 break; 268 case AUDIT_SUCCESS: 269 if (ctx && ctx->return_valid) { 270 if (f->val) 271 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 272 else 273 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 274 } 275 break; 276 case AUDIT_DEVMAJOR: 277 if (name) 278 result = audit_comparator(MAJOR(name->dev), 279 f->op, f->val); 280 else if (ctx) { 281 for (j = 0; j < ctx->name_count; j++) { 282 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { 283 ++result; 284 break; 285 } 286 } 287 } 288 break; 289 case AUDIT_DEVMINOR: 290 if (name) 291 result = audit_comparator(MINOR(name->dev), 292 f->op, f->val); 293 else if (ctx) { 294 for (j = 0; j < ctx->name_count; j++) { 295 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { 296 ++result; 297 break; 298 } 299 } 300 } 301 break; 302 case AUDIT_INODE: 303 if (name) 304 result = (name->ino == f->val); 305 else if (ctx) { 306 for (j = 0; j < ctx->name_count; j++) { 307 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) { 308 ++result; 309 break; 310 } 311 } 312 } 313 break; 314 case AUDIT_WATCH: 315 if (name && rule->watch->ino != (unsigned long)-1) 316 result = (name->dev == rule->watch->dev && 317 name->ino == rule->watch->ino); 318 break; 319 case AUDIT_LOGINUID: 320 result = 0; 321 if (ctx) 322 result = audit_comparator(ctx->loginuid, f->op, f->val); 323 break; 324 case AUDIT_SUBJ_USER: 325 case AUDIT_SUBJ_ROLE: 326 case AUDIT_SUBJ_TYPE: 327 case AUDIT_SUBJ_SEN: 328 case AUDIT_SUBJ_CLR: 329 /* NOTE: this may return negative values indicating 330 a temporary error. We simply treat this as a 331 match for now to avoid losing information that 332 may be wanted. An error message will also be 333 logged upon error */ 334 if (f->se_rule) { 335 if (need_sid) { 336 selinux_task_ctxid(tsk, &sid); 337 need_sid = 0; 338 } 339 result = selinux_audit_rule_match(sid, f->type, 340 f->op, 341 f->se_rule, 342 ctx); 343 } 344 break; 345 case AUDIT_OBJ_USER: 346 case AUDIT_OBJ_ROLE: 347 case AUDIT_OBJ_TYPE: 348 case AUDIT_OBJ_LEV_LOW: 349 case AUDIT_OBJ_LEV_HIGH: 350 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 351 also applies here */ 352 if (f->se_rule) { 353 /* Find files that match */ 354 if (name) { 355 result = selinux_audit_rule_match( 356 name->osid, f->type, f->op, 357 f->se_rule, ctx); 358 } else if (ctx) { 359 for (j = 0; j < ctx->name_count; j++) { 360 if (selinux_audit_rule_match( 361 ctx->names[j].osid, 362 f->type, f->op, 363 f->se_rule, ctx)) { 364 ++result; 365 break; 366 } 367 } 368 } 369 /* Find ipc objects that match */ 370 if (ctx) { 371 struct audit_aux_data *aux; 372 for (aux = ctx->aux; aux; 373 aux = aux->next) { 374 if (aux->type == AUDIT_IPC) { 375 struct audit_aux_data_ipcctl *axi = (void *)aux; 376 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) { 377 ++result; 378 break; 379 } 380 } 381 } 382 } 383 } 384 break; 385 case AUDIT_ARG0: 386 case AUDIT_ARG1: 387 case AUDIT_ARG2: 388 case AUDIT_ARG3: 389 if (ctx) 390 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 391 break; 392 case AUDIT_FILTERKEY: 393 /* ignore this field for filtering */ 394 result = 1; 395 break; 396 } 397 398 if (!result) 399 return 0; 400 } 401 if (rule->filterkey) 402 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 403 switch (rule->action) { 404 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 405 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 406 } 407 return 1; 408 } 409 410 /* At process creation time, we can determine if system-call auditing is 411 * completely disabled for this task. Since we only have the task 412 * structure at this point, we can only check uid and gid. 413 */ 414 static enum audit_state audit_filter_task(struct task_struct *tsk) 415 { 416 struct audit_entry *e; 417 enum audit_state state; 418 419 rcu_read_lock(); 420 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 421 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) { 422 rcu_read_unlock(); 423 return state; 424 } 425 } 426 rcu_read_unlock(); 427 return AUDIT_BUILD_CONTEXT; 428 } 429 430 /* At syscall entry and exit time, this filter is called if the 431 * audit_state is not low enough that auditing cannot take place, but is 432 * also not high enough that we already know we have to write an audit 433 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 434 */ 435 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 436 struct audit_context *ctx, 437 struct list_head *list) 438 { 439 struct audit_entry *e; 440 enum audit_state state; 441 442 if (audit_pid && tsk->tgid == audit_pid) 443 return AUDIT_DISABLED; 444 445 rcu_read_lock(); 446 if (!list_empty(list)) { 447 int word = AUDIT_WORD(ctx->major); 448 int bit = AUDIT_BIT(ctx->major); 449 450 list_for_each_entry_rcu(e, list, list) { 451 if ((e->rule.mask[word] & bit) == bit && 452 audit_filter_rules(tsk, &e->rule, ctx, NULL, 453 &state)) { 454 rcu_read_unlock(); 455 return state; 456 } 457 } 458 } 459 rcu_read_unlock(); 460 return AUDIT_BUILD_CONTEXT; 461 } 462 463 /* At syscall exit time, this filter is called if any audit_names[] have been 464 * collected during syscall processing. We only check rules in sublists at hash 465 * buckets applicable to the inode numbers in audit_names[]. 466 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 467 */ 468 enum audit_state audit_filter_inodes(struct task_struct *tsk, 469 struct audit_context *ctx) 470 { 471 int i; 472 struct audit_entry *e; 473 enum audit_state state; 474 475 if (audit_pid && tsk->tgid == audit_pid) 476 return AUDIT_DISABLED; 477 478 rcu_read_lock(); 479 for (i = 0; i < ctx->name_count; i++) { 480 int word = AUDIT_WORD(ctx->major); 481 int bit = AUDIT_BIT(ctx->major); 482 struct audit_names *n = &ctx->names[i]; 483 int h = audit_hash_ino((u32)n->ino); 484 struct list_head *list = &audit_inode_hash[h]; 485 486 if (list_empty(list)) 487 continue; 488 489 list_for_each_entry_rcu(e, list, list) { 490 if ((e->rule.mask[word] & bit) == bit && 491 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) { 492 rcu_read_unlock(); 493 return state; 494 } 495 } 496 } 497 rcu_read_unlock(); 498 return AUDIT_BUILD_CONTEXT; 499 } 500 501 void audit_set_auditable(struct audit_context *ctx) 502 { 503 ctx->auditable = 1; 504 } 505 506 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 507 int return_valid, 508 int return_code) 509 { 510 struct audit_context *context = tsk->audit_context; 511 512 if (likely(!context)) 513 return NULL; 514 context->return_valid = return_valid; 515 context->return_code = return_code; 516 517 if (context->in_syscall && !context->auditable) { 518 enum audit_state state; 519 520 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 521 if (state == AUDIT_RECORD_CONTEXT) { 522 context->auditable = 1; 523 goto get_context; 524 } 525 526 state = audit_filter_inodes(tsk, context); 527 if (state == AUDIT_RECORD_CONTEXT) 528 context->auditable = 1; 529 530 } 531 532 get_context: 533 context->pid = tsk->pid; 534 context->ppid = sys_getppid(); /* sic. tsk == current in all cases */ 535 context->uid = tsk->uid; 536 context->gid = tsk->gid; 537 context->euid = tsk->euid; 538 context->suid = tsk->suid; 539 context->fsuid = tsk->fsuid; 540 context->egid = tsk->egid; 541 context->sgid = tsk->sgid; 542 context->fsgid = tsk->fsgid; 543 context->personality = tsk->personality; 544 tsk->audit_context = NULL; 545 return context; 546 } 547 548 static inline void audit_free_names(struct audit_context *context) 549 { 550 int i; 551 552 #if AUDIT_DEBUG == 2 553 if (context->auditable 554 ||context->put_count + context->ino_count != context->name_count) { 555 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 556 " name_count=%d put_count=%d" 557 " ino_count=%d [NOT freeing]\n", 558 __FILE__, __LINE__, 559 context->serial, context->major, context->in_syscall, 560 context->name_count, context->put_count, 561 context->ino_count); 562 for (i = 0; i < context->name_count; i++) { 563 printk(KERN_ERR "names[%d] = %p = %s\n", i, 564 context->names[i].name, 565 context->names[i].name ?: "(null)"); 566 } 567 dump_stack(); 568 return; 569 } 570 #endif 571 #if AUDIT_DEBUG 572 context->put_count = 0; 573 context->ino_count = 0; 574 #endif 575 576 for (i = 0; i < context->name_count; i++) { 577 if (context->names[i].name && context->names[i].name_put) 578 __putname(context->names[i].name); 579 } 580 context->name_count = 0; 581 if (context->pwd) 582 dput(context->pwd); 583 if (context->pwdmnt) 584 mntput(context->pwdmnt); 585 context->pwd = NULL; 586 context->pwdmnt = NULL; 587 } 588 589 static inline void audit_free_aux(struct audit_context *context) 590 { 591 struct audit_aux_data *aux; 592 593 while ((aux = context->aux)) { 594 if (aux->type == AUDIT_AVC_PATH) { 595 struct audit_aux_data_path *axi = (void *)aux; 596 dput(axi->dentry); 597 mntput(axi->mnt); 598 } 599 600 context->aux = aux->next; 601 kfree(aux); 602 } 603 } 604 605 static inline void audit_zero_context(struct audit_context *context, 606 enum audit_state state) 607 { 608 uid_t loginuid = context->loginuid; 609 610 memset(context, 0, sizeof(*context)); 611 context->state = state; 612 context->loginuid = loginuid; 613 } 614 615 static inline struct audit_context *audit_alloc_context(enum audit_state state) 616 { 617 struct audit_context *context; 618 619 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 620 return NULL; 621 audit_zero_context(context, state); 622 return context; 623 } 624 625 /** 626 * audit_alloc - allocate an audit context block for a task 627 * @tsk: task 628 * 629 * Filter on the task information and allocate a per-task audit context 630 * if necessary. Doing so turns on system call auditing for the 631 * specified task. This is called from copy_process, so no lock is 632 * needed. 633 */ 634 int audit_alloc(struct task_struct *tsk) 635 { 636 struct audit_context *context; 637 enum audit_state state; 638 639 if (likely(!audit_enabled)) 640 return 0; /* Return if not auditing. */ 641 642 state = audit_filter_task(tsk); 643 if (likely(state == AUDIT_DISABLED)) 644 return 0; 645 646 if (!(context = audit_alloc_context(state))) { 647 audit_log_lost("out of memory in audit_alloc"); 648 return -ENOMEM; 649 } 650 651 /* Preserve login uid */ 652 context->loginuid = -1; 653 if (current->audit_context) 654 context->loginuid = current->audit_context->loginuid; 655 656 tsk->audit_context = context; 657 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 658 return 0; 659 } 660 661 static inline void audit_free_context(struct audit_context *context) 662 { 663 struct audit_context *previous; 664 int count = 0; 665 666 do { 667 previous = context->previous; 668 if (previous || (count && count < 10)) { 669 ++count; 670 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 671 " freeing multiple contexts (%d)\n", 672 context->serial, context->major, 673 context->name_count, count); 674 } 675 audit_free_names(context); 676 audit_free_aux(context); 677 kfree(context->filterkey); 678 kfree(context); 679 context = previous; 680 } while (context); 681 if (count >= 10) 682 printk(KERN_ERR "audit: freed %d contexts\n", count); 683 } 684 685 static void audit_log_task_context(struct audit_buffer *ab) 686 { 687 char *ctx = NULL; 688 ssize_t len = 0; 689 690 len = security_getprocattr(current, "current", NULL, 0); 691 if (len < 0) { 692 if (len != -EINVAL) 693 goto error_path; 694 return; 695 } 696 697 ctx = kmalloc(len, GFP_KERNEL); 698 if (!ctx) 699 goto error_path; 700 701 len = security_getprocattr(current, "current", ctx, len); 702 if (len < 0 ) 703 goto error_path; 704 705 audit_log_format(ab, " subj=%s", ctx); 706 return; 707 708 error_path: 709 kfree(ctx); 710 audit_panic("error in audit_log_task_context"); 711 return; 712 } 713 714 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 715 { 716 char name[sizeof(tsk->comm)]; 717 struct mm_struct *mm = tsk->mm; 718 struct vm_area_struct *vma; 719 720 /* tsk == current */ 721 722 get_task_comm(name, tsk); 723 audit_log_format(ab, " comm="); 724 audit_log_untrustedstring(ab, name); 725 726 if (mm) { 727 down_read(&mm->mmap_sem); 728 vma = mm->mmap; 729 while (vma) { 730 if ((vma->vm_flags & VM_EXECUTABLE) && 731 vma->vm_file) { 732 audit_log_d_path(ab, "exe=", 733 vma->vm_file->f_dentry, 734 vma->vm_file->f_vfsmnt); 735 break; 736 } 737 vma = vma->vm_next; 738 } 739 up_read(&mm->mmap_sem); 740 } 741 audit_log_task_context(ab); 742 } 743 744 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 745 { 746 int i, call_panic = 0; 747 struct audit_buffer *ab; 748 struct audit_aux_data *aux; 749 const char *tty; 750 751 /* tsk == current */ 752 753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 754 if (!ab) 755 return; /* audit_panic has been called */ 756 audit_log_format(ab, "arch=%x syscall=%d", 757 context->arch, context->major); 758 if (context->personality != PER_LINUX) 759 audit_log_format(ab, " per=%lx", context->personality); 760 if (context->return_valid) 761 audit_log_format(ab, " success=%s exit=%ld", 762 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 763 context->return_code); 764 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 765 tty = tsk->signal->tty->name; 766 else 767 tty = "(none)"; 768 audit_log_format(ab, 769 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 770 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 771 " euid=%u suid=%u fsuid=%u" 772 " egid=%u sgid=%u fsgid=%u tty=%s", 773 context->argv[0], 774 context->argv[1], 775 context->argv[2], 776 context->argv[3], 777 context->name_count, 778 context->ppid, 779 context->pid, 780 context->loginuid, 781 context->uid, 782 context->gid, 783 context->euid, context->suid, context->fsuid, 784 context->egid, context->sgid, context->fsgid, tty); 785 audit_log_task_info(ab, tsk); 786 if (context->filterkey) { 787 audit_log_format(ab, " key="); 788 audit_log_untrustedstring(ab, context->filterkey); 789 } else 790 audit_log_format(ab, " key=(null)"); 791 audit_log_end(ab); 792 793 for (aux = context->aux; aux; aux = aux->next) { 794 795 ab = audit_log_start(context, GFP_KERNEL, aux->type); 796 if (!ab) 797 continue; /* audit_panic has been called */ 798 799 switch (aux->type) { 800 case AUDIT_MQ_OPEN: { 801 struct audit_aux_data_mq_open *axi = (void *)aux; 802 audit_log_format(ab, 803 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld " 804 "mq_msgsize=%ld mq_curmsgs=%ld", 805 axi->oflag, axi->mode, axi->attr.mq_flags, 806 axi->attr.mq_maxmsg, axi->attr.mq_msgsize, 807 axi->attr.mq_curmsgs); 808 break; } 809 810 case AUDIT_MQ_SENDRECV: { 811 struct audit_aux_data_mq_sendrecv *axi = (void *)aux; 812 audit_log_format(ab, 813 "mqdes=%d msg_len=%zd msg_prio=%u " 814 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 815 axi->mqdes, axi->msg_len, axi->msg_prio, 816 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec); 817 break; } 818 819 case AUDIT_MQ_NOTIFY: { 820 struct audit_aux_data_mq_notify *axi = (void *)aux; 821 audit_log_format(ab, 822 "mqdes=%d sigev_signo=%d", 823 axi->mqdes, 824 axi->notification.sigev_signo); 825 break; } 826 827 case AUDIT_MQ_GETSETATTR: { 828 struct audit_aux_data_mq_getsetattr *axi = (void *)aux; 829 audit_log_format(ab, 830 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 831 "mq_curmsgs=%ld ", 832 axi->mqdes, 833 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg, 834 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs); 835 break; } 836 837 case AUDIT_IPC: { 838 struct audit_aux_data_ipcctl *axi = (void *)aux; 839 audit_log_format(ab, 840 "ouid=%u ogid=%u mode=%x", 841 axi->uid, axi->gid, axi->mode); 842 if (axi->osid != 0) { 843 char *ctx = NULL; 844 u32 len; 845 if (selinux_ctxid_to_string( 846 axi->osid, &ctx, &len)) { 847 audit_log_format(ab, " osid=%u", 848 axi->osid); 849 call_panic = 1; 850 } else 851 audit_log_format(ab, " obj=%s", ctx); 852 kfree(ctx); 853 } 854 break; } 855 856 case AUDIT_IPC_SET_PERM: { 857 struct audit_aux_data_ipcctl *axi = (void *)aux; 858 audit_log_format(ab, 859 "qbytes=%lx ouid=%u ogid=%u mode=%x", 860 axi->qbytes, axi->uid, axi->gid, axi->mode); 861 break; } 862 863 case AUDIT_EXECVE: { 864 struct audit_aux_data_execve *axi = (void *)aux; 865 int i; 866 const char *p; 867 for (i = 0, p = axi->mem; i < axi->argc; i++) { 868 audit_log_format(ab, "a%d=", i); 869 p = audit_log_untrustedstring(ab, p); 870 audit_log_format(ab, "\n"); 871 } 872 break; } 873 874 case AUDIT_SOCKETCALL: { 875 int i; 876 struct audit_aux_data_socketcall *axs = (void *)aux; 877 audit_log_format(ab, "nargs=%d", axs->nargs); 878 for (i=0; i<axs->nargs; i++) 879 audit_log_format(ab, " a%d=%lx", i, axs->args[i]); 880 break; } 881 882 case AUDIT_SOCKADDR: { 883 struct audit_aux_data_sockaddr *axs = (void *)aux; 884 885 audit_log_format(ab, "saddr="); 886 audit_log_hex(ab, axs->a, axs->len); 887 break; } 888 889 case AUDIT_AVC_PATH: { 890 struct audit_aux_data_path *axi = (void *)aux; 891 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt); 892 break; } 893 894 } 895 audit_log_end(ab); 896 } 897 898 if (context->pwd && context->pwdmnt) { 899 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 900 if (ab) { 901 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt); 902 audit_log_end(ab); 903 } 904 } 905 for (i = 0; i < context->name_count; i++) { 906 struct audit_names *n = &context->names[i]; 907 908 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 909 if (!ab) 910 continue; /* audit_panic has been called */ 911 912 audit_log_format(ab, "item=%d", i); 913 914 if (n->name) { 915 switch(n->name_len) { 916 case AUDIT_NAME_FULL: 917 /* log the full path */ 918 audit_log_format(ab, " name="); 919 audit_log_untrustedstring(ab, n->name); 920 break; 921 case 0: 922 /* name was specified as a relative path and the 923 * directory component is the cwd */ 924 audit_log_d_path(ab, " name=", context->pwd, 925 context->pwdmnt); 926 break; 927 default: 928 /* log the name's directory component */ 929 audit_log_format(ab, " name="); 930 audit_log_n_untrustedstring(ab, n->name_len, 931 n->name); 932 } 933 } else 934 audit_log_format(ab, " name=(null)"); 935 936 if (n->ino != (unsigned long)-1) { 937 audit_log_format(ab, " inode=%lu" 938 " dev=%02x:%02x mode=%#o" 939 " ouid=%u ogid=%u rdev=%02x:%02x", 940 n->ino, 941 MAJOR(n->dev), 942 MINOR(n->dev), 943 n->mode, 944 n->uid, 945 n->gid, 946 MAJOR(n->rdev), 947 MINOR(n->rdev)); 948 } 949 if (n->osid != 0) { 950 char *ctx = NULL; 951 u32 len; 952 if (selinux_ctxid_to_string( 953 n->osid, &ctx, &len)) { 954 audit_log_format(ab, " osid=%u", n->osid); 955 call_panic = 2; 956 } else 957 audit_log_format(ab, " obj=%s", ctx); 958 kfree(ctx); 959 } 960 961 audit_log_end(ab); 962 } 963 if (call_panic) 964 audit_panic("error converting sid to string"); 965 } 966 967 /** 968 * audit_free - free a per-task audit context 969 * @tsk: task whose audit context block to free 970 * 971 * Called from copy_process and do_exit 972 */ 973 void audit_free(struct task_struct *tsk) 974 { 975 struct audit_context *context; 976 977 context = audit_get_context(tsk, 0, 0); 978 if (likely(!context)) 979 return; 980 981 /* Check for system calls that do not go through the exit 982 * function (e.g., exit_group), then free context block. 983 * We use GFP_ATOMIC here because we might be doing this 984 * in the context of the idle thread */ 985 /* that can happen only if we are called from do_exit() */ 986 if (context->in_syscall && context->auditable) 987 audit_log_exit(context, tsk); 988 989 audit_free_context(context); 990 } 991 992 /** 993 * audit_syscall_entry - fill in an audit record at syscall entry 994 * @tsk: task being audited 995 * @arch: architecture type 996 * @major: major syscall type (function) 997 * @a1: additional syscall register 1 998 * @a2: additional syscall register 2 999 * @a3: additional syscall register 3 1000 * @a4: additional syscall register 4 1001 * 1002 * Fill in audit context at syscall entry. This only happens if the 1003 * audit context was created when the task was created and the state or 1004 * filters demand the audit context be built. If the state from the 1005 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1006 * then the record will be written at syscall exit time (otherwise, it 1007 * will only be written if another part of the kernel requests that it 1008 * be written). 1009 */ 1010 void audit_syscall_entry(int arch, int major, 1011 unsigned long a1, unsigned long a2, 1012 unsigned long a3, unsigned long a4) 1013 { 1014 struct task_struct *tsk = current; 1015 struct audit_context *context = tsk->audit_context; 1016 enum audit_state state; 1017 1018 BUG_ON(!context); 1019 1020 /* 1021 * This happens only on certain architectures that make system 1022 * calls in kernel_thread via the entry.S interface, instead of 1023 * with direct calls. (If you are porting to a new 1024 * architecture, hitting this condition can indicate that you 1025 * got the _exit/_leave calls backward in entry.S.) 1026 * 1027 * i386 no 1028 * x86_64 no 1029 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1030 * 1031 * This also happens with vm86 emulation in a non-nested manner 1032 * (entries without exits), so this case must be caught. 1033 */ 1034 if (context->in_syscall) { 1035 struct audit_context *newctx; 1036 1037 #if AUDIT_DEBUG 1038 printk(KERN_ERR 1039 "audit(:%d) pid=%d in syscall=%d;" 1040 " entering syscall=%d\n", 1041 context->serial, tsk->pid, context->major, major); 1042 #endif 1043 newctx = audit_alloc_context(context->state); 1044 if (newctx) { 1045 newctx->previous = context; 1046 context = newctx; 1047 tsk->audit_context = newctx; 1048 } else { 1049 /* If we can't alloc a new context, the best we 1050 * can do is to leak memory (any pending putname 1051 * will be lost). The only other alternative is 1052 * to abandon auditing. */ 1053 audit_zero_context(context, context->state); 1054 } 1055 } 1056 BUG_ON(context->in_syscall || context->name_count); 1057 1058 if (!audit_enabled) 1059 return; 1060 1061 context->arch = arch; 1062 context->major = major; 1063 context->argv[0] = a1; 1064 context->argv[1] = a2; 1065 context->argv[2] = a3; 1066 context->argv[3] = a4; 1067 1068 state = context->state; 1069 if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT) 1070 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1071 if (likely(state == AUDIT_DISABLED)) 1072 return; 1073 1074 context->serial = 0; 1075 context->ctime = CURRENT_TIME; 1076 context->in_syscall = 1; 1077 context->auditable = !!(state == AUDIT_RECORD_CONTEXT); 1078 } 1079 1080 /** 1081 * audit_syscall_exit - deallocate audit context after a system call 1082 * @tsk: task being audited 1083 * @valid: success/failure flag 1084 * @return_code: syscall return value 1085 * 1086 * Tear down after system call. If the audit context has been marked as 1087 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1088 * filtering, or because some other part of the kernel write an audit 1089 * message), then write out the syscall information. In call cases, 1090 * free the names stored from getname(). 1091 */ 1092 void audit_syscall_exit(int valid, long return_code) 1093 { 1094 struct task_struct *tsk = current; 1095 struct audit_context *context; 1096 1097 context = audit_get_context(tsk, valid, return_code); 1098 1099 if (likely(!context)) 1100 return; 1101 1102 if (context->in_syscall && context->auditable) 1103 audit_log_exit(context, tsk); 1104 1105 context->in_syscall = 0; 1106 context->auditable = 0; 1107 1108 if (context->previous) { 1109 struct audit_context *new_context = context->previous; 1110 context->previous = NULL; 1111 audit_free_context(context); 1112 tsk->audit_context = new_context; 1113 } else { 1114 audit_free_names(context); 1115 audit_free_aux(context); 1116 kfree(context->filterkey); 1117 context->filterkey = NULL; 1118 tsk->audit_context = context; 1119 } 1120 } 1121 1122 /** 1123 * audit_getname - add a name to the list 1124 * @name: name to add 1125 * 1126 * Add a name to the list of audit names for this context. 1127 * Called from fs/namei.c:getname(). 1128 */ 1129 void __audit_getname(const char *name) 1130 { 1131 struct audit_context *context = current->audit_context; 1132 1133 if (IS_ERR(name) || !name) 1134 return; 1135 1136 if (!context->in_syscall) { 1137 #if AUDIT_DEBUG == 2 1138 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 1139 __FILE__, __LINE__, context->serial, name); 1140 dump_stack(); 1141 #endif 1142 return; 1143 } 1144 BUG_ON(context->name_count >= AUDIT_NAMES); 1145 context->names[context->name_count].name = name; 1146 context->names[context->name_count].name_len = AUDIT_NAME_FULL; 1147 context->names[context->name_count].name_put = 1; 1148 context->names[context->name_count].ino = (unsigned long)-1; 1149 ++context->name_count; 1150 if (!context->pwd) { 1151 read_lock(¤t->fs->lock); 1152 context->pwd = dget(current->fs->pwd); 1153 context->pwdmnt = mntget(current->fs->pwdmnt); 1154 read_unlock(¤t->fs->lock); 1155 } 1156 1157 } 1158 1159 /* audit_putname - intercept a putname request 1160 * @name: name to intercept and delay for putname 1161 * 1162 * If we have stored the name from getname in the audit context, 1163 * then we delay the putname until syscall exit. 1164 * Called from include/linux/fs.h:putname(). 1165 */ 1166 void audit_putname(const char *name) 1167 { 1168 struct audit_context *context = current->audit_context; 1169 1170 BUG_ON(!context); 1171 if (!context->in_syscall) { 1172 #if AUDIT_DEBUG == 2 1173 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 1174 __FILE__, __LINE__, context->serial, name); 1175 if (context->name_count) { 1176 int i; 1177 for (i = 0; i < context->name_count; i++) 1178 printk(KERN_ERR "name[%d] = %p = %s\n", i, 1179 context->names[i].name, 1180 context->names[i].name ?: "(null)"); 1181 } 1182 #endif 1183 __putname(name); 1184 } 1185 #if AUDIT_DEBUG 1186 else { 1187 ++context->put_count; 1188 if (context->put_count > context->name_count) { 1189 printk(KERN_ERR "%s:%d(:%d): major=%d" 1190 " in_syscall=%d putname(%p) name_count=%d" 1191 " put_count=%d\n", 1192 __FILE__, __LINE__, 1193 context->serial, context->major, 1194 context->in_syscall, name, context->name_count, 1195 context->put_count); 1196 dump_stack(); 1197 } 1198 } 1199 #endif 1200 } 1201 1202 static void audit_inode_context(int idx, const struct inode *inode) 1203 { 1204 struct audit_context *context = current->audit_context; 1205 1206 selinux_get_inode_sid(inode, &context->names[idx].osid); 1207 } 1208 1209 1210 /** 1211 * audit_inode - store the inode and device from a lookup 1212 * @name: name being audited 1213 * @inode: inode being audited 1214 * 1215 * Called from fs/namei.c:path_lookup(). 1216 */ 1217 void __audit_inode(const char *name, const struct inode *inode) 1218 { 1219 int idx; 1220 struct audit_context *context = current->audit_context; 1221 1222 if (!context->in_syscall) 1223 return; 1224 if (context->name_count 1225 && context->names[context->name_count-1].name 1226 && context->names[context->name_count-1].name == name) 1227 idx = context->name_count - 1; 1228 else if (context->name_count > 1 1229 && context->names[context->name_count-2].name 1230 && context->names[context->name_count-2].name == name) 1231 idx = context->name_count - 2; 1232 else { 1233 /* FIXME: how much do we care about inodes that have no 1234 * associated name? */ 1235 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED) 1236 return; 1237 idx = context->name_count++; 1238 context->names[idx].name = NULL; 1239 #if AUDIT_DEBUG 1240 ++context->ino_count; 1241 #endif 1242 } 1243 context->names[idx].ino = inode->i_ino; 1244 context->names[idx].dev = inode->i_sb->s_dev; 1245 context->names[idx].mode = inode->i_mode; 1246 context->names[idx].uid = inode->i_uid; 1247 context->names[idx].gid = inode->i_gid; 1248 context->names[idx].rdev = inode->i_rdev; 1249 audit_inode_context(idx, inode); 1250 } 1251 1252 /** 1253 * audit_inode_child - collect inode info for created/removed objects 1254 * @dname: inode's dentry name 1255 * @inode: inode being audited 1256 * @pino: inode number of dentry parent 1257 * 1258 * For syscalls that create or remove filesystem objects, audit_inode 1259 * can only collect information for the filesystem object's parent. 1260 * This call updates the audit context with the child's information. 1261 * Syscalls that create a new filesystem object must be hooked after 1262 * the object is created. Syscalls that remove a filesystem object 1263 * must be hooked prior, in order to capture the target inode during 1264 * unsuccessful attempts. 1265 */ 1266 void __audit_inode_child(const char *dname, const struct inode *inode, 1267 unsigned long pino) 1268 { 1269 int idx; 1270 struct audit_context *context = current->audit_context; 1271 const char *found_name = NULL; 1272 int dirlen = 0; 1273 1274 if (!context->in_syscall) 1275 return; 1276 1277 /* determine matching parent */ 1278 if (!dname) 1279 goto update_context; 1280 for (idx = 0; idx < context->name_count; idx++) 1281 if (context->names[idx].ino == pino) { 1282 const char *name = context->names[idx].name; 1283 1284 if (!name) 1285 continue; 1286 1287 if (audit_compare_dname_path(dname, name, &dirlen) == 0) { 1288 context->names[idx].name_len = dirlen; 1289 found_name = name; 1290 break; 1291 } 1292 } 1293 1294 update_context: 1295 idx = context->name_count++; 1296 #if AUDIT_DEBUG 1297 context->ino_count++; 1298 #endif 1299 /* Re-use the name belonging to the slot for a matching parent directory. 1300 * All names for this context are relinquished in audit_free_names() */ 1301 context->names[idx].name = found_name; 1302 context->names[idx].name_len = AUDIT_NAME_FULL; 1303 context->names[idx].name_put = 0; /* don't call __putname() */ 1304 1305 if (inode) { 1306 context->names[idx].ino = inode->i_ino; 1307 context->names[idx].dev = inode->i_sb->s_dev; 1308 context->names[idx].mode = inode->i_mode; 1309 context->names[idx].uid = inode->i_uid; 1310 context->names[idx].gid = inode->i_gid; 1311 context->names[idx].rdev = inode->i_rdev; 1312 audit_inode_context(idx, inode); 1313 } else 1314 context->names[idx].ino = (unsigned long)-1; 1315 } 1316 1317 /** 1318 * auditsc_get_stamp - get local copies of audit_context values 1319 * @ctx: audit_context for the task 1320 * @t: timespec to store time recorded in the audit_context 1321 * @serial: serial value that is recorded in the audit_context 1322 * 1323 * Also sets the context as auditable. 1324 */ 1325 void auditsc_get_stamp(struct audit_context *ctx, 1326 struct timespec *t, unsigned int *serial) 1327 { 1328 if (!ctx->serial) 1329 ctx->serial = audit_serial(); 1330 t->tv_sec = ctx->ctime.tv_sec; 1331 t->tv_nsec = ctx->ctime.tv_nsec; 1332 *serial = ctx->serial; 1333 ctx->auditable = 1; 1334 } 1335 1336 /** 1337 * audit_set_loginuid - set a task's audit_context loginuid 1338 * @task: task whose audit context is being modified 1339 * @loginuid: loginuid value 1340 * 1341 * Returns 0. 1342 * 1343 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 1344 */ 1345 int audit_set_loginuid(struct task_struct *task, uid_t loginuid) 1346 { 1347 struct audit_context *context = task->audit_context; 1348 1349 if (context) { 1350 /* Only log if audit is enabled */ 1351 if (context->in_syscall) { 1352 struct audit_buffer *ab; 1353 1354 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1355 if (ab) { 1356 audit_log_format(ab, "login pid=%d uid=%u " 1357 "old auid=%u new auid=%u", 1358 task->pid, task->uid, 1359 context->loginuid, loginuid); 1360 audit_log_end(ab); 1361 } 1362 } 1363 context->loginuid = loginuid; 1364 } 1365 return 0; 1366 } 1367 1368 /** 1369 * audit_get_loginuid - get the loginuid for an audit_context 1370 * @ctx: the audit_context 1371 * 1372 * Returns the context's loginuid or -1 if @ctx is NULL. 1373 */ 1374 uid_t audit_get_loginuid(struct audit_context *ctx) 1375 { 1376 return ctx ? ctx->loginuid : -1; 1377 } 1378 1379 /** 1380 * __audit_mq_open - record audit data for a POSIX MQ open 1381 * @oflag: open flag 1382 * @mode: mode bits 1383 * @u_attr: queue attributes 1384 * 1385 * Returns 0 for success or NULL context or < 0 on error. 1386 */ 1387 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr) 1388 { 1389 struct audit_aux_data_mq_open *ax; 1390 struct audit_context *context = current->audit_context; 1391 1392 if (!audit_enabled) 1393 return 0; 1394 1395 if (likely(!context)) 1396 return 0; 1397 1398 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1399 if (!ax) 1400 return -ENOMEM; 1401 1402 if (u_attr != NULL) { 1403 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) { 1404 kfree(ax); 1405 return -EFAULT; 1406 } 1407 } else 1408 memset(&ax->attr, 0, sizeof(ax->attr)); 1409 1410 ax->oflag = oflag; 1411 ax->mode = mode; 1412 1413 ax->d.type = AUDIT_MQ_OPEN; 1414 ax->d.next = context->aux; 1415 context->aux = (void *)ax; 1416 return 0; 1417 } 1418 1419 /** 1420 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send 1421 * @mqdes: MQ descriptor 1422 * @msg_len: Message length 1423 * @msg_prio: Message priority 1424 * @u_abs_timeout: Message timeout in absolute time 1425 * 1426 * Returns 0 for success or NULL context or < 0 on error. 1427 */ 1428 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 1429 const struct timespec __user *u_abs_timeout) 1430 { 1431 struct audit_aux_data_mq_sendrecv *ax; 1432 struct audit_context *context = current->audit_context; 1433 1434 if (!audit_enabled) 1435 return 0; 1436 1437 if (likely(!context)) 1438 return 0; 1439 1440 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1441 if (!ax) 1442 return -ENOMEM; 1443 1444 if (u_abs_timeout != NULL) { 1445 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) { 1446 kfree(ax); 1447 return -EFAULT; 1448 } 1449 } else 1450 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout)); 1451 1452 ax->mqdes = mqdes; 1453 ax->msg_len = msg_len; 1454 ax->msg_prio = msg_prio; 1455 1456 ax->d.type = AUDIT_MQ_SENDRECV; 1457 ax->d.next = context->aux; 1458 context->aux = (void *)ax; 1459 return 0; 1460 } 1461 1462 /** 1463 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive 1464 * @mqdes: MQ descriptor 1465 * @msg_len: Message length 1466 * @u_msg_prio: Message priority 1467 * @u_abs_timeout: Message timeout in absolute time 1468 * 1469 * Returns 0 for success or NULL context or < 0 on error. 1470 */ 1471 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len, 1472 unsigned int __user *u_msg_prio, 1473 const struct timespec __user *u_abs_timeout) 1474 { 1475 struct audit_aux_data_mq_sendrecv *ax; 1476 struct audit_context *context = current->audit_context; 1477 1478 if (!audit_enabled) 1479 return 0; 1480 1481 if (likely(!context)) 1482 return 0; 1483 1484 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1485 if (!ax) 1486 return -ENOMEM; 1487 1488 if (u_msg_prio != NULL) { 1489 if (get_user(ax->msg_prio, u_msg_prio)) { 1490 kfree(ax); 1491 return -EFAULT; 1492 } 1493 } else 1494 ax->msg_prio = 0; 1495 1496 if (u_abs_timeout != NULL) { 1497 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) { 1498 kfree(ax); 1499 return -EFAULT; 1500 } 1501 } else 1502 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout)); 1503 1504 ax->mqdes = mqdes; 1505 ax->msg_len = msg_len; 1506 1507 ax->d.type = AUDIT_MQ_SENDRECV; 1508 ax->d.next = context->aux; 1509 context->aux = (void *)ax; 1510 return 0; 1511 } 1512 1513 /** 1514 * __audit_mq_notify - record audit data for a POSIX MQ notify 1515 * @mqdes: MQ descriptor 1516 * @u_notification: Notification event 1517 * 1518 * Returns 0 for success or NULL context or < 0 on error. 1519 */ 1520 1521 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification) 1522 { 1523 struct audit_aux_data_mq_notify *ax; 1524 struct audit_context *context = current->audit_context; 1525 1526 if (!audit_enabled) 1527 return 0; 1528 1529 if (likely(!context)) 1530 return 0; 1531 1532 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1533 if (!ax) 1534 return -ENOMEM; 1535 1536 if (u_notification != NULL) { 1537 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) { 1538 kfree(ax); 1539 return -EFAULT; 1540 } 1541 } else 1542 memset(&ax->notification, 0, sizeof(ax->notification)); 1543 1544 ax->mqdes = mqdes; 1545 1546 ax->d.type = AUDIT_MQ_NOTIFY; 1547 ax->d.next = context->aux; 1548 context->aux = (void *)ax; 1549 return 0; 1550 } 1551 1552 /** 1553 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 1554 * @mqdes: MQ descriptor 1555 * @mqstat: MQ flags 1556 * 1557 * Returns 0 for success or NULL context or < 0 on error. 1558 */ 1559 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 1560 { 1561 struct audit_aux_data_mq_getsetattr *ax; 1562 struct audit_context *context = current->audit_context; 1563 1564 if (!audit_enabled) 1565 return 0; 1566 1567 if (likely(!context)) 1568 return 0; 1569 1570 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1571 if (!ax) 1572 return -ENOMEM; 1573 1574 ax->mqdes = mqdes; 1575 ax->mqstat = *mqstat; 1576 1577 ax->d.type = AUDIT_MQ_GETSETATTR; 1578 ax->d.next = context->aux; 1579 context->aux = (void *)ax; 1580 return 0; 1581 } 1582 1583 /** 1584 * audit_ipc_obj - record audit data for ipc object 1585 * @ipcp: ipc permissions 1586 * 1587 * Returns 0 for success or NULL context or < 0 on error. 1588 */ 1589 int __audit_ipc_obj(struct kern_ipc_perm *ipcp) 1590 { 1591 struct audit_aux_data_ipcctl *ax; 1592 struct audit_context *context = current->audit_context; 1593 1594 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1595 if (!ax) 1596 return -ENOMEM; 1597 1598 ax->uid = ipcp->uid; 1599 ax->gid = ipcp->gid; 1600 ax->mode = ipcp->mode; 1601 selinux_get_ipc_sid(ipcp, &ax->osid); 1602 1603 ax->d.type = AUDIT_IPC; 1604 ax->d.next = context->aux; 1605 context->aux = (void *)ax; 1606 return 0; 1607 } 1608 1609 /** 1610 * audit_ipc_set_perm - record audit data for new ipc permissions 1611 * @qbytes: msgq bytes 1612 * @uid: msgq user id 1613 * @gid: msgq group id 1614 * @mode: msgq mode (permissions) 1615 * 1616 * Returns 0 for success or NULL context or < 0 on error. 1617 */ 1618 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 1619 { 1620 struct audit_aux_data_ipcctl *ax; 1621 struct audit_context *context = current->audit_context; 1622 1623 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1624 if (!ax) 1625 return -ENOMEM; 1626 1627 ax->qbytes = qbytes; 1628 ax->uid = uid; 1629 ax->gid = gid; 1630 ax->mode = mode; 1631 1632 ax->d.type = AUDIT_IPC_SET_PERM; 1633 ax->d.next = context->aux; 1634 context->aux = (void *)ax; 1635 return 0; 1636 } 1637 1638 int audit_bprm(struct linux_binprm *bprm) 1639 { 1640 struct audit_aux_data_execve *ax; 1641 struct audit_context *context = current->audit_context; 1642 unsigned long p, next; 1643 void *to; 1644 1645 if (likely(!audit_enabled || !context)) 1646 return 0; 1647 1648 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p, 1649 GFP_KERNEL); 1650 if (!ax) 1651 return -ENOMEM; 1652 1653 ax->argc = bprm->argc; 1654 ax->envc = bprm->envc; 1655 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) { 1656 struct page *page = bprm->page[p / PAGE_SIZE]; 1657 void *kaddr = kmap(page); 1658 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1); 1659 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p); 1660 to += next - p; 1661 kunmap(page); 1662 } 1663 1664 ax->d.type = AUDIT_EXECVE; 1665 ax->d.next = context->aux; 1666 context->aux = (void *)ax; 1667 return 0; 1668 } 1669 1670 1671 /** 1672 * audit_socketcall - record audit data for sys_socketcall 1673 * @nargs: number of args 1674 * @args: args array 1675 * 1676 * Returns 0 for success or NULL context or < 0 on error. 1677 */ 1678 int audit_socketcall(int nargs, unsigned long *args) 1679 { 1680 struct audit_aux_data_socketcall *ax; 1681 struct audit_context *context = current->audit_context; 1682 1683 if (likely(!context)) 1684 return 0; 1685 1686 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL); 1687 if (!ax) 1688 return -ENOMEM; 1689 1690 ax->nargs = nargs; 1691 memcpy(ax->args, args, nargs * sizeof(unsigned long)); 1692 1693 ax->d.type = AUDIT_SOCKETCALL; 1694 ax->d.next = context->aux; 1695 context->aux = (void *)ax; 1696 return 0; 1697 } 1698 1699 /** 1700 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 1701 * @len: data length in user space 1702 * @a: data address in kernel space 1703 * 1704 * Returns 0 for success or NULL context or < 0 on error. 1705 */ 1706 int audit_sockaddr(int len, void *a) 1707 { 1708 struct audit_aux_data_sockaddr *ax; 1709 struct audit_context *context = current->audit_context; 1710 1711 if (likely(!context)) 1712 return 0; 1713 1714 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL); 1715 if (!ax) 1716 return -ENOMEM; 1717 1718 ax->len = len; 1719 memcpy(ax->a, a, len); 1720 1721 ax->d.type = AUDIT_SOCKADDR; 1722 ax->d.next = context->aux; 1723 context->aux = (void *)ax; 1724 return 0; 1725 } 1726 1727 /** 1728 * audit_avc_path - record the granting or denial of permissions 1729 * @dentry: dentry to record 1730 * @mnt: mnt to record 1731 * 1732 * Returns 0 for success or NULL context or < 0 on error. 1733 * 1734 * Called from security/selinux/avc.c::avc_audit() 1735 */ 1736 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt) 1737 { 1738 struct audit_aux_data_path *ax; 1739 struct audit_context *context = current->audit_context; 1740 1741 if (likely(!context)) 1742 return 0; 1743 1744 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1745 if (!ax) 1746 return -ENOMEM; 1747 1748 ax->dentry = dget(dentry); 1749 ax->mnt = mntget(mnt); 1750 1751 ax->d.type = AUDIT_AVC_PATH; 1752 ax->d.next = context->aux; 1753 context->aux = (void *)ax; 1754 return 0; 1755 } 1756 1757 /** 1758 * audit_signal_info - record signal info for shutting down audit subsystem 1759 * @sig: signal value 1760 * @t: task being signaled 1761 * 1762 * If the audit subsystem is being terminated, record the task (pid) 1763 * and uid that is doing that. 1764 */ 1765 void __audit_signal_info(int sig, struct task_struct *t) 1766 { 1767 extern pid_t audit_sig_pid; 1768 extern uid_t audit_sig_uid; 1769 extern u32 audit_sig_sid; 1770 1771 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) { 1772 struct task_struct *tsk = current; 1773 struct audit_context *ctx = tsk->audit_context; 1774 audit_sig_pid = tsk->pid; 1775 if (ctx) 1776 audit_sig_uid = ctx->loginuid; 1777 else 1778 audit_sig_uid = tsk->uid; 1779 selinux_get_task_sid(tsk, &audit_sig_sid); 1780 } 1781 } 1782