xref: /linux/kernel/auditsc.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/syscalls.h>
68 
69 #include "audit.h"
70 
71 extern struct list_head audit_filter_list[];
72 
73 /* No syscall auditing will take place unless audit_enabled != 0. */
74 extern int audit_enabled;
75 
76 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
77  * for saving names from getname(). */
78 #define AUDIT_NAMES    20
79 
80 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
81  * audit_context from being used for nameless inodes from
82  * path_lookup. */
83 #define AUDIT_NAMES_RESERVED 7
84 
85 /* Indicates that audit should log the full pathname. */
86 #define AUDIT_NAME_FULL -1
87 
88 /* When fs/namei.c:getname() is called, we store the pointer in name and
89  * we don't let putname() free it (instead we free all of the saved
90  * pointers at syscall exit time).
91  *
92  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
93 struct audit_names {
94 	const char	*name;
95 	int		name_len;	/* number of name's characters to log */
96 	unsigned	name_put;	/* call __putname() for this name */
97 	unsigned long	ino;
98 	dev_t		dev;
99 	umode_t		mode;
100 	uid_t		uid;
101 	gid_t		gid;
102 	dev_t		rdev;
103 	u32		osid;
104 };
105 
106 struct audit_aux_data {
107 	struct audit_aux_data	*next;
108 	int			type;
109 };
110 
111 #define AUDIT_AUX_IPCPERM	0
112 
113 struct audit_aux_data_mq_open {
114 	struct audit_aux_data	d;
115 	int			oflag;
116 	mode_t			mode;
117 	struct mq_attr		attr;
118 };
119 
120 struct audit_aux_data_mq_sendrecv {
121 	struct audit_aux_data	d;
122 	mqd_t			mqdes;
123 	size_t			msg_len;
124 	unsigned int		msg_prio;
125 	struct timespec		abs_timeout;
126 };
127 
128 struct audit_aux_data_mq_notify {
129 	struct audit_aux_data	d;
130 	mqd_t			mqdes;
131 	struct sigevent 	notification;
132 };
133 
134 struct audit_aux_data_mq_getsetattr {
135 	struct audit_aux_data	d;
136 	mqd_t			mqdes;
137 	struct mq_attr 		mqstat;
138 };
139 
140 struct audit_aux_data_ipcctl {
141 	struct audit_aux_data	d;
142 	struct ipc_perm		p;
143 	unsigned long		qbytes;
144 	uid_t			uid;
145 	gid_t			gid;
146 	mode_t			mode;
147 	u32			osid;
148 };
149 
150 struct audit_aux_data_execve {
151 	struct audit_aux_data	d;
152 	int argc;
153 	int envc;
154 	char mem[0];
155 };
156 
157 struct audit_aux_data_socketcall {
158 	struct audit_aux_data	d;
159 	int			nargs;
160 	unsigned long		args[0];
161 };
162 
163 struct audit_aux_data_sockaddr {
164 	struct audit_aux_data	d;
165 	int			len;
166 	char			a[0];
167 };
168 
169 struct audit_aux_data_path {
170 	struct audit_aux_data	d;
171 	struct dentry		*dentry;
172 	struct vfsmount		*mnt;
173 };
174 
175 /* The per-task audit context. */
176 struct audit_context {
177 	int		    in_syscall;	/* 1 if task is in a syscall */
178 	enum audit_state    state;
179 	unsigned int	    serial;     /* serial number for record */
180 	struct timespec	    ctime;      /* time of syscall entry */
181 	uid_t		    loginuid;   /* login uid (identity) */
182 	int		    major;      /* syscall number */
183 	unsigned long	    argv[4];    /* syscall arguments */
184 	int		    return_valid; /* return code is valid */
185 	long		    return_code;/* syscall return code */
186 	int		    auditable;  /* 1 if record should be written */
187 	int		    name_count;
188 	struct audit_names  names[AUDIT_NAMES];
189 	char *		    filterkey;	/* key for rule that triggered record */
190 	struct dentry *	    pwd;
191 	struct vfsmount *   pwdmnt;
192 	struct audit_context *previous; /* For nested syscalls */
193 	struct audit_aux_data *aux;
194 
195 				/* Save things to print about task_struct */
196 	pid_t		    pid, ppid;
197 	uid_t		    uid, euid, suid, fsuid;
198 	gid_t		    gid, egid, sgid, fsgid;
199 	unsigned long	    personality;
200 	int		    arch;
201 
202 #if AUDIT_DEBUG
203 	int		    put_count;
204 	int		    ino_count;
205 #endif
206 };
207 
208 /* Determine if any context name data matches a rule's watch data */
209 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
210  * otherwise. */
211 static int audit_filter_rules(struct task_struct *tsk,
212 			      struct audit_krule *rule,
213 			      struct audit_context *ctx,
214 			      struct audit_names *name,
215 			      enum audit_state *state)
216 {
217 	int i, j, need_sid = 1;
218 	u32 sid;
219 
220 	for (i = 0; i < rule->field_count; i++) {
221 		struct audit_field *f = &rule->fields[i];
222 		int result = 0;
223 
224 		switch (f->type) {
225 		case AUDIT_PID:
226 			result = audit_comparator(tsk->pid, f->op, f->val);
227 			break;
228 		case AUDIT_PPID:
229 			if (ctx)
230 				result = audit_comparator(ctx->ppid, f->op, f->val);
231 			break;
232 		case AUDIT_UID:
233 			result = audit_comparator(tsk->uid, f->op, f->val);
234 			break;
235 		case AUDIT_EUID:
236 			result = audit_comparator(tsk->euid, f->op, f->val);
237 			break;
238 		case AUDIT_SUID:
239 			result = audit_comparator(tsk->suid, f->op, f->val);
240 			break;
241 		case AUDIT_FSUID:
242 			result = audit_comparator(tsk->fsuid, f->op, f->val);
243 			break;
244 		case AUDIT_GID:
245 			result = audit_comparator(tsk->gid, f->op, f->val);
246 			break;
247 		case AUDIT_EGID:
248 			result = audit_comparator(tsk->egid, f->op, f->val);
249 			break;
250 		case AUDIT_SGID:
251 			result = audit_comparator(tsk->sgid, f->op, f->val);
252 			break;
253 		case AUDIT_FSGID:
254 			result = audit_comparator(tsk->fsgid, f->op, f->val);
255 			break;
256 		case AUDIT_PERS:
257 			result = audit_comparator(tsk->personality, f->op, f->val);
258 			break;
259 		case AUDIT_ARCH:
260  			if (ctx)
261 				result = audit_comparator(ctx->arch, f->op, f->val);
262 			break;
263 
264 		case AUDIT_EXIT:
265 			if (ctx && ctx->return_valid)
266 				result = audit_comparator(ctx->return_code, f->op, f->val);
267 			break;
268 		case AUDIT_SUCCESS:
269 			if (ctx && ctx->return_valid) {
270 				if (f->val)
271 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
272 				else
273 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
274 			}
275 			break;
276 		case AUDIT_DEVMAJOR:
277 			if (name)
278 				result = audit_comparator(MAJOR(name->dev),
279 							  f->op, f->val);
280 			else if (ctx) {
281 				for (j = 0; j < ctx->name_count; j++) {
282 					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
283 						++result;
284 						break;
285 					}
286 				}
287 			}
288 			break;
289 		case AUDIT_DEVMINOR:
290 			if (name)
291 				result = audit_comparator(MINOR(name->dev),
292 							  f->op, f->val);
293 			else if (ctx) {
294 				for (j = 0; j < ctx->name_count; j++) {
295 					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
296 						++result;
297 						break;
298 					}
299 				}
300 			}
301 			break;
302 		case AUDIT_INODE:
303 			if (name)
304 				result = (name->ino == f->val);
305 			else if (ctx) {
306 				for (j = 0; j < ctx->name_count; j++) {
307 					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
308 						++result;
309 						break;
310 					}
311 				}
312 			}
313 			break;
314 		case AUDIT_WATCH:
315 			if (name && rule->watch->ino != (unsigned long)-1)
316 				result = (name->dev == rule->watch->dev &&
317 					  name->ino == rule->watch->ino);
318 			break;
319 		case AUDIT_LOGINUID:
320 			result = 0;
321 			if (ctx)
322 				result = audit_comparator(ctx->loginuid, f->op, f->val);
323 			break;
324 		case AUDIT_SUBJ_USER:
325 		case AUDIT_SUBJ_ROLE:
326 		case AUDIT_SUBJ_TYPE:
327 		case AUDIT_SUBJ_SEN:
328 		case AUDIT_SUBJ_CLR:
329 			/* NOTE: this may return negative values indicating
330 			   a temporary error.  We simply treat this as a
331 			   match for now to avoid losing information that
332 			   may be wanted.   An error message will also be
333 			   logged upon error */
334 			if (f->se_rule) {
335 				if (need_sid) {
336 					selinux_task_ctxid(tsk, &sid);
337 					need_sid = 0;
338 				}
339 				result = selinux_audit_rule_match(sid, f->type,
340 				                                  f->op,
341 				                                  f->se_rule,
342 				                                  ctx);
343 			}
344 			break;
345 		case AUDIT_OBJ_USER:
346 		case AUDIT_OBJ_ROLE:
347 		case AUDIT_OBJ_TYPE:
348 		case AUDIT_OBJ_LEV_LOW:
349 		case AUDIT_OBJ_LEV_HIGH:
350 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
351 			   also applies here */
352 			if (f->se_rule) {
353 				/* Find files that match */
354 				if (name) {
355 					result = selinux_audit_rule_match(
356 					           name->osid, f->type, f->op,
357 					           f->se_rule, ctx);
358 				} else if (ctx) {
359 					for (j = 0; j < ctx->name_count; j++) {
360 						if (selinux_audit_rule_match(
361 						      ctx->names[j].osid,
362 						      f->type, f->op,
363 						      f->se_rule, ctx)) {
364 							++result;
365 							break;
366 						}
367 					}
368 				}
369 				/* Find ipc objects that match */
370 				if (ctx) {
371 					struct audit_aux_data *aux;
372 					for (aux = ctx->aux; aux;
373 					     aux = aux->next) {
374 						if (aux->type == AUDIT_IPC) {
375 							struct audit_aux_data_ipcctl *axi = (void *)aux;
376 							if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
377 								++result;
378 								break;
379 							}
380 						}
381 					}
382 				}
383 			}
384 			break;
385 		case AUDIT_ARG0:
386 		case AUDIT_ARG1:
387 		case AUDIT_ARG2:
388 		case AUDIT_ARG3:
389 			if (ctx)
390 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
391 			break;
392 		case AUDIT_FILTERKEY:
393 			/* ignore this field for filtering */
394 			result = 1;
395 			break;
396 		}
397 
398 		if (!result)
399 			return 0;
400 	}
401 	if (rule->filterkey)
402 		ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
403 	switch (rule->action) {
404 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
405 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
406 	}
407 	return 1;
408 }
409 
410 /* At process creation time, we can determine if system-call auditing is
411  * completely disabled for this task.  Since we only have the task
412  * structure at this point, we can only check uid and gid.
413  */
414 static enum audit_state audit_filter_task(struct task_struct *tsk)
415 {
416 	struct audit_entry *e;
417 	enum audit_state   state;
418 
419 	rcu_read_lock();
420 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
421 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
422 			rcu_read_unlock();
423 			return state;
424 		}
425 	}
426 	rcu_read_unlock();
427 	return AUDIT_BUILD_CONTEXT;
428 }
429 
430 /* At syscall entry and exit time, this filter is called if the
431  * audit_state is not low enough that auditing cannot take place, but is
432  * also not high enough that we already know we have to write an audit
433  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
434  */
435 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
436 					     struct audit_context *ctx,
437 					     struct list_head *list)
438 {
439 	struct audit_entry *e;
440 	enum audit_state state;
441 
442 	if (audit_pid && tsk->tgid == audit_pid)
443 		return AUDIT_DISABLED;
444 
445 	rcu_read_lock();
446 	if (!list_empty(list)) {
447 		int word = AUDIT_WORD(ctx->major);
448 		int bit  = AUDIT_BIT(ctx->major);
449 
450 		list_for_each_entry_rcu(e, list, list) {
451 			if ((e->rule.mask[word] & bit) == bit &&
452 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
453 					       &state)) {
454 				rcu_read_unlock();
455 				return state;
456 			}
457 		}
458 	}
459 	rcu_read_unlock();
460 	return AUDIT_BUILD_CONTEXT;
461 }
462 
463 /* At syscall exit time, this filter is called if any audit_names[] have been
464  * collected during syscall processing.  We only check rules in sublists at hash
465  * buckets applicable to the inode numbers in audit_names[].
466  * Regarding audit_state, same rules apply as for audit_filter_syscall().
467  */
468 enum audit_state audit_filter_inodes(struct task_struct *tsk,
469 				     struct audit_context *ctx)
470 {
471 	int i;
472 	struct audit_entry *e;
473 	enum audit_state state;
474 
475 	if (audit_pid && tsk->tgid == audit_pid)
476 		return AUDIT_DISABLED;
477 
478 	rcu_read_lock();
479 	for (i = 0; i < ctx->name_count; i++) {
480 		int word = AUDIT_WORD(ctx->major);
481 		int bit  = AUDIT_BIT(ctx->major);
482 		struct audit_names *n = &ctx->names[i];
483 		int h = audit_hash_ino((u32)n->ino);
484 		struct list_head *list = &audit_inode_hash[h];
485 
486 		if (list_empty(list))
487 			continue;
488 
489 		list_for_each_entry_rcu(e, list, list) {
490 			if ((e->rule.mask[word] & bit) == bit &&
491 			    audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
492 				rcu_read_unlock();
493 				return state;
494 			}
495 		}
496 	}
497 	rcu_read_unlock();
498 	return AUDIT_BUILD_CONTEXT;
499 }
500 
501 void audit_set_auditable(struct audit_context *ctx)
502 {
503 	ctx->auditable = 1;
504 }
505 
506 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
507 						      int return_valid,
508 						      int return_code)
509 {
510 	struct audit_context *context = tsk->audit_context;
511 
512 	if (likely(!context))
513 		return NULL;
514 	context->return_valid = return_valid;
515 	context->return_code  = return_code;
516 
517 	if (context->in_syscall && !context->auditable) {
518 		enum audit_state state;
519 
520 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
521 		if (state == AUDIT_RECORD_CONTEXT) {
522 			context->auditable = 1;
523 			goto get_context;
524 		}
525 
526 		state = audit_filter_inodes(tsk, context);
527 		if (state == AUDIT_RECORD_CONTEXT)
528 			context->auditable = 1;
529 
530 	}
531 
532 get_context:
533 	context->pid = tsk->pid;
534 	context->ppid = sys_getppid();	/* sic.  tsk == current in all cases */
535 	context->uid = tsk->uid;
536 	context->gid = tsk->gid;
537 	context->euid = tsk->euid;
538 	context->suid = tsk->suid;
539 	context->fsuid = tsk->fsuid;
540 	context->egid = tsk->egid;
541 	context->sgid = tsk->sgid;
542 	context->fsgid = tsk->fsgid;
543 	context->personality = tsk->personality;
544 	tsk->audit_context = NULL;
545 	return context;
546 }
547 
548 static inline void audit_free_names(struct audit_context *context)
549 {
550 	int i;
551 
552 #if AUDIT_DEBUG == 2
553 	if (context->auditable
554 	    ||context->put_count + context->ino_count != context->name_count) {
555 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
556 		       " name_count=%d put_count=%d"
557 		       " ino_count=%d [NOT freeing]\n",
558 		       __FILE__, __LINE__,
559 		       context->serial, context->major, context->in_syscall,
560 		       context->name_count, context->put_count,
561 		       context->ino_count);
562 		for (i = 0; i < context->name_count; i++) {
563 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
564 			       context->names[i].name,
565 			       context->names[i].name ?: "(null)");
566 		}
567 		dump_stack();
568 		return;
569 	}
570 #endif
571 #if AUDIT_DEBUG
572 	context->put_count  = 0;
573 	context->ino_count  = 0;
574 #endif
575 
576 	for (i = 0; i < context->name_count; i++) {
577 		if (context->names[i].name && context->names[i].name_put)
578 			__putname(context->names[i].name);
579 	}
580 	context->name_count = 0;
581 	if (context->pwd)
582 		dput(context->pwd);
583 	if (context->pwdmnt)
584 		mntput(context->pwdmnt);
585 	context->pwd = NULL;
586 	context->pwdmnt = NULL;
587 }
588 
589 static inline void audit_free_aux(struct audit_context *context)
590 {
591 	struct audit_aux_data *aux;
592 
593 	while ((aux = context->aux)) {
594 		if (aux->type == AUDIT_AVC_PATH) {
595 			struct audit_aux_data_path *axi = (void *)aux;
596 			dput(axi->dentry);
597 			mntput(axi->mnt);
598 		}
599 
600 		context->aux = aux->next;
601 		kfree(aux);
602 	}
603 }
604 
605 static inline void audit_zero_context(struct audit_context *context,
606 				      enum audit_state state)
607 {
608 	uid_t loginuid = context->loginuid;
609 
610 	memset(context, 0, sizeof(*context));
611 	context->state      = state;
612 	context->loginuid   = loginuid;
613 }
614 
615 static inline struct audit_context *audit_alloc_context(enum audit_state state)
616 {
617 	struct audit_context *context;
618 
619 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
620 		return NULL;
621 	audit_zero_context(context, state);
622 	return context;
623 }
624 
625 /**
626  * audit_alloc - allocate an audit context block for a task
627  * @tsk: task
628  *
629  * Filter on the task information and allocate a per-task audit context
630  * if necessary.  Doing so turns on system call auditing for the
631  * specified task.  This is called from copy_process, so no lock is
632  * needed.
633  */
634 int audit_alloc(struct task_struct *tsk)
635 {
636 	struct audit_context *context;
637 	enum audit_state     state;
638 
639 	if (likely(!audit_enabled))
640 		return 0; /* Return if not auditing. */
641 
642 	state = audit_filter_task(tsk);
643 	if (likely(state == AUDIT_DISABLED))
644 		return 0;
645 
646 	if (!(context = audit_alloc_context(state))) {
647 		audit_log_lost("out of memory in audit_alloc");
648 		return -ENOMEM;
649 	}
650 
651 				/* Preserve login uid */
652 	context->loginuid = -1;
653 	if (current->audit_context)
654 		context->loginuid = current->audit_context->loginuid;
655 
656 	tsk->audit_context  = context;
657 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
658 	return 0;
659 }
660 
661 static inline void audit_free_context(struct audit_context *context)
662 {
663 	struct audit_context *previous;
664 	int		     count = 0;
665 
666 	do {
667 		previous = context->previous;
668 		if (previous || (count &&  count < 10)) {
669 			++count;
670 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
671 			       " freeing multiple contexts (%d)\n",
672 			       context->serial, context->major,
673 			       context->name_count, count);
674 		}
675 		audit_free_names(context);
676 		audit_free_aux(context);
677 		kfree(context->filterkey);
678 		kfree(context);
679 		context  = previous;
680 	} while (context);
681 	if (count >= 10)
682 		printk(KERN_ERR "audit: freed %d contexts\n", count);
683 }
684 
685 static void audit_log_task_context(struct audit_buffer *ab)
686 {
687 	char *ctx = NULL;
688 	ssize_t len = 0;
689 
690 	len = security_getprocattr(current, "current", NULL, 0);
691 	if (len < 0) {
692 		if (len != -EINVAL)
693 			goto error_path;
694 		return;
695 	}
696 
697 	ctx = kmalloc(len, GFP_KERNEL);
698 	if (!ctx)
699 		goto error_path;
700 
701 	len = security_getprocattr(current, "current", ctx, len);
702 	if (len < 0 )
703 		goto error_path;
704 
705 	audit_log_format(ab, " subj=%s", ctx);
706 	return;
707 
708 error_path:
709 	kfree(ctx);
710 	audit_panic("error in audit_log_task_context");
711 	return;
712 }
713 
714 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
715 {
716 	char name[sizeof(tsk->comm)];
717 	struct mm_struct *mm = tsk->mm;
718 	struct vm_area_struct *vma;
719 
720 	/* tsk == current */
721 
722 	get_task_comm(name, tsk);
723 	audit_log_format(ab, " comm=");
724 	audit_log_untrustedstring(ab, name);
725 
726 	if (mm) {
727 		down_read(&mm->mmap_sem);
728 		vma = mm->mmap;
729 		while (vma) {
730 			if ((vma->vm_flags & VM_EXECUTABLE) &&
731 			    vma->vm_file) {
732 				audit_log_d_path(ab, "exe=",
733 						 vma->vm_file->f_dentry,
734 						 vma->vm_file->f_vfsmnt);
735 				break;
736 			}
737 			vma = vma->vm_next;
738 		}
739 		up_read(&mm->mmap_sem);
740 	}
741 	audit_log_task_context(ab);
742 }
743 
744 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
745 {
746 	int i, call_panic = 0;
747 	struct audit_buffer *ab;
748 	struct audit_aux_data *aux;
749 	const char *tty;
750 
751 	/* tsk == current */
752 
753 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
754 	if (!ab)
755 		return;		/* audit_panic has been called */
756 	audit_log_format(ab, "arch=%x syscall=%d",
757 			 context->arch, context->major);
758 	if (context->personality != PER_LINUX)
759 		audit_log_format(ab, " per=%lx", context->personality);
760 	if (context->return_valid)
761 		audit_log_format(ab, " success=%s exit=%ld",
762 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
763 				 context->return_code);
764 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
765 		tty = tsk->signal->tty->name;
766 	else
767 		tty = "(none)";
768 	audit_log_format(ab,
769 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
770 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
771 		  " euid=%u suid=%u fsuid=%u"
772 		  " egid=%u sgid=%u fsgid=%u tty=%s",
773 		  context->argv[0],
774 		  context->argv[1],
775 		  context->argv[2],
776 		  context->argv[3],
777 		  context->name_count,
778 		  context->ppid,
779 		  context->pid,
780 		  context->loginuid,
781 		  context->uid,
782 		  context->gid,
783 		  context->euid, context->suid, context->fsuid,
784 		  context->egid, context->sgid, context->fsgid, tty);
785 	audit_log_task_info(ab, tsk);
786 	if (context->filterkey) {
787 		audit_log_format(ab, " key=");
788 		audit_log_untrustedstring(ab, context->filterkey);
789 	} else
790 		audit_log_format(ab, " key=(null)");
791 	audit_log_end(ab);
792 
793 	for (aux = context->aux; aux; aux = aux->next) {
794 
795 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
796 		if (!ab)
797 			continue; /* audit_panic has been called */
798 
799 		switch (aux->type) {
800 		case AUDIT_MQ_OPEN: {
801 			struct audit_aux_data_mq_open *axi = (void *)aux;
802 			audit_log_format(ab,
803 				"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
804 				"mq_msgsize=%ld mq_curmsgs=%ld",
805 				axi->oflag, axi->mode, axi->attr.mq_flags,
806 				axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
807 				axi->attr.mq_curmsgs);
808 			break; }
809 
810 		case AUDIT_MQ_SENDRECV: {
811 			struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
812 			audit_log_format(ab,
813 				"mqdes=%d msg_len=%zd msg_prio=%u "
814 				"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
815 				axi->mqdes, axi->msg_len, axi->msg_prio,
816 				axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
817 			break; }
818 
819 		case AUDIT_MQ_NOTIFY: {
820 			struct audit_aux_data_mq_notify *axi = (void *)aux;
821 			audit_log_format(ab,
822 				"mqdes=%d sigev_signo=%d",
823 				axi->mqdes,
824 				axi->notification.sigev_signo);
825 			break; }
826 
827 		case AUDIT_MQ_GETSETATTR: {
828 			struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
829 			audit_log_format(ab,
830 				"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
831 				"mq_curmsgs=%ld ",
832 				axi->mqdes,
833 				axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
834 				axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
835 			break; }
836 
837 		case AUDIT_IPC: {
838 			struct audit_aux_data_ipcctl *axi = (void *)aux;
839 			audit_log_format(ab,
840 				 "ouid=%u ogid=%u mode=%x",
841 				 axi->uid, axi->gid, axi->mode);
842 			if (axi->osid != 0) {
843 				char *ctx = NULL;
844 				u32 len;
845 				if (selinux_ctxid_to_string(
846 						axi->osid, &ctx, &len)) {
847 					audit_log_format(ab, " osid=%u",
848 							axi->osid);
849 					call_panic = 1;
850 				} else
851 					audit_log_format(ab, " obj=%s", ctx);
852 				kfree(ctx);
853 			}
854 			break; }
855 
856 		case AUDIT_IPC_SET_PERM: {
857 			struct audit_aux_data_ipcctl *axi = (void *)aux;
858 			audit_log_format(ab,
859 				"qbytes=%lx ouid=%u ogid=%u mode=%x",
860 				axi->qbytes, axi->uid, axi->gid, axi->mode);
861 			break; }
862 
863 		case AUDIT_EXECVE: {
864 			struct audit_aux_data_execve *axi = (void *)aux;
865 			int i;
866 			const char *p;
867 			for (i = 0, p = axi->mem; i < axi->argc; i++) {
868 				audit_log_format(ab, "a%d=", i);
869 				p = audit_log_untrustedstring(ab, p);
870 				audit_log_format(ab, "\n");
871 			}
872 			break; }
873 
874 		case AUDIT_SOCKETCALL: {
875 			int i;
876 			struct audit_aux_data_socketcall *axs = (void *)aux;
877 			audit_log_format(ab, "nargs=%d", axs->nargs);
878 			for (i=0; i<axs->nargs; i++)
879 				audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
880 			break; }
881 
882 		case AUDIT_SOCKADDR: {
883 			struct audit_aux_data_sockaddr *axs = (void *)aux;
884 
885 			audit_log_format(ab, "saddr=");
886 			audit_log_hex(ab, axs->a, axs->len);
887 			break; }
888 
889 		case AUDIT_AVC_PATH: {
890 			struct audit_aux_data_path *axi = (void *)aux;
891 			audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
892 			break; }
893 
894 		}
895 		audit_log_end(ab);
896 	}
897 
898 	if (context->pwd && context->pwdmnt) {
899 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
900 		if (ab) {
901 			audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
902 			audit_log_end(ab);
903 		}
904 	}
905 	for (i = 0; i < context->name_count; i++) {
906 		struct audit_names *n = &context->names[i];
907 
908 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
909 		if (!ab)
910 			continue; /* audit_panic has been called */
911 
912 		audit_log_format(ab, "item=%d", i);
913 
914 		if (n->name) {
915 			switch(n->name_len) {
916 			case AUDIT_NAME_FULL:
917 				/* log the full path */
918 				audit_log_format(ab, " name=");
919 				audit_log_untrustedstring(ab, n->name);
920 				break;
921 			case 0:
922 				/* name was specified as a relative path and the
923 				 * directory component is the cwd */
924 				audit_log_d_path(ab, " name=", context->pwd,
925 						 context->pwdmnt);
926 				break;
927 			default:
928 				/* log the name's directory component */
929 				audit_log_format(ab, " name=");
930 				audit_log_n_untrustedstring(ab, n->name_len,
931 							    n->name);
932 			}
933 		} else
934 			audit_log_format(ab, " name=(null)");
935 
936 		if (n->ino != (unsigned long)-1) {
937 			audit_log_format(ab, " inode=%lu"
938 					 " dev=%02x:%02x mode=%#o"
939 					 " ouid=%u ogid=%u rdev=%02x:%02x",
940 					 n->ino,
941 					 MAJOR(n->dev),
942 					 MINOR(n->dev),
943 					 n->mode,
944 					 n->uid,
945 					 n->gid,
946 					 MAJOR(n->rdev),
947 					 MINOR(n->rdev));
948 		}
949 		if (n->osid != 0) {
950 			char *ctx = NULL;
951 			u32 len;
952 			if (selinux_ctxid_to_string(
953 				n->osid, &ctx, &len)) {
954 				audit_log_format(ab, " osid=%u", n->osid);
955 				call_panic = 2;
956 			} else
957 				audit_log_format(ab, " obj=%s", ctx);
958 			kfree(ctx);
959 		}
960 
961 		audit_log_end(ab);
962 	}
963 	if (call_panic)
964 		audit_panic("error converting sid to string");
965 }
966 
967 /**
968  * audit_free - free a per-task audit context
969  * @tsk: task whose audit context block to free
970  *
971  * Called from copy_process and do_exit
972  */
973 void audit_free(struct task_struct *tsk)
974 {
975 	struct audit_context *context;
976 
977 	context = audit_get_context(tsk, 0, 0);
978 	if (likely(!context))
979 		return;
980 
981 	/* Check for system calls that do not go through the exit
982 	 * function (e.g., exit_group), then free context block.
983 	 * We use GFP_ATOMIC here because we might be doing this
984 	 * in the context of the idle thread */
985 	/* that can happen only if we are called from do_exit() */
986 	if (context->in_syscall && context->auditable)
987 		audit_log_exit(context, tsk);
988 
989 	audit_free_context(context);
990 }
991 
992 /**
993  * audit_syscall_entry - fill in an audit record at syscall entry
994  * @tsk: task being audited
995  * @arch: architecture type
996  * @major: major syscall type (function)
997  * @a1: additional syscall register 1
998  * @a2: additional syscall register 2
999  * @a3: additional syscall register 3
1000  * @a4: additional syscall register 4
1001  *
1002  * Fill in audit context at syscall entry.  This only happens if the
1003  * audit context was created when the task was created and the state or
1004  * filters demand the audit context be built.  If the state from the
1005  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1006  * then the record will be written at syscall exit time (otherwise, it
1007  * will only be written if another part of the kernel requests that it
1008  * be written).
1009  */
1010 void audit_syscall_entry(int arch, int major,
1011 			 unsigned long a1, unsigned long a2,
1012 			 unsigned long a3, unsigned long a4)
1013 {
1014 	struct task_struct *tsk = current;
1015 	struct audit_context *context = tsk->audit_context;
1016 	enum audit_state     state;
1017 
1018 	BUG_ON(!context);
1019 
1020 	/*
1021 	 * This happens only on certain architectures that make system
1022 	 * calls in kernel_thread via the entry.S interface, instead of
1023 	 * with direct calls.  (If you are porting to a new
1024 	 * architecture, hitting this condition can indicate that you
1025 	 * got the _exit/_leave calls backward in entry.S.)
1026 	 *
1027 	 * i386     no
1028 	 * x86_64   no
1029 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1030 	 *
1031 	 * This also happens with vm86 emulation in a non-nested manner
1032 	 * (entries without exits), so this case must be caught.
1033 	 */
1034 	if (context->in_syscall) {
1035 		struct audit_context *newctx;
1036 
1037 #if AUDIT_DEBUG
1038 		printk(KERN_ERR
1039 		       "audit(:%d) pid=%d in syscall=%d;"
1040 		       " entering syscall=%d\n",
1041 		       context->serial, tsk->pid, context->major, major);
1042 #endif
1043 		newctx = audit_alloc_context(context->state);
1044 		if (newctx) {
1045 			newctx->previous   = context;
1046 			context		   = newctx;
1047 			tsk->audit_context = newctx;
1048 		} else	{
1049 			/* If we can't alloc a new context, the best we
1050 			 * can do is to leak memory (any pending putname
1051 			 * will be lost).  The only other alternative is
1052 			 * to abandon auditing. */
1053 			audit_zero_context(context, context->state);
1054 		}
1055 	}
1056 	BUG_ON(context->in_syscall || context->name_count);
1057 
1058 	if (!audit_enabled)
1059 		return;
1060 
1061 	context->arch	    = arch;
1062 	context->major      = major;
1063 	context->argv[0]    = a1;
1064 	context->argv[1]    = a2;
1065 	context->argv[2]    = a3;
1066 	context->argv[3]    = a4;
1067 
1068 	state = context->state;
1069 	if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)
1070 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1071 	if (likely(state == AUDIT_DISABLED))
1072 		return;
1073 
1074 	context->serial     = 0;
1075 	context->ctime      = CURRENT_TIME;
1076 	context->in_syscall = 1;
1077 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
1078 }
1079 
1080 /**
1081  * audit_syscall_exit - deallocate audit context after a system call
1082  * @tsk: task being audited
1083  * @valid: success/failure flag
1084  * @return_code: syscall return value
1085  *
1086  * Tear down after system call.  If the audit context has been marked as
1087  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1088  * filtering, or because some other part of the kernel write an audit
1089  * message), then write out the syscall information.  In call cases,
1090  * free the names stored from getname().
1091  */
1092 void audit_syscall_exit(int valid, long return_code)
1093 {
1094 	struct task_struct *tsk = current;
1095 	struct audit_context *context;
1096 
1097 	context = audit_get_context(tsk, valid, return_code);
1098 
1099 	if (likely(!context))
1100 		return;
1101 
1102 	if (context->in_syscall && context->auditable)
1103 		audit_log_exit(context, tsk);
1104 
1105 	context->in_syscall = 0;
1106 	context->auditable  = 0;
1107 
1108 	if (context->previous) {
1109 		struct audit_context *new_context = context->previous;
1110 		context->previous  = NULL;
1111 		audit_free_context(context);
1112 		tsk->audit_context = new_context;
1113 	} else {
1114 		audit_free_names(context);
1115 		audit_free_aux(context);
1116 		kfree(context->filterkey);
1117 		context->filterkey = NULL;
1118 		tsk->audit_context = context;
1119 	}
1120 }
1121 
1122 /**
1123  * audit_getname - add a name to the list
1124  * @name: name to add
1125  *
1126  * Add a name to the list of audit names for this context.
1127  * Called from fs/namei.c:getname().
1128  */
1129 void __audit_getname(const char *name)
1130 {
1131 	struct audit_context *context = current->audit_context;
1132 
1133 	if (IS_ERR(name) || !name)
1134 		return;
1135 
1136 	if (!context->in_syscall) {
1137 #if AUDIT_DEBUG == 2
1138 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1139 		       __FILE__, __LINE__, context->serial, name);
1140 		dump_stack();
1141 #endif
1142 		return;
1143 	}
1144 	BUG_ON(context->name_count >= AUDIT_NAMES);
1145 	context->names[context->name_count].name = name;
1146 	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1147 	context->names[context->name_count].name_put = 1;
1148 	context->names[context->name_count].ino  = (unsigned long)-1;
1149 	++context->name_count;
1150 	if (!context->pwd) {
1151 		read_lock(&current->fs->lock);
1152 		context->pwd = dget(current->fs->pwd);
1153 		context->pwdmnt = mntget(current->fs->pwdmnt);
1154 		read_unlock(&current->fs->lock);
1155 	}
1156 
1157 }
1158 
1159 /* audit_putname - intercept a putname request
1160  * @name: name to intercept and delay for putname
1161  *
1162  * If we have stored the name from getname in the audit context,
1163  * then we delay the putname until syscall exit.
1164  * Called from include/linux/fs.h:putname().
1165  */
1166 void audit_putname(const char *name)
1167 {
1168 	struct audit_context *context = current->audit_context;
1169 
1170 	BUG_ON(!context);
1171 	if (!context->in_syscall) {
1172 #if AUDIT_DEBUG == 2
1173 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1174 		       __FILE__, __LINE__, context->serial, name);
1175 		if (context->name_count) {
1176 			int i;
1177 			for (i = 0; i < context->name_count; i++)
1178 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1179 				       context->names[i].name,
1180 				       context->names[i].name ?: "(null)");
1181 		}
1182 #endif
1183 		__putname(name);
1184 	}
1185 #if AUDIT_DEBUG
1186 	else {
1187 		++context->put_count;
1188 		if (context->put_count > context->name_count) {
1189 			printk(KERN_ERR "%s:%d(:%d): major=%d"
1190 			       " in_syscall=%d putname(%p) name_count=%d"
1191 			       " put_count=%d\n",
1192 			       __FILE__, __LINE__,
1193 			       context->serial, context->major,
1194 			       context->in_syscall, name, context->name_count,
1195 			       context->put_count);
1196 			dump_stack();
1197 		}
1198 	}
1199 #endif
1200 }
1201 
1202 static void audit_inode_context(int idx, const struct inode *inode)
1203 {
1204 	struct audit_context *context = current->audit_context;
1205 
1206 	selinux_get_inode_sid(inode, &context->names[idx].osid);
1207 }
1208 
1209 
1210 /**
1211  * audit_inode - store the inode and device from a lookup
1212  * @name: name being audited
1213  * @inode: inode being audited
1214  *
1215  * Called from fs/namei.c:path_lookup().
1216  */
1217 void __audit_inode(const char *name, const struct inode *inode)
1218 {
1219 	int idx;
1220 	struct audit_context *context = current->audit_context;
1221 
1222 	if (!context->in_syscall)
1223 		return;
1224 	if (context->name_count
1225 	    && context->names[context->name_count-1].name
1226 	    && context->names[context->name_count-1].name == name)
1227 		idx = context->name_count - 1;
1228 	else if (context->name_count > 1
1229 		 && context->names[context->name_count-2].name
1230 		 && context->names[context->name_count-2].name == name)
1231 		idx = context->name_count - 2;
1232 	else {
1233 		/* FIXME: how much do we care about inodes that have no
1234 		 * associated name? */
1235 		if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1236 			return;
1237 		idx = context->name_count++;
1238 		context->names[idx].name = NULL;
1239 #if AUDIT_DEBUG
1240 		++context->ino_count;
1241 #endif
1242 	}
1243 	context->names[idx].ino   = inode->i_ino;
1244 	context->names[idx].dev	  = inode->i_sb->s_dev;
1245 	context->names[idx].mode  = inode->i_mode;
1246 	context->names[idx].uid   = inode->i_uid;
1247 	context->names[idx].gid   = inode->i_gid;
1248 	context->names[idx].rdev  = inode->i_rdev;
1249 	audit_inode_context(idx, inode);
1250 }
1251 
1252 /**
1253  * audit_inode_child - collect inode info for created/removed objects
1254  * @dname: inode's dentry name
1255  * @inode: inode being audited
1256  * @pino: inode number of dentry parent
1257  *
1258  * For syscalls that create or remove filesystem objects, audit_inode
1259  * can only collect information for the filesystem object's parent.
1260  * This call updates the audit context with the child's information.
1261  * Syscalls that create a new filesystem object must be hooked after
1262  * the object is created.  Syscalls that remove a filesystem object
1263  * must be hooked prior, in order to capture the target inode during
1264  * unsuccessful attempts.
1265  */
1266 void __audit_inode_child(const char *dname, const struct inode *inode,
1267 			 unsigned long pino)
1268 {
1269 	int idx;
1270 	struct audit_context *context = current->audit_context;
1271 	const char *found_name = NULL;
1272 	int dirlen = 0;
1273 
1274 	if (!context->in_syscall)
1275 		return;
1276 
1277 	/* determine matching parent */
1278 	if (!dname)
1279 		goto update_context;
1280 	for (idx = 0; idx < context->name_count; idx++)
1281 		if (context->names[idx].ino == pino) {
1282 			const char *name = context->names[idx].name;
1283 
1284 			if (!name)
1285 				continue;
1286 
1287 			if (audit_compare_dname_path(dname, name, &dirlen) == 0) {
1288 				context->names[idx].name_len = dirlen;
1289 				found_name = name;
1290 				break;
1291 			}
1292 		}
1293 
1294 update_context:
1295 	idx = context->name_count++;
1296 #if AUDIT_DEBUG
1297 	context->ino_count++;
1298 #endif
1299 	/* Re-use the name belonging to the slot for a matching parent directory.
1300 	 * All names for this context are relinquished in audit_free_names() */
1301 	context->names[idx].name = found_name;
1302 	context->names[idx].name_len = AUDIT_NAME_FULL;
1303 	context->names[idx].name_put = 0;	/* don't call __putname() */
1304 
1305 	if (inode) {
1306 		context->names[idx].ino   = inode->i_ino;
1307 		context->names[idx].dev	  = inode->i_sb->s_dev;
1308 		context->names[idx].mode  = inode->i_mode;
1309 		context->names[idx].uid   = inode->i_uid;
1310 		context->names[idx].gid   = inode->i_gid;
1311 		context->names[idx].rdev  = inode->i_rdev;
1312 		audit_inode_context(idx, inode);
1313 	} else
1314 		context->names[idx].ino   = (unsigned long)-1;
1315 }
1316 
1317 /**
1318  * auditsc_get_stamp - get local copies of audit_context values
1319  * @ctx: audit_context for the task
1320  * @t: timespec to store time recorded in the audit_context
1321  * @serial: serial value that is recorded in the audit_context
1322  *
1323  * Also sets the context as auditable.
1324  */
1325 void auditsc_get_stamp(struct audit_context *ctx,
1326 		       struct timespec *t, unsigned int *serial)
1327 {
1328 	if (!ctx->serial)
1329 		ctx->serial = audit_serial();
1330 	t->tv_sec  = ctx->ctime.tv_sec;
1331 	t->tv_nsec = ctx->ctime.tv_nsec;
1332 	*serial    = ctx->serial;
1333 	ctx->auditable = 1;
1334 }
1335 
1336 /**
1337  * audit_set_loginuid - set a task's audit_context loginuid
1338  * @task: task whose audit context is being modified
1339  * @loginuid: loginuid value
1340  *
1341  * Returns 0.
1342  *
1343  * Called (set) from fs/proc/base.c::proc_loginuid_write().
1344  */
1345 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1346 {
1347 	struct audit_context *context = task->audit_context;
1348 
1349 	if (context) {
1350 		/* Only log if audit is enabled */
1351 		if (context->in_syscall) {
1352 			struct audit_buffer *ab;
1353 
1354 			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1355 			if (ab) {
1356 				audit_log_format(ab, "login pid=%d uid=%u "
1357 					"old auid=%u new auid=%u",
1358 					task->pid, task->uid,
1359 					context->loginuid, loginuid);
1360 				audit_log_end(ab);
1361 			}
1362 		}
1363 		context->loginuid = loginuid;
1364 	}
1365 	return 0;
1366 }
1367 
1368 /**
1369  * audit_get_loginuid - get the loginuid for an audit_context
1370  * @ctx: the audit_context
1371  *
1372  * Returns the context's loginuid or -1 if @ctx is NULL.
1373  */
1374 uid_t audit_get_loginuid(struct audit_context *ctx)
1375 {
1376 	return ctx ? ctx->loginuid : -1;
1377 }
1378 
1379 /**
1380  * __audit_mq_open - record audit data for a POSIX MQ open
1381  * @oflag: open flag
1382  * @mode: mode bits
1383  * @u_attr: queue attributes
1384  *
1385  * Returns 0 for success or NULL context or < 0 on error.
1386  */
1387 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1388 {
1389 	struct audit_aux_data_mq_open *ax;
1390 	struct audit_context *context = current->audit_context;
1391 
1392 	if (!audit_enabled)
1393 		return 0;
1394 
1395 	if (likely(!context))
1396 		return 0;
1397 
1398 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1399 	if (!ax)
1400 		return -ENOMEM;
1401 
1402 	if (u_attr != NULL) {
1403 		if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1404 			kfree(ax);
1405 			return -EFAULT;
1406 		}
1407 	} else
1408 		memset(&ax->attr, 0, sizeof(ax->attr));
1409 
1410 	ax->oflag = oflag;
1411 	ax->mode = mode;
1412 
1413 	ax->d.type = AUDIT_MQ_OPEN;
1414 	ax->d.next = context->aux;
1415 	context->aux = (void *)ax;
1416 	return 0;
1417 }
1418 
1419 /**
1420  * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1421  * @mqdes: MQ descriptor
1422  * @msg_len: Message length
1423  * @msg_prio: Message priority
1424  * @u_abs_timeout: Message timeout in absolute time
1425  *
1426  * Returns 0 for success or NULL context or < 0 on error.
1427  */
1428 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1429 			const struct timespec __user *u_abs_timeout)
1430 {
1431 	struct audit_aux_data_mq_sendrecv *ax;
1432 	struct audit_context *context = current->audit_context;
1433 
1434 	if (!audit_enabled)
1435 		return 0;
1436 
1437 	if (likely(!context))
1438 		return 0;
1439 
1440 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1441 	if (!ax)
1442 		return -ENOMEM;
1443 
1444 	if (u_abs_timeout != NULL) {
1445 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1446 			kfree(ax);
1447 			return -EFAULT;
1448 		}
1449 	} else
1450 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1451 
1452 	ax->mqdes = mqdes;
1453 	ax->msg_len = msg_len;
1454 	ax->msg_prio = msg_prio;
1455 
1456 	ax->d.type = AUDIT_MQ_SENDRECV;
1457 	ax->d.next = context->aux;
1458 	context->aux = (void *)ax;
1459 	return 0;
1460 }
1461 
1462 /**
1463  * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1464  * @mqdes: MQ descriptor
1465  * @msg_len: Message length
1466  * @u_msg_prio: Message priority
1467  * @u_abs_timeout: Message timeout in absolute time
1468  *
1469  * Returns 0 for success or NULL context or < 0 on error.
1470  */
1471 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1472 				unsigned int __user *u_msg_prio,
1473 				const struct timespec __user *u_abs_timeout)
1474 {
1475 	struct audit_aux_data_mq_sendrecv *ax;
1476 	struct audit_context *context = current->audit_context;
1477 
1478 	if (!audit_enabled)
1479 		return 0;
1480 
1481 	if (likely(!context))
1482 		return 0;
1483 
1484 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1485 	if (!ax)
1486 		return -ENOMEM;
1487 
1488 	if (u_msg_prio != NULL) {
1489 		if (get_user(ax->msg_prio, u_msg_prio)) {
1490 			kfree(ax);
1491 			return -EFAULT;
1492 		}
1493 	} else
1494 		ax->msg_prio = 0;
1495 
1496 	if (u_abs_timeout != NULL) {
1497 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1498 			kfree(ax);
1499 			return -EFAULT;
1500 		}
1501 	} else
1502 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1503 
1504 	ax->mqdes = mqdes;
1505 	ax->msg_len = msg_len;
1506 
1507 	ax->d.type = AUDIT_MQ_SENDRECV;
1508 	ax->d.next = context->aux;
1509 	context->aux = (void *)ax;
1510 	return 0;
1511 }
1512 
1513 /**
1514  * __audit_mq_notify - record audit data for a POSIX MQ notify
1515  * @mqdes: MQ descriptor
1516  * @u_notification: Notification event
1517  *
1518  * Returns 0 for success or NULL context or < 0 on error.
1519  */
1520 
1521 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1522 {
1523 	struct audit_aux_data_mq_notify *ax;
1524 	struct audit_context *context = current->audit_context;
1525 
1526 	if (!audit_enabled)
1527 		return 0;
1528 
1529 	if (likely(!context))
1530 		return 0;
1531 
1532 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1533 	if (!ax)
1534 		return -ENOMEM;
1535 
1536 	if (u_notification != NULL) {
1537 		if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1538 			kfree(ax);
1539 			return -EFAULT;
1540 		}
1541 	} else
1542 		memset(&ax->notification, 0, sizeof(ax->notification));
1543 
1544 	ax->mqdes = mqdes;
1545 
1546 	ax->d.type = AUDIT_MQ_NOTIFY;
1547 	ax->d.next = context->aux;
1548 	context->aux = (void *)ax;
1549 	return 0;
1550 }
1551 
1552 /**
1553  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1554  * @mqdes: MQ descriptor
1555  * @mqstat: MQ flags
1556  *
1557  * Returns 0 for success or NULL context or < 0 on error.
1558  */
1559 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1560 {
1561 	struct audit_aux_data_mq_getsetattr *ax;
1562 	struct audit_context *context = current->audit_context;
1563 
1564 	if (!audit_enabled)
1565 		return 0;
1566 
1567 	if (likely(!context))
1568 		return 0;
1569 
1570 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1571 	if (!ax)
1572 		return -ENOMEM;
1573 
1574 	ax->mqdes = mqdes;
1575 	ax->mqstat = *mqstat;
1576 
1577 	ax->d.type = AUDIT_MQ_GETSETATTR;
1578 	ax->d.next = context->aux;
1579 	context->aux = (void *)ax;
1580 	return 0;
1581 }
1582 
1583 /**
1584  * audit_ipc_obj - record audit data for ipc object
1585  * @ipcp: ipc permissions
1586  *
1587  * Returns 0 for success or NULL context or < 0 on error.
1588  */
1589 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1590 {
1591 	struct audit_aux_data_ipcctl *ax;
1592 	struct audit_context *context = current->audit_context;
1593 
1594 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1595 	if (!ax)
1596 		return -ENOMEM;
1597 
1598 	ax->uid = ipcp->uid;
1599 	ax->gid = ipcp->gid;
1600 	ax->mode = ipcp->mode;
1601 	selinux_get_ipc_sid(ipcp, &ax->osid);
1602 
1603 	ax->d.type = AUDIT_IPC;
1604 	ax->d.next = context->aux;
1605 	context->aux = (void *)ax;
1606 	return 0;
1607 }
1608 
1609 /**
1610  * audit_ipc_set_perm - record audit data for new ipc permissions
1611  * @qbytes: msgq bytes
1612  * @uid: msgq user id
1613  * @gid: msgq group id
1614  * @mode: msgq mode (permissions)
1615  *
1616  * Returns 0 for success or NULL context or < 0 on error.
1617  */
1618 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1619 {
1620 	struct audit_aux_data_ipcctl *ax;
1621 	struct audit_context *context = current->audit_context;
1622 
1623 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1624 	if (!ax)
1625 		return -ENOMEM;
1626 
1627 	ax->qbytes = qbytes;
1628 	ax->uid = uid;
1629 	ax->gid = gid;
1630 	ax->mode = mode;
1631 
1632 	ax->d.type = AUDIT_IPC_SET_PERM;
1633 	ax->d.next = context->aux;
1634 	context->aux = (void *)ax;
1635 	return 0;
1636 }
1637 
1638 int audit_bprm(struct linux_binprm *bprm)
1639 {
1640 	struct audit_aux_data_execve *ax;
1641 	struct audit_context *context = current->audit_context;
1642 	unsigned long p, next;
1643 	void *to;
1644 
1645 	if (likely(!audit_enabled || !context))
1646 		return 0;
1647 
1648 	ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1649 				GFP_KERNEL);
1650 	if (!ax)
1651 		return -ENOMEM;
1652 
1653 	ax->argc = bprm->argc;
1654 	ax->envc = bprm->envc;
1655 	for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1656 		struct page *page = bprm->page[p / PAGE_SIZE];
1657 		void *kaddr = kmap(page);
1658 		next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1659 		memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1660 		to += next - p;
1661 		kunmap(page);
1662 	}
1663 
1664 	ax->d.type = AUDIT_EXECVE;
1665 	ax->d.next = context->aux;
1666 	context->aux = (void *)ax;
1667 	return 0;
1668 }
1669 
1670 
1671 /**
1672  * audit_socketcall - record audit data for sys_socketcall
1673  * @nargs: number of args
1674  * @args: args array
1675  *
1676  * Returns 0 for success or NULL context or < 0 on error.
1677  */
1678 int audit_socketcall(int nargs, unsigned long *args)
1679 {
1680 	struct audit_aux_data_socketcall *ax;
1681 	struct audit_context *context = current->audit_context;
1682 
1683 	if (likely(!context))
1684 		return 0;
1685 
1686 	ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1687 	if (!ax)
1688 		return -ENOMEM;
1689 
1690 	ax->nargs = nargs;
1691 	memcpy(ax->args, args, nargs * sizeof(unsigned long));
1692 
1693 	ax->d.type = AUDIT_SOCKETCALL;
1694 	ax->d.next = context->aux;
1695 	context->aux = (void *)ax;
1696 	return 0;
1697 }
1698 
1699 /**
1700  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1701  * @len: data length in user space
1702  * @a: data address in kernel space
1703  *
1704  * Returns 0 for success or NULL context or < 0 on error.
1705  */
1706 int audit_sockaddr(int len, void *a)
1707 {
1708 	struct audit_aux_data_sockaddr *ax;
1709 	struct audit_context *context = current->audit_context;
1710 
1711 	if (likely(!context))
1712 		return 0;
1713 
1714 	ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1715 	if (!ax)
1716 		return -ENOMEM;
1717 
1718 	ax->len = len;
1719 	memcpy(ax->a, a, len);
1720 
1721 	ax->d.type = AUDIT_SOCKADDR;
1722 	ax->d.next = context->aux;
1723 	context->aux = (void *)ax;
1724 	return 0;
1725 }
1726 
1727 /**
1728  * audit_avc_path - record the granting or denial of permissions
1729  * @dentry: dentry to record
1730  * @mnt: mnt to record
1731  *
1732  * Returns 0 for success or NULL context or < 0 on error.
1733  *
1734  * Called from security/selinux/avc.c::avc_audit()
1735  */
1736 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1737 {
1738 	struct audit_aux_data_path *ax;
1739 	struct audit_context *context = current->audit_context;
1740 
1741 	if (likely(!context))
1742 		return 0;
1743 
1744 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1745 	if (!ax)
1746 		return -ENOMEM;
1747 
1748 	ax->dentry = dget(dentry);
1749 	ax->mnt = mntget(mnt);
1750 
1751 	ax->d.type = AUDIT_AVC_PATH;
1752 	ax->d.next = context->aux;
1753 	context->aux = (void *)ax;
1754 	return 0;
1755 }
1756 
1757 /**
1758  * audit_signal_info - record signal info for shutting down audit subsystem
1759  * @sig: signal value
1760  * @t: task being signaled
1761  *
1762  * If the audit subsystem is being terminated, record the task (pid)
1763  * and uid that is doing that.
1764  */
1765 void __audit_signal_info(int sig, struct task_struct *t)
1766 {
1767 	extern pid_t audit_sig_pid;
1768 	extern uid_t audit_sig_uid;
1769 	extern u32 audit_sig_sid;
1770 
1771 	if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1772 		struct task_struct *tsk = current;
1773 		struct audit_context *ctx = tsk->audit_context;
1774 		audit_sig_pid = tsk->pid;
1775 		if (ctx)
1776 			audit_sig_uid = ctx->loginuid;
1777 		else
1778 			audit_sig_uid = tsk->uid;
1779 		selinux_get_task_sid(tsk, &audit_sig_sid);
1780 	}
1781 }
1782