xref: /linux/kernel/auditfilter.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/audit.h>
24 #include <linux/kthread.h>
25 #include <linux/mutex.h>
26 #include <linux/fs.h>
27 #include <linux/namei.h>
28 #include <linux/netlink.h>
29 #include <linux/sched.h>
30 #include <linux/inotify.h>
31 #include <linux/selinux.h>
32 #include "audit.h"
33 
34 /*
35  * Locking model:
36  *
37  * audit_filter_mutex:
38  * 		Synchronizes writes and blocking reads of audit's filterlist
39  * 		data.  Rcu is used to traverse the filterlist and access
40  * 		contents of structs audit_entry, audit_watch and opaque
41  * 		selinux rules during filtering.  If modified, these structures
42  * 		must be copied and replace their counterparts in the filterlist.
43  * 		An audit_parent struct is not accessed during filtering, so may
44  * 		be written directly provided audit_filter_mutex is held.
45  */
46 
47 /*
48  * Reference counting:
49  *
50  * audit_parent: lifetime is from audit_init_parent() to receipt of an IN_IGNORED
51  * 	event.  Each audit_watch holds a reference to its associated parent.
52  *
53  * audit_watch: if added to lists, lifetime is from audit_init_watch() to
54  * 	audit_remove_watch().  Additionally, an audit_watch may exist
55  * 	temporarily to assist in searching existing filter data.  Each
56  * 	audit_krule holds a reference to its associated watch.
57  */
58 
59 struct audit_parent {
60 	struct list_head	ilist;	/* entry in inotify registration list */
61 	struct list_head	watches; /* associated watches */
62 	struct inotify_watch	wdata;	/* inotify watch data */
63 	unsigned		flags;	/* status flags */
64 };
65 
66 /*
67  * audit_parent status flags:
68  *
69  * AUDIT_PARENT_INVALID - set anytime rules/watches are auto-removed due to
70  * a filesystem event to ensure we're adding audit watches to a valid parent.
71  * Technically not needed for IN_DELETE_SELF or IN_UNMOUNT events, as we cannot
72  * receive them while we have nameidata, but must be used for IN_MOVE_SELF which
73  * we can receive while holding nameidata.
74  */
75 #define AUDIT_PARENT_INVALID	0x001
76 
77 /* Audit filter lists, defined in <linux/audit.h> */
78 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
79 	LIST_HEAD_INIT(audit_filter_list[0]),
80 	LIST_HEAD_INIT(audit_filter_list[1]),
81 	LIST_HEAD_INIT(audit_filter_list[2]),
82 	LIST_HEAD_INIT(audit_filter_list[3]),
83 	LIST_HEAD_INIT(audit_filter_list[4]),
84 	LIST_HEAD_INIT(audit_filter_list[5]),
85 #if AUDIT_NR_FILTERS != 6
86 #error Fix audit_filter_list initialiser
87 #endif
88 };
89 
90 DEFINE_MUTEX(audit_filter_mutex);
91 
92 /* Inotify handle */
93 extern struct inotify_handle *audit_ih;
94 
95 /* Inotify events we care about. */
96 #define AUDIT_IN_WATCH IN_MOVE|IN_CREATE|IN_DELETE|IN_DELETE_SELF|IN_MOVE_SELF
97 
98 extern int audit_enabled;
99 
100 void audit_free_parent(struct inotify_watch *i_watch)
101 {
102 	struct audit_parent *parent;
103 
104 	parent = container_of(i_watch, struct audit_parent, wdata);
105 	WARN_ON(!list_empty(&parent->watches));
106 	kfree(parent);
107 }
108 
109 static inline void audit_get_watch(struct audit_watch *watch)
110 {
111 	atomic_inc(&watch->count);
112 }
113 
114 static void audit_put_watch(struct audit_watch *watch)
115 {
116 	if (atomic_dec_and_test(&watch->count)) {
117 		WARN_ON(watch->parent);
118 		WARN_ON(!list_empty(&watch->rules));
119 		kfree(watch->path);
120 		kfree(watch);
121 	}
122 }
123 
124 static void audit_remove_watch(struct audit_watch *watch)
125 {
126 	list_del(&watch->wlist);
127 	put_inotify_watch(&watch->parent->wdata);
128 	watch->parent = NULL;
129 	audit_put_watch(watch); /* match initial get */
130 }
131 
132 static inline void audit_free_rule(struct audit_entry *e)
133 {
134 	int i;
135 
136 	/* some rules don't have associated watches */
137 	if (e->rule.watch)
138 		audit_put_watch(e->rule.watch);
139 	if (e->rule.fields)
140 		for (i = 0; i < e->rule.field_count; i++) {
141 			struct audit_field *f = &e->rule.fields[i];
142 			kfree(f->se_str);
143 			selinux_audit_rule_free(f->se_rule);
144 		}
145 	kfree(e->rule.fields);
146 	kfree(e->rule.filterkey);
147 	kfree(e);
148 }
149 
150 void audit_free_rule_rcu(struct rcu_head *head)
151 {
152 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
153 	audit_free_rule(e);
154 }
155 
156 /* Initialize a parent watch entry. */
157 static struct audit_parent *audit_init_parent(struct nameidata *ndp)
158 {
159 	struct audit_parent *parent;
160 	s32 wd;
161 
162 	parent = kzalloc(sizeof(*parent), GFP_KERNEL);
163 	if (unlikely(!parent))
164 		return ERR_PTR(-ENOMEM);
165 
166 	INIT_LIST_HEAD(&parent->watches);
167 	parent->flags = 0;
168 
169 	inotify_init_watch(&parent->wdata);
170 	/* grab a ref so inotify watch hangs around until we take audit_filter_mutex */
171 	get_inotify_watch(&parent->wdata);
172 	wd = inotify_add_watch(audit_ih, &parent->wdata, ndp->dentry->d_inode,
173 			       AUDIT_IN_WATCH);
174 	if (wd < 0) {
175 		audit_free_parent(&parent->wdata);
176 		return ERR_PTR(wd);
177 	}
178 
179 	return parent;
180 }
181 
182 /* Initialize a watch entry. */
183 static struct audit_watch *audit_init_watch(char *path)
184 {
185 	struct audit_watch *watch;
186 
187 	watch = kzalloc(sizeof(*watch), GFP_KERNEL);
188 	if (unlikely(!watch))
189 		return ERR_PTR(-ENOMEM);
190 
191 	INIT_LIST_HEAD(&watch->rules);
192 	atomic_set(&watch->count, 1);
193 	watch->path = path;
194 	watch->dev = (dev_t)-1;
195 	watch->ino = (unsigned long)-1;
196 
197 	return watch;
198 }
199 
200 /* Initialize an audit filterlist entry. */
201 static inline struct audit_entry *audit_init_entry(u32 field_count)
202 {
203 	struct audit_entry *entry;
204 	struct audit_field *fields;
205 
206 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
207 	if (unlikely(!entry))
208 		return NULL;
209 
210 	fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
211 	if (unlikely(!fields)) {
212 		kfree(entry);
213 		return NULL;
214 	}
215 	entry->rule.fields = fields;
216 
217 	return entry;
218 }
219 
220 /* Unpack a filter field's string representation from user-space
221  * buffer. */
222 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
223 {
224 	char *str;
225 
226 	if (!*bufp || (len == 0) || (len > *remain))
227 		return ERR_PTR(-EINVAL);
228 
229 	/* Of the currently implemented string fields, PATH_MAX
230 	 * defines the longest valid length.
231 	 */
232 	if (len > PATH_MAX)
233 		return ERR_PTR(-ENAMETOOLONG);
234 
235 	str = kmalloc(len + 1, GFP_KERNEL);
236 	if (unlikely(!str))
237 		return ERR_PTR(-ENOMEM);
238 
239 	memcpy(str, *bufp, len);
240 	str[len] = 0;
241 	*bufp += len;
242 	*remain -= len;
243 
244 	return str;
245 }
246 
247 /* Translate an inode field to kernel respresentation. */
248 static inline int audit_to_inode(struct audit_krule *krule,
249 				 struct audit_field *f)
250 {
251 	if (krule->listnr != AUDIT_FILTER_EXIT ||
252 	    krule->watch || krule->inode_f || krule->tree)
253 		return -EINVAL;
254 
255 	krule->inode_f = f;
256 	return 0;
257 }
258 
259 /* Translate a watch string to kernel respresentation. */
260 static int audit_to_watch(struct audit_krule *krule, char *path, int len,
261 			  u32 op)
262 {
263 	struct audit_watch *watch;
264 
265 	if (!audit_ih)
266 		return -EOPNOTSUPP;
267 
268 	if (path[0] != '/' || path[len-1] == '/' ||
269 	    krule->listnr != AUDIT_FILTER_EXIT ||
270 	    op & ~AUDIT_EQUAL ||
271 	    krule->inode_f || krule->watch || krule->tree)
272 		return -EINVAL;
273 
274 	watch = audit_init_watch(path);
275 	if (unlikely(IS_ERR(watch)))
276 		return PTR_ERR(watch);
277 
278 	audit_get_watch(watch);
279 	krule->watch = watch;
280 
281 	return 0;
282 }
283 
284 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
285 
286 int __init audit_register_class(int class, unsigned *list)
287 {
288 	__u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
289 	if (!p)
290 		return -ENOMEM;
291 	while (*list != ~0U) {
292 		unsigned n = *list++;
293 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
294 			kfree(p);
295 			return -EINVAL;
296 		}
297 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
298 	}
299 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
300 		kfree(p);
301 		return -EINVAL;
302 	}
303 	classes[class] = p;
304 	return 0;
305 }
306 
307 int audit_match_class(int class, unsigned syscall)
308 {
309 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
310 		return 0;
311 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
312 		return 0;
313 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
314 }
315 
316 #ifdef CONFIG_AUDITSYSCALL
317 static inline int audit_match_class_bits(int class, u32 *mask)
318 {
319 	int i;
320 
321 	if (classes[class]) {
322 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
323 			if (mask[i] & classes[class][i])
324 				return 0;
325 	}
326 	return 1;
327 }
328 
329 static int audit_match_signal(struct audit_entry *entry)
330 {
331 	struct audit_field *arch = entry->rule.arch_f;
332 
333 	if (!arch) {
334 		/* When arch is unspecified, we must check both masks on biarch
335 		 * as syscall number alone is ambiguous. */
336 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
337 					       entry->rule.mask) &&
338 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
339 					       entry->rule.mask));
340 	}
341 
342 	switch(audit_classify_arch(arch->val)) {
343 	case 0: /* native */
344 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
345 					       entry->rule.mask));
346 	case 1: /* 32bit on biarch */
347 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
348 					       entry->rule.mask));
349 	default:
350 		return 1;
351 	}
352 }
353 #endif
354 
355 /* Common user-space to kernel rule translation. */
356 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
357 {
358 	unsigned listnr;
359 	struct audit_entry *entry;
360 	int i, err;
361 
362 	err = -EINVAL;
363 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
364 	switch(listnr) {
365 	default:
366 		goto exit_err;
367 	case AUDIT_FILTER_USER:
368 	case AUDIT_FILTER_TYPE:
369 #ifdef CONFIG_AUDITSYSCALL
370 	case AUDIT_FILTER_ENTRY:
371 	case AUDIT_FILTER_EXIT:
372 	case AUDIT_FILTER_TASK:
373 #endif
374 		;
375 	}
376 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
377 		printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
378 		goto exit_err;
379 	}
380 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
381 		goto exit_err;
382 	if (rule->field_count > AUDIT_MAX_FIELDS)
383 		goto exit_err;
384 
385 	err = -ENOMEM;
386 	entry = audit_init_entry(rule->field_count);
387 	if (!entry)
388 		goto exit_err;
389 
390 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
391 	entry->rule.listnr = listnr;
392 	entry->rule.action = rule->action;
393 	entry->rule.field_count = rule->field_count;
394 
395 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
396 		entry->rule.mask[i] = rule->mask[i];
397 
398 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
399 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
400 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
401 		__u32 *class;
402 
403 		if (!(*p & AUDIT_BIT(bit)))
404 			continue;
405 		*p &= ~AUDIT_BIT(bit);
406 		class = classes[i];
407 		if (class) {
408 			int j;
409 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
410 				entry->rule.mask[j] |= class[j];
411 		}
412 	}
413 
414 	return entry;
415 
416 exit_err:
417 	return ERR_PTR(err);
418 }
419 
420 /* Translate struct audit_rule to kernel's rule respresentation.
421  * Exists for backward compatibility with userspace. */
422 static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule)
423 {
424 	struct audit_entry *entry;
425 	struct audit_field *f;
426 	int err = 0;
427 	int i;
428 
429 	entry = audit_to_entry_common(rule);
430 	if (IS_ERR(entry))
431 		goto exit_nofree;
432 
433 	for (i = 0; i < rule->field_count; i++) {
434 		struct audit_field *f = &entry->rule.fields[i];
435 
436 		f->op = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS);
437 		f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS);
438 		f->val = rule->values[i];
439 
440 		err = -EINVAL;
441 		switch(f->type) {
442 		default:
443 			goto exit_free;
444 		case AUDIT_PID:
445 		case AUDIT_UID:
446 		case AUDIT_EUID:
447 		case AUDIT_SUID:
448 		case AUDIT_FSUID:
449 		case AUDIT_GID:
450 		case AUDIT_EGID:
451 		case AUDIT_SGID:
452 		case AUDIT_FSGID:
453 		case AUDIT_LOGINUID:
454 		case AUDIT_PERS:
455 		case AUDIT_MSGTYPE:
456 		case AUDIT_PPID:
457 		case AUDIT_DEVMAJOR:
458 		case AUDIT_DEVMINOR:
459 		case AUDIT_EXIT:
460 		case AUDIT_SUCCESS:
461 			/* bit ops are only useful on syscall args */
462 			if (f->op == AUDIT_BIT_MASK ||
463 						f->op == AUDIT_BIT_TEST) {
464 				err = -EINVAL;
465 				goto exit_free;
466 			}
467 			break;
468 		case AUDIT_ARG0:
469 		case AUDIT_ARG1:
470 		case AUDIT_ARG2:
471 		case AUDIT_ARG3:
472 			break;
473 		/* arch is only allowed to be = or != */
474 		case AUDIT_ARCH:
475 			if ((f->op != AUDIT_NOT_EQUAL) && (f->op != AUDIT_EQUAL)
476 					&& (f->op != AUDIT_NEGATE) && (f->op)) {
477 				err = -EINVAL;
478 				goto exit_free;
479 			}
480 			entry->rule.arch_f = f;
481 			break;
482 		case AUDIT_PERM:
483 			if (f->val & ~15)
484 				goto exit_free;
485 			break;
486 		case AUDIT_INODE:
487 			err = audit_to_inode(&entry->rule, f);
488 			if (err)
489 				goto exit_free;
490 			break;
491 		}
492 
493 		entry->rule.vers_ops = (f->op & AUDIT_OPERATORS) ? 2 : 1;
494 
495 		/* Support for legacy operators where
496 		 * AUDIT_NEGATE bit signifies != and otherwise assumes == */
497 		if (f->op & AUDIT_NEGATE)
498 			f->op = AUDIT_NOT_EQUAL;
499 		else if (!f->op)
500 			f->op = AUDIT_EQUAL;
501 		else if (f->op == AUDIT_OPERATORS) {
502 			err = -EINVAL;
503 			goto exit_free;
504 		}
505 	}
506 
507 	f = entry->rule.inode_f;
508 	if (f) {
509 		switch(f->op) {
510 		case AUDIT_NOT_EQUAL:
511 			entry->rule.inode_f = NULL;
512 		case AUDIT_EQUAL:
513 			break;
514 		default:
515 			err = -EINVAL;
516 			goto exit_free;
517 		}
518 	}
519 
520 exit_nofree:
521 	return entry;
522 
523 exit_free:
524 	audit_free_rule(entry);
525 	return ERR_PTR(err);
526 }
527 
528 /* Translate struct audit_rule_data to kernel's rule respresentation. */
529 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
530 					       size_t datasz)
531 {
532 	int err = 0;
533 	struct audit_entry *entry;
534 	struct audit_field *f;
535 	void *bufp;
536 	size_t remain = datasz - sizeof(struct audit_rule_data);
537 	int i;
538 	char *str;
539 
540 	entry = audit_to_entry_common((struct audit_rule *)data);
541 	if (IS_ERR(entry))
542 		goto exit_nofree;
543 
544 	bufp = data->buf;
545 	entry->rule.vers_ops = 2;
546 	for (i = 0; i < data->field_count; i++) {
547 		struct audit_field *f = &entry->rule.fields[i];
548 
549 		err = -EINVAL;
550 		if (!(data->fieldflags[i] & AUDIT_OPERATORS) ||
551 		    data->fieldflags[i] & ~AUDIT_OPERATORS)
552 			goto exit_free;
553 
554 		f->op = data->fieldflags[i] & AUDIT_OPERATORS;
555 		f->type = data->fields[i];
556 		f->val = data->values[i];
557 		f->se_str = NULL;
558 		f->se_rule = NULL;
559 		switch(f->type) {
560 		case AUDIT_PID:
561 		case AUDIT_UID:
562 		case AUDIT_EUID:
563 		case AUDIT_SUID:
564 		case AUDIT_FSUID:
565 		case AUDIT_GID:
566 		case AUDIT_EGID:
567 		case AUDIT_SGID:
568 		case AUDIT_FSGID:
569 		case AUDIT_LOGINUID:
570 		case AUDIT_PERS:
571 		case AUDIT_MSGTYPE:
572 		case AUDIT_PPID:
573 		case AUDIT_DEVMAJOR:
574 		case AUDIT_DEVMINOR:
575 		case AUDIT_EXIT:
576 		case AUDIT_SUCCESS:
577 		case AUDIT_ARG0:
578 		case AUDIT_ARG1:
579 		case AUDIT_ARG2:
580 		case AUDIT_ARG3:
581 			break;
582 		case AUDIT_ARCH:
583 			entry->rule.arch_f = f;
584 			break;
585 		case AUDIT_SUBJ_USER:
586 		case AUDIT_SUBJ_ROLE:
587 		case AUDIT_SUBJ_TYPE:
588 		case AUDIT_SUBJ_SEN:
589 		case AUDIT_SUBJ_CLR:
590 		case AUDIT_OBJ_USER:
591 		case AUDIT_OBJ_ROLE:
592 		case AUDIT_OBJ_TYPE:
593 		case AUDIT_OBJ_LEV_LOW:
594 		case AUDIT_OBJ_LEV_HIGH:
595 			str = audit_unpack_string(&bufp, &remain, f->val);
596 			if (IS_ERR(str))
597 				goto exit_free;
598 			entry->rule.buflen += f->val;
599 
600 			err = selinux_audit_rule_init(f->type, f->op, str,
601 						      &f->se_rule);
602 			/* Keep currently invalid fields around in case they
603 			 * become valid after a policy reload. */
604 			if (err == -EINVAL) {
605 				printk(KERN_WARNING "audit rule for selinux "
606 				       "\'%s\' is invalid\n",  str);
607 				err = 0;
608 			}
609 			if (err) {
610 				kfree(str);
611 				goto exit_free;
612 			} else
613 				f->se_str = str;
614 			break;
615 		case AUDIT_WATCH:
616 			str = audit_unpack_string(&bufp, &remain, f->val);
617 			if (IS_ERR(str))
618 				goto exit_free;
619 			entry->rule.buflen += f->val;
620 
621 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
622 			if (err) {
623 				kfree(str);
624 				goto exit_free;
625 			}
626 			break;
627 		case AUDIT_DIR:
628 			str = audit_unpack_string(&bufp, &remain, f->val);
629 			if (IS_ERR(str))
630 				goto exit_free;
631 			entry->rule.buflen += f->val;
632 
633 			err = audit_make_tree(&entry->rule, str, f->op);
634 			kfree(str);
635 			if (err)
636 				goto exit_free;
637 			break;
638 		case AUDIT_INODE:
639 			err = audit_to_inode(&entry->rule, f);
640 			if (err)
641 				goto exit_free;
642 			break;
643 		case AUDIT_FILTERKEY:
644 			err = -EINVAL;
645 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
646 				goto exit_free;
647 			str = audit_unpack_string(&bufp, &remain, f->val);
648 			if (IS_ERR(str))
649 				goto exit_free;
650 			entry->rule.buflen += f->val;
651 			entry->rule.filterkey = str;
652 			break;
653 		case AUDIT_PERM:
654 			if (f->val & ~15)
655 				goto exit_free;
656 			break;
657 		default:
658 			goto exit_free;
659 		}
660 	}
661 
662 	f = entry->rule.inode_f;
663 	if (f) {
664 		switch(f->op) {
665 		case AUDIT_NOT_EQUAL:
666 			entry->rule.inode_f = NULL;
667 		case AUDIT_EQUAL:
668 			break;
669 		default:
670 			err = -EINVAL;
671 			goto exit_free;
672 		}
673 	}
674 
675 exit_nofree:
676 	return entry;
677 
678 exit_free:
679 	audit_free_rule(entry);
680 	return ERR_PTR(err);
681 }
682 
683 /* Pack a filter field's string representation into data block. */
684 static inline size_t audit_pack_string(void **bufp, const char *str)
685 {
686 	size_t len = strlen(str);
687 
688 	memcpy(*bufp, str, len);
689 	*bufp += len;
690 
691 	return len;
692 }
693 
694 /* Translate kernel rule respresentation to struct audit_rule.
695  * Exists for backward compatibility with userspace. */
696 static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule)
697 {
698 	struct audit_rule *rule;
699 	int i;
700 
701 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
702 	if (unlikely(!rule))
703 		return NULL;
704 
705 	rule->flags = krule->flags | krule->listnr;
706 	rule->action = krule->action;
707 	rule->field_count = krule->field_count;
708 	for (i = 0; i < rule->field_count; i++) {
709 		rule->values[i] = krule->fields[i].val;
710 		rule->fields[i] = krule->fields[i].type;
711 
712 		if (krule->vers_ops == 1) {
713 			if (krule->fields[i].op & AUDIT_NOT_EQUAL)
714 				rule->fields[i] |= AUDIT_NEGATE;
715 		} else {
716 			rule->fields[i] |= krule->fields[i].op;
717 		}
718 	}
719 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i];
720 
721 	return rule;
722 }
723 
724 /* Translate kernel rule respresentation to struct audit_rule_data. */
725 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
726 {
727 	struct audit_rule_data *data;
728 	void *bufp;
729 	int i;
730 
731 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
732 	if (unlikely(!data))
733 		return NULL;
734 	memset(data, 0, sizeof(*data));
735 
736 	data->flags = krule->flags | krule->listnr;
737 	data->action = krule->action;
738 	data->field_count = krule->field_count;
739 	bufp = data->buf;
740 	for (i = 0; i < data->field_count; i++) {
741 		struct audit_field *f = &krule->fields[i];
742 
743 		data->fields[i] = f->type;
744 		data->fieldflags[i] = f->op;
745 		switch(f->type) {
746 		case AUDIT_SUBJ_USER:
747 		case AUDIT_SUBJ_ROLE:
748 		case AUDIT_SUBJ_TYPE:
749 		case AUDIT_SUBJ_SEN:
750 		case AUDIT_SUBJ_CLR:
751 		case AUDIT_OBJ_USER:
752 		case AUDIT_OBJ_ROLE:
753 		case AUDIT_OBJ_TYPE:
754 		case AUDIT_OBJ_LEV_LOW:
755 		case AUDIT_OBJ_LEV_HIGH:
756 			data->buflen += data->values[i] =
757 				audit_pack_string(&bufp, f->se_str);
758 			break;
759 		case AUDIT_WATCH:
760 			data->buflen += data->values[i] =
761 				audit_pack_string(&bufp, krule->watch->path);
762 			break;
763 		case AUDIT_DIR:
764 			data->buflen += data->values[i] =
765 				audit_pack_string(&bufp,
766 						  audit_tree_path(krule->tree));
767 			break;
768 		case AUDIT_FILTERKEY:
769 			data->buflen += data->values[i] =
770 				audit_pack_string(&bufp, krule->filterkey);
771 			break;
772 		default:
773 			data->values[i] = f->val;
774 		}
775 	}
776 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
777 
778 	return data;
779 }
780 
781 /* Compare two rules in kernel format.  Considered success if rules
782  * don't match. */
783 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
784 {
785 	int i;
786 
787 	if (a->flags != b->flags ||
788 	    a->listnr != b->listnr ||
789 	    a->action != b->action ||
790 	    a->field_count != b->field_count)
791 		return 1;
792 
793 	for (i = 0; i < a->field_count; i++) {
794 		if (a->fields[i].type != b->fields[i].type ||
795 		    a->fields[i].op != b->fields[i].op)
796 			return 1;
797 
798 		switch(a->fields[i].type) {
799 		case AUDIT_SUBJ_USER:
800 		case AUDIT_SUBJ_ROLE:
801 		case AUDIT_SUBJ_TYPE:
802 		case AUDIT_SUBJ_SEN:
803 		case AUDIT_SUBJ_CLR:
804 		case AUDIT_OBJ_USER:
805 		case AUDIT_OBJ_ROLE:
806 		case AUDIT_OBJ_TYPE:
807 		case AUDIT_OBJ_LEV_LOW:
808 		case AUDIT_OBJ_LEV_HIGH:
809 			if (strcmp(a->fields[i].se_str, b->fields[i].se_str))
810 				return 1;
811 			break;
812 		case AUDIT_WATCH:
813 			if (strcmp(a->watch->path, b->watch->path))
814 				return 1;
815 			break;
816 		case AUDIT_DIR:
817 			if (strcmp(audit_tree_path(a->tree),
818 				   audit_tree_path(b->tree)))
819 				return 1;
820 			break;
821 		case AUDIT_FILTERKEY:
822 			/* both filterkeys exist based on above type compare */
823 			if (strcmp(a->filterkey, b->filterkey))
824 				return 1;
825 			break;
826 		default:
827 			if (a->fields[i].val != b->fields[i].val)
828 				return 1;
829 		}
830 	}
831 
832 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
833 		if (a->mask[i] != b->mask[i])
834 			return 1;
835 
836 	return 0;
837 }
838 
839 /* Duplicate the given audit watch.  The new watch's rules list is initialized
840  * to an empty list and wlist is undefined. */
841 static struct audit_watch *audit_dupe_watch(struct audit_watch *old)
842 {
843 	char *path;
844 	struct audit_watch *new;
845 
846 	path = kstrdup(old->path, GFP_KERNEL);
847 	if (unlikely(!path))
848 		return ERR_PTR(-ENOMEM);
849 
850 	new = audit_init_watch(path);
851 	if (unlikely(IS_ERR(new))) {
852 		kfree(path);
853 		goto out;
854 	}
855 
856 	new->dev = old->dev;
857 	new->ino = old->ino;
858 	get_inotify_watch(&old->parent->wdata);
859 	new->parent = old->parent;
860 
861 out:
862 	return new;
863 }
864 
865 /* Duplicate selinux field information.  The se_rule is opaque, so must be
866  * re-initialized. */
867 static inline int audit_dupe_selinux_field(struct audit_field *df,
868 					   struct audit_field *sf)
869 {
870 	int ret = 0;
871 	char *se_str;
872 
873 	/* our own copy of se_str */
874 	se_str = kstrdup(sf->se_str, GFP_KERNEL);
875 	if (unlikely(!se_str))
876 		return -ENOMEM;
877 	df->se_str = se_str;
878 
879 	/* our own (refreshed) copy of se_rule */
880 	ret = selinux_audit_rule_init(df->type, df->op, df->se_str,
881 				      &df->se_rule);
882 	/* Keep currently invalid fields around in case they
883 	 * become valid after a policy reload. */
884 	if (ret == -EINVAL) {
885 		printk(KERN_WARNING "audit rule for selinux \'%s\' is "
886 		       "invalid\n", df->se_str);
887 		ret = 0;
888 	}
889 
890 	return ret;
891 }
892 
893 /* Duplicate an audit rule.  This will be a deep copy with the exception
894  * of the watch - that pointer is carried over.  The selinux specific fields
895  * will be updated in the copy.  The point is to be able to replace the old
896  * rule with the new rule in the filterlist, then free the old rule.
897  * The rlist element is undefined; list manipulations are handled apart from
898  * the initial copy. */
899 static struct audit_entry *audit_dupe_rule(struct audit_krule *old,
900 					   struct audit_watch *watch)
901 {
902 	u32 fcount = old->field_count;
903 	struct audit_entry *entry;
904 	struct audit_krule *new;
905 	char *fk;
906 	int i, err = 0;
907 
908 	entry = audit_init_entry(fcount);
909 	if (unlikely(!entry))
910 		return ERR_PTR(-ENOMEM);
911 
912 	new = &entry->rule;
913 	new->vers_ops = old->vers_ops;
914 	new->flags = old->flags;
915 	new->listnr = old->listnr;
916 	new->action = old->action;
917 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
918 		new->mask[i] = old->mask[i];
919 	new->buflen = old->buflen;
920 	new->inode_f = old->inode_f;
921 	new->watch = NULL;
922 	new->field_count = old->field_count;
923 	/*
924 	 * note that we are OK with not refcounting here; audit_match_tree()
925 	 * never dereferences tree and we can't get false positives there
926 	 * since we'd have to have rule gone from the list *and* removed
927 	 * before the chunks found by lookup had been allocated, i.e. before
928 	 * the beginning of list scan.
929 	 */
930 	new->tree = old->tree;
931 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
932 
933 	/* deep copy this information, updating the se_rule fields, because
934 	 * the originals will all be freed when the old rule is freed. */
935 	for (i = 0; i < fcount; i++) {
936 		switch (new->fields[i].type) {
937 		case AUDIT_SUBJ_USER:
938 		case AUDIT_SUBJ_ROLE:
939 		case AUDIT_SUBJ_TYPE:
940 		case AUDIT_SUBJ_SEN:
941 		case AUDIT_SUBJ_CLR:
942 		case AUDIT_OBJ_USER:
943 		case AUDIT_OBJ_ROLE:
944 		case AUDIT_OBJ_TYPE:
945 		case AUDIT_OBJ_LEV_LOW:
946 		case AUDIT_OBJ_LEV_HIGH:
947 			err = audit_dupe_selinux_field(&new->fields[i],
948 						       &old->fields[i]);
949 			break;
950 		case AUDIT_FILTERKEY:
951 			fk = kstrdup(old->filterkey, GFP_KERNEL);
952 			if (unlikely(!fk))
953 				err = -ENOMEM;
954 			else
955 				new->filterkey = fk;
956 		}
957 		if (err) {
958 			audit_free_rule(entry);
959 			return ERR_PTR(err);
960 		}
961 	}
962 
963 	if (watch) {
964 		audit_get_watch(watch);
965 		new->watch = watch;
966 	}
967 
968 	return entry;
969 }
970 
971 /* Update inode info in audit rules based on filesystem event. */
972 static void audit_update_watch(struct audit_parent *parent,
973 			       const char *dname, dev_t dev,
974 			       unsigned long ino, unsigned invalidating)
975 {
976 	struct audit_watch *owatch, *nwatch, *nextw;
977 	struct audit_krule *r, *nextr;
978 	struct audit_entry *oentry, *nentry;
979 
980 	mutex_lock(&audit_filter_mutex);
981 	list_for_each_entry_safe(owatch, nextw, &parent->watches, wlist) {
982 		if (audit_compare_dname_path(dname, owatch->path, NULL))
983 			continue;
984 
985 		/* If the update involves invalidating rules, do the inode-based
986 		 * filtering now, so we don't omit records. */
987 		if (invalidating && current->audit_context &&
988 		    audit_filter_inodes(current, current->audit_context) == AUDIT_RECORD_CONTEXT)
989 			audit_set_auditable(current->audit_context);
990 
991 		nwatch = audit_dupe_watch(owatch);
992 		if (unlikely(IS_ERR(nwatch))) {
993 			mutex_unlock(&audit_filter_mutex);
994 			audit_panic("error updating watch, skipping");
995 			return;
996 		}
997 		nwatch->dev = dev;
998 		nwatch->ino = ino;
999 
1000 		list_for_each_entry_safe(r, nextr, &owatch->rules, rlist) {
1001 
1002 			oentry = container_of(r, struct audit_entry, rule);
1003 			list_del(&oentry->rule.rlist);
1004 			list_del_rcu(&oentry->list);
1005 
1006 			nentry = audit_dupe_rule(&oentry->rule, nwatch);
1007 			if (unlikely(IS_ERR(nentry)))
1008 				audit_panic("error updating watch, removing");
1009 			else {
1010 				int h = audit_hash_ino((u32)ino);
1011 				list_add(&nentry->rule.rlist, &nwatch->rules);
1012 				list_add_rcu(&nentry->list, &audit_inode_hash[h]);
1013 			}
1014 
1015 			call_rcu(&oentry->rcu, audit_free_rule_rcu);
1016 		}
1017 
1018 		if (audit_enabled) {
1019 			struct audit_buffer *ab;
1020 			ab = audit_log_start(NULL, GFP_KERNEL,
1021 				AUDIT_CONFIG_CHANGE);
1022 			audit_log_format(ab,
1023 				"op=updated rules specifying path=");
1024 			audit_log_untrustedstring(ab, owatch->path);
1025 			audit_log_format(ab, " with dev=%u ino=%lu\n",
1026 				 dev, ino);
1027 			audit_log_format(ab, " list=%d res=1", r->listnr);
1028 			audit_log_end(ab);
1029 		}
1030 		audit_remove_watch(owatch);
1031 		goto add_watch_to_parent; /* event applies to a single watch */
1032 	}
1033 	mutex_unlock(&audit_filter_mutex);
1034 	return;
1035 
1036 add_watch_to_parent:
1037 	list_add(&nwatch->wlist, &parent->watches);
1038 	mutex_unlock(&audit_filter_mutex);
1039 	return;
1040 }
1041 
1042 /* Remove all watches & rules associated with a parent that is going away. */
1043 static void audit_remove_parent_watches(struct audit_parent *parent)
1044 {
1045 	struct audit_watch *w, *nextw;
1046 	struct audit_krule *r, *nextr;
1047 	struct audit_entry *e;
1048 
1049 	mutex_lock(&audit_filter_mutex);
1050 	parent->flags |= AUDIT_PARENT_INVALID;
1051 	list_for_each_entry_safe(w, nextw, &parent->watches, wlist) {
1052 		list_for_each_entry_safe(r, nextr, &w->rules, rlist) {
1053 			e = container_of(r, struct audit_entry, rule);
1054 			if (audit_enabled) {
1055 				struct audit_buffer *ab;
1056 				ab = audit_log_start(NULL, GFP_KERNEL,
1057 					AUDIT_CONFIG_CHANGE);
1058 				audit_log_format(ab, "op=remove rule path=");
1059 				audit_log_untrustedstring(ab, w->path);
1060 				if (r->filterkey) {
1061 					audit_log_format(ab, " key=");
1062 					audit_log_untrustedstring(ab,
1063 							r->filterkey);
1064 				} else
1065 					audit_log_format(ab, " key=(null)");
1066 				audit_log_format(ab, " list=%d res=1",
1067 					r->listnr);
1068 				audit_log_end(ab);
1069 			}
1070 			list_del(&r->rlist);
1071 			list_del_rcu(&e->list);
1072 			call_rcu(&e->rcu, audit_free_rule_rcu);
1073 		}
1074 		audit_remove_watch(w);
1075 	}
1076 	mutex_unlock(&audit_filter_mutex);
1077 }
1078 
1079 /* Unregister inotify watches for parents on in_list.
1080  * Generates an IN_IGNORED event. */
1081 static void audit_inotify_unregister(struct list_head *in_list)
1082 {
1083 	struct audit_parent *p, *n;
1084 
1085 	list_for_each_entry_safe(p, n, in_list, ilist) {
1086 		list_del(&p->ilist);
1087 		inotify_rm_watch(audit_ih, &p->wdata);
1088 		/* the put matching the get in audit_do_del_rule() */
1089 		put_inotify_watch(&p->wdata);
1090 	}
1091 }
1092 
1093 /* Find an existing audit rule.
1094  * Caller must hold audit_filter_mutex to prevent stale rule data. */
1095 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
1096 					   struct list_head *list)
1097 {
1098 	struct audit_entry *e, *found = NULL;
1099 	int h;
1100 
1101 	if (entry->rule.watch) {
1102 		/* we don't know the inode number, so must walk entire hash */
1103 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
1104 			list = &audit_inode_hash[h];
1105 			list_for_each_entry(e, list, list)
1106 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
1107 					found = e;
1108 					goto out;
1109 				}
1110 		}
1111 		goto out;
1112 	}
1113 
1114 	list_for_each_entry(e, list, list)
1115 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
1116 			found = e;
1117 			goto out;
1118 		}
1119 
1120 out:
1121 	return found;
1122 }
1123 
1124 /* Get path information necessary for adding watches. */
1125 static int audit_get_nd(char *path, struct nameidata **ndp,
1126 			struct nameidata **ndw)
1127 {
1128 	struct nameidata *ndparent, *ndwatch;
1129 	int err;
1130 
1131 	ndparent = kmalloc(sizeof(*ndparent), GFP_KERNEL);
1132 	if (unlikely(!ndparent))
1133 		return -ENOMEM;
1134 
1135 	ndwatch = kmalloc(sizeof(*ndwatch), GFP_KERNEL);
1136 	if (unlikely(!ndwatch)) {
1137 		kfree(ndparent);
1138 		return -ENOMEM;
1139 	}
1140 
1141 	err = path_lookup(path, LOOKUP_PARENT, ndparent);
1142 	if (err) {
1143 		kfree(ndparent);
1144 		kfree(ndwatch);
1145 		return err;
1146 	}
1147 
1148 	err = path_lookup(path, 0, ndwatch);
1149 	if (err) {
1150 		kfree(ndwatch);
1151 		ndwatch = NULL;
1152 	}
1153 
1154 	*ndp = ndparent;
1155 	*ndw = ndwatch;
1156 
1157 	return 0;
1158 }
1159 
1160 /* Release resources used for watch path information. */
1161 static void audit_put_nd(struct nameidata *ndp, struct nameidata *ndw)
1162 {
1163 	if (ndp) {
1164 		path_release(ndp);
1165 		kfree(ndp);
1166 	}
1167 	if (ndw) {
1168 		path_release(ndw);
1169 		kfree(ndw);
1170 	}
1171 }
1172 
1173 /* Associate the given rule with an existing parent inotify_watch.
1174  * Caller must hold audit_filter_mutex. */
1175 static void audit_add_to_parent(struct audit_krule *krule,
1176 				struct audit_parent *parent)
1177 {
1178 	struct audit_watch *w, *watch = krule->watch;
1179 	int watch_found = 0;
1180 
1181 	list_for_each_entry(w, &parent->watches, wlist) {
1182 		if (strcmp(watch->path, w->path))
1183 			continue;
1184 
1185 		watch_found = 1;
1186 
1187 		/* put krule's and initial refs to temporary watch */
1188 		audit_put_watch(watch);
1189 		audit_put_watch(watch);
1190 
1191 		audit_get_watch(w);
1192 		krule->watch = watch = w;
1193 		break;
1194 	}
1195 
1196 	if (!watch_found) {
1197 		get_inotify_watch(&parent->wdata);
1198 		watch->parent = parent;
1199 
1200 		list_add(&watch->wlist, &parent->watches);
1201 	}
1202 	list_add(&krule->rlist, &watch->rules);
1203 }
1204 
1205 /* Find a matching watch entry, or add this one.
1206  * Caller must hold audit_filter_mutex. */
1207 static int audit_add_watch(struct audit_krule *krule, struct nameidata *ndp,
1208 			   struct nameidata *ndw)
1209 {
1210 	struct audit_watch *watch = krule->watch;
1211 	struct inotify_watch *i_watch;
1212 	struct audit_parent *parent;
1213 	int ret = 0;
1214 
1215 	/* update watch filter fields */
1216 	if (ndw) {
1217 		watch->dev = ndw->dentry->d_inode->i_sb->s_dev;
1218 		watch->ino = ndw->dentry->d_inode->i_ino;
1219 	}
1220 
1221 	/* The audit_filter_mutex must not be held during inotify calls because
1222 	 * we hold it during inotify event callback processing.  If an existing
1223 	 * inotify watch is found, inotify_find_watch() grabs a reference before
1224 	 * returning.
1225 	 */
1226 	mutex_unlock(&audit_filter_mutex);
1227 
1228 	if (inotify_find_watch(audit_ih, ndp->dentry->d_inode, &i_watch) < 0) {
1229 		parent = audit_init_parent(ndp);
1230 		if (IS_ERR(parent)) {
1231 			/* caller expects mutex locked */
1232 			mutex_lock(&audit_filter_mutex);
1233 			return PTR_ERR(parent);
1234 		}
1235 	} else
1236 		parent = container_of(i_watch, struct audit_parent, wdata);
1237 
1238 	mutex_lock(&audit_filter_mutex);
1239 
1240 	/* parent was moved before we took audit_filter_mutex */
1241 	if (parent->flags & AUDIT_PARENT_INVALID)
1242 		ret = -ENOENT;
1243 	else
1244 		audit_add_to_parent(krule, parent);
1245 
1246 	/* match get in audit_init_parent or inotify_find_watch */
1247 	put_inotify_watch(&parent->wdata);
1248 	return ret;
1249 }
1250 
1251 /* Add rule to given filterlist if not a duplicate. */
1252 static inline int audit_add_rule(struct audit_entry *entry,
1253 				 struct list_head *list)
1254 {
1255 	struct audit_entry *e;
1256 	struct audit_field *inode_f = entry->rule.inode_f;
1257 	struct audit_watch *watch = entry->rule.watch;
1258 	struct audit_tree *tree = entry->rule.tree;
1259 	struct nameidata *ndp = NULL, *ndw = NULL;
1260 	int h, err;
1261 #ifdef CONFIG_AUDITSYSCALL
1262 	int dont_count = 0;
1263 
1264 	/* If either of these, don't count towards total */
1265 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
1266 		entry->rule.listnr == AUDIT_FILTER_TYPE)
1267 		dont_count = 1;
1268 #endif
1269 
1270 	if (inode_f) {
1271 		h = audit_hash_ino(inode_f->val);
1272 		list = &audit_inode_hash[h];
1273 	}
1274 
1275 	mutex_lock(&audit_filter_mutex);
1276 	e = audit_find_rule(entry, list);
1277 	mutex_unlock(&audit_filter_mutex);
1278 	if (e) {
1279 		err = -EEXIST;
1280 		/* normally audit_add_tree_rule() will free it on failure */
1281 		if (tree)
1282 			audit_put_tree(tree);
1283 		goto error;
1284 	}
1285 
1286 	/* Avoid calling path_lookup under audit_filter_mutex. */
1287 	if (watch) {
1288 		err = audit_get_nd(watch->path, &ndp, &ndw);
1289 		if (err)
1290 			goto error;
1291 	}
1292 
1293 	mutex_lock(&audit_filter_mutex);
1294 	if (watch) {
1295 		/* audit_filter_mutex is dropped and re-taken during this call */
1296 		err = audit_add_watch(&entry->rule, ndp, ndw);
1297 		if (err) {
1298 			mutex_unlock(&audit_filter_mutex);
1299 			goto error;
1300 		}
1301 		h = audit_hash_ino((u32)watch->ino);
1302 		list = &audit_inode_hash[h];
1303 	}
1304 	if (tree) {
1305 		err = audit_add_tree_rule(&entry->rule);
1306 		if (err) {
1307 			mutex_unlock(&audit_filter_mutex);
1308 			goto error;
1309 		}
1310 	}
1311 
1312 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
1313 		list_add_rcu(&entry->list, list);
1314 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
1315 	} else {
1316 		list_add_tail_rcu(&entry->list, list);
1317 	}
1318 #ifdef CONFIG_AUDITSYSCALL
1319 	if (!dont_count)
1320 		audit_n_rules++;
1321 
1322 	if (!audit_match_signal(entry))
1323 		audit_signals++;
1324 #endif
1325 	mutex_unlock(&audit_filter_mutex);
1326 
1327 	audit_put_nd(ndp, ndw);		/* NULL args OK */
1328  	return 0;
1329 
1330 error:
1331 	audit_put_nd(ndp, ndw);		/* NULL args OK */
1332 	if (watch)
1333 		audit_put_watch(watch); /* tmp watch, matches initial get */
1334 	return err;
1335 }
1336 
1337 /* Remove an existing rule from filterlist. */
1338 static inline int audit_del_rule(struct audit_entry *entry,
1339 				 struct list_head *list)
1340 {
1341 	struct audit_entry  *e;
1342 	struct audit_field *inode_f = entry->rule.inode_f;
1343 	struct audit_watch *watch, *tmp_watch = entry->rule.watch;
1344 	struct audit_tree *tree = entry->rule.tree;
1345 	LIST_HEAD(inotify_list);
1346 	int h, ret = 0;
1347 #ifdef CONFIG_AUDITSYSCALL
1348 	int dont_count = 0;
1349 
1350 	/* If either of these, don't count towards total */
1351 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
1352 		entry->rule.listnr == AUDIT_FILTER_TYPE)
1353 		dont_count = 1;
1354 #endif
1355 
1356 	if (inode_f) {
1357 		h = audit_hash_ino(inode_f->val);
1358 		list = &audit_inode_hash[h];
1359 	}
1360 
1361 	mutex_lock(&audit_filter_mutex);
1362 	e = audit_find_rule(entry, list);
1363 	if (!e) {
1364 		mutex_unlock(&audit_filter_mutex);
1365 		ret = -ENOENT;
1366 		goto out;
1367 	}
1368 
1369 	watch = e->rule.watch;
1370 	if (watch) {
1371 		struct audit_parent *parent = watch->parent;
1372 
1373 		list_del(&e->rule.rlist);
1374 
1375 		if (list_empty(&watch->rules)) {
1376 			audit_remove_watch(watch);
1377 
1378 			if (list_empty(&parent->watches)) {
1379 				/* Put parent on the inotify un-registration
1380 				 * list.  Grab a reference before releasing
1381 				 * audit_filter_mutex, to be released in
1382 				 * audit_inotify_unregister(). */
1383 				list_add(&parent->ilist, &inotify_list);
1384 				get_inotify_watch(&parent->wdata);
1385 			}
1386 		}
1387 	}
1388 
1389 	if (e->rule.tree)
1390 		audit_remove_tree_rule(&e->rule);
1391 
1392 	list_del_rcu(&e->list);
1393 	call_rcu(&e->rcu, audit_free_rule_rcu);
1394 
1395 #ifdef CONFIG_AUDITSYSCALL
1396 	if (!dont_count)
1397 		audit_n_rules--;
1398 
1399 	if (!audit_match_signal(entry))
1400 		audit_signals--;
1401 #endif
1402 	mutex_unlock(&audit_filter_mutex);
1403 
1404 	if (!list_empty(&inotify_list))
1405 		audit_inotify_unregister(&inotify_list);
1406 
1407 out:
1408 	if (tmp_watch)
1409 		audit_put_watch(tmp_watch); /* match initial get */
1410 	if (tree)
1411 		audit_put_tree(tree);	/* that's the temporary one */
1412 
1413 	return ret;
1414 }
1415 
1416 /* List rules using struct audit_rule.  Exists for backward
1417  * compatibility with userspace. */
1418 static void audit_list(int pid, int seq, struct sk_buff_head *q)
1419 {
1420 	struct sk_buff *skb;
1421 	struct audit_entry *entry;
1422 	int i;
1423 
1424 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1425 	 * iterator to sync with list writers. */
1426 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1427 		list_for_each_entry(entry, &audit_filter_list[i], list) {
1428 			struct audit_rule *rule;
1429 
1430 			rule = audit_krule_to_rule(&entry->rule);
1431 			if (unlikely(!rule))
1432 				break;
1433 			skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1434 					 rule, sizeof(*rule));
1435 			if (skb)
1436 				skb_queue_tail(q, skb);
1437 			kfree(rule);
1438 		}
1439 	}
1440 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++) {
1441 		list_for_each_entry(entry, &audit_inode_hash[i], list) {
1442 			struct audit_rule *rule;
1443 
1444 			rule = audit_krule_to_rule(&entry->rule);
1445 			if (unlikely(!rule))
1446 				break;
1447 			skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1448 					 rule, sizeof(*rule));
1449 			if (skb)
1450 				skb_queue_tail(q, skb);
1451 			kfree(rule);
1452 		}
1453 	}
1454 	skb = audit_make_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
1455 	if (skb)
1456 		skb_queue_tail(q, skb);
1457 }
1458 
1459 /* List rules using struct audit_rule_data. */
1460 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
1461 {
1462 	struct sk_buff *skb;
1463 	struct audit_entry *e;
1464 	int i;
1465 
1466 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1467 	 * iterator to sync with list writers. */
1468 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1469 		list_for_each_entry(e, &audit_filter_list[i], list) {
1470 			struct audit_rule_data *data;
1471 
1472 			data = audit_krule_to_data(&e->rule);
1473 			if (unlikely(!data))
1474 				break;
1475 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1476 					 data, sizeof(*data) + data->buflen);
1477 			if (skb)
1478 				skb_queue_tail(q, skb);
1479 			kfree(data);
1480 		}
1481 	}
1482 	for (i=0; i< AUDIT_INODE_BUCKETS; i++) {
1483 		list_for_each_entry(e, &audit_inode_hash[i], list) {
1484 			struct audit_rule_data *data;
1485 
1486 			data = audit_krule_to_data(&e->rule);
1487 			if (unlikely(!data))
1488 				break;
1489 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1490 					 data, sizeof(*data) + data->buflen);
1491 			if (skb)
1492 				skb_queue_tail(q, skb);
1493 			kfree(data);
1494 		}
1495 	}
1496 	skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1497 	if (skb)
1498 		skb_queue_tail(q, skb);
1499 }
1500 
1501 /* Log rule additions and removals */
1502 static void audit_log_rule_change(uid_t loginuid, u32 sid, char *action,
1503 				  struct audit_krule *rule, int res)
1504 {
1505 	struct audit_buffer *ab;
1506 
1507 	if (!audit_enabled)
1508 		return;
1509 
1510 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1511 	if (!ab)
1512 		return;
1513 	audit_log_format(ab, "auid=%u", loginuid);
1514 	if (sid) {
1515 		char *ctx = NULL;
1516 		u32 len;
1517 		if (selinux_sid_to_string(sid, &ctx, &len))
1518 			audit_log_format(ab, " ssid=%u", sid);
1519 		else
1520 			audit_log_format(ab, " subj=%s", ctx);
1521 		kfree(ctx);
1522 	}
1523 	audit_log_format(ab, " op=%s rule key=", action);
1524 	if (rule->filterkey)
1525 		audit_log_untrustedstring(ab, rule->filterkey);
1526 	else
1527 		audit_log_format(ab, "(null)");
1528 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1529 	audit_log_end(ab);
1530 }
1531 
1532 /**
1533  * audit_receive_filter - apply all rules to the specified message type
1534  * @type: audit message type
1535  * @pid: target pid for netlink audit messages
1536  * @uid: target uid for netlink audit messages
1537  * @seq: netlink audit message sequence (serial) number
1538  * @data: payload data
1539  * @datasz: size of payload data
1540  * @loginuid: loginuid of sender
1541  * @sid: SE Linux Security ID of sender
1542  */
1543 int audit_receive_filter(int type, int pid, int uid, int seq, void *data,
1544 			 size_t datasz, uid_t loginuid, u32 sid)
1545 {
1546 	struct task_struct *tsk;
1547 	struct audit_netlink_list *dest;
1548 	int err = 0;
1549 	struct audit_entry *entry;
1550 
1551 	switch (type) {
1552 	case AUDIT_LIST:
1553 	case AUDIT_LIST_RULES:
1554 		/* We can't just spew out the rules here because we might fill
1555 		 * the available socket buffer space and deadlock waiting for
1556 		 * auditctl to read from it... which isn't ever going to
1557 		 * happen if we're actually running in the context of auditctl
1558 		 * trying to _send_ the stuff */
1559 
1560 		dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1561 		if (!dest)
1562 			return -ENOMEM;
1563 		dest->pid = pid;
1564 		skb_queue_head_init(&dest->q);
1565 
1566 		mutex_lock(&audit_filter_mutex);
1567 		if (type == AUDIT_LIST)
1568 			audit_list(pid, seq, &dest->q);
1569 		else
1570 			audit_list_rules(pid, seq, &dest->q);
1571 		mutex_unlock(&audit_filter_mutex);
1572 
1573 		tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1574 		if (IS_ERR(tsk)) {
1575 			skb_queue_purge(&dest->q);
1576 			kfree(dest);
1577 			err = PTR_ERR(tsk);
1578 		}
1579 		break;
1580 	case AUDIT_ADD:
1581 	case AUDIT_ADD_RULE:
1582 		if (type == AUDIT_ADD)
1583 			entry = audit_rule_to_entry(data);
1584 		else
1585 			entry = audit_data_to_entry(data, datasz);
1586 		if (IS_ERR(entry))
1587 			return PTR_ERR(entry);
1588 
1589 		err = audit_add_rule(entry,
1590 				     &audit_filter_list[entry->rule.listnr]);
1591 		audit_log_rule_change(loginuid, sid, "add", &entry->rule, !err);
1592 
1593 		if (err)
1594 			audit_free_rule(entry);
1595 		break;
1596 	case AUDIT_DEL:
1597 	case AUDIT_DEL_RULE:
1598 		if (type == AUDIT_DEL)
1599 			entry = audit_rule_to_entry(data);
1600 		else
1601 			entry = audit_data_to_entry(data, datasz);
1602 		if (IS_ERR(entry))
1603 			return PTR_ERR(entry);
1604 
1605 		err = audit_del_rule(entry,
1606 				     &audit_filter_list[entry->rule.listnr]);
1607 		audit_log_rule_change(loginuid, sid, "remove", &entry->rule,
1608 				      !err);
1609 
1610 		audit_free_rule(entry);
1611 		break;
1612 	default:
1613 		return -EINVAL;
1614 	}
1615 
1616 	return err;
1617 }
1618 
1619 int audit_comparator(const u32 left, const u32 op, const u32 right)
1620 {
1621 	switch (op) {
1622 	case AUDIT_EQUAL:
1623 		return (left == right);
1624 	case AUDIT_NOT_EQUAL:
1625 		return (left != right);
1626 	case AUDIT_LESS_THAN:
1627 		return (left < right);
1628 	case AUDIT_LESS_THAN_OR_EQUAL:
1629 		return (left <= right);
1630 	case AUDIT_GREATER_THAN:
1631 		return (left > right);
1632 	case AUDIT_GREATER_THAN_OR_EQUAL:
1633 		return (left >= right);
1634 	case AUDIT_BIT_MASK:
1635 		return (left & right);
1636 	case AUDIT_BIT_TEST:
1637 		return ((left & right) == right);
1638 	}
1639 	BUG();
1640 	return 0;
1641 }
1642 
1643 /* Compare given dentry name with last component in given path,
1644  * return of 0 indicates a match. */
1645 int audit_compare_dname_path(const char *dname, const char *path,
1646 			     int *dirlen)
1647 {
1648 	int dlen, plen;
1649 	const char *p;
1650 
1651 	if (!dname || !path)
1652 		return 1;
1653 
1654 	dlen = strlen(dname);
1655 	plen = strlen(path);
1656 	if (plen < dlen)
1657 		return 1;
1658 
1659 	/* disregard trailing slashes */
1660 	p = path + plen - 1;
1661 	while ((*p == '/') && (p > path))
1662 		p--;
1663 
1664 	/* find last path component */
1665 	p = p - dlen + 1;
1666 	if (p < path)
1667 		return 1;
1668 	else if (p > path) {
1669 		if (*--p != '/')
1670 			return 1;
1671 		else
1672 			p++;
1673 	}
1674 
1675 	/* return length of path's directory component */
1676 	if (dirlen)
1677 		*dirlen = p - path;
1678 	return strncmp(p, dname, dlen);
1679 }
1680 
1681 static int audit_filter_user_rules(struct netlink_skb_parms *cb,
1682 				   struct audit_krule *rule,
1683 				   enum audit_state *state)
1684 {
1685 	int i;
1686 
1687 	for (i = 0; i < rule->field_count; i++) {
1688 		struct audit_field *f = &rule->fields[i];
1689 		int result = 0;
1690 
1691 		switch (f->type) {
1692 		case AUDIT_PID:
1693 			result = audit_comparator(cb->creds.pid, f->op, f->val);
1694 			break;
1695 		case AUDIT_UID:
1696 			result = audit_comparator(cb->creds.uid, f->op, f->val);
1697 			break;
1698 		case AUDIT_GID:
1699 			result = audit_comparator(cb->creds.gid, f->op, f->val);
1700 			break;
1701 		case AUDIT_LOGINUID:
1702 			result = audit_comparator(cb->loginuid, f->op, f->val);
1703 			break;
1704 		}
1705 
1706 		if (!result)
1707 			return 0;
1708 	}
1709 	switch (rule->action) {
1710 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1711 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1712 	}
1713 	return 1;
1714 }
1715 
1716 int audit_filter_user(struct netlink_skb_parms *cb, int type)
1717 {
1718 	enum audit_state state = AUDIT_DISABLED;
1719 	struct audit_entry *e;
1720 	int ret = 1;
1721 
1722 	rcu_read_lock();
1723 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1724 		if (audit_filter_user_rules(cb, &e->rule, &state)) {
1725 			if (state == AUDIT_DISABLED)
1726 				ret = 0;
1727 			break;
1728 		}
1729 	}
1730 	rcu_read_unlock();
1731 
1732 	return ret; /* Audit by default */
1733 }
1734 
1735 int audit_filter_type(int type)
1736 {
1737 	struct audit_entry *e;
1738 	int result = 0;
1739 
1740 	rcu_read_lock();
1741 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1742 		goto unlock_and_return;
1743 
1744 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1745 				list) {
1746 		int i;
1747 		for (i = 0; i < e->rule.field_count; i++) {
1748 			struct audit_field *f = &e->rule.fields[i];
1749 			if (f->type == AUDIT_MSGTYPE) {
1750 				result = audit_comparator(type, f->op, f->val);
1751 				if (!result)
1752 					break;
1753 			}
1754 		}
1755 		if (result)
1756 			goto unlock_and_return;
1757 	}
1758 unlock_and_return:
1759 	rcu_read_unlock();
1760 	return result;
1761 }
1762 
1763 /* Check to see if the rule contains any selinux fields.  Returns 1 if there
1764    are selinux fields specified in the rule, 0 otherwise. */
1765 static inline int audit_rule_has_selinux(struct audit_krule *rule)
1766 {
1767 	int i;
1768 
1769 	for (i = 0; i < rule->field_count; i++) {
1770 		struct audit_field *f = &rule->fields[i];
1771 		switch (f->type) {
1772 		case AUDIT_SUBJ_USER:
1773 		case AUDIT_SUBJ_ROLE:
1774 		case AUDIT_SUBJ_TYPE:
1775 		case AUDIT_SUBJ_SEN:
1776 		case AUDIT_SUBJ_CLR:
1777 		case AUDIT_OBJ_USER:
1778 		case AUDIT_OBJ_ROLE:
1779 		case AUDIT_OBJ_TYPE:
1780 		case AUDIT_OBJ_LEV_LOW:
1781 		case AUDIT_OBJ_LEV_HIGH:
1782 			return 1;
1783 		}
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 /* This function will re-initialize the se_rule field of all applicable rules.
1790  * It will traverse the filter lists serarching for rules that contain selinux
1791  * specific filter fields.  When such a rule is found, it is copied, the
1792  * selinux field is re-initialized, and the old rule is replaced with the
1793  * updated rule. */
1794 int selinux_audit_rule_update(void)
1795 {
1796 	struct audit_entry *entry, *n, *nentry;
1797 	struct audit_watch *watch;
1798 	struct audit_tree *tree;
1799 	int i, err = 0;
1800 
1801 	/* audit_filter_mutex synchronizes the writers */
1802 	mutex_lock(&audit_filter_mutex);
1803 
1804 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1805 		list_for_each_entry_safe(entry, n, &audit_filter_list[i], list) {
1806 			if (!audit_rule_has_selinux(&entry->rule))
1807 				continue;
1808 
1809 			watch = entry->rule.watch;
1810 			tree = entry->rule.tree;
1811 			nentry = audit_dupe_rule(&entry->rule, watch);
1812 			if (unlikely(IS_ERR(nentry))) {
1813 				/* save the first error encountered for the
1814 				 * return value */
1815 				if (!err)
1816 					err = PTR_ERR(nentry);
1817 				audit_panic("error updating selinux filters");
1818 				if (watch)
1819 					list_del(&entry->rule.rlist);
1820 				list_del_rcu(&entry->list);
1821 			} else {
1822 				if (watch) {
1823 					list_add(&nentry->rule.rlist,
1824 						 &watch->rules);
1825 					list_del(&entry->rule.rlist);
1826 				} else if (tree)
1827 					list_replace_init(&entry->rule.rlist,
1828 						     &nentry->rule.rlist);
1829 				list_replace_rcu(&entry->list, &nentry->list);
1830 			}
1831 			call_rcu(&entry->rcu, audit_free_rule_rcu);
1832 		}
1833 	}
1834 
1835 	mutex_unlock(&audit_filter_mutex);
1836 
1837 	return err;
1838 }
1839 
1840 /* Update watch data in audit rules based on inotify events. */
1841 void audit_handle_ievent(struct inotify_watch *i_watch, u32 wd, u32 mask,
1842 			 u32 cookie, const char *dname, struct inode *inode)
1843 {
1844 	struct audit_parent *parent;
1845 
1846 	parent = container_of(i_watch, struct audit_parent, wdata);
1847 
1848 	if (mask & (IN_CREATE|IN_MOVED_TO) && inode)
1849 		audit_update_watch(parent, dname, inode->i_sb->s_dev,
1850 				   inode->i_ino, 0);
1851 	else if (mask & (IN_DELETE|IN_MOVED_FROM))
1852 		audit_update_watch(parent, dname, (dev_t)-1, (unsigned long)-1, 1);
1853 	/* inotify automatically removes the watch and sends IN_IGNORED */
1854 	else if (mask & (IN_DELETE_SELF|IN_UNMOUNT))
1855 		audit_remove_parent_watches(parent);
1856 	/* inotify does not remove the watch, so remove it manually */
1857 	else if(mask & IN_MOVE_SELF) {
1858 		audit_remove_parent_watches(parent);
1859 		inotify_remove_watch_locked(audit_ih, i_watch);
1860 	} else if (mask & IN_IGNORED)
1861 		put_inotify_watch(i_watch);
1862 }
1863