xref: /linux/kernel/auditfilter.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/kernel.h>
25 #include <linux/audit.h>
26 #include <linux/kthread.h>
27 #include <linux/mutex.h>
28 #include <linux/fs.h>
29 #include <linux/namei.h>
30 #include <linux/netlink.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/security.h>
34 #include <net/net_namespace.h>
35 #include <net/sock.h>
36 #include "audit.h"
37 
38 /*
39  * Locking model:
40  *
41  * audit_filter_mutex:
42  * 		Synchronizes writes and blocking reads of audit's filterlist
43  * 		data.  Rcu is used to traverse the filterlist and access
44  * 		contents of structs audit_entry, audit_watch and opaque
45  * 		LSM rules during filtering.  If modified, these structures
46  * 		must be copied and replace their counterparts in the filterlist.
47  * 		An audit_parent struct is not accessed during filtering, so may
48  * 		be written directly provided audit_filter_mutex is held.
49  */
50 
51 /* Audit filter lists, defined in <linux/audit.h> */
52 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
53 	LIST_HEAD_INIT(audit_filter_list[0]),
54 	LIST_HEAD_INIT(audit_filter_list[1]),
55 	LIST_HEAD_INIT(audit_filter_list[2]),
56 	LIST_HEAD_INIT(audit_filter_list[3]),
57 	LIST_HEAD_INIT(audit_filter_list[4]),
58 	LIST_HEAD_INIT(audit_filter_list[5]),
59 #if AUDIT_NR_FILTERS != 6
60 #error Fix audit_filter_list initialiser
61 #endif
62 };
63 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
64 	LIST_HEAD_INIT(audit_rules_list[0]),
65 	LIST_HEAD_INIT(audit_rules_list[1]),
66 	LIST_HEAD_INIT(audit_rules_list[2]),
67 	LIST_HEAD_INIT(audit_rules_list[3]),
68 	LIST_HEAD_INIT(audit_rules_list[4]),
69 	LIST_HEAD_INIT(audit_rules_list[5]),
70 };
71 
72 DEFINE_MUTEX(audit_filter_mutex);
73 
74 static void audit_free_lsm_field(struct audit_field *f)
75 {
76 	switch (f->type) {
77 	case AUDIT_SUBJ_USER:
78 	case AUDIT_SUBJ_ROLE:
79 	case AUDIT_SUBJ_TYPE:
80 	case AUDIT_SUBJ_SEN:
81 	case AUDIT_SUBJ_CLR:
82 	case AUDIT_OBJ_USER:
83 	case AUDIT_OBJ_ROLE:
84 	case AUDIT_OBJ_TYPE:
85 	case AUDIT_OBJ_LEV_LOW:
86 	case AUDIT_OBJ_LEV_HIGH:
87 		kfree(f->lsm_str);
88 		security_audit_rule_free(f->lsm_rule);
89 	}
90 }
91 
92 static inline void audit_free_rule(struct audit_entry *e)
93 {
94 	int i;
95 	struct audit_krule *erule = &e->rule;
96 
97 	/* some rules don't have associated watches */
98 	if (erule->watch)
99 		audit_put_watch(erule->watch);
100 	if (erule->fields)
101 		for (i = 0; i < erule->field_count; i++)
102 			audit_free_lsm_field(&erule->fields[i]);
103 	kfree(erule->fields);
104 	kfree(erule->filterkey);
105 	kfree(e);
106 }
107 
108 void audit_free_rule_rcu(struct rcu_head *head)
109 {
110 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
111 	audit_free_rule(e);
112 }
113 
114 /* Initialize an audit filterlist entry. */
115 static inline struct audit_entry *audit_init_entry(u32 field_count)
116 {
117 	struct audit_entry *entry;
118 	struct audit_field *fields;
119 
120 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
121 	if (unlikely(!entry))
122 		return NULL;
123 
124 	fields = kcalloc(field_count, sizeof(*fields), GFP_KERNEL);
125 	if (unlikely(!fields)) {
126 		kfree(entry);
127 		return NULL;
128 	}
129 	entry->rule.fields = fields;
130 
131 	return entry;
132 }
133 
134 /* Unpack a filter field's string representation from user-space
135  * buffer. */
136 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
137 {
138 	char *str;
139 
140 	if (!*bufp || (len == 0) || (len > *remain))
141 		return ERR_PTR(-EINVAL);
142 
143 	/* Of the currently implemented string fields, PATH_MAX
144 	 * defines the longest valid length.
145 	 */
146 	if (len > PATH_MAX)
147 		return ERR_PTR(-ENAMETOOLONG);
148 
149 	str = kmalloc(len + 1, GFP_KERNEL);
150 	if (unlikely(!str))
151 		return ERR_PTR(-ENOMEM);
152 
153 	memcpy(str, *bufp, len);
154 	str[len] = 0;
155 	*bufp += len;
156 	*remain -= len;
157 
158 	return str;
159 }
160 
161 /* Translate an inode field to kernel respresentation. */
162 static inline int audit_to_inode(struct audit_krule *krule,
163 				 struct audit_field *f)
164 {
165 	if (krule->listnr != AUDIT_FILTER_EXIT ||
166 	    krule->inode_f || krule->watch || krule->tree ||
167 	    (f->op != Audit_equal && f->op != Audit_not_equal))
168 		return -EINVAL;
169 
170 	krule->inode_f = f;
171 	return 0;
172 }
173 
174 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
175 
176 int __init audit_register_class(int class, unsigned *list)
177 {
178 	__u32 *p = kcalloc(AUDIT_BITMASK_SIZE, sizeof(__u32), GFP_KERNEL);
179 	if (!p)
180 		return -ENOMEM;
181 	while (*list != ~0U) {
182 		unsigned n = *list++;
183 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
184 			kfree(p);
185 			return -EINVAL;
186 		}
187 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
188 	}
189 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
190 		kfree(p);
191 		return -EINVAL;
192 	}
193 	classes[class] = p;
194 	return 0;
195 }
196 
197 int audit_match_class(int class, unsigned syscall)
198 {
199 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
200 		return 0;
201 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
202 		return 0;
203 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
204 }
205 
206 #ifdef CONFIG_AUDITSYSCALL
207 static inline int audit_match_class_bits(int class, u32 *mask)
208 {
209 	int i;
210 
211 	if (classes[class]) {
212 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
213 			if (mask[i] & classes[class][i])
214 				return 0;
215 	}
216 	return 1;
217 }
218 
219 static int audit_match_signal(struct audit_entry *entry)
220 {
221 	struct audit_field *arch = entry->rule.arch_f;
222 
223 	if (!arch) {
224 		/* When arch is unspecified, we must check both masks on biarch
225 		 * as syscall number alone is ambiguous. */
226 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
227 					       entry->rule.mask) &&
228 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
229 					       entry->rule.mask));
230 	}
231 
232 	switch(audit_classify_arch(arch->val)) {
233 	case 0: /* native */
234 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
235 					       entry->rule.mask));
236 	case 1: /* 32bit on biarch */
237 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
238 					       entry->rule.mask));
239 	default:
240 		return 1;
241 	}
242 }
243 #endif
244 
245 /* Common user-space to kernel rule translation. */
246 static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *rule)
247 {
248 	unsigned listnr;
249 	struct audit_entry *entry;
250 	int i, err;
251 
252 	err = -EINVAL;
253 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
254 	switch(listnr) {
255 	default:
256 		goto exit_err;
257 #ifdef CONFIG_AUDITSYSCALL
258 	case AUDIT_FILTER_ENTRY:
259 		if (rule->action == AUDIT_ALWAYS)
260 			goto exit_err;
261 	case AUDIT_FILTER_EXIT:
262 	case AUDIT_FILTER_TASK:
263 #endif
264 	case AUDIT_FILTER_USER:
265 	case AUDIT_FILTER_TYPE:
266 		;
267 	}
268 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
269 		pr_err("AUDIT_POSSIBLE is deprecated\n");
270 		goto exit_err;
271 	}
272 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
273 		goto exit_err;
274 	if (rule->field_count > AUDIT_MAX_FIELDS)
275 		goto exit_err;
276 
277 	err = -ENOMEM;
278 	entry = audit_init_entry(rule->field_count);
279 	if (!entry)
280 		goto exit_err;
281 
282 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
283 	entry->rule.listnr = listnr;
284 	entry->rule.action = rule->action;
285 	entry->rule.field_count = rule->field_count;
286 
287 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
288 		entry->rule.mask[i] = rule->mask[i];
289 
290 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
291 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
292 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
293 		__u32 *class;
294 
295 		if (!(*p & AUDIT_BIT(bit)))
296 			continue;
297 		*p &= ~AUDIT_BIT(bit);
298 		class = classes[i];
299 		if (class) {
300 			int j;
301 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
302 				entry->rule.mask[j] |= class[j];
303 		}
304 	}
305 
306 	return entry;
307 
308 exit_err:
309 	return ERR_PTR(err);
310 }
311 
312 static u32 audit_ops[] =
313 {
314 	[Audit_equal] = AUDIT_EQUAL,
315 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
316 	[Audit_bitmask] = AUDIT_BIT_MASK,
317 	[Audit_bittest] = AUDIT_BIT_TEST,
318 	[Audit_lt] = AUDIT_LESS_THAN,
319 	[Audit_gt] = AUDIT_GREATER_THAN,
320 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
321 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
322 };
323 
324 static u32 audit_to_op(u32 op)
325 {
326 	u32 n;
327 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
328 		;
329 	return n;
330 }
331 
332 /* check if an audit field is valid */
333 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
334 {
335 	switch(f->type) {
336 	case AUDIT_MSGTYPE:
337 		if (entry->rule.listnr != AUDIT_FILTER_TYPE &&
338 		    entry->rule.listnr != AUDIT_FILTER_USER)
339 			return -EINVAL;
340 		break;
341 	};
342 
343 	switch(f->type) {
344 	default:
345 		return -EINVAL;
346 	case AUDIT_UID:
347 	case AUDIT_EUID:
348 	case AUDIT_SUID:
349 	case AUDIT_FSUID:
350 	case AUDIT_LOGINUID:
351 	case AUDIT_OBJ_UID:
352 	case AUDIT_GID:
353 	case AUDIT_EGID:
354 	case AUDIT_SGID:
355 	case AUDIT_FSGID:
356 	case AUDIT_OBJ_GID:
357 	case AUDIT_PID:
358 	case AUDIT_PERS:
359 	case AUDIT_MSGTYPE:
360 	case AUDIT_PPID:
361 	case AUDIT_DEVMAJOR:
362 	case AUDIT_DEVMINOR:
363 	case AUDIT_EXIT:
364 	case AUDIT_SUCCESS:
365 	case AUDIT_INODE:
366 		/* bit ops are only useful on syscall args */
367 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
368 			return -EINVAL;
369 		break;
370 	case AUDIT_ARG0:
371 	case AUDIT_ARG1:
372 	case AUDIT_ARG2:
373 	case AUDIT_ARG3:
374 	case AUDIT_SUBJ_USER:
375 	case AUDIT_SUBJ_ROLE:
376 	case AUDIT_SUBJ_TYPE:
377 	case AUDIT_SUBJ_SEN:
378 	case AUDIT_SUBJ_CLR:
379 	case AUDIT_OBJ_USER:
380 	case AUDIT_OBJ_ROLE:
381 	case AUDIT_OBJ_TYPE:
382 	case AUDIT_OBJ_LEV_LOW:
383 	case AUDIT_OBJ_LEV_HIGH:
384 	case AUDIT_WATCH:
385 	case AUDIT_DIR:
386 	case AUDIT_FILTERKEY:
387 		break;
388 	case AUDIT_LOGINUID_SET:
389 		if ((f->val != 0) && (f->val != 1))
390 			return -EINVAL;
391 	/* FALL THROUGH */
392 	case AUDIT_ARCH:
393 		if (f->op != Audit_not_equal && f->op != Audit_equal)
394 			return -EINVAL;
395 		break;
396 	case AUDIT_PERM:
397 		if (f->val & ~15)
398 			return -EINVAL;
399 		break;
400 	case AUDIT_FILETYPE:
401 		if (f->val & ~S_IFMT)
402 			return -EINVAL;
403 		break;
404 	case AUDIT_FIELD_COMPARE:
405 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
406 			return -EINVAL;
407 		break;
408 	};
409 	return 0;
410 }
411 
412 /* Translate struct audit_rule_data to kernel's rule respresentation. */
413 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
414 					       size_t datasz)
415 {
416 	int err = 0;
417 	struct audit_entry *entry;
418 	void *bufp;
419 	size_t remain = datasz - sizeof(struct audit_rule_data);
420 	int i;
421 	char *str;
422 
423 	entry = audit_to_entry_common(data);
424 	if (IS_ERR(entry))
425 		goto exit_nofree;
426 
427 	bufp = data->buf;
428 	for (i = 0; i < data->field_count; i++) {
429 		struct audit_field *f = &entry->rule.fields[i];
430 
431 		err = -EINVAL;
432 
433 		f->op = audit_to_op(data->fieldflags[i]);
434 		if (f->op == Audit_bad)
435 			goto exit_free;
436 
437 		f->type = data->fields[i];
438 		f->val = data->values[i];
439 
440 		/* Support legacy tests for a valid loginuid */
441 		if ((f->type == AUDIT_LOGINUID) && (f->val == AUDIT_UID_UNSET)) {
442 			f->type = AUDIT_LOGINUID_SET;
443 			f->val = 0;
444 			entry->rule.pflags |= AUDIT_LOGINUID_LEGACY;
445 		}
446 
447 		err = audit_field_valid(entry, f);
448 		if (err)
449 			goto exit_free;
450 
451 		err = -EINVAL;
452 		switch (f->type) {
453 		case AUDIT_LOGINUID:
454 		case AUDIT_UID:
455 		case AUDIT_EUID:
456 		case AUDIT_SUID:
457 		case AUDIT_FSUID:
458 		case AUDIT_OBJ_UID:
459 			f->uid = make_kuid(current_user_ns(), f->val);
460 			if (!uid_valid(f->uid))
461 				goto exit_free;
462 			break;
463 		case AUDIT_GID:
464 		case AUDIT_EGID:
465 		case AUDIT_SGID:
466 		case AUDIT_FSGID:
467 		case AUDIT_OBJ_GID:
468 			f->gid = make_kgid(current_user_ns(), f->val);
469 			if (!gid_valid(f->gid))
470 				goto exit_free;
471 			break;
472 		case AUDIT_ARCH:
473 			entry->rule.arch_f = f;
474 			break;
475 		case AUDIT_SUBJ_USER:
476 		case AUDIT_SUBJ_ROLE:
477 		case AUDIT_SUBJ_TYPE:
478 		case AUDIT_SUBJ_SEN:
479 		case AUDIT_SUBJ_CLR:
480 		case AUDIT_OBJ_USER:
481 		case AUDIT_OBJ_ROLE:
482 		case AUDIT_OBJ_TYPE:
483 		case AUDIT_OBJ_LEV_LOW:
484 		case AUDIT_OBJ_LEV_HIGH:
485 			str = audit_unpack_string(&bufp, &remain, f->val);
486 			if (IS_ERR(str))
487 				goto exit_free;
488 			entry->rule.buflen += f->val;
489 
490 			err = security_audit_rule_init(f->type, f->op, str,
491 						       (void **)&f->lsm_rule);
492 			/* Keep currently invalid fields around in case they
493 			 * become valid after a policy reload. */
494 			if (err == -EINVAL) {
495 				pr_warn("audit rule for LSM \'%s\' is invalid\n",
496 					str);
497 				err = 0;
498 			}
499 			if (err) {
500 				kfree(str);
501 				goto exit_free;
502 			} else
503 				f->lsm_str = str;
504 			break;
505 		case AUDIT_WATCH:
506 			str = audit_unpack_string(&bufp, &remain, f->val);
507 			if (IS_ERR(str))
508 				goto exit_free;
509 			entry->rule.buflen += f->val;
510 
511 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
512 			if (err) {
513 				kfree(str);
514 				goto exit_free;
515 			}
516 			break;
517 		case AUDIT_DIR:
518 			str = audit_unpack_string(&bufp, &remain, f->val);
519 			if (IS_ERR(str))
520 				goto exit_free;
521 			entry->rule.buflen += f->val;
522 
523 			err = audit_make_tree(&entry->rule, str, f->op);
524 			kfree(str);
525 			if (err)
526 				goto exit_free;
527 			break;
528 		case AUDIT_INODE:
529 			err = audit_to_inode(&entry->rule, f);
530 			if (err)
531 				goto exit_free;
532 			break;
533 		case AUDIT_FILTERKEY:
534 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
535 				goto exit_free;
536 			str = audit_unpack_string(&bufp, &remain, f->val);
537 			if (IS_ERR(str))
538 				goto exit_free;
539 			entry->rule.buflen += f->val;
540 			entry->rule.filterkey = str;
541 			break;
542 		}
543 	}
544 
545 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
546 		entry->rule.inode_f = NULL;
547 
548 exit_nofree:
549 	return entry;
550 
551 exit_free:
552 	if (entry->rule.watch)
553 		audit_put_watch(entry->rule.watch); /* matches initial get */
554 	if (entry->rule.tree)
555 		audit_put_tree(entry->rule.tree); /* that's the temporary one */
556 	audit_free_rule(entry);
557 	return ERR_PTR(err);
558 }
559 
560 /* Pack a filter field's string representation into data block. */
561 static inline size_t audit_pack_string(void **bufp, const char *str)
562 {
563 	size_t len = strlen(str);
564 
565 	memcpy(*bufp, str, len);
566 	*bufp += len;
567 
568 	return len;
569 }
570 
571 /* Translate kernel rule respresentation to struct audit_rule_data. */
572 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
573 {
574 	struct audit_rule_data *data;
575 	void *bufp;
576 	int i;
577 
578 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
579 	if (unlikely(!data))
580 		return NULL;
581 	memset(data, 0, sizeof(*data));
582 
583 	data->flags = krule->flags | krule->listnr;
584 	data->action = krule->action;
585 	data->field_count = krule->field_count;
586 	bufp = data->buf;
587 	for (i = 0; i < data->field_count; i++) {
588 		struct audit_field *f = &krule->fields[i];
589 
590 		data->fields[i] = f->type;
591 		data->fieldflags[i] = audit_ops[f->op];
592 		switch(f->type) {
593 		case AUDIT_SUBJ_USER:
594 		case AUDIT_SUBJ_ROLE:
595 		case AUDIT_SUBJ_TYPE:
596 		case AUDIT_SUBJ_SEN:
597 		case AUDIT_SUBJ_CLR:
598 		case AUDIT_OBJ_USER:
599 		case AUDIT_OBJ_ROLE:
600 		case AUDIT_OBJ_TYPE:
601 		case AUDIT_OBJ_LEV_LOW:
602 		case AUDIT_OBJ_LEV_HIGH:
603 			data->buflen += data->values[i] =
604 				audit_pack_string(&bufp, f->lsm_str);
605 			break;
606 		case AUDIT_WATCH:
607 			data->buflen += data->values[i] =
608 				audit_pack_string(&bufp,
609 						  audit_watch_path(krule->watch));
610 			break;
611 		case AUDIT_DIR:
612 			data->buflen += data->values[i] =
613 				audit_pack_string(&bufp,
614 						  audit_tree_path(krule->tree));
615 			break;
616 		case AUDIT_FILTERKEY:
617 			data->buflen += data->values[i] =
618 				audit_pack_string(&bufp, krule->filterkey);
619 			break;
620 		case AUDIT_LOGINUID_SET:
621 			if (krule->pflags & AUDIT_LOGINUID_LEGACY && !f->val) {
622 				data->fields[i] = AUDIT_LOGINUID;
623 				data->values[i] = AUDIT_UID_UNSET;
624 				break;
625 			}
626 			/* fallthrough if set */
627 		default:
628 			data->values[i] = f->val;
629 		}
630 	}
631 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
632 
633 	return data;
634 }
635 
636 /* Compare two rules in kernel format.  Considered success if rules
637  * don't match. */
638 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
639 {
640 	int i;
641 
642 	if (a->flags != b->flags ||
643 	    a->pflags != b->pflags ||
644 	    a->listnr != b->listnr ||
645 	    a->action != b->action ||
646 	    a->field_count != b->field_count)
647 		return 1;
648 
649 	for (i = 0; i < a->field_count; i++) {
650 		if (a->fields[i].type != b->fields[i].type ||
651 		    a->fields[i].op != b->fields[i].op)
652 			return 1;
653 
654 		switch(a->fields[i].type) {
655 		case AUDIT_SUBJ_USER:
656 		case AUDIT_SUBJ_ROLE:
657 		case AUDIT_SUBJ_TYPE:
658 		case AUDIT_SUBJ_SEN:
659 		case AUDIT_SUBJ_CLR:
660 		case AUDIT_OBJ_USER:
661 		case AUDIT_OBJ_ROLE:
662 		case AUDIT_OBJ_TYPE:
663 		case AUDIT_OBJ_LEV_LOW:
664 		case AUDIT_OBJ_LEV_HIGH:
665 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
666 				return 1;
667 			break;
668 		case AUDIT_WATCH:
669 			if (strcmp(audit_watch_path(a->watch),
670 				   audit_watch_path(b->watch)))
671 				return 1;
672 			break;
673 		case AUDIT_DIR:
674 			if (strcmp(audit_tree_path(a->tree),
675 				   audit_tree_path(b->tree)))
676 				return 1;
677 			break;
678 		case AUDIT_FILTERKEY:
679 			/* both filterkeys exist based on above type compare */
680 			if (strcmp(a->filterkey, b->filterkey))
681 				return 1;
682 			break;
683 		case AUDIT_UID:
684 		case AUDIT_EUID:
685 		case AUDIT_SUID:
686 		case AUDIT_FSUID:
687 		case AUDIT_LOGINUID:
688 		case AUDIT_OBJ_UID:
689 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
690 				return 1;
691 			break;
692 		case AUDIT_GID:
693 		case AUDIT_EGID:
694 		case AUDIT_SGID:
695 		case AUDIT_FSGID:
696 		case AUDIT_OBJ_GID:
697 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
698 				return 1;
699 			break;
700 		default:
701 			if (a->fields[i].val != b->fields[i].val)
702 				return 1;
703 		}
704 	}
705 
706 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
707 		if (a->mask[i] != b->mask[i])
708 			return 1;
709 
710 	return 0;
711 }
712 
713 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
714  * re-initialized. */
715 static inline int audit_dupe_lsm_field(struct audit_field *df,
716 					   struct audit_field *sf)
717 {
718 	int ret = 0;
719 	char *lsm_str;
720 
721 	/* our own copy of lsm_str */
722 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
723 	if (unlikely(!lsm_str))
724 		return -ENOMEM;
725 	df->lsm_str = lsm_str;
726 
727 	/* our own (refreshed) copy of lsm_rule */
728 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
729 				       (void **)&df->lsm_rule);
730 	/* Keep currently invalid fields around in case they
731 	 * become valid after a policy reload. */
732 	if (ret == -EINVAL) {
733 		pr_warn("audit rule for LSM \'%s\' is invalid\n",
734 			df->lsm_str);
735 		ret = 0;
736 	}
737 
738 	return ret;
739 }
740 
741 /* Duplicate an audit rule.  This will be a deep copy with the exception
742  * of the watch - that pointer is carried over.  The LSM specific fields
743  * will be updated in the copy.  The point is to be able to replace the old
744  * rule with the new rule in the filterlist, then free the old rule.
745  * The rlist element is undefined; list manipulations are handled apart from
746  * the initial copy. */
747 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
748 {
749 	u32 fcount = old->field_count;
750 	struct audit_entry *entry;
751 	struct audit_krule *new;
752 	char *fk;
753 	int i, err = 0;
754 
755 	entry = audit_init_entry(fcount);
756 	if (unlikely(!entry))
757 		return ERR_PTR(-ENOMEM);
758 
759 	new = &entry->rule;
760 	new->flags = old->flags;
761 	new->pflags = old->pflags;
762 	new->listnr = old->listnr;
763 	new->action = old->action;
764 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
765 		new->mask[i] = old->mask[i];
766 	new->prio = old->prio;
767 	new->buflen = old->buflen;
768 	new->inode_f = old->inode_f;
769 	new->field_count = old->field_count;
770 
771 	/*
772 	 * note that we are OK with not refcounting here; audit_match_tree()
773 	 * never dereferences tree and we can't get false positives there
774 	 * since we'd have to have rule gone from the list *and* removed
775 	 * before the chunks found by lookup had been allocated, i.e. before
776 	 * the beginning of list scan.
777 	 */
778 	new->tree = old->tree;
779 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
780 
781 	/* deep copy this information, updating the lsm_rule fields, because
782 	 * the originals will all be freed when the old rule is freed. */
783 	for (i = 0; i < fcount; i++) {
784 		switch (new->fields[i].type) {
785 		case AUDIT_SUBJ_USER:
786 		case AUDIT_SUBJ_ROLE:
787 		case AUDIT_SUBJ_TYPE:
788 		case AUDIT_SUBJ_SEN:
789 		case AUDIT_SUBJ_CLR:
790 		case AUDIT_OBJ_USER:
791 		case AUDIT_OBJ_ROLE:
792 		case AUDIT_OBJ_TYPE:
793 		case AUDIT_OBJ_LEV_LOW:
794 		case AUDIT_OBJ_LEV_HIGH:
795 			err = audit_dupe_lsm_field(&new->fields[i],
796 						       &old->fields[i]);
797 			break;
798 		case AUDIT_FILTERKEY:
799 			fk = kstrdup(old->filterkey, GFP_KERNEL);
800 			if (unlikely(!fk))
801 				err = -ENOMEM;
802 			else
803 				new->filterkey = fk;
804 		}
805 		if (err) {
806 			audit_free_rule(entry);
807 			return ERR_PTR(err);
808 		}
809 	}
810 
811 	if (old->watch) {
812 		audit_get_watch(old->watch);
813 		new->watch = old->watch;
814 	}
815 
816 	return entry;
817 }
818 
819 /* Find an existing audit rule.
820  * Caller must hold audit_filter_mutex to prevent stale rule data. */
821 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
822 					   struct list_head **p)
823 {
824 	struct audit_entry *e, *found = NULL;
825 	struct list_head *list;
826 	int h;
827 
828 	if (entry->rule.inode_f) {
829 		h = audit_hash_ino(entry->rule.inode_f->val);
830 		*p = list = &audit_inode_hash[h];
831 	} else if (entry->rule.watch) {
832 		/* we don't know the inode number, so must walk entire hash */
833 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
834 			list = &audit_inode_hash[h];
835 			list_for_each_entry(e, list, list)
836 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
837 					found = e;
838 					goto out;
839 				}
840 		}
841 		goto out;
842 	} else {
843 		*p = list = &audit_filter_list[entry->rule.listnr];
844 	}
845 
846 	list_for_each_entry(e, list, list)
847 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
848 			found = e;
849 			goto out;
850 		}
851 
852 out:
853 	return found;
854 }
855 
856 static u64 prio_low = ~0ULL/2;
857 static u64 prio_high = ~0ULL/2 - 1;
858 
859 /* Add rule to given filterlist if not a duplicate. */
860 static inline int audit_add_rule(struct audit_entry *entry)
861 {
862 	struct audit_entry *e;
863 	struct audit_watch *watch = entry->rule.watch;
864 	struct audit_tree *tree = entry->rule.tree;
865 	struct list_head *list;
866 	int err;
867 #ifdef CONFIG_AUDITSYSCALL
868 	int dont_count = 0;
869 
870 	/* If either of these, don't count towards total */
871 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
872 		entry->rule.listnr == AUDIT_FILTER_TYPE)
873 		dont_count = 1;
874 #endif
875 
876 	mutex_lock(&audit_filter_mutex);
877 	e = audit_find_rule(entry, &list);
878 	if (e) {
879 		mutex_unlock(&audit_filter_mutex);
880 		err = -EEXIST;
881 		/* normally audit_add_tree_rule() will free it on failure */
882 		if (tree)
883 			audit_put_tree(tree);
884 		goto error;
885 	}
886 
887 	if (watch) {
888 		/* audit_filter_mutex is dropped and re-taken during this call */
889 		err = audit_add_watch(&entry->rule, &list);
890 		if (err) {
891 			mutex_unlock(&audit_filter_mutex);
892 			/*
893 			 * normally audit_add_tree_rule() will free it
894 			 * on failure
895 			 */
896 			if (tree)
897 				audit_put_tree(tree);
898 			goto error;
899 		}
900 	}
901 	if (tree) {
902 		err = audit_add_tree_rule(&entry->rule);
903 		if (err) {
904 			mutex_unlock(&audit_filter_mutex);
905 			goto error;
906 		}
907 	}
908 
909 	entry->rule.prio = ~0ULL;
910 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
911 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
912 			entry->rule.prio = ++prio_high;
913 		else
914 			entry->rule.prio = --prio_low;
915 	}
916 
917 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
918 		list_add(&entry->rule.list,
919 			 &audit_rules_list[entry->rule.listnr]);
920 		list_add_rcu(&entry->list, list);
921 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
922 	} else {
923 		list_add_tail(&entry->rule.list,
924 			      &audit_rules_list[entry->rule.listnr]);
925 		list_add_tail_rcu(&entry->list, list);
926 	}
927 #ifdef CONFIG_AUDITSYSCALL
928 	if (!dont_count)
929 		audit_n_rules++;
930 
931 	if (!audit_match_signal(entry))
932 		audit_signals++;
933 #endif
934 	mutex_unlock(&audit_filter_mutex);
935 
936  	return 0;
937 
938 error:
939 	if (watch)
940 		audit_put_watch(watch); /* tmp watch, matches initial get */
941 	return err;
942 }
943 
944 /* Remove an existing rule from filterlist. */
945 static inline int audit_del_rule(struct audit_entry *entry)
946 {
947 	struct audit_entry  *e;
948 	struct audit_watch *watch = entry->rule.watch;
949 	struct audit_tree *tree = entry->rule.tree;
950 	struct list_head *list;
951 	int ret = 0;
952 #ifdef CONFIG_AUDITSYSCALL
953 	int dont_count = 0;
954 
955 	/* If either of these, don't count towards total */
956 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
957 		entry->rule.listnr == AUDIT_FILTER_TYPE)
958 		dont_count = 1;
959 #endif
960 
961 	mutex_lock(&audit_filter_mutex);
962 	e = audit_find_rule(entry, &list);
963 	if (!e) {
964 		mutex_unlock(&audit_filter_mutex);
965 		ret = -ENOENT;
966 		goto out;
967 	}
968 
969 	if (e->rule.watch)
970 		audit_remove_watch_rule(&e->rule);
971 
972 	if (e->rule.tree)
973 		audit_remove_tree_rule(&e->rule);
974 
975 	list_del_rcu(&e->list);
976 	list_del(&e->rule.list);
977 	call_rcu(&e->rcu, audit_free_rule_rcu);
978 
979 #ifdef CONFIG_AUDITSYSCALL
980 	if (!dont_count)
981 		audit_n_rules--;
982 
983 	if (!audit_match_signal(entry))
984 		audit_signals--;
985 #endif
986 	mutex_unlock(&audit_filter_mutex);
987 
988 out:
989 	if (watch)
990 		audit_put_watch(watch); /* match initial get */
991 	if (tree)
992 		audit_put_tree(tree);	/* that's the temporary one */
993 
994 	return ret;
995 }
996 
997 /* List rules using struct audit_rule_data. */
998 static void audit_list_rules(__u32 portid, int seq, struct sk_buff_head *q)
999 {
1000 	struct sk_buff *skb;
1001 	struct audit_krule *r;
1002 	int i;
1003 
1004 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1005 	 * iterator to sync with list writers. */
1006 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1007 		list_for_each_entry(r, &audit_rules_list[i], list) {
1008 			struct audit_rule_data *data;
1009 
1010 			data = audit_krule_to_data(r);
1011 			if (unlikely(!data))
1012 				break;
1013 			skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES,
1014 					       0, 1, data,
1015 					       sizeof(*data) + data->buflen);
1016 			if (skb)
1017 				skb_queue_tail(q, skb);
1018 			kfree(data);
1019 		}
1020 	}
1021 	skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1022 	if (skb)
1023 		skb_queue_tail(q, skb);
1024 }
1025 
1026 /* Log rule additions and removals */
1027 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
1028 {
1029 	struct audit_buffer *ab;
1030 	uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1031 	unsigned int sessionid = audit_get_sessionid(current);
1032 
1033 	if (!audit_enabled)
1034 		return;
1035 
1036 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1037 	if (!ab)
1038 		return;
1039 	audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid);
1040 	audit_log_task_context(ab);
1041 	audit_log_format(ab, " op=");
1042 	audit_log_string(ab, action);
1043 	audit_log_key(ab, rule->filterkey);
1044 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1045 	audit_log_end(ab);
1046 }
1047 
1048 /**
1049  * audit_rule_change - apply all rules to the specified message type
1050  * @type: audit message type
1051  * @portid: target port id for netlink audit messages
1052  * @seq: netlink audit message sequence (serial) number
1053  * @data: payload data
1054  * @datasz: size of payload data
1055  */
1056 int audit_rule_change(int type, __u32 portid, int seq, void *data,
1057 			size_t datasz)
1058 {
1059 	int err = 0;
1060 	struct audit_entry *entry;
1061 
1062 	entry = audit_data_to_entry(data, datasz);
1063 	if (IS_ERR(entry))
1064 		return PTR_ERR(entry);
1065 
1066 	switch (type) {
1067 	case AUDIT_ADD_RULE:
1068 		err = audit_add_rule(entry);
1069 		audit_log_rule_change("add_rule", &entry->rule, !err);
1070 		break;
1071 	case AUDIT_DEL_RULE:
1072 		err = audit_del_rule(entry);
1073 		audit_log_rule_change("remove_rule", &entry->rule, !err);
1074 		break;
1075 	default:
1076 		err = -EINVAL;
1077 		WARN_ON(1);
1078 	}
1079 
1080 	if (err || type == AUDIT_DEL_RULE)
1081 		audit_free_rule(entry);
1082 
1083 	return err;
1084 }
1085 
1086 /**
1087  * audit_list_rules_send - list the audit rules
1088  * @request_skb: skb of request we are replying to (used to target the reply)
1089  * @seq: netlink audit message sequence (serial) number
1090  */
1091 int audit_list_rules_send(struct sk_buff *request_skb, int seq)
1092 {
1093 	u32 portid = NETLINK_CB(request_skb).portid;
1094 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
1095 	struct task_struct *tsk;
1096 	struct audit_netlink_list *dest;
1097 	int err = 0;
1098 
1099 	/* We can't just spew out the rules here because we might fill
1100 	 * the available socket buffer space and deadlock waiting for
1101 	 * auditctl to read from it... which isn't ever going to
1102 	 * happen if we're actually running in the context of auditctl
1103 	 * trying to _send_ the stuff */
1104 
1105 	dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1106 	if (!dest)
1107 		return -ENOMEM;
1108 	dest->net = get_net(net);
1109 	dest->portid = portid;
1110 	skb_queue_head_init(&dest->q);
1111 
1112 	mutex_lock(&audit_filter_mutex);
1113 	audit_list_rules(portid, seq, &dest->q);
1114 	mutex_unlock(&audit_filter_mutex);
1115 
1116 	tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1117 	if (IS_ERR(tsk)) {
1118 		skb_queue_purge(&dest->q);
1119 		kfree(dest);
1120 		err = PTR_ERR(tsk);
1121 	}
1122 
1123 	return err;
1124 }
1125 
1126 int audit_comparator(u32 left, u32 op, u32 right)
1127 {
1128 	switch (op) {
1129 	case Audit_equal:
1130 		return (left == right);
1131 	case Audit_not_equal:
1132 		return (left != right);
1133 	case Audit_lt:
1134 		return (left < right);
1135 	case Audit_le:
1136 		return (left <= right);
1137 	case Audit_gt:
1138 		return (left > right);
1139 	case Audit_ge:
1140 		return (left >= right);
1141 	case Audit_bitmask:
1142 		return (left & right);
1143 	case Audit_bittest:
1144 		return ((left & right) == right);
1145 	default:
1146 		BUG();
1147 		return 0;
1148 	}
1149 }
1150 
1151 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1152 {
1153 	switch (op) {
1154 	case Audit_equal:
1155 		return uid_eq(left, right);
1156 	case Audit_not_equal:
1157 		return !uid_eq(left, right);
1158 	case Audit_lt:
1159 		return uid_lt(left, right);
1160 	case Audit_le:
1161 		return uid_lte(left, right);
1162 	case Audit_gt:
1163 		return uid_gt(left, right);
1164 	case Audit_ge:
1165 		return uid_gte(left, right);
1166 	case Audit_bitmask:
1167 	case Audit_bittest:
1168 	default:
1169 		BUG();
1170 		return 0;
1171 	}
1172 }
1173 
1174 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1175 {
1176 	switch (op) {
1177 	case Audit_equal:
1178 		return gid_eq(left, right);
1179 	case Audit_not_equal:
1180 		return !gid_eq(left, right);
1181 	case Audit_lt:
1182 		return gid_lt(left, right);
1183 	case Audit_le:
1184 		return gid_lte(left, right);
1185 	case Audit_gt:
1186 		return gid_gt(left, right);
1187 	case Audit_ge:
1188 		return gid_gte(left, right);
1189 	case Audit_bitmask:
1190 	case Audit_bittest:
1191 	default:
1192 		BUG();
1193 		return 0;
1194 	}
1195 }
1196 
1197 /**
1198  * parent_len - find the length of the parent portion of a pathname
1199  * @path: pathname of which to determine length
1200  */
1201 int parent_len(const char *path)
1202 {
1203 	int plen;
1204 	const char *p;
1205 
1206 	plen = strlen(path);
1207 
1208 	if (plen == 0)
1209 		return plen;
1210 
1211 	/* disregard trailing slashes */
1212 	p = path + plen - 1;
1213 	while ((*p == '/') && (p > path))
1214 		p--;
1215 
1216 	/* walk backward until we find the next slash or hit beginning */
1217 	while ((*p != '/') && (p > path))
1218 		p--;
1219 
1220 	/* did we find a slash? Then increment to include it in path */
1221 	if (*p == '/')
1222 		p++;
1223 
1224 	return p - path;
1225 }
1226 
1227 /**
1228  * audit_compare_dname_path - compare given dentry name with last component in
1229  * 			      given path. Return of 0 indicates a match.
1230  * @dname:	dentry name that we're comparing
1231  * @path:	full pathname that we're comparing
1232  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1233  * 		here indicates that we must compute this value.
1234  */
1235 int audit_compare_dname_path(const char *dname, const char *path, int parentlen)
1236 {
1237 	int dlen, pathlen;
1238 	const char *p;
1239 
1240 	dlen = strlen(dname);
1241 	pathlen = strlen(path);
1242 	if (pathlen < dlen)
1243 		return 1;
1244 
1245 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1246 	if (pathlen - parentlen != dlen)
1247 		return 1;
1248 
1249 	p = path + parentlen;
1250 
1251 	return strncmp(p, dname, dlen);
1252 }
1253 
1254 static int audit_filter_user_rules(struct audit_krule *rule, int type,
1255 				   enum audit_state *state)
1256 {
1257 	int i;
1258 
1259 	for (i = 0; i < rule->field_count; i++) {
1260 		struct audit_field *f = &rule->fields[i];
1261 		pid_t pid;
1262 		int result = 0;
1263 		u32 sid;
1264 
1265 		switch (f->type) {
1266 		case AUDIT_PID:
1267 			pid = task_pid_nr(current);
1268 			result = audit_comparator(pid, f->op, f->val);
1269 			break;
1270 		case AUDIT_UID:
1271 			result = audit_uid_comparator(current_uid(), f->op, f->uid);
1272 			break;
1273 		case AUDIT_GID:
1274 			result = audit_gid_comparator(current_gid(), f->op, f->gid);
1275 			break;
1276 		case AUDIT_LOGINUID:
1277 			result = audit_uid_comparator(audit_get_loginuid(current),
1278 						  f->op, f->uid);
1279 			break;
1280 		case AUDIT_LOGINUID_SET:
1281 			result = audit_comparator(audit_loginuid_set(current),
1282 						  f->op, f->val);
1283 			break;
1284 		case AUDIT_MSGTYPE:
1285 			result = audit_comparator(type, f->op, f->val);
1286 			break;
1287 		case AUDIT_SUBJ_USER:
1288 		case AUDIT_SUBJ_ROLE:
1289 		case AUDIT_SUBJ_TYPE:
1290 		case AUDIT_SUBJ_SEN:
1291 		case AUDIT_SUBJ_CLR:
1292 			if (f->lsm_rule) {
1293 				security_task_getsecid(current, &sid);
1294 				result = security_audit_rule_match(sid,
1295 								   f->type,
1296 								   f->op,
1297 								   f->lsm_rule,
1298 								   NULL);
1299 			}
1300 			break;
1301 		}
1302 
1303 		if (!result)
1304 			return 0;
1305 	}
1306 	switch (rule->action) {
1307 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1308 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1309 	}
1310 	return 1;
1311 }
1312 
1313 int audit_filter_user(int type)
1314 {
1315 	enum audit_state state = AUDIT_DISABLED;
1316 	struct audit_entry *e;
1317 	int rc, ret;
1318 
1319 	ret = 1; /* Audit by default */
1320 
1321 	rcu_read_lock();
1322 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1323 		rc = audit_filter_user_rules(&e->rule, type, &state);
1324 		if (rc) {
1325 			if (rc > 0 && state == AUDIT_DISABLED)
1326 				ret = 0;
1327 			break;
1328 		}
1329 	}
1330 	rcu_read_unlock();
1331 
1332 	return ret;
1333 }
1334 
1335 int audit_filter_type(int type)
1336 {
1337 	struct audit_entry *e;
1338 	int result = 0;
1339 
1340 	rcu_read_lock();
1341 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1342 		goto unlock_and_return;
1343 
1344 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1345 				list) {
1346 		int i;
1347 		for (i = 0; i < e->rule.field_count; i++) {
1348 			struct audit_field *f = &e->rule.fields[i];
1349 			if (f->type == AUDIT_MSGTYPE) {
1350 				result = audit_comparator(type, f->op, f->val);
1351 				if (!result)
1352 					break;
1353 			}
1354 		}
1355 		if (result)
1356 			goto unlock_and_return;
1357 	}
1358 unlock_and_return:
1359 	rcu_read_unlock();
1360 	return result;
1361 }
1362 
1363 static int update_lsm_rule(struct audit_krule *r)
1364 {
1365 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1366 	struct audit_entry *nentry;
1367 	int err = 0;
1368 
1369 	if (!security_audit_rule_known(r))
1370 		return 0;
1371 
1372 	nentry = audit_dupe_rule(r);
1373 	if (IS_ERR(nentry)) {
1374 		/* save the first error encountered for the
1375 		 * return value */
1376 		err = PTR_ERR(nentry);
1377 		audit_panic("error updating LSM filters");
1378 		if (r->watch)
1379 			list_del(&r->rlist);
1380 		list_del_rcu(&entry->list);
1381 		list_del(&r->list);
1382 	} else {
1383 		if (r->watch || r->tree)
1384 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1385 		list_replace_rcu(&entry->list, &nentry->list);
1386 		list_replace(&r->list, &nentry->rule.list);
1387 	}
1388 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1389 
1390 	return err;
1391 }
1392 
1393 /* This function will re-initialize the lsm_rule field of all applicable rules.
1394  * It will traverse the filter lists serarching for rules that contain LSM
1395  * specific filter fields.  When such a rule is found, it is copied, the
1396  * LSM field is re-initialized, and the old rule is replaced with the
1397  * updated rule. */
1398 int audit_update_lsm_rules(void)
1399 {
1400 	struct audit_krule *r, *n;
1401 	int i, err = 0;
1402 
1403 	/* audit_filter_mutex synchronizes the writers */
1404 	mutex_lock(&audit_filter_mutex);
1405 
1406 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1407 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1408 			int res = update_lsm_rule(r);
1409 			if (!err)
1410 				err = res;
1411 		}
1412 	}
1413 	mutex_unlock(&audit_filter_mutex);
1414 
1415 	return err;
1416 }
1417