1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 68 69 #include "audit.h" 70 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 75 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_aux_data { 90 struct audit_aux_data *next; 91 int type; 92 }; 93 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 96 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 struct lsm_prop target_ref[AUDIT_AUX_PIDS]; 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 106 }; 107 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 114 }; 115 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 119 }; 120 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 123 const char *s; 124 }; 125 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, 147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, 148 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 149 }; 150 151 static int audit_match_perm(struct audit_context *ctx, int mask) 152 { 153 unsigned n; 154 155 if (unlikely(!ctx)) 156 return 0; 157 n = ctx->major; 158 159 switch (audit_classify_syscall(ctx->arch, n)) { 160 case AUDITSC_NATIVE: 161 if ((mask & AUDIT_PERM_WRITE) && 162 audit_match_class(AUDIT_CLASS_WRITE, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_READ) && 165 audit_match_class(AUDIT_CLASS_READ, n)) 166 return 1; 167 if ((mask & AUDIT_PERM_ATTR) && 168 audit_match_class(AUDIT_CLASS_CHATTR, n)) 169 return 1; 170 return 0; 171 case AUDITSC_COMPAT: /* 32bit on biarch */ 172 if ((mask & AUDIT_PERM_WRITE) && 173 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_READ) && 176 audit_match_class(AUDIT_CLASS_READ_32, n)) 177 return 1; 178 if ((mask & AUDIT_PERM_ATTR) && 179 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 180 return 1; 181 return 0; 182 case AUDITSC_OPEN: 183 return mask & ACC_MODE(ctx->argv[1]); 184 case AUDITSC_OPENAT: 185 return mask & ACC_MODE(ctx->argv[2]); 186 case AUDITSC_SOCKETCALL: 187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 188 case AUDITSC_EXECVE: 189 return mask & AUDIT_PERM_EXEC; 190 case AUDITSC_OPENAT2: 191 return mask & ACC_MODE((u32)ctx->openat2.flags); 192 default: 193 return 0; 194 } 195 } 196 197 static int audit_match_filetype(struct audit_context *ctx, int val) 198 { 199 struct audit_names *n; 200 umode_t mode = (umode_t)val; 201 202 if (unlikely(!ctx)) 203 return 0; 204 205 list_for_each_entry(n, &ctx->names_list, list) { 206 if ((n->ino != AUDIT_INO_UNSET) && 207 ((n->mode & S_IFMT) == mode)) 208 return 1; 209 } 210 211 return 0; 212 } 213 214 /* 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 216 * ->first_trees points to its beginning, ->trees - to the current end of data. 217 * ->tree_count is the number of free entries in array pointed to by ->trees. 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 220 * it's going to remain 1-element for almost any setup) until we free context itself. 221 * References in it _are_ dropped - at the same time we free/drop aux stuff. 222 */ 223 224 static void audit_set_auditable(struct audit_context *ctx) 225 { 226 if (!ctx->prio) { 227 ctx->prio = 1; 228 ctx->current_state = AUDIT_STATE_RECORD; 229 } 230 } 231 232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 int left = ctx->tree_count; 236 237 if (likely(left)) { 238 p->c[--left] = chunk; 239 ctx->tree_count = left; 240 return 1; 241 } 242 if (!p) 243 return 0; 244 p = p->next; 245 if (p) { 246 p->c[30] = chunk; 247 ctx->trees = p; 248 ctx->tree_count = 30; 249 return 1; 250 } 251 return 0; 252 } 253 254 static int grow_tree_refs(struct audit_context *ctx) 255 { 256 struct audit_tree_refs *p = ctx->trees; 257 258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 259 if (!ctx->trees) { 260 ctx->trees = p; 261 return 0; 262 } 263 if (p) 264 p->next = ctx->trees; 265 else 266 ctx->first_trees = ctx->trees; 267 ctx->tree_count = 31; 268 return 1; 269 } 270 271 static void unroll_tree_refs(struct audit_context *ctx, 272 struct audit_tree_refs *p, int count) 273 { 274 struct audit_tree_refs *q; 275 int n; 276 277 if (!p) { 278 /* we started with empty chain */ 279 p = ctx->first_trees; 280 count = 31; 281 /* if the very first allocation has failed, nothing to do */ 282 if (!p) 283 return; 284 } 285 n = count; 286 for (q = p; q != ctx->trees; q = q->next, n = 31) { 287 while (n--) { 288 audit_put_chunk(q->c[n]); 289 q->c[n] = NULL; 290 } 291 } 292 while (n-- > ctx->tree_count) { 293 audit_put_chunk(q->c[n]); 294 q->c[n] = NULL; 295 } 296 ctx->trees = p; 297 ctx->tree_count = count; 298 } 299 300 static void free_tree_refs(struct audit_context *ctx) 301 { 302 struct audit_tree_refs *p, *q; 303 304 for (p = ctx->first_trees; p; p = q) { 305 q = p->next; 306 kfree(p); 307 } 308 } 309 310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 311 { 312 struct audit_tree_refs *p; 313 int n; 314 315 if (!tree) 316 return 0; 317 /* full ones */ 318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 319 for (n = 0; n < 31; n++) 320 if (audit_tree_match(p->c[n], tree)) 321 return 1; 322 } 323 /* partial */ 324 if (p) { 325 for (n = ctx->tree_count; n < 31; n++) 326 if (audit_tree_match(p->c[n], tree)) 327 return 1; 328 } 329 return 0; 330 } 331 332 static int audit_compare_uid(kuid_t uid, 333 struct audit_names *name, 334 struct audit_field *f, 335 struct audit_context *ctx) 336 { 337 struct audit_names *n; 338 int rc; 339 340 if (name) { 341 rc = audit_uid_comparator(uid, f->op, name->uid); 342 if (rc) 343 return rc; 344 } 345 346 if (ctx) { 347 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_uid_comparator(uid, f->op, n->uid); 349 if (rc) 350 return rc; 351 } 352 } 353 return 0; 354 } 355 356 static int audit_compare_gid(kgid_t gid, 357 struct audit_names *name, 358 struct audit_field *f, 359 struct audit_context *ctx) 360 { 361 struct audit_names *n; 362 int rc; 363 364 if (name) { 365 rc = audit_gid_comparator(gid, f->op, name->gid); 366 if (rc) 367 return rc; 368 } 369 370 if (ctx) { 371 list_for_each_entry(n, &ctx->names_list, list) { 372 rc = audit_gid_comparator(gid, f->op, n->gid); 373 if (rc) 374 return rc; 375 } 376 } 377 return 0; 378 } 379 380 static int audit_field_compare(struct task_struct *tsk, 381 const struct cred *cred, 382 struct audit_field *f, 383 struct audit_context *ctx, 384 struct audit_names *name) 385 { 386 switch (f->val) { 387 /* process to file object comparisons */ 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 389 return audit_compare_uid(cred->uid, name, f, ctx); 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 391 return audit_compare_gid(cred->gid, name, f, ctx); 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 393 return audit_compare_uid(cred->euid, name, f, ctx); 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 395 return audit_compare_gid(cred->egid, name, f, ctx); 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 399 return audit_compare_uid(cred->suid, name, f, ctx); 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 401 return audit_compare_gid(cred->sgid, name, f, ctx); 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 403 return audit_compare_uid(cred->fsuid, name, f, ctx); 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 405 return audit_compare_gid(cred->fsgid, name, f, ctx); 406 /* uid comparisons */ 407 case AUDIT_COMPARE_UID_TO_AUID: 408 return audit_uid_comparator(cred->uid, f->op, 409 audit_get_loginuid(tsk)); 410 case AUDIT_COMPARE_UID_TO_EUID: 411 return audit_uid_comparator(cred->uid, f->op, cred->euid); 412 case AUDIT_COMPARE_UID_TO_SUID: 413 return audit_uid_comparator(cred->uid, f->op, cred->suid); 414 case AUDIT_COMPARE_UID_TO_FSUID: 415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 416 /* auid comparisons */ 417 case AUDIT_COMPARE_AUID_TO_EUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->euid); 420 case AUDIT_COMPARE_AUID_TO_SUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->suid); 423 case AUDIT_COMPARE_AUID_TO_FSUID: 424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 425 cred->fsuid); 426 /* euid comparisons */ 427 case AUDIT_COMPARE_EUID_TO_SUID: 428 return audit_uid_comparator(cred->euid, f->op, cred->suid); 429 case AUDIT_COMPARE_EUID_TO_FSUID: 430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 431 /* suid comparisons */ 432 case AUDIT_COMPARE_SUID_TO_FSUID: 433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 434 /* gid comparisons */ 435 case AUDIT_COMPARE_GID_TO_EGID: 436 return audit_gid_comparator(cred->gid, f->op, cred->egid); 437 case AUDIT_COMPARE_GID_TO_SGID: 438 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 439 case AUDIT_COMPARE_GID_TO_FSGID: 440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 441 /* egid comparisons */ 442 case AUDIT_COMPARE_EGID_TO_SGID: 443 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 444 case AUDIT_COMPARE_EGID_TO_FSGID: 445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 446 /* sgid comparison */ 447 case AUDIT_COMPARE_SGID_TO_FSGID: 448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 449 default: 450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 451 return 0; 452 } 453 return 0; 454 } 455 456 /* Determine if any context name data matches a rule's watch data */ 457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 458 * otherwise. 459 * 460 * If task_creation is true, this is an explicit indication that we are 461 * filtering a task rule at task creation time. This and tsk == current are 462 * the only situations where tsk->cred may be accessed without an rcu read lock. 463 */ 464 static int audit_filter_rules(struct task_struct *tsk, 465 struct audit_krule *rule, 466 struct audit_context *ctx, 467 struct audit_names *name, 468 enum audit_state *state, 469 bool task_creation) 470 { 471 const struct cred *cred; 472 int i, need_sid = 1; 473 struct lsm_prop prop = { }; 474 unsigned int sessionid; 475 476 if (ctx && rule->prio <= ctx->prio) 477 return 0; 478 479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 480 481 for (i = 0; i < rule->field_count; i++) { 482 struct audit_field *f = &rule->fields[i]; 483 struct audit_names *n; 484 int result = 0; 485 pid_t pid; 486 487 switch (f->type) { 488 case AUDIT_PID: 489 pid = task_tgid_nr(tsk); 490 result = audit_comparator(pid, f->op, f->val); 491 break; 492 case AUDIT_PPID: 493 if (ctx) { 494 if (!ctx->ppid) 495 ctx->ppid = task_ppid_nr(tsk); 496 result = audit_comparator(ctx->ppid, f->op, f->val); 497 } 498 break; 499 case AUDIT_EXE: 500 result = audit_exe_compare(tsk, rule->exe); 501 if (f->op == Audit_not_equal) 502 result = !result; 503 break; 504 case AUDIT_UID: 505 result = audit_uid_comparator(cred->uid, f->op, f->uid); 506 break; 507 case AUDIT_EUID: 508 result = audit_uid_comparator(cred->euid, f->op, f->uid); 509 break; 510 case AUDIT_SUID: 511 result = audit_uid_comparator(cred->suid, f->op, f->uid); 512 break; 513 case AUDIT_FSUID: 514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 515 break; 516 case AUDIT_GID: 517 result = audit_gid_comparator(cred->gid, f->op, f->gid); 518 if (f->op == Audit_equal) { 519 if (!result) 520 result = groups_search(cred->group_info, f->gid); 521 } else if (f->op == Audit_not_equal) { 522 if (result) 523 result = !groups_search(cred->group_info, f->gid); 524 } 525 break; 526 case AUDIT_EGID: 527 result = audit_gid_comparator(cred->egid, f->op, f->gid); 528 if (f->op == Audit_equal) { 529 if (!result) 530 result = groups_search(cred->group_info, f->gid); 531 } else if (f->op == Audit_not_equal) { 532 if (result) 533 result = !groups_search(cred->group_info, f->gid); 534 } 535 break; 536 case AUDIT_SGID: 537 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 538 break; 539 case AUDIT_FSGID: 540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 541 break; 542 case AUDIT_SESSIONID: 543 sessionid = audit_get_sessionid(tsk); 544 result = audit_comparator(sessionid, f->op, f->val); 545 break; 546 case AUDIT_PERS: 547 result = audit_comparator(tsk->personality, f->op, f->val); 548 break; 549 case AUDIT_ARCH: 550 if (ctx) 551 result = audit_comparator(ctx->arch, f->op, f->val); 552 break; 553 554 case AUDIT_EXIT: 555 if (ctx && ctx->return_valid != AUDITSC_INVALID) 556 result = audit_comparator(ctx->return_code, f->op, f->val); 557 break; 558 case AUDIT_SUCCESS: 559 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 560 if (f->val) 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 562 else 563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 564 } 565 break; 566 case AUDIT_DEVMAJOR: 567 if (name) { 568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 569 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 570 ++result; 571 } else if (ctx) { 572 list_for_each_entry(n, &ctx->names_list, list) { 573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 575 ++result; 576 break; 577 } 578 } 579 } 580 break; 581 case AUDIT_DEVMINOR: 582 if (name) { 583 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 584 audit_comparator(MINOR(name->rdev), f->op, f->val)) 585 ++result; 586 } else if (ctx) { 587 list_for_each_entry(n, &ctx->names_list, list) { 588 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 589 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 590 ++result; 591 break; 592 } 593 } 594 } 595 break; 596 case AUDIT_INODE: 597 if (name) 598 result = audit_comparator(name->ino, f->op, f->val); 599 else if (ctx) { 600 list_for_each_entry(n, &ctx->names_list, list) { 601 if (audit_comparator(n->ino, f->op, f->val)) { 602 ++result; 603 break; 604 } 605 } 606 } 607 break; 608 case AUDIT_OBJ_UID: 609 if (name) { 610 result = audit_uid_comparator(name->uid, f->op, f->uid); 611 } else if (ctx) { 612 list_for_each_entry(n, &ctx->names_list, list) { 613 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 614 ++result; 615 break; 616 } 617 } 618 } 619 break; 620 case AUDIT_OBJ_GID: 621 if (name) { 622 result = audit_gid_comparator(name->gid, f->op, f->gid); 623 } else if (ctx) { 624 list_for_each_entry(n, &ctx->names_list, list) { 625 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 626 ++result; 627 break; 628 } 629 } 630 } 631 break; 632 case AUDIT_WATCH: 633 if (name) { 634 result = audit_watch_compare(rule->watch, 635 name->ino, 636 name->dev); 637 if (f->op == Audit_not_equal) 638 result = !result; 639 } 640 break; 641 case AUDIT_DIR: 642 if (ctx) { 643 result = match_tree_refs(ctx, rule->tree); 644 if (f->op == Audit_not_equal) 645 result = !result; 646 } 647 break; 648 case AUDIT_LOGINUID: 649 result = audit_uid_comparator(audit_get_loginuid(tsk), 650 f->op, f->uid); 651 break; 652 case AUDIT_LOGINUID_SET: 653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 654 break; 655 case AUDIT_SADDR_FAM: 656 if (ctx && ctx->sockaddr) 657 result = audit_comparator(ctx->sockaddr->ss_family, 658 f->op, f->val); 659 break; 660 case AUDIT_SUBJ_USER: 661 case AUDIT_SUBJ_ROLE: 662 case AUDIT_SUBJ_TYPE: 663 case AUDIT_SUBJ_SEN: 664 case AUDIT_SUBJ_CLR: 665 /* NOTE: this may return negative values indicating 666 a temporary error. We simply treat this as a 667 match for now to avoid losing information that 668 may be wanted. An error message will also be 669 logged upon error */ 670 if (f->lsm_rule) { 671 if (need_sid) { 672 /* @tsk should always be equal to 673 * @current with the exception of 674 * fork()/copy_process() in which case 675 * the new @tsk creds are still a dup 676 * of @current's creds so we can still 677 * use 678 * security_current_getlsmprop_subj() 679 * here even though it always refs 680 * @current's creds 681 */ 682 security_current_getlsmprop_subj(&prop); 683 need_sid = 0; 684 } 685 result = security_audit_rule_match(&prop, 686 f->type, 687 f->op, 688 f->lsm_rule); 689 } 690 break; 691 case AUDIT_OBJ_USER: 692 case AUDIT_OBJ_ROLE: 693 case AUDIT_OBJ_TYPE: 694 case AUDIT_OBJ_LEV_LOW: 695 case AUDIT_OBJ_LEV_HIGH: 696 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 697 also applies here */ 698 if (f->lsm_rule) { 699 /* Find files that match */ 700 if (name) { 701 result = security_audit_rule_match( 702 &name->oprop, 703 f->type, 704 f->op, 705 f->lsm_rule); 706 } else if (ctx) { 707 list_for_each_entry(n, &ctx->names_list, list) { 708 if (security_audit_rule_match( 709 &n->oprop, 710 f->type, 711 f->op, 712 f->lsm_rule)) { 713 ++result; 714 break; 715 } 716 } 717 } 718 /* Find ipc objects that match */ 719 if (!ctx || ctx->type != AUDIT_IPC) 720 break; 721 if (security_audit_rule_match(&ctx->ipc.oprop, 722 f->type, f->op, 723 f->lsm_rule)) 724 ++result; 725 } 726 break; 727 case AUDIT_ARG0: 728 case AUDIT_ARG1: 729 case AUDIT_ARG2: 730 case AUDIT_ARG3: 731 if (ctx) 732 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 733 break; 734 case AUDIT_FILTERKEY: 735 /* ignore this field for filtering */ 736 result = 1; 737 break; 738 case AUDIT_PERM: 739 result = audit_match_perm(ctx, f->val); 740 if (f->op == Audit_not_equal) 741 result = !result; 742 break; 743 case AUDIT_FILETYPE: 744 result = audit_match_filetype(ctx, f->val); 745 if (f->op == Audit_not_equal) 746 result = !result; 747 break; 748 case AUDIT_FIELD_COMPARE: 749 result = audit_field_compare(tsk, cred, f, ctx, name); 750 break; 751 } 752 if (!result) 753 return 0; 754 } 755 756 if (ctx) { 757 if (rule->filterkey) { 758 kfree(ctx->filterkey); 759 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 760 } 761 ctx->prio = rule->prio; 762 } 763 switch (rule->action) { 764 case AUDIT_NEVER: 765 *state = AUDIT_STATE_DISABLED; 766 break; 767 case AUDIT_ALWAYS: 768 *state = AUDIT_STATE_RECORD; 769 break; 770 } 771 return 1; 772 } 773 774 /* At process creation time, we can determine if system-call auditing is 775 * completely disabled for this task. Since we only have the task 776 * structure at this point, we can only check uid and gid. 777 */ 778 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 779 { 780 struct audit_entry *e; 781 enum audit_state state; 782 783 rcu_read_lock(); 784 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 785 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 786 &state, true)) { 787 if (state == AUDIT_STATE_RECORD) 788 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 789 rcu_read_unlock(); 790 return state; 791 } 792 } 793 rcu_read_unlock(); 794 return AUDIT_STATE_BUILD; 795 } 796 797 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 798 { 799 int word, bit; 800 801 if (val > 0xffffffff) 802 return false; 803 804 word = AUDIT_WORD(val); 805 if (word >= AUDIT_BITMASK_SIZE) 806 return false; 807 808 bit = AUDIT_BIT(val); 809 810 return rule->mask[word] & bit; 811 } 812 813 /** 814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 815 * @tsk: associated task 816 * @ctx: audit context 817 * @list: audit filter list 818 * @name: audit_name (can be NULL) 819 * @op: current syscall/uring_op 820 * 821 * Run the udit filters specified in @list against @tsk using @ctx, 822 * @name, and @op, as necessary; the caller is responsible for ensuring 823 * that the call is made while the RCU read lock is held. The @name 824 * parameter can be NULL, but all others must be specified. 825 * Returns 1/true if the filter finds a match, 0/false if none are found. 826 */ 827 static int __audit_filter_op(struct task_struct *tsk, 828 struct audit_context *ctx, 829 struct list_head *list, 830 struct audit_names *name, 831 unsigned long op) 832 { 833 struct audit_entry *e; 834 enum audit_state state; 835 836 list_for_each_entry_rcu(e, list, list) { 837 if (audit_in_mask(&e->rule, op) && 838 audit_filter_rules(tsk, &e->rule, ctx, name, 839 &state, false)) { 840 ctx->current_state = state; 841 return 1; 842 } 843 } 844 return 0; 845 } 846 847 /** 848 * audit_filter_uring - apply filters to an io_uring operation 849 * @tsk: associated task 850 * @ctx: audit context 851 */ 852 static void audit_filter_uring(struct task_struct *tsk, 853 struct audit_context *ctx) 854 { 855 if (auditd_test_task(tsk)) 856 return; 857 858 rcu_read_lock(); 859 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 860 NULL, ctx->uring_op); 861 rcu_read_unlock(); 862 } 863 864 /* At syscall exit time, this filter is called if the audit_state is 865 * not low enough that auditing cannot take place, but is also not 866 * high enough that we already know we have to write an audit record 867 * (i.e., the state is AUDIT_STATE_BUILD). 868 */ 869 static void audit_filter_syscall(struct task_struct *tsk, 870 struct audit_context *ctx) 871 { 872 if (auditd_test_task(tsk)) 873 return; 874 875 rcu_read_lock(); 876 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 877 NULL, ctx->major); 878 rcu_read_unlock(); 879 } 880 881 /* 882 * Given an audit_name check the inode hash table to see if they match. 883 * Called holding the rcu read lock to protect the use of audit_inode_hash 884 */ 885 static int audit_filter_inode_name(struct task_struct *tsk, 886 struct audit_names *n, 887 struct audit_context *ctx) 888 { 889 int h = audit_hash_ino((u32)n->ino); 890 struct list_head *list = &audit_inode_hash[h]; 891 892 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 893 } 894 895 /* At syscall exit time, this filter is called if any audit_names have been 896 * collected during syscall processing. We only check rules in sublists at hash 897 * buckets applicable to the inode numbers in audit_names. 898 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 899 */ 900 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 901 { 902 struct audit_names *n; 903 904 if (auditd_test_task(tsk)) 905 return; 906 907 rcu_read_lock(); 908 909 list_for_each_entry(n, &ctx->names_list, list) { 910 if (audit_filter_inode_name(tsk, n, ctx)) 911 break; 912 } 913 rcu_read_unlock(); 914 } 915 916 static inline void audit_proctitle_free(struct audit_context *context) 917 { 918 kfree(context->proctitle.value); 919 context->proctitle.value = NULL; 920 context->proctitle.len = 0; 921 } 922 923 static inline void audit_free_module(struct audit_context *context) 924 { 925 if (context->type == AUDIT_KERN_MODULE) { 926 kfree(context->module.name); 927 context->module.name = NULL; 928 } 929 } 930 static inline void audit_free_names(struct audit_context *context) 931 { 932 struct audit_names *n, *next; 933 934 list_for_each_entry_safe(n, next, &context->names_list, list) { 935 list_del(&n->list); 936 if (n->name) 937 putname(n->name); 938 if (n->should_free) 939 kfree(n); 940 } 941 context->name_count = 0; 942 path_put(&context->pwd); 943 context->pwd.dentry = NULL; 944 context->pwd.mnt = NULL; 945 } 946 947 static inline void audit_free_aux(struct audit_context *context) 948 { 949 struct audit_aux_data *aux; 950 951 while ((aux = context->aux)) { 952 context->aux = aux->next; 953 kfree(aux); 954 } 955 context->aux = NULL; 956 while ((aux = context->aux_pids)) { 957 context->aux_pids = aux->next; 958 kfree(aux); 959 } 960 context->aux_pids = NULL; 961 } 962 963 /** 964 * audit_reset_context - reset a audit_context structure 965 * @ctx: the audit_context to reset 966 * 967 * All fields in the audit_context will be reset to an initial state, all 968 * references held by fields will be dropped, and private memory will be 969 * released. When this function returns the audit_context will be suitable 970 * for reuse, so long as the passed context is not NULL or a dummy context. 971 */ 972 static void audit_reset_context(struct audit_context *ctx) 973 { 974 if (!ctx) 975 return; 976 977 /* if ctx is non-null, reset the "ctx->context" regardless */ 978 ctx->context = AUDIT_CTX_UNUSED; 979 if (ctx->dummy) 980 return; 981 982 /* 983 * NOTE: It shouldn't matter in what order we release the fields, so 984 * release them in the order in which they appear in the struct; 985 * this gives us some hope of quickly making sure we are 986 * resetting the audit_context properly. 987 * 988 * Other things worth mentioning: 989 * - we don't reset "dummy" 990 * - we don't reset "state", we do reset "current_state" 991 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 992 * - much of this is likely overkill, but play it safe for now 993 * - we really need to work on improving the audit_context struct 994 */ 995 996 ctx->current_state = ctx->state; 997 ctx->stamp.serial = 0; 998 ctx->stamp.ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 999 ctx->major = 0; 1000 ctx->uring_op = 0; 1001 memset(ctx->argv, 0, sizeof(ctx->argv)); 1002 ctx->return_code = 0; 1003 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 1004 ctx->return_valid = AUDITSC_INVALID; 1005 audit_free_names(ctx); 1006 if (ctx->state != AUDIT_STATE_RECORD) { 1007 kfree(ctx->filterkey); 1008 ctx->filterkey = NULL; 1009 } 1010 audit_free_aux(ctx); 1011 kfree(ctx->sockaddr); 1012 ctx->sockaddr = NULL; 1013 ctx->sockaddr_len = 0; 1014 ctx->ppid = 0; 1015 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1016 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1017 ctx->personality = 0; 1018 ctx->arch = 0; 1019 ctx->target_pid = 0; 1020 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1021 ctx->target_sessionid = 0; 1022 lsmprop_init(&ctx->target_ref); 1023 ctx->target_comm[0] = '\0'; 1024 unroll_tree_refs(ctx, NULL, 0); 1025 WARN_ON(!list_empty(&ctx->killed_trees)); 1026 audit_free_module(ctx); 1027 ctx->fds[0] = -1; 1028 ctx->type = 0; /* reset last for audit_free_*() */ 1029 } 1030 1031 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1032 { 1033 struct audit_context *context; 1034 1035 context = kzalloc(sizeof(*context), GFP_KERNEL); 1036 if (!context) 1037 return NULL; 1038 context->context = AUDIT_CTX_UNUSED; 1039 context->state = state; 1040 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1041 INIT_LIST_HEAD(&context->killed_trees); 1042 INIT_LIST_HEAD(&context->names_list); 1043 context->fds[0] = -1; 1044 context->return_valid = AUDITSC_INVALID; 1045 return context; 1046 } 1047 1048 /** 1049 * audit_alloc - allocate an audit context block for a task 1050 * @tsk: task 1051 * 1052 * Filter on the task information and allocate a per-task audit context 1053 * if necessary. Doing so turns on system call auditing for the 1054 * specified task. This is called from copy_process, so no lock is 1055 * needed. 1056 */ 1057 int audit_alloc(struct task_struct *tsk) 1058 { 1059 struct audit_context *context; 1060 enum audit_state state; 1061 char *key = NULL; 1062 1063 if (likely(!audit_ever_enabled)) 1064 return 0; 1065 1066 state = audit_filter_task(tsk, &key); 1067 if (state == AUDIT_STATE_DISABLED) { 1068 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1069 return 0; 1070 } 1071 1072 context = audit_alloc_context(state); 1073 if (!context) { 1074 kfree(key); 1075 audit_log_lost("out of memory in audit_alloc"); 1076 return -ENOMEM; 1077 } 1078 context->filterkey = key; 1079 1080 audit_set_context(tsk, context); 1081 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1082 return 0; 1083 } 1084 1085 static inline void audit_free_context(struct audit_context *context) 1086 { 1087 /* resetting is extra work, but it is likely just noise */ 1088 audit_reset_context(context); 1089 audit_proctitle_free(context); 1090 free_tree_refs(context); 1091 kfree(context->filterkey); 1092 kfree(context); 1093 } 1094 1095 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1096 kuid_t auid, kuid_t uid, 1097 unsigned int sessionid, struct lsm_prop *prop, 1098 char *comm) 1099 { 1100 struct audit_buffer *ab; 1101 int rc = 0; 1102 1103 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1104 if (!ab) 1105 return rc; 1106 1107 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1108 from_kuid(&init_user_ns, auid), 1109 from_kuid(&init_user_ns, uid), sessionid); 1110 if (lsmprop_is_set(prop) && audit_log_obj_ctx(ab, prop)) 1111 rc = 1; 1112 1113 audit_log_format(ab, " ocomm="); 1114 audit_log_untrustedstring(ab, comm); 1115 audit_log_end(ab); 1116 1117 return rc; 1118 } 1119 1120 static void audit_log_execve_info(struct audit_context *context, 1121 struct audit_buffer **ab) 1122 { 1123 long len_max; 1124 long len_rem; 1125 long len_full; 1126 long len_buf; 1127 long len_abuf = 0; 1128 long len_tmp; 1129 bool require_data; 1130 bool encode; 1131 unsigned int iter; 1132 unsigned int arg; 1133 char *buf_head; 1134 char *buf; 1135 const char __user *p = (const char __user *)current->mm->arg_start; 1136 1137 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1138 * data we put in the audit record for this argument (see the 1139 * code below) ... at this point in time 96 is plenty */ 1140 char abuf[96]; 1141 1142 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1143 * current value of 7500 is not as important as the fact that it 1144 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1145 * room if we go over a little bit in the logging below */ 1146 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1147 len_max = MAX_EXECVE_AUDIT_LEN; 1148 1149 /* scratch buffer to hold the userspace args */ 1150 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1151 if (!buf_head) { 1152 audit_panic("out of memory for argv string"); 1153 return; 1154 } 1155 buf = buf_head; 1156 1157 audit_log_format(*ab, "argc=%d", context->execve.argc); 1158 1159 len_rem = len_max; 1160 len_buf = 0; 1161 len_full = 0; 1162 require_data = true; 1163 encode = false; 1164 iter = 0; 1165 arg = 0; 1166 do { 1167 /* NOTE: we don't ever want to trust this value for anything 1168 * serious, but the audit record format insists we 1169 * provide an argument length for really long arguments, 1170 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1171 * to use strncpy_from_user() to obtain this value for 1172 * recording in the log, although we don't use it 1173 * anywhere here to avoid a double-fetch problem */ 1174 if (len_full == 0) 1175 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1176 1177 /* read more data from userspace */ 1178 if (require_data) { 1179 /* can we make more room in the buffer? */ 1180 if (buf != buf_head) { 1181 memmove(buf_head, buf, len_buf); 1182 buf = buf_head; 1183 } 1184 1185 /* fetch as much as we can of the argument */ 1186 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1187 len_max - len_buf); 1188 if (len_tmp == -EFAULT) { 1189 /* unable to copy from userspace */ 1190 send_sig(SIGKILL, current, 0); 1191 goto out; 1192 } else if (len_tmp == (len_max - len_buf)) { 1193 /* buffer is not large enough */ 1194 require_data = true; 1195 /* NOTE: if we are going to span multiple 1196 * buffers force the encoding so we stand 1197 * a chance at a sane len_full value and 1198 * consistent record encoding */ 1199 encode = true; 1200 len_full = len_full * 2; 1201 p += len_tmp; 1202 } else { 1203 require_data = false; 1204 if (!encode) 1205 encode = audit_string_contains_control( 1206 buf, len_tmp); 1207 /* try to use a trusted value for len_full */ 1208 if (len_full < len_max) 1209 len_full = (encode ? 1210 len_tmp * 2 : len_tmp); 1211 p += len_tmp + 1; 1212 } 1213 len_buf += len_tmp; 1214 buf_head[len_buf] = '\0'; 1215 1216 /* length of the buffer in the audit record? */ 1217 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1218 } 1219 1220 /* write as much as we can to the audit log */ 1221 if (len_buf >= 0) { 1222 /* NOTE: some magic numbers here - basically if we 1223 * can't fit a reasonable amount of data into the 1224 * existing audit buffer, flush it and start with 1225 * a new buffer */ 1226 if ((sizeof(abuf) + 8) > len_rem) { 1227 len_rem = len_max; 1228 audit_log_end(*ab); 1229 *ab = audit_log_start(context, 1230 GFP_KERNEL, AUDIT_EXECVE); 1231 if (!*ab) 1232 goto out; 1233 } 1234 1235 /* create the non-arg portion of the arg record */ 1236 len_tmp = 0; 1237 if (require_data || (iter > 0) || 1238 ((len_abuf + sizeof(abuf)) > len_rem)) { 1239 if (iter == 0) { 1240 len_tmp += snprintf(&abuf[len_tmp], 1241 sizeof(abuf) - len_tmp, 1242 " a%d_len=%lu", 1243 arg, len_full); 1244 } 1245 len_tmp += snprintf(&abuf[len_tmp], 1246 sizeof(abuf) - len_tmp, 1247 " a%d[%d]=", arg, iter++); 1248 } else 1249 len_tmp += snprintf(&abuf[len_tmp], 1250 sizeof(abuf) - len_tmp, 1251 " a%d=", arg); 1252 WARN_ON(len_tmp >= sizeof(abuf)); 1253 abuf[sizeof(abuf) - 1] = '\0'; 1254 1255 /* log the arg in the audit record */ 1256 audit_log_format(*ab, "%s", abuf); 1257 len_rem -= len_tmp; 1258 len_tmp = len_buf; 1259 if (encode) { 1260 if (len_abuf > len_rem) 1261 len_tmp = len_rem / 2; /* encoding */ 1262 audit_log_n_hex(*ab, buf, len_tmp); 1263 len_rem -= len_tmp * 2; 1264 len_abuf -= len_tmp * 2; 1265 } else { 1266 if (len_abuf > len_rem) 1267 len_tmp = len_rem - 2; /* quotes */ 1268 audit_log_n_string(*ab, buf, len_tmp); 1269 len_rem -= len_tmp + 2; 1270 /* don't subtract the "2" because we still need 1271 * to add quotes to the remaining string */ 1272 len_abuf -= len_tmp; 1273 } 1274 len_buf -= len_tmp; 1275 buf += len_tmp; 1276 } 1277 1278 /* ready to move to the next argument? */ 1279 if ((len_buf == 0) && !require_data) { 1280 arg++; 1281 iter = 0; 1282 len_full = 0; 1283 require_data = true; 1284 encode = false; 1285 } 1286 } while (arg < context->execve.argc); 1287 1288 /* NOTE: the caller handles the final audit_log_end() call */ 1289 1290 out: 1291 kfree(buf_head); 1292 } 1293 1294 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1295 kernel_cap_t *cap) 1296 { 1297 if (cap_isclear(*cap)) { 1298 audit_log_format(ab, " %s=0", prefix); 1299 return; 1300 } 1301 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1302 } 1303 1304 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1305 { 1306 if (name->fcap_ver == -1) { 1307 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1308 return; 1309 } 1310 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1311 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1312 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1313 name->fcap.fE, name->fcap_ver, 1314 from_kuid(&init_user_ns, name->fcap.rootid)); 1315 } 1316 1317 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1318 { 1319 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1320 const struct timespec64 *tk = &context->time.tk_injoffset; 1321 static const char * const ntp_name[] = { 1322 "offset", 1323 "freq", 1324 "status", 1325 "tai", 1326 "tick", 1327 "adjust", 1328 }; 1329 int type; 1330 1331 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1332 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1333 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1334 if (!*ab) { 1335 *ab = audit_log_start(context, 1336 GFP_KERNEL, 1337 AUDIT_TIME_ADJNTPVAL); 1338 if (!*ab) 1339 return; 1340 } 1341 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1342 ntp_name[type], 1343 ntp->vals[type].oldval, 1344 ntp->vals[type].newval); 1345 audit_log_end(*ab); 1346 *ab = NULL; 1347 } 1348 } 1349 } 1350 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1351 if (!*ab) { 1352 *ab = audit_log_start(context, GFP_KERNEL, 1353 AUDIT_TIME_INJOFFSET); 1354 if (!*ab) 1355 return; 1356 } 1357 audit_log_format(*ab, "sec=%lli nsec=%li", 1358 (long long)tk->tv_sec, tk->tv_nsec); 1359 audit_log_end(*ab); 1360 *ab = NULL; 1361 } 1362 } 1363 1364 static void show_special(struct audit_context *context, int *call_panic) 1365 { 1366 struct audit_buffer *ab; 1367 int i; 1368 1369 ab = audit_log_start(context, GFP_KERNEL, context->type); 1370 if (!ab) 1371 return; 1372 1373 switch (context->type) { 1374 case AUDIT_SOCKETCALL: { 1375 int nargs = context->socketcall.nargs; 1376 1377 audit_log_format(ab, "nargs=%d", nargs); 1378 for (i = 0; i < nargs; i++) 1379 audit_log_format(ab, " a%d=%lx", i, 1380 context->socketcall.args[i]); 1381 break; } 1382 case AUDIT_IPC: 1383 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1384 from_kuid(&init_user_ns, context->ipc.uid), 1385 from_kgid(&init_user_ns, context->ipc.gid), 1386 context->ipc.mode); 1387 if (lsmprop_is_set(&context->ipc.oprop)) { 1388 if (audit_log_obj_ctx(ab, &context->ipc.oprop)) 1389 *call_panic = 1; 1390 } 1391 if (context->ipc.has_perm) { 1392 audit_log_end(ab); 1393 ab = audit_log_start(context, GFP_KERNEL, 1394 AUDIT_IPC_SET_PERM); 1395 if (unlikely(!ab)) 1396 return; 1397 audit_log_format(ab, 1398 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1399 context->ipc.qbytes, 1400 context->ipc.perm_uid, 1401 context->ipc.perm_gid, 1402 context->ipc.perm_mode); 1403 } 1404 break; 1405 case AUDIT_MQ_OPEN: 1406 audit_log_format(ab, 1407 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1408 "mq_msgsize=%ld mq_curmsgs=%ld", 1409 context->mq_open.oflag, context->mq_open.mode, 1410 context->mq_open.attr.mq_flags, 1411 context->mq_open.attr.mq_maxmsg, 1412 context->mq_open.attr.mq_msgsize, 1413 context->mq_open.attr.mq_curmsgs); 1414 break; 1415 case AUDIT_MQ_SENDRECV: 1416 audit_log_format(ab, 1417 "mqdes=%d msg_len=%zd msg_prio=%u " 1418 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1419 context->mq_sendrecv.mqdes, 1420 context->mq_sendrecv.msg_len, 1421 context->mq_sendrecv.msg_prio, 1422 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1423 context->mq_sendrecv.abs_timeout.tv_nsec); 1424 break; 1425 case AUDIT_MQ_NOTIFY: 1426 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1427 context->mq_notify.mqdes, 1428 context->mq_notify.sigev_signo); 1429 break; 1430 case AUDIT_MQ_GETSETATTR: { 1431 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1432 1433 audit_log_format(ab, 1434 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1435 "mq_curmsgs=%ld ", 1436 context->mq_getsetattr.mqdes, 1437 attr->mq_flags, attr->mq_maxmsg, 1438 attr->mq_msgsize, attr->mq_curmsgs); 1439 break; } 1440 case AUDIT_CAPSET: 1441 audit_log_format(ab, "pid=%d", context->capset.pid); 1442 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1443 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1444 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1445 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1446 break; 1447 case AUDIT_MMAP: 1448 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1449 context->mmap.flags); 1450 break; 1451 case AUDIT_OPENAT2: 1452 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1453 context->openat2.flags, 1454 context->openat2.mode, 1455 context->openat2.resolve); 1456 break; 1457 case AUDIT_EXECVE: 1458 audit_log_execve_info(context, &ab); 1459 break; 1460 case AUDIT_KERN_MODULE: 1461 audit_log_format(ab, "name="); 1462 if (context->module.name) { 1463 audit_log_untrustedstring(ab, context->module.name); 1464 } else 1465 audit_log_format(ab, "(null)"); 1466 1467 break; 1468 case AUDIT_TIME_ADJNTPVAL: 1469 case AUDIT_TIME_INJOFFSET: 1470 /* this call deviates from the rest, eating the buffer */ 1471 audit_log_time(context, &ab); 1472 break; 1473 } 1474 audit_log_end(ab); 1475 } 1476 1477 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1478 { 1479 char *end = proctitle + len - 1; 1480 1481 while (end > proctitle && !isprint(*end)) 1482 end--; 1483 1484 /* catch the case where proctitle is only 1 non-print character */ 1485 len = end - proctitle + 1; 1486 len -= isprint(proctitle[len-1]) == 0; 1487 return len; 1488 } 1489 1490 /* 1491 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1492 * @context: audit_context for the task 1493 * @n: audit_names structure with reportable details 1494 * @path: optional path to report instead of audit_names->name 1495 * @record_num: record number to report when handling a list of names 1496 * @call_panic: optional pointer to int that will be updated if secid fails 1497 */ 1498 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1499 const struct path *path, int record_num, int *call_panic) 1500 { 1501 struct audit_buffer *ab; 1502 1503 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1504 if (!ab) 1505 return; 1506 1507 audit_log_format(ab, "item=%d", record_num); 1508 1509 if (path) 1510 audit_log_d_path(ab, " name=", path); 1511 else if (n->name) { 1512 switch (n->name_len) { 1513 case AUDIT_NAME_FULL: 1514 /* log the full path */ 1515 audit_log_format(ab, " name="); 1516 audit_log_untrustedstring(ab, n->name->name); 1517 break; 1518 case 0: 1519 /* name was specified as a relative path and the 1520 * directory component is the cwd 1521 */ 1522 if (context->pwd.dentry && context->pwd.mnt) 1523 audit_log_d_path(ab, " name=", &context->pwd); 1524 else 1525 audit_log_format(ab, " name=(null)"); 1526 break; 1527 default: 1528 /* log the name's directory component */ 1529 audit_log_format(ab, " name="); 1530 audit_log_n_untrustedstring(ab, n->name->name, 1531 n->name_len); 1532 } 1533 } else 1534 audit_log_format(ab, " name=(null)"); 1535 1536 if (n->ino != AUDIT_INO_UNSET) 1537 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1538 n->ino, 1539 MAJOR(n->dev), 1540 MINOR(n->dev), 1541 n->mode, 1542 from_kuid(&init_user_ns, n->uid), 1543 from_kgid(&init_user_ns, n->gid), 1544 MAJOR(n->rdev), 1545 MINOR(n->rdev)); 1546 if (lsmprop_is_set(&n->oprop) && 1547 audit_log_obj_ctx(ab, &n->oprop)) 1548 *call_panic = 2; 1549 1550 /* log the audit_names record type */ 1551 switch (n->type) { 1552 case AUDIT_TYPE_NORMAL: 1553 audit_log_format(ab, " nametype=NORMAL"); 1554 break; 1555 case AUDIT_TYPE_PARENT: 1556 audit_log_format(ab, " nametype=PARENT"); 1557 break; 1558 case AUDIT_TYPE_CHILD_DELETE: 1559 audit_log_format(ab, " nametype=DELETE"); 1560 break; 1561 case AUDIT_TYPE_CHILD_CREATE: 1562 audit_log_format(ab, " nametype=CREATE"); 1563 break; 1564 default: 1565 audit_log_format(ab, " nametype=UNKNOWN"); 1566 break; 1567 } 1568 1569 audit_log_fcaps(ab, n); 1570 audit_log_end(ab); 1571 } 1572 1573 static void audit_log_proctitle(void) 1574 { 1575 int res; 1576 char *buf; 1577 char *msg = "(null)"; 1578 int len = strlen(msg); 1579 struct audit_context *context = audit_context(); 1580 struct audit_buffer *ab; 1581 1582 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1583 if (!ab) 1584 return; /* audit_panic or being filtered */ 1585 1586 audit_log_format(ab, "proctitle="); 1587 1588 /* Not cached */ 1589 if (!context->proctitle.value) { 1590 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1591 if (!buf) 1592 goto out; 1593 /* Historically called this from procfs naming */ 1594 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1595 if (res == 0) { 1596 kfree(buf); 1597 goto out; 1598 } 1599 res = audit_proctitle_rtrim(buf, res); 1600 if (res == 0) { 1601 kfree(buf); 1602 goto out; 1603 } 1604 context->proctitle.value = buf; 1605 context->proctitle.len = res; 1606 } 1607 msg = context->proctitle.value; 1608 len = context->proctitle.len; 1609 out: 1610 audit_log_n_untrustedstring(ab, msg, len); 1611 audit_log_end(ab); 1612 } 1613 1614 /** 1615 * audit_log_uring - generate a AUDIT_URINGOP record 1616 * @ctx: the audit context 1617 */ 1618 static void audit_log_uring(struct audit_context *ctx) 1619 { 1620 struct audit_buffer *ab; 1621 const struct cred *cred; 1622 1623 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1624 if (!ab) 1625 return; 1626 cred = current_cred(); 1627 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1628 if (ctx->return_valid != AUDITSC_INVALID) 1629 audit_log_format(ab, " success=%s exit=%ld", 1630 str_yes_no(ctx->return_valid == 1631 AUDITSC_SUCCESS), 1632 ctx->return_code); 1633 audit_log_format(ab, 1634 " items=%d" 1635 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1636 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1637 ctx->name_count, 1638 task_ppid_nr(current), task_tgid_nr(current), 1639 from_kuid(&init_user_ns, cred->uid), 1640 from_kgid(&init_user_ns, cred->gid), 1641 from_kuid(&init_user_ns, cred->euid), 1642 from_kuid(&init_user_ns, cred->suid), 1643 from_kuid(&init_user_ns, cred->fsuid), 1644 from_kgid(&init_user_ns, cred->egid), 1645 from_kgid(&init_user_ns, cred->sgid), 1646 from_kgid(&init_user_ns, cred->fsgid)); 1647 audit_log_task_context(ab); 1648 audit_log_key(ab, ctx->filterkey); 1649 audit_log_end(ab); 1650 } 1651 1652 static void audit_log_exit(void) 1653 { 1654 int i, call_panic = 0; 1655 struct audit_context *context = audit_context(); 1656 struct audit_buffer *ab; 1657 struct audit_aux_data *aux; 1658 struct audit_names *n; 1659 1660 context->personality = current->personality; 1661 1662 switch (context->context) { 1663 case AUDIT_CTX_SYSCALL: 1664 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1665 if (!ab) 1666 return; 1667 audit_log_format(ab, "arch=%x syscall=%d", 1668 context->arch, context->major); 1669 if (context->personality != PER_LINUX) 1670 audit_log_format(ab, " per=%lx", context->personality); 1671 if (context->return_valid != AUDITSC_INVALID) 1672 audit_log_format(ab, " success=%s exit=%ld", 1673 str_yes_no(context->return_valid == 1674 AUDITSC_SUCCESS), 1675 context->return_code); 1676 audit_log_format(ab, 1677 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1678 context->argv[0], 1679 context->argv[1], 1680 context->argv[2], 1681 context->argv[3], 1682 context->name_count); 1683 audit_log_task_info(ab); 1684 audit_log_key(ab, context->filterkey); 1685 audit_log_end(ab); 1686 break; 1687 case AUDIT_CTX_URING: 1688 audit_log_uring(context); 1689 break; 1690 default: 1691 BUG(); 1692 break; 1693 } 1694 1695 for (aux = context->aux; aux; aux = aux->next) { 1696 1697 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1698 if (!ab) 1699 continue; /* audit_panic has been called */ 1700 1701 switch (aux->type) { 1702 1703 case AUDIT_BPRM_FCAPS: { 1704 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1705 1706 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1707 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1708 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1709 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1710 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1711 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1712 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1713 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1714 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1715 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1716 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1717 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1718 audit_log_format(ab, " frootid=%d", 1719 from_kuid(&init_user_ns, 1720 axs->fcap.rootid)); 1721 break; } 1722 1723 } 1724 audit_log_end(ab); 1725 } 1726 1727 if (context->type) 1728 show_special(context, &call_panic); 1729 1730 if (context->fds[0] >= 0) { 1731 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1732 if (ab) { 1733 audit_log_format(ab, "fd0=%d fd1=%d", 1734 context->fds[0], context->fds[1]); 1735 audit_log_end(ab); 1736 } 1737 } 1738 1739 if (context->sockaddr_len) { 1740 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1741 if (ab) { 1742 audit_log_format(ab, "saddr="); 1743 audit_log_n_hex(ab, (void *)context->sockaddr, 1744 context->sockaddr_len); 1745 audit_log_end(ab); 1746 } 1747 } 1748 1749 for (aux = context->aux_pids; aux; aux = aux->next) { 1750 struct audit_aux_data_pids *axs = (void *)aux; 1751 1752 for (i = 0; i < axs->pid_count; i++) 1753 if (audit_log_pid_context(context, axs->target_pid[i], 1754 axs->target_auid[i], 1755 axs->target_uid[i], 1756 axs->target_sessionid[i], 1757 &axs->target_ref[i], 1758 axs->target_comm[i])) 1759 call_panic = 1; 1760 } 1761 1762 if (context->target_pid && 1763 audit_log_pid_context(context, context->target_pid, 1764 context->target_auid, context->target_uid, 1765 context->target_sessionid, 1766 &context->target_ref, 1767 context->target_comm)) 1768 call_panic = 1; 1769 1770 if (context->pwd.dentry && context->pwd.mnt) { 1771 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1772 if (ab) { 1773 audit_log_d_path(ab, "cwd=", &context->pwd); 1774 audit_log_end(ab); 1775 } 1776 } 1777 1778 i = 0; 1779 list_for_each_entry(n, &context->names_list, list) { 1780 if (n->hidden) 1781 continue; 1782 audit_log_name(context, n, NULL, i++, &call_panic); 1783 } 1784 1785 if (context->context == AUDIT_CTX_SYSCALL) 1786 audit_log_proctitle(); 1787 1788 /* Send end of event record to help user space know we are finished */ 1789 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1790 if (ab) 1791 audit_log_end(ab); 1792 if (call_panic) 1793 audit_panic("error in audit_log_exit()"); 1794 } 1795 1796 /** 1797 * __audit_free - free a per-task audit context 1798 * @tsk: task whose audit context block to free 1799 * 1800 * Called from copy_process, do_exit, and the io_uring code 1801 */ 1802 void __audit_free(struct task_struct *tsk) 1803 { 1804 struct audit_context *context = tsk->audit_context; 1805 1806 if (!context) 1807 return; 1808 1809 /* this may generate CONFIG_CHANGE records */ 1810 if (!list_empty(&context->killed_trees)) 1811 audit_kill_trees(context); 1812 1813 /* We are called either by do_exit() or the fork() error handling code; 1814 * in the former case tsk == current and in the latter tsk is a 1815 * random task_struct that doesn't have any meaningful data we 1816 * need to log via audit_log_exit(). 1817 */ 1818 if (tsk == current && !context->dummy) { 1819 context->return_valid = AUDITSC_INVALID; 1820 context->return_code = 0; 1821 if (context->context == AUDIT_CTX_SYSCALL) { 1822 audit_filter_syscall(tsk, context); 1823 audit_filter_inodes(tsk, context); 1824 if (context->current_state == AUDIT_STATE_RECORD) 1825 audit_log_exit(); 1826 } else if (context->context == AUDIT_CTX_URING) { 1827 /* TODO: verify this case is real and valid */ 1828 audit_filter_uring(tsk, context); 1829 audit_filter_inodes(tsk, context); 1830 if (context->current_state == AUDIT_STATE_RECORD) 1831 audit_log_uring(context); 1832 } 1833 } 1834 1835 audit_set_context(tsk, NULL); 1836 audit_free_context(context); 1837 } 1838 1839 /** 1840 * audit_return_fixup - fixup the return codes in the audit_context 1841 * @ctx: the audit_context 1842 * @success: true/false value to indicate if the operation succeeded or not 1843 * @code: operation return code 1844 * 1845 * We need to fixup the return code in the audit logs if the actual return 1846 * codes are later going to be fixed by the arch specific signal handlers. 1847 */ 1848 static void audit_return_fixup(struct audit_context *ctx, 1849 int success, long code) 1850 { 1851 /* 1852 * This is actually a test for: 1853 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1854 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1855 * 1856 * but is faster than a bunch of || 1857 */ 1858 if (unlikely(code <= -ERESTARTSYS) && 1859 (code >= -ERESTART_RESTARTBLOCK) && 1860 (code != -ENOIOCTLCMD)) 1861 ctx->return_code = -EINTR; 1862 else 1863 ctx->return_code = code; 1864 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1865 } 1866 1867 /** 1868 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1869 * @op: the io_uring opcode 1870 * 1871 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1872 * operations. This function should only ever be called from 1873 * audit_uring_entry() as we rely on the audit context checking present in that 1874 * function. 1875 */ 1876 void __audit_uring_entry(u8 op) 1877 { 1878 struct audit_context *ctx = audit_context(); 1879 1880 if (ctx->state == AUDIT_STATE_DISABLED) 1881 return; 1882 1883 /* 1884 * NOTE: It's possible that we can be called from the process' context 1885 * before it returns to userspace, and before audit_syscall_exit() 1886 * is called. In this case there is not much to do, just record 1887 * the io_uring details and return. 1888 */ 1889 ctx->uring_op = op; 1890 if (ctx->context == AUDIT_CTX_SYSCALL) 1891 return; 1892 1893 ctx->dummy = !audit_n_rules; 1894 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1895 ctx->prio = 0; 1896 1897 ctx->context = AUDIT_CTX_URING; 1898 ctx->current_state = ctx->state; 1899 ktime_get_coarse_real_ts64(&ctx->stamp.ctime); 1900 } 1901 1902 /** 1903 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1904 * @success: true/false value to indicate if the operation succeeded or not 1905 * @code: operation return code 1906 * 1907 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1908 * operations. This function should only ever be called from 1909 * audit_uring_exit() as we rely on the audit context checking present in that 1910 * function. 1911 */ 1912 void __audit_uring_exit(int success, long code) 1913 { 1914 struct audit_context *ctx = audit_context(); 1915 1916 if (ctx->dummy) { 1917 if (ctx->context != AUDIT_CTX_URING) 1918 return; 1919 goto out; 1920 } 1921 1922 audit_return_fixup(ctx, success, code); 1923 if (ctx->context == AUDIT_CTX_SYSCALL) { 1924 /* 1925 * NOTE: See the note in __audit_uring_entry() about the case 1926 * where we may be called from process context before we 1927 * return to userspace via audit_syscall_exit(). In this 1928 * case we simply emit a URINGOP record and bail, the 1929 * normal syscall exit handling will take care of 1930 * everything else. 1931 * It is also worth mentioning that when we are called, 1932 * the current process creds may differ from the creds 1933 * used during the normal syscall processing; keep that 1934 * in mind if/when we move the record generation code. 1935 */ 1936 1937 /* 1938 * We need to filter on the syscall info here to decide if we 1939 * should emit a URINGOP record. I know it seems odd but this 1940 * solves the problem where users have a filter to block *all* 1941 * syscall records in the "exit" filter; we want to preserve 1942 * the behavior here. 1943 */ 1944 audit_filter_syscall(current, ctx); 1945 if (ctx->current_state != AUDIT_STATE_RECORD) 1946 audit_filter_uring(current, ctx); 1947 audit_filter_inodes(current, ctx); 1948 if (ctx->current_state != AUDIT_STATE_RECORD) 1949 return; 1950 1951 audit_log_uring(ctx); 1952 return; 1953 } 1954 1955 /* this may generate CONFIG_CHANGE records */ 1956 if (!list_empty(&ctx->killed_trees)) 1957 audit_kill_trees(ctx); 1958 1959 /* run through both filters to ensure we set the filterkey properly */ 1960 audit_filter_uring(current, ctx); 1961 audit_filter_inodes(current, ctx); 1962 if (ctx->current_state != AUDIT_STATE_RECORD) 1963 goto out; 1964 audit_log_exit(); 1965 1966 out: 1967 audit_reset_context(ctx); 1968 } 1969 1970 /** 1971 * __audit_syscall_entry - fill in an audit record at syscall entry 1972 * @major: major syscall type (function) 1973 * @a1: additional syscall register 1 1974 * @a2: additional syscall register 2 1975 * @a3: additional syscall register 3 1976 * @a4: additional syscall register 4 1977 * 1978 * Fill in audit context at syscall entry. This only happens if the 1979 * audit context was created when the task was created and the state or 1980 * filters demand the audit context be built. If the state from the 1981 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 1982 * then the record will be written at syscall exit time (otherwise, it 1983 * will only be written if another part of the kernel requests that it 1984 * be written). 1985 */ 1986 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1987 unsigned long a3, unsigned long a4) 1988 { 1989 struct audit_context *context = audit_context(); 1990 enum audit_state state; 1991 1992 if (!audit_enabled || !context) 1993 return; 1994 1995 WARN_ON(context->context != AUDIT_CTX_UNUSED); 1996 WARN_ON(context->name_count); 1997 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 1998 audit_panic("unrecoverable error in audit_syscall_entry()"); 1999 return; 2000 } 2001 2002 state = context->state; 2003 if (state == AUDIT_STATE_DISABLED) 2004 return; 2005 2006 context->dummy = !audit_n_rules; 2007 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2008 context->prio = 0; 2009 if (auditd_test_task(current)) 2010 return; 2011 } 2012 2013 context->arch = syscall_get_arch(current); 2014 context->major = major; 2015 context->argv[0] = a1; 2016 context->argv[1] = a2; 2017 context->argv[2] = a3; 2018 context->argv[3] = a4; 2019 context->context = AUDIT_CTX_SYSCALL; 2020 context->current_state = state; 2021 ktime_get_coarse_real_ts64(&context->stamp.ctime); 2022 } 2023 2024 /** 2025 * __audit_syscall_exit - deallocate audit context after a system call 2026 * @success: success value of the syscall 2027 * @return_code: return value of the syscall 2028 * 2029 * Tear down after system call. If the audit context has been marked as 2030 * auditable (either because of the AUDIT_STATE_RECORD state from 2031 * filtering, or because some other part of the kernel wrote an audit 2032 * message), then write out the syscall information. In call cases, 2033 * free the names stored from getname(). 2034 */ 2035 void __audit_syscall_exit(int success, long return_code) 2036 { 2037 struct audit_context *context = audit_context(); 2038 2039 if (!context || context->dummy || 2040 context->context != AUDIT_CTX_SYSCALL) 2041 goto out; 2042 2043 /* this may generate CONFIG_CHANGE records */ 2044 if (!list_empty(&context->killed_trees)) 2045 audit_kill_trees(context); 2046 2047 audit_return_fixup(context, success, return_code); 2048 /* run through both filters to ensure we set the filterkey properly */ 2049 audit_filter_syscall(current, context); 2050 audit_filter_inodes(current, context); 2051 if (context->current_state != AUDIT_STATE_RECORD) 2052 goto out; 2053 2054 audit_log_exit(); 2055 2056 out: 2057 audit_reset_context(context); 2058 } 2059 2060 static inline void handle_one(const struct inode *inode) 2061 { 2062 struct audit_context *context; 2063 struct audit_tree_refs *p; 2064 struct audit_chunk *chunk; 2065 int count; 2066 2067 if (likely(!inode->i_fsnotify_marks)) 2068 return; 2069 context = audit_context(); 2070 p = context->trees; 2071 count = context->tree_count; 2072 rcu_read_lock(); 2073 chunk = audit_tree_lookup(inode); 2074 rcu_read_unlock(); 2075 if (!chunk) 2076 return; 2077 if (likely(put_tree_ref(context, chunk))) 2078 return; 2079 if (unlikely(!grow_tree_refs(context))) { 2080 pr_warn("out of memory, audit has lost a tree reference\n"); 2081 audit_set_auditable(context); 2082 audit_put_chunk(chunk); 2083 unroll_tree_refs(context, p, count); 2084 return; 2085 } 2086 put_tree_ref(context, chunk); 2087 } 2088 2089 static void handle_path(const struct dentry *dentry) 2090 { 2091 struct audit_context *context; 2092 struct audit_tree_refs *p; 2093 const struct dentry *d, *parent; 2094 struct audit_chunk *drop; 2095 unsigned long seq; 2096 int count; 2097 2098 context = audit_context(); 2099 p = context->trees; 2100 count = context->tree_count; 2101 retry: 2102 drop = NULL; 2103 d = dentry; 2104 rcu_read_lock(); 2105 seq = read_seqbegin(&rename_lock); 2106 for (;;) { 2107 struct inode *inode = d_backing_inode(d); 2108 2109 if (inode && unlikely(inode->i_fsnotify_marks)) { 2110 struct audit_chunk *chunk; 2111 2112 chunk = audit_tree_lookup(inode); 2113 if (chunk) { 2114 if (unlikely(!put_tree_ref(context, chunk))) { 2115 drop = chunk; 2116 break; 2117 } 2118 } 2119 } 2120 parent = d->d_parent; 2121 if (parent == d) 2122 break; 2123 d = parent; 2124 } 2125 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2126 rcu_read_unlock(); 2127 if (!drop) { 2128 /* just a race with rename */ 2129 unroll_tree_refs(context, p, count); 2130 goto retry; 2131 } 2132 audit_put_chunk(drop); 2133 if (grow_tree_refs(context)) { 2134 /* OK, got more space */ 2135 unroll_tree_refs(context, p, count); 2136 goto retry; 2137 } 2138 /* too bad */ 2139 pr_warn("out of memory, audit has lost a tree reference\n"); 2140 unroll_tree_refs(context, p, count); 2141 audit_set_auditable(context); 2142 return; 2143 } 2144 rcu_read_unlock(); 2145 } 2146 2147 static struct audit_names *audit_alloc_name(struct audit_context *context, 2148 unsigned char type) 2149 { 2150 struct audit_names *aname; 2151 2152 if (context->name_count < AUDIT_NAMES) { 2153 aname = &context->preallocated_names[context->name_count]; 2154 memset(aname, 0, sizeof(*aname)); 2155 } else { 2156 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2157 if (!aname) 2158 return NULL; 2159 aname->should_free = true; 2160 } 2161 2162 aname->ino = AUDIT_INO_UNSET; 2163 aname->type = type; 2164 list_add_tail(&aname->list, &context->names_list); 2165 2166 context->name_count++; 2167 if (!context->pwd.dentry) 2168 get_fs_pwd(current->fs, &context->pwd); 2169 return aname; 2170 } 2171 2172 /** 2173 * __audit_reusename - fill out filename with info from existing entry 2174 * @uptr: userland ptr to pathname 2175 * 2176 * Search the audit_names list for the current audit context. If there is an 2177 * existing entry with a matching "uptr" then return the filename 2178 * associated with that audit_name. If not, return NULL. 2179 */ 2180 struct filename * 2181 __audit_reusename(const __user char *uptr) 2182 { 2183 struct audit_context *context = audit_context(); 2184 struct audit_names *n; 2185 2186 list_for_each_entry(n, &context->names_list, list) { 2187 if (!n->name) 2188 continue; 2189 if (n->name->uptr == uptr) 2190 return refname(n->name); 2191 } 2192 return NULL; 2193 } 2194 2195 /** 2196 * __audit_getname - add a name to the list 2197 * @name: name to add 2198 * 2199 * Add a name to the list of audit names for this context. 2200 * Called from fs/namei.c:getname(). 2201 */ 2202 void __audit_getname(struct filename *name) 2203 { 2204 struct audit_context *context = audit_context(); 2205 struct audit_names *n; 2206 2207 if (context->context == AUDIT_CTX_UNUSED) 2208 return; 2209 2210 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2211 if (!n) 2212 return; 2213 2214 n->name = name; 2215 n->name_len = AUDIT_NAME_FULL; 2216 name->aname = n; 2217 refname(name); 2218 } 2219 2220 static inline int audit_copy_fcaps(struct audit_names *name, 2221 const struct dentry *dentry) 2222 { 2223 struct cpu_vfs_cap_data caps; 2224 int rc; 2225 2226 if (!dentry) 2227 return 0; 2228 2229 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2230 if (rc) 2231 return rc; 2232 2233 name->fcap.permitted = caps.permitted; 2234 name->fcap.inheritable = caps.inheritable; 2235 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2236 name->fcap.rootid = caps.rootid; 2237 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2238 VFS_CAP_REVISION_SHIFT; 2239 2240 return 0; 2241 } 2242 2243 /* Copy inode data into an audit_names. */ 2244 static void audit_copy_inode(struct audit_names *name, 2245 const struct dentry *dentry, 2246 struct inode *inode, unsigned int flags) 2247 { 2248 name->ino = inode->i_ino; 2249 name->dev = inode->i_sb->s_dev; 2250 name->mode = inode->i_mode; 2251 name->uid = inode->i_uid; 2252 name->gid = inode->i_gid; 2253 name->rdev = inode->i_rdev; 2254 security_inode_getlsmprop(inode, &name->oprop); 2255 if (flags & AUDIT_INODE_NOEVAL) { 2256 name->fcap_ver = -1; 2257 return; 2258 } 2259 audit_copy_fcaps(name, dentry); 2260 } 2261 2262 /** 2263 * __audit_inode - store the inode and device from a lookup 2264 * @name: name being audited 2265 * @dentry: dentry being audited 2266 * @flags: attributes for this particular entry 2267 */ 2268 void __audit_inode(struct filename *name, const struct dentry *dentry, 2269 unsigned int flags) 2270 { 2271 struct audit_context *context = audit_context(); 2272 struct inode *inode = d_backing_inode(dentry); 2273 struct audit_names *n; 2274 bool parent = flags & AUDIT_INODE_PARENT; 2275 struct audit_entry *e; 2276 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2277 int i; 2278 2279 if (context->context == AUDIT_CTX_UNUSED) 2280 return; 2281 2282 rcu_read_lock(); 2283 list_for_each_entry_rcu(e, list, list) { 2284 for (i = 0; i < e->rule.field_count; i++) { 2285 struct audit_field *f = &e->rule.fields[i]; 2286 2287 if (f->type == AUDIT_FSTYPE 2288 && audit_comparator(inode->i_sb->s_magic, 2289 f->op, f->val) 2290 && e->rule.action == AUDIT_NEVER) { 2291 rcu_read_unlock(); 2292 return; 2293 } 2294 } 2295 } 2296 rcu_read_unlock(); 2297 2298 if (!name) 2299 goto out_alloc; 2300 2301 /* 2302 * If we have a pointer to an audit_names entry already, then we can 2303 * just use it directly if the type is correct. 2304 */ 2305 n = name->aname; 2306 if (n) { 2307 if (parent) { 2308 if (n->type == AUDIT_TYPE_PARENT || 2309 n->type == AUDIT_TYPE_UNKNOWN) 2310 goto out; 2311 } else { 2312 if (n->type != AUDIT_TYPE_PARENT) 2313 goto out; 2314 } 2315 } 2316 2317 list_for_each_entry_reverse(n, &context->names_list, list) { 2318 if (n->ino) { 2319 /* valid inode number, use that for the comparison */ 2320 if (n->ino != inode->i_ino || 2321 n->dev != inode->i_sb->s_dev) 2322 continue; 2323 } else if (n->name) { 2324 /* inode number has not been set, check the name */ 2325 if (strcmp(n->name->name, name->name)) 2326 continue; 2327 } else 2328 /* no inode and no name (?!) ... this is odd ... */ 2329 continue; 2330 2331 /* match the correct record type */ 2332 if (parent) { 2333 if (n->type == AUDIT_TYPE_PARENT || 2334 n->type == AUDIT_TYPE_UNKNOWN) 2335 goto out; 2336 } else { 2337 if (n->type != AUDIT_TYPE_PARENT) 2338 goto out; 2339 } 2340 } 2341 2342 out_alloc: 2343 /* unable to find an entry with both a matching name and type */ 2344 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2345 if (!n) 2346 return; 2347 if (name) { 2348 n->name = name; 2349 refname(name); 2350 } 2351 2352 out: 2353 if (parent) { 2354 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2355 n->type = AUDIT_TYPE_PARENT; 2356 if (flags & AUDIT_INODE_HIDDEN) 2357 n->hidden = true; 2358 } else { 2359 n->name_len = AUDIT_NAME_FULL; 2360 n->type = AUDIT_TYPE_NORMAL; 2361 } 2362 handle_path(dentry); 2363 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2364 } 2365 2366 void __audit_file(const struct file *file) 2367 { 2368 __audit_inode(NULL, file->f_path.dentry, 0); 2369 } 2370 2371 /** 2372 * __audit_inode_child - collect inode info for created/removed objects 2373 * @parent: inode of dentry parent 2374 * @dentry: dentry being audited 2375 * @type: AUDIT_TYPE_* value that we're looking for 2376 * 2377 * For syscalls that create or remove filesystem objects, audit_inode 2378 * can only collect information for the filesystem object's parent. 2379 * This call updates the audit context with the child's information. 2380 * Syscalls that create a new filesystem object must be hooked after 2381 * the object is created. Syscalls that remove a filesystem object 2382 * must be hooked prior, in order to capture the target inode during 2383 * unsuccessful attempts. 2384 */ 2385 void __audit_inode_child(struct inode *parent, 2386 const struct dentry *dentry, 2387 const unsigned char type) 2388 { 2389 struct audit_context *context = audit_context(); 2390 struct inode *inode = d_backing_inode(dentry); 2391 const struct qstr *dname = &dentry->d_name; 2392 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2393 struct audit_entry *e; 2394 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2395 int i; 2396 2397 if (context->context == AUDIT_CTX_UNUSED) 2398 return; 2399 2400 rcu_read_lock(); 2401 list_for_each_entry_rcu(e, list, list) { 2402 for (i = 0; i < e->rule.field_count; i++) { 2403 struct audit_field *f = &e->rule.fields[i]; 2404 2405 if (f->type == AUDIT_FSTYPE 2406 && audit_comparator(parent->i_sb->s_magic, 2407 f->op, f->val) 2408 && e->rule.action == AUDIT_NEVER) { 2409 rcu_read_unlock(); 2410 return; 2411 } 2412 } 2413 } 2414 rcu_read_unlock(); 2415 2416 if (inode) 2417 handle_one(inode); 2418 2419 /* look for a parent entry first */ 2420 list_for_each_entry(n, &context->names_list, list) { 2421 if (!n->name || 2422 (n->type != AUDIT_TYPE_PARENT && 2423 n->type != AUDIT_TYPE_UNKNOWN)) 2424 continue; 2425 2426 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2427 !audit_compare_dname_path(dname, 2428 n->name->name, n->name_len)) { 2429 if (n->type == AUDIT_TYPE_UNKNOWN) 2430 n->type = AUDIT_TYPE_PARENT; 2431 found_parent = n; 2432 break; 2433 } 2434 } 2435 2436 cond_resched(); 2437 2438 /* is there a matching child entry? */ 2439 list_for_each_entry(n, &context->names_list, list) { 2440 /* can only match entries that have a name */ 2441 if (!n->name || 2442 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2443 continue; 2444 2445 if (!strcmp(dname->name, n->name->name) || 2446 !audit_compare_dname_path(dname, n->name->name, 2447 found_parent ? 2448 found_parent->name_len : 2449 AUDIT_NAME_FULL)) { 2450 if (n->type == AUDIT_TYPE_UNKNOWN) 2451 n->type = type; 2452 found_child = n; 2453 break; 2454 } 2455 } 2456 2457 if (!found_parent) { 2458 /* create a new, "anonymous" parent record */ 2459 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2460 if (!n) 2461 return; 2462 audit_copy_inode(n, NULL, parent, 0); 2463 } 2464 2465 if (!found_child) { 2466 found_child = audit_alloc_name(context, type); 2467 if (!found_child) 2468 return; 2469 2470 /* Re-use the name belonging to the slot for a matching parent 2471 * directory. All names for this context are relinquished in 2472 * audit_free_names() */ 2473 if (found_parent) { 2474 found_child->name = found_parent->name; 2475 found_child->name_len = AUDIT_NAME_FULL; 2476 refname(found_child->name); 2477 } 2478 } 2479 2480 if (inode) 2481 audit_copy_inode(found_child, dentry, inode, 0); 2482 else 2483 found_child->ino = AUDIT_INO_UNSET; 2484 } 2485 EXPORT_SYMBOL_GPL(__audit_inode_child); 2486 2487 /** 2488 * auditsc_get_stamp - get local copies of audit_context values 2489 * @ctx: audit_context for the task 2490 * @stamp: timestamp to record 2491 * 2492 * Also sets the context as auditable. 2493 */ 2494 int auditsc_get_stamp(struct audit_context *ctx, struct audit_stamp *stamp) 2495 { 2496 if (ctx->context == AUDIT_CTX_UNUSED) 2497 return 0; 2498 if (!ctx->stamp.serial) 2499 ctx->stamp.serial = audit_serial(); 2500 *stamp = ctx->stamp; 2501 if (!ctx->prio) { 2502 ctx->prio = 1; 2503 ctx->current_state = AUDIT_STATE_RECORD; 2504 } 2505 return 1; 2506 } 2507 2508 /** 2509 * __audit_mq_open - record audit data for a POSIX MQ open 2510 * @oflag: open flag 2511 * @mode: mode bits 2512 * @attr: queue attributes 2513 * 2514 */ 2515 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2516 { 2517 struct audit_context *context = audit_context(); 2518 2519 if (attr) 2520 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2521 else 2522 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2523 2524 context->mq_open.oflag = oflag; 2525 context->mq_open.mode = mode; 2526 2527 context->type = AUDIT_MQ_OPEN; 2528 } 2529 2530 /** 2531 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2532 * @mqdes: MQ descriptor 2533 * @msg_len: Message length 2534 * @msg_prio: Message priority 2535 * @abs_timeout: Message timeout in absolute time 2536 * 2537 */ 2538 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2539 const struct timespec64 *abs_timeout) 2540 { 2541 struct audit_context *context = audit_context(); 2542 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2543 2544 if (abs_timeout) 2545 memcpy(p, abs_timeout, sizeof(*p)); 2546 else 2547 memset(p, 0, sizeof(*p)); 2548 2549 context->mq_sendrecv.mqdes = mqdes; 2550 context->mq_sendrecv.msg_len = msg_len; 2551 context->mq_sendrecv.msg_prio = msg_prio; 2552 2553 context->type = AUDIT_MQ_SENDRECV; 2554 } 2555 2556 /** 2557 * __audit_mq_notify - record audit data for a POSIX MQ notify 2558 * @mqdes: MQ descriptor 2559 * @notification: Notification event 2560 * 2561 */ 2562 2563 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2564 { 2565 struct audit_context *context = audit_context(); 2566 2567 if (notification) 2568 context->mq_notify.sigev_signo = notification->sigev_signo; 2569 else 2570 context->mq_notify.sigev_signo = 0; 2571 2572 context->mq_notify.mqdes = mqdes; 2573 context->type = AUDIT_MQ_NOTIFY; 2574 } 2575 2576 /** 2577 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2578 * @mqdes: MQ descriptor 2579 * @mqstat: MQ flags 2580 * 2581 */ 2582 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2583 { 2584 struct audit_context *context = audit_context(); 2585 2586 context->mq_getsetattr.mqdes = mqdes; 2587 context->mq_getsetattr.mqstat = *mqstat; 2588 context->type = AUDIT_MQ_GETSETATTR; 2589 } 2590 2591 /** 2592 * __audit_ipc_obj - record audit data for ipc object 2593 * @ipcp: ipc permissions 2594 * 2595 */ 2596 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2597 { 2598 struct audit_context *context = audit_context(); 2599 2600 context->ipc.uid = ipcp->uid; 2601 context->ipc.gid = ipcp->gid; 2602 context->ipc.mode = ipcp->mode; 2603 context->ipc.has_perm = 0; 2604 security_ipc_getlsmprop(ipcp, &context->ipc.oprop); 2605 context->type = AUDIT_IPC; 2606 } 2607 2608 /** 2609 * __audit_ipc_set_perm - record audit data for new ipc permissions 2610 * @qbytes: msgq bytes 2611 * @uid: msgq user id 2612 * @gid: msgq group id 2613 * @mode: msgq mode (permissions) 2614 * 2615 * Called only after audit_ipc_obj(). 2616 */ 2617 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2618 { 2619 struct audit_context *context = audit_context(); 2620 2621 context->ipc.qbytes = qbytes; 2622 context->ipc.perm_uid = uid; 2623 context->ipc.perm_gid = gid; 2624 context->ipc.perm_mode = mode; 2625 context->ipc.has_perm = 1; 2626 } 2627 2628 void __audit_bprm(struct linux_binprm *bprm) 2629 { 2630 struct audit_context *context = audit_context(); 2631 2632 context->type = AUDIT_EXECVE; 2633 context->execve.argc = bprm->argc; 2634 } 2635 2636 2637 /** 2638 * __audit_socketcall - record audit data for sys_socketcall 2639 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2640 * @args: args array 2641 * 2642 */ 2643 int __audit_socketcall(int nargs, unsigned long *args) 2644 { 2645 struct audit_context *context = audit_context(); 2646 2647 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2648 return -EINVAL; 2649 context->type = AUDIT_SOCKETCALL; 2650 context->socketcall.nargs = nargs; 2651 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2652 return 0; 2653 } 2654 2655 /** 2656 * __audit_fd_pair - record audit data for pipe and socketpair 2657 * @fd1: the first file descriptor 2658 * @fd2: the second file descriptor 2659 * 2660 */ 2661 void __audit_fd_pair(int fd1, int fd2) 2662 { 2663 struct audit_context *context = audit_context(); 2664 2665 context->fds[0] = fd1; 2666 context->fds[1] = fd2; 2667 } 2668 2669 /** 2670 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2671 * @len: data length in user space 2672 * @a: data address in kernel space 2673 * 2674 * Returns 0 for success or NULL context or < 0 on error. 2675 */ 2676 int __audit_sockaddr(int len, void *a) 2677 { 2678 struct audit_context *context = audit_context(); 2679 2680 if (!context->sockaddr) { 2681 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2682 2683 if (!p) 2684 return -ENOMEM; 2685 context->sockaddr = p; 2686 } 2687 2688 context->sockaddr_len = len; 2689 memcpy(context->sockaddr, a, len); 2690 return 0; 2691 } 2692 2693 void __audit_ptrace(struct task_struct *t) 2694 { 2695 struct audit_context *context = audit_context(); 2696 2697 context->target_pid = task_tgid_nr(t); 2698 context->target_auid = audit_get_loginuid(t); 2699 context->target_uid = task_uid(t); 2700 context->target_sessionid = audit_get_sessionid(t); 2701 strscpy(context->target_comm, t->comm); 2702 security_task_getlsmprop_obj(t, &context->target_ref); 2703 } 2704 2705 /** 2706 * audit_signal_info_syscall - record signal info for syscalls 2707 * @t: task being signaled 2708 * 2709 * If the audit subsystem is being terminated, record the task (pid) 2710 * and uid that is doing that. 2711 */ 2712 int audit_signal_info_syscall(struct task_struct *t) 2713 { 2714 struct audit_aux_data_pids *axp; 2715 struct audit_context *ctx = audit_context(); 2716 kuid_t t_uid = task_uid(t); 2717 2718 if (!audit_signals || audit_dummy_context()) 2719 return 0; 2720 2721 /* optimize the common case by putting first signal recipient directly 2722 * in audit_context */ 2723 if (!ctx->target_pid) { 2724 ctx->target_pid = task_tgid_nr(t); 2725 ctx->target_auid = audit_get_loginuid(t); 2726 ctx->target_uid = t_uid; 2727 ctx->target_sessionid = audit_get_sessionid(t); 2728 strscpy(ctx->target_comm, t->comm); 2729 security_task_getlsmprop_obj(t, &ctx->target_ref); 2730 return 0; 2731 } 2732 2733 axp = (void *)ctx->aux_pids; 2734 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2735 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2736 if (!axp) 2737 return -ENOMEM; 2738 2739 axp->d.type = AUDIT_OBJ_PID; 2740 axp->d.next = ctx->aux_pids; 2741 ctx->aux_pids = (void *)axp; 2742 } 2743 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2744 2745 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2746 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2747 axp->target_uid[axp->pid_count] = t_uid; 2748 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2749 security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]); 2750 strscpy(axp->target_comm[axp->pid_count], t->comm); 2751 axp->pid_count++; 2752 2753 return 0; 2754 } 2755 2756 /** 2757 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2758 * @bprm: pointer to the bprm being processed 2759 * @new: the proposed new credentials 2760 * @old: the old credentials 2761 * 2762 * Simply check if the proc already has the caps given by the file and if not 2763 * store the priv escalation info for later auditing at the end of the syscall 2764 * 2765 * -Eric 2766 */ 2767 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2768 const struct cred *new, const struct cred *old) 2769 { 2770 struct audit_aux_data_bprm_fcaps *ax; 2771 struct audit_context *context = audit_context(); 2772 struct cpu_vfs_cap_data vcaps; 2773 2774 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2775 if (!ax) 2776 return -ENOMEM; 2777 2778 ax->d.type = AUDIT_BPRM_FCAPS; 2779 ax->d.next = context->aux; 2780 context->aux = (void *)ax; 2781 2782 get_vfs_caps_from_disk(&nop_mnt_idmap, 2783 bprm->file->f_path.dentry, &vcaps); 2784 2785 ax->fcap.permitted = vcaps.permitted; 2786 ax->fcap.inheritable = vcaps.inheritable; 2787 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2788 ax->fcap.rootid = vcaps.rootid; 2789 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2790 2791 ax->old_pcap.permitted = old->cap_permitted; 2792 ax->old_pcap.inheritable = old->cap_inheritable; 2793 ax->old_pcap.effective = old->cap_effective; 2794 ax->old_pcap.ambient = old->cap_ambient; 2795 2796 ax->new_pcap.permitted = new->cap_permitted; 2797 ax->new_pcap.inheritable = new->cap_inheritable; 2798 ax->new_pcap.effective = new->cap_effective; 2799 ax->new_pcap.ambient = new->cap_ambient; 2800 return 0; 2801 } 2802 2803 /** 2804 * __audit_log_capset - store information about the arguments to the capset syscall 2805 * @new: the new credentials 2806 * @old: the old (current) credentials 2807 * 2808 * Record the arguments userspace sent to sys_capset for later printing by the 2809 * audit system if applicable 2810 */ 2811 void __audit_log_capset(const struct cred *new, const struct cred *old) 2812 { 2813 struct audit_context *context = audit_context(); 2814 2815 context->capset.pid = task_tgid_nr(current); 2816 context->capset.cap.effective = new->cap_effective; 2817 context->capset.cap.inheritable = new->cap_effective; 2818 context->capset.cap.permitted = new->cap_permitted; 2819 context->capset.cap.ambient = new->cap_ambient; 2820 context->type = AUDIT_CAPSET; 2821 } 2822 2823 void __audit_mmap_fd(int fd, int flags) 2824 { 2825 struct audit_context *context = audit_context(); 2826 2827 context->mmap.fd = fd; 2828 context->mmap.flags = flags; 2829 context->type = AUDIT_MMAP; 2830 } 2831 2832 void __audit_openat2_how(struct open_how *how) 2833 { 2834 struct audit_context *context = audit_context(); 2835 2836 context->openat2.flags = how->flags; 2837 context->openat2.mode = how->mode; 2838 context->openat2.resolve = how->resolve; 2839 context->type = AUDIT_OPENAT2; 2840 } 2841 2842 void __audit_log_kern_module(const char *name) 2843 { 2844 struct audit_context *context = audit_context(); 2845 2846 context->module.name = kstrdup(name, GFP_KERNEL); 2847 if (!context->module.name) 2848 audit_log_lost("out of memory in __audit_log_kern_module"); 2849 context->type = AUDIT_KERN_MODULE; 2850 } 2851 2852 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2853 { 2854 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2855 switch (friar->hdr.type) { 2856 case FAN_RESPONSE_INFO_NONE: 2857 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2858 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2859 response, FAN_RESPONSE_INFO_NONE); 2860 break; 2861 case FAN_RESPONSE_INFO_AUDIT_RULE: 2862 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2863 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2864 response, friar->hdr.type, friar->rule_number, 2865 friar->subj_trust, friar->obj_trust); 2866 } 2867 } 2868 2869 void __audit_tk_injoffset(struct timespec64 offset) 2870 { 2871 struct audit_context *context = audit_context(); 2872 2873 /* only set type if not already set by NTP */ 2874 if (!context->type) 2875 context->type = AUDIT_TIME_INJOFFSET; 2876 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2877 } 2878 2879 void __audit_ntp_log(const struct audit_ntp_data *ad) 2880 { 2881 struct audit_context *context = audit_context(); 2882 int type; 2883 2884 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2885 if (ad->vals[type].newval != ad->vals[type].oldval) { 2886 /* unconditionally set type, overwriting TK */ 2887 context->type = AUDIT_TIME_ADJNTPVAL; 2888 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2889 break; 2890 } 2891 } 2892 2893 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2894 enum audit_nfcfgop op, gfp_t gfp) 2895 { 2896 struct audit_buffer *ab; 2897 char comm[sizeof(current->comm)]; 2898 2899 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2900 if (!ab) 2901 return; 2902 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2903 name, af, nentries, audit_nfcfgs[op].s); 2904 2905 audit_log_format(ab, " pid=%u", task_tgid_nr(current)); 2906 audit_log_task_context(ab); /* subj= */ 2907 audit_log_format(ab, " comm="); 2908 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2909 audit_log_end(ab); 2910 } 2911 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2912 2913 static void audit_log_task(struct audit_buffer *ab) 2914 { 2915 kuid_t auid, uid; 2916 kgid_t gid; 2917 unsigned int sessionid; 2918 char comm[sizeof(current->comm)]; 2919 2920 auid = audit_get_loginuid(current); 2921 sessionid = audit_get_sessionid(current); 2922 current_uid_gid(&uid, &gid); 2923 2924 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2925 from_kuid(&init_user_ns, auid), 2926 from_kuid(&init_user_ns, uid), 2927 from_kgid(&init_user_ns, gid), 2928 sessionid); 2929 audit_log_task_context(ab); 2930 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2931 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2932 audit_log_d_path_exe(ab, current->mm); 2933 } 2934 2935 /** 2936 * audit_core_dumps - record information about processes that end abnormally 2937 * @signr: signal value 2938 * 2939 * If a process ends with a core dump, something fishy is going on and we 2940 * should record the event for investigation. 2941 */ 2942 void audit_core_dumps(long signr) 2943 { 2944 struct audit_buffer *ab; 2945 2946 if (!audit_enabled) 2947 return; 2948 2949 if (signr == SIGQUIT) /* don't care for those */ 2950 return; 2951 2952 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2953 if (unlikely(!ab)) 2954 return; 2955 audit_log_task(ab); 2956 audit_log_format(ab, " sig=%ld res=1", signr); 2957 audit_log_end(ab); 2958 } 2959 2960 /** 2961 * audit_seccomp - record information about a seccomp action 2962 * @syscall: syscall number 2963 * @signr: signal value 2964 * @code: the seccomp action 2965 * 2966 * Record the information associated with a seccomp action. Event filtering for 2967 * seccomp actions that are not to be logged is done in seccomp_log(). 2968 * Therefore, this function forces auditing independent of the audit_enabled 2969 * and dummy context state because seccomp actions should be logged even when 2970 * audit is not in use. 2971 */ 2972 void audit_seccomp(unsigned long syscall, long signr, int code) 2973 { 2974 struct audit_buffer *ab; 2975 2976 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2977 if (unlikely(!ab)) 2978 return; 2979 audit_log_task(ab); 2980 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2981 signr, syscall_get_arch(current), syscall, 2982 in_compat_syscall(), KSTK_EIP(current), code); 2983 audit_log_end(ab); 2984 } 2985 2986 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2987 int res) 2988 { 2989 struct audit_buffer *ab; 2990 2991 if (!audit_enabled) 2992 return; 2993 2994 ab = audit_log_start(audit_context(), GFP_KERNEL, 2995 AUDIT_CONFIG_CHANGE); 2996 if (unlikely(!ab)) 2997 return; 2998 2999 audit_log_format(ab, 3000 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3001 names, old_names, res); 3002 audit_log_end(ab); 3003 } 3004 3005 struct list_head *audit_killed_trees(void) 3006 { 3007 struct audit_context *ctx = audit_context(); 3008 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3009 return NULL; 3010 return &ctx->killed_trees; 3011 } 3012