xref: /linux/kernel/auditfilter.c (revision b47a22290d581277be70e8a597824a4985d39e83)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/audit.h>
24 #include <linux/kthread.h>
25 #include <linux/mutex.h>
26 #include <linux/fs.h>
27 #include <linux/namei.h>
28 #include <linux/netlink.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/security.h>
32 #include <net/net_namespace.h>
33 #include <net/sock.h>
34 #include "audit.h"
35 
36 /*
37  * Locking model:
38  *
39  * audit_filter_mutex:
40  * 		Synchronizes writes and blocking reads of audit's filterlist
41  * 		data.  Rcu is used to traverse the filterlist and access
42  * 		contents of structs audit_entry, audit_watch and opaque
43  * 		LSM rules during filtering.  If modified, these structures
44  * 		must be copied and replace their counterparts in the filterlist.
45  * 		An audit_parent struct is not accessed during filtering, so may
46  * 		be written directly provided audit_filter_mutex is held.
47  */
48 
49 /* Audit filter lists, defined in <linux/audit.h> */
50 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
51 	LIST_HEAD_INIT(audit_filter_list[0]),
52 	LIST_HEAD_INIT(audit_filter_list[1]),
53 	LIST_HEAD_INIT(audit_filter_list[2]),
54 	LIST_HEAD_INIT(audit_filter_list[3]),
55 	LIST_HEAD_INIT(audit_filter_list[4]),
56 	LIST_HEAD_INIT(audit_filter_list[5]),
57 #if AUDIT_NR_FILTERS != 6
58 #error Fix audit_filter_list initialiser
59 #endif
60 };
61 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
62 	LIST_HEAD_INIT(audit_rules_list[0]),
63 	LIST_HEAD_INIT(audit_rules_list[1]),
64 	LIST_HEAD_INIT(audit_rules_list[2]),
65 	LIST_HEAD_INIT(audit_rules_list[3]),
66 	LIST_HEAD_INIT(audit_rules_list[4]),
67 	LIST_HEAD_INIT(audit_rules_list[5]),
68 };
69 
70 DEFINE_MUTEX(audit_filter_mutex);
71 
72 static inline void audit_free_rule(struct audit_entry *e)
73 {
74 	int i;
75 	struct audit_krule *erule = &e->rule;
76 
77 	/* some rules don't have associated watches */
78 	if (erule->watch)
79 		audit_put_watch(erule->watch);
80 	if (erule->fields)
81 		for (i = 0; i < erule->field_count; i++) {
82 			struct audit_field *f = &erule->fields[i];
83 			kfree(f->lsm_str);
84 			security_audit_rule_free(f->lsm_rule);
85 		}
86 	kfree(erule->fields);
87 	kfree(erule->filterkey);
88 	kfree(e);
89 }
90 
91 void audit_free_rule_rcu(struct rcu_head *head)
92 {
93 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
94 	audit_free_rule(e);
95 }
96 
97 /* Initialize an audit filterlist entry. */
98 static inline struct audit_entry *audit_init_entry(u32 field_count)
99 {
100 	struct audit_entry *entry;
101 	struct audit_field *fields;
102 
103 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
104 	if (unlikely(!entry))
105 		return NULL;
106 
107 	fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
108 	if (unlikely(!fields)) {
109 		kfree(entry);
110 		return NULL;
111 	}
112 	entry->rule.fields = fields;
113 
114 	return entry;
115 }
116 
117 /* Unpack a filter field's string representation from user-space
118  * buffer. */
119 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
120 {
121 	char *str;
122 
123 	if (!*bufp || (len == 0) || (len > *remain))
124 		return ERR_PTR(-EINVAL);
125 
126 	/* Of the currently implemented string fields, PATH_MAX
127 	 * defines the longest valid length.
128 	 */
129 	if (len > PATH_MAX)
130 		return ERR_PTR(-ENAMETOOLONG);
131 
132 	str = kmalloc(len + 1, GFP_KERNEL);
133 	if (unlikely(!str))
134 		return ERR_PTR(-ENOMEM);
135 
136 	memcpy(str, *bufp, len);
137 	str[len] = 0;
138 	*bufp += len;
139 	*remain -= len;
140 
141 	return str;
142 }
143 
144 /* Translate an inode field to kernel respresentation. */
145 static inline int audit_to_inode(struct audit_krule *krule,
146 				 struct audit_field *f)
147 {
148 	if (krule->listnr != AUDIT_FILTER_EXIT ||
149 	    krule->watch || krule->inode_f || krule->tree ||
150 	    (f->op != Audit_equal && f->op != Audit_not_equal))
151 		return -EINVAL;
152 
153 	krule->inode_f = f;
154 	return 0;
155 }
156 
157 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
158 
159 int __init audit_register_class(int class, unsigned *list)
160 {
161 	__u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
162 	if (!p)
163 		return -ENOMEM;
164 	while (*list != ~0U) {
165 		unsigned n = *list++;
166 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
167 			kfree(p);
168 			return -EINVAL;
169 		}
170 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
171 	}
172 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
173 		kfree(p);
174 		return -EINVAL;
175 	}
176 	classes[class] = p;
177 	return 0;
178 }
179 
180 int audit_match_class(int class, unsigned syscall)
181 {
182 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
183 		return 0;
184 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
185 		return 0;
186 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
187 }
188 
189 #ifdef CONFIG_AUDITSYSCALL
190 static inline int audit_match_class_bits(int class, u32 *mask)
191 {
192 	int i;
193 
194 	if (classes[class]) {
195 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
196 			if (mask[i] & classes[class][i])
197 				return 0;
198 	}
199 	return 1;
200 }
201 
202 static int audit_match_signal(struct audit_entry *entry)
203 {
204 	struct audit_field *arch = entry->rule.arch_f;
205 
206 	if (!arch) {
207 		/* When arch is unspecified, we must check both masks on biarch
208 		 * as syscall number alone is ambiguous. */
209 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
210 					       entry->rule.mask) &&
211 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
212 					       entry->rule.mask));
213 	}
214 
215 	switch(audit_classify_arch(arch->val)) {
216 	case 0: /* native */
217 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
218 					       entry->rule.mask));
219 	case 1: /* 32bit on biarch */
220 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
221 					       entry->rule.mask));
222 	default:
223 		return 1;
224 	}
225 }
226 #endif
227 
228 /* Common user-space to kernel rule translation. */
229 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
230 {
231 	unsigned listnr;
232 	struct audit_entry *entry;
233 	int i, err;
234 
235 	err = -EINVAL;
236 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
237 	switch(listnr) {
238 	default:
239 		goto exit_err;
240 #ifdef CONFIG_AUDITSYSCALL
241 	case AUDIT_FILTER_ENTRY:
242 		if (rule->action == AUDIT_ALWAYS)
243 			goto exit_err;
244 	case AUDIT_FILTER_EXIT:
245 	case AUDIT_FILTER_TASK:
246 #endif
247 	case AUDIT_FILTER_USER:
248 	case AUDIT_FILTER_TYPE:
249 		;
250 	}
251 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
252 		printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
253 		goto exit_err;
254 	}
255 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
256 		goto exit_err;
257 	if (rule->field_count > AUDIT_MAX_FIELDS)
258 		goto exit_err;
259 
260 	err = -ENOMEM;
261 	entry = audit_init_entry(rule->field_count);
262 	if (!entry)
263 		goto exit_err;
264 
265 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
266 	entry->rule.listnr = listnr;
267 	entry->rule.action = rule->action;
268 	entry->rule.field_count = rule->field_count;
269 
270 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
271 		entry->rule.mask[i] = rule->mask[i];
272 
273 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
274 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
275 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
276 		__u32 *class;
277 
278 		if (!(*p & AUDIT_BIT(bit)))
279 			continue;
280 		*p &= ~AUDIT_BIT(bit);
281 		class = classes[i];
282 		if (class) {
283 			int j;
284 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
285 				entry->rule.mask[j] |= class[j];
286 		}
287 	}
288 
289 	return entry;
290 
291 exit_err:
292 	return ERR_PTR(err);
293 }
294 
295 static u32 audit_ops[] =
296 {
297 	[Audit_equal] = AUDIT_EQUAL,
298 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
299 	[Audit_bitmask] = AUDIT_BIT_MASK,
300 	[Audit_bittest] = AUDIT_BIT_TEST,
301 	[Audit_lt] = AUDIT_LESS_THAN,
302 	[Audit_gt] = AUDIT_GREATER_THAN,
303 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
304 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
305 };
306 
307 static u32 audit_to_op(u32 op)
308 {
309 	u32 n;
310 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
311 		;
312 	return n;
313 }
314 
315 /* check if an audit field is valid */
316 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
317 {
318 	switch(f->type) {
319 	case AUDIT_MSGTYPE:
320 		if (entry->rule.listnr != AUDIT_FILTER_TYPE &&
321 		    entry->rule.listnr != AUDIT_FILTER_USER)
322 			return -EINVAL;
323 		break;
324 	};
325 
326 	switch(f->type) {
327 	default:
328 		return -EINVAL;
329 	case AUDIT_UID:
330 	case AUDIT_EUID:
331 	case AUDIT_SUID:
332 	case AUDIT_FSUID:
333 	case AUDIT_LOGINUID:
334 	case AUDIT_OBJ_UID:
335 	case AUDIT_GID:
336 	case AUDIT_EGID:
337 	case AUDIT_SGID:
338 	case AUDIT_FSGID:
339 	case AUDIT_OBJ_GID:
340 	case AUDIT_PID:
341 	case AUDIT_PERS:
342 	case AUDIT_MSGTYPE:
343 	case AUDIT_PPID:
344 	case AUDIT_DEVMAJOR:
345 	case AUDIT_DEVMINOR:
346 	case AUDIT_EXIT:
347 	case AUDIT_SUCCESS:
348 	case AUDIT_INODE:
349 		/* bit ops are only useful on syscall args */
350 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
351 			return -EINVAL;
352 		break;
353 	case AUDIT_ARG0:
354 	case AUDIT_ARG1:
355 	case AUDIT_ARG2:
356 	case AUDIT_ARG3:
357 	case AUDIT_SUBJ_USER:
358 	case AUDIT_SUBJ_ROLE:
359 	case AUDIT_SUBJ_TYPE:
360 	case AUDIT_SUBJ_SEN:
361 	case AUDIT_SUBJ_CLR:
362 	case AUDIT_OBJ_USER:
363 	case AUDIT_OBJ_ROLE:
364 	case AUDIT_OBJ_TYPE:
365 	case AUDIT_OBJ_LEV_LOW:
366 	case AUDIT_OBJ_LEV_HIGH:
367 	case AUDIT_WATCH:
368 	case AUDIT_DIR:
369 	case AUDIT_FILTERKEY:
370 		break;
371 	case AUDIT_LOGINUID_SET:
372 		if ((f->val != 0) && (f->val != 1))
373 			return -EINVAL;
374 	/* FALL THROUGH */
375 	case AUDIT_ARCH:
376 		if (f->op != Audit_not_equal && f->op != Audit_equal)
377 			return -EINVAL;
378 		break;
379 	case AUDIT_PERM:
380 		if (f->val & ~15)
381 			return -EINVAL;
382 		break;
383 	case AUDIT_FILETYPE:
384 		if (f->val & ~S_IFMT)
385 			return -EINVAL;
386 		break;
387 	case AUDIT_FIELD_COMPARE:
388 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
389 			return -EINVAL;
390 		break;
391 	};
392 	return 0;
393 }
394 
395 /* Translate struct audit_rule_data to kernel's rule respresentation. */
396 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
397 					       size_t datasz)
398 {
399 	int err = 0;
400 	struct audit_entry *entry;
401 	void *bufp;
402 	size_t remain = datasz - sizeof(struct audit_rule_data);
403 	int i;
404 	char *str;
405 
406 	entry = audit_to_entry_common((struct audit_rule *)data);
407 	if (IS_ERR(entry))
408 		goto exit_nofree;
409 
410 	bufp = data->buf;
411 	entry->rule.vers_ops = 2;
412 	for (i = 0; i < data->field_count; i++) {
413 		struct audit_field *f = &entry->rule.fields[i];
414 
415 		err = -EINVAL;
416 
417 		f->op = audit_to_op(data->fieldflags[i]);
418 		if (f->op == Audit_bad)
419 			goto exit_free;
420 
421 		f->type = data->fields[i];
422 		f->val = data->values[i];
423 		f->uid = INVALID_UID;
424 		f->gid = INVALID_GID;
425 		f->lsm_str = NULL;
426 		f->lsm_rule = NULL;
427 
428 		/* Support legacy tests for a valid loginuid */
429 		if ((f->type == AUDIT_LOGINUID) && (f->val == AUDIT_UID_UNSET)) {
430 			f->type = AUDIT_LOGINUID_SET;
431 			f->val = 0;
432 		}
433 
434 		err = audit_field_valid(entry, f);
435 		if (err)
436 			goto exit_free;
437 
438 		err = -EINVAL;
439 		switch (f->type) {
440 		case AUDIT_LOGINUID:
441 		case AUDIT_UID:
442 		case AUDIT_EUID:
443 		case AUDIT_SUID:
444 		case AUDIT_FSUID:
445 		case AUDIT_OBJ_UID:
446 			f->uid = make_kuid(current_user_ns(), f->val);
447 			if (!uid_valid(f->uid))
448 				goto exit_free;
449 			break;
450 		case AUDIT_GID:
451 		case AUDIT_EGID:
452 		case AUDIT_SGID:
453 		case AUDIT_FSGID:
454 		case AUDIT_OBJ_GID:
455 			f->gid = make_kgid(current_user_ns(), f->val);
456 			if (!gid_valid(f->gid))
457 				goto exit_free;
458 			break;
459 		case AUDIT_ARCH:
460 			entry->rule.arch_f = f;
461 			break;
462 		case AUDIT_SUBJ_USER:
463 		case AUDIT_SUBJ_ROLE:
464 		case AUDIT_SUBJ_TYPE:
465 		case AUDIT_SUBJ_SEN:
466 		case AUDIT_SUBJ_CLR:
467 		case AUDIT_OBJ_USER:
468 		case AUDIT_OBJ_ROLE:
469 		case AUDIT_OBJ_TYPE:
470 		case AUDIT_OBJ_LEV_LOW:
471 		case AUDIT_OBJ_LEV_HIGH:
472 			str = audit_unpack_string(&bufp, &remain, f->val);
473 			if (IS_ERR(str))
474 				goto exit_free;
475 			entry->rule.buflen += f->val;
476 
477 			err = security_audit_rule_init(f->type, f->op, str,
478 						       (void **)&f->lsm_rule);
479 			/* Keep currently invalid fields around in case they
480 			 * become valid after a policy reload. */
481 			if (err == -EINVAL) {
482 				printk(KERN_WARNING "audit rule for LSM "
483 				       "\'%s\' is invalid\n",  str);
484 				err = 0;
485 			}
486 			if (err) {
487 				kfree(str);
488 				goto exit_free;
489 			} else
490 				f->lsm_str = str;
491 			break;
492 		case AUDIT_WATCH:
493 			str = audit_unpack_string(&bufp, &remain, f->val);
494 			if (IS_ERR(str))
495 				goto exit_free;
496 			entry->rule.buflen += f->val;
497 
498 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
499 			if (err) {
500 				kfree(str);
501 				goto exit_free;
502 			}
503 			break;
504 		case AUDIT_DIR:
505 			str = audit_unpack_string(&bufp, &remain, f->val);
506 			if (IS_ERR(str))
507 				goto exit_free;
508 			entry->rule.buflen += f->val;
509 
510 			err = audit_make_tree(&entry->rule, str, f->op);
511 			kfree(str);
512 			if (err)
513 				goto exit_free;
514 			break;
515 		case AUDIT_INODE:
516 			err = audit_to_inode(&entry->rule, f);
517 			if (err)
518 				goto exit_free;
519 			break;
520 		case AUDIT_FILTERKEY:
521 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
522 				goto exit_free;
523 			str = audit_unpack_string(&bufp, &remain, f->val);
524 			if (IS_ERR(str))
525 				goto exit_free;
526 			entry->rule.buflen += f->val;
527 			entry->rule.filterkey = str;
528 			break;
529 		}
530 	}
531 
532 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
533 		entry->rule.inode_f = NULL;
534 
535 exit_nofree:
536 	return entry;
537 
538 exit_free:
539 	if (entry->rule.watch)
540 		audit_put_watch(entry->rule.watch); /* matches initial get */
541 	if (entry->rule.tree)
542 		audit_put_tree(entry->rule.tree); /* that's the temporary one */
543 	audit_free_rule(entry);
544 	return ERR_PTR(err);
545 }
546 
547 /* Pack a filter field's string representation into data block. */
548 static inline size_t audit_pack_string(void **bufp, const char *str)
549 {
550 	size_t len = strlen(str);
551 
552 	memcpy(*bufp, str, len);
553 	*bufp += len;
554 
555 	return len;
556 }
557 
558 /* Translate kernel rule respresentation to struct audit_rule_data. */
559 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
560 {
561 	struct audit_rule_data *data;
562 	void *bufp;
563 	int i;
564 
565 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
566 	if (unlikely(!data))
567 		return NULL;
568 	memset(data, 0, sizeof(*data));
569 
570 	data->flags = krule->flags | krule->listnr;
571 	data->action = krule->action;
572 	data->field_count = krule->field_count;
573 	bufp = data->buf;
574 	for (i = 0; i < data->field_count; i++) {
575 		struct audit_field *f = &krule->fields[i];
576 
577 		data->fields[i] = f->type;
578 		data->fieldflags[i] = audit_ops[f->op];
579 		switch(f->type) {
580 		case AUDIT_SUBJ_USER:
581 		case AUDIT_SUBJ_ROLE:
582 		case AUDIT_SUBJ_TYPE:
583 		case AUDIT_SUBJ_SEN:
584 		case AUDIT_SUBJ_CLR:
585 		case AUDIT_OBJ_USER:
586 		case AUDIT_OBJ_ROLE:
587 		case AUDIT_OBJ_TYPE:
588 		case AUDIT_OBJ_LEV_LOW:
589 		case AUDIT_OBJ_LEV_HIGH:
590 			data->buflen += data->values[i] =
591 				audit_pack_string(&bufp, f->lsm_str);
592 			break;
593 		case AUDIT_WATCH:
594 			data->buflen += data->values[i] =
595 				audit_pack_string(&bufp,
596 						  audit_watch_path(krule->watch));
597 			break;
598 		case AUDIT_DIR:
599 			data->buflen += data->values[i] =
600 				audit_pack_string(&bufp,
601 						  audit_tree_path(krule->tree));
602 			break;
603 		case AUDIT_FILTERKEY:
604 			data->buflen += data->values[i] =
605 				audit_pack_string(&bufp, krule->filterkey);
606 			break;
607 		default:
608 			data->values[i] = f->val;
609 		}
610 	}
611 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
612 
613 	return data;
614 }
615 
616 /* Compare two rules in kernel format.  Considered success if rules
617  * don't match. */
618 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
619 {
620 	int i;
621 
622 	if (a->flags != b->flags ||
623 	    a->listnr != b->listnr ||
624 	    a->action != b->action ||
625 	    a->field_count != b->field_count)
626 		return 1;
627 
628 	for (i = 0; i < a->field_count; i++) {
629 		if (a->fields[i].type != b->fields[i].type ||
630 		    a->fields[i].op != b->fields[i].op)
631 			return 1;
632 
633 		switch(a->fields[i].type) {
634 		case AUDIT_SUBJ_USER:
635 		case AUDIT_SUBJ_ROLE:
636 		case AUDIT_SUBJ_TYPE:
637 		case AUDIT_SUBJ_SEN:
638 		case AUDIT_SUBJ_CLR:
639 		case AUDIT_OBJ_USER:
640 		case AUDIT_OBJ_ROLE:
641 		case AUDIT_OBJ_TYPE:
642 		case AUDIT_OBJ_LEV_LOW:
643 		case AUDIT_OBJ_LEV_HIGH:
644 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
645 				return 1;
646 			break;
647 		case AUDIT_WATCH:
648 			if (strcmp(audit_watch_path(a->watch),
649 				   audit_watch_path(b->watch)))
650 				return 1;
651 			break;
652 		case AUDIT_DIR:
653 			if (strcmp(audit_tree_path(a->tree),
654 				   audit_tree_path(b->tree)))
655 				return 1;
656 			break;
657 		case AUDIT_FILTERKEY:
658 			/* both filterkeys exist based on above type compare */
659 			if (strcmp(a->filterkey, b->filterkey))
660 				return 1;
661 			break;
662 		case AUDIT_UID:
663 		case AUDIT_EUID:
664 		case AUDIT_SUID:
665 		case AUDIT_FSUID:
666 		case AUDIT_LOGINUID:
667 		case AUDIT_OBJ_UID:
668 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
669 				return 1;
670 			break;
671 		case AUDIT_GID:
672 		case AUDIT_EGID:
673 		case AUDIT_SGID:
674 		case AUDIT_FSGID:
675 		case AUDIT_OBJ_GID:
676 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
677 				return 1;
678 			break;
679 		default:
680 			if (a->fields[i].val != b->fields[i].val)
681 				return 1;
682 		}
683 	}
684 
685 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
686 		if (a->mask[i] != b->mask[i])
687 			return 1;
688 
689 	return 0;
690 }
691 
692 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
693  * re-initialized. */
694 static inline int audit_dupe_lsm_field(struct audit_field *df,
695 					   struct audit_field *sf)
696 {
697 	int ret = 0;
698 	char *lsm_str;
699 
700 	/* our own copy of lsm_str */
701 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
702 	if (unlikely(!lsm_str))
703 		return -ENOMEM;
704 	df->lsm_str = lsm_str;
705 
706 	/* our own (refreshed) copy of lsm_rule */
707 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
708 				       (void **)&df->lsm_rule);
709 	/* Keep currently invalid fields around in case they
710 	 * become valid after a policy reload. */
711 	if (ret == -EINVAL) {
712 		printk(KERN_WARNING "audit rule for LSM \'%s\' is "
713 		       "invalid\n", df->lsm_str);
714 		ret = 0;
715 	}
716 
717 	return ret;
718 }
719 
720 /* Duplicate an audit rule.  This will be a deep copy with the exception
721  * of the watch - that pointer is carried over.  The LSM specific fields
722  * will be updated in the copy.  The point is to be able to replace the old
723  * rule with the new rule in the filterlist, then free the old rule.
724  * The rlist element is undefined; list manipulations are handled apart from
725  * the initial copy. */
726 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
727 {
728 	u32 fcount = old->field_count;
729 	struct audit_entry *entry;
730 	struct audit_krule *new;
731 	char *fk;
732 	int i, err = 0;
733 
734 	entry = audit_init_entry(fcount);
735 	if (unlikely(!entry))
736 		return ERR_PTR(-ENOMEM);
737 
738 	new = &entry->rule;
739 	new->vers_ops = old->vers_ops;
740 	new->flags = old->flags;
741 	new->listnr = old->listnr;
742 	new->action = old->action;
743 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
744 		new->mask[i] = old->mask[i];
745 	new->prio = old->prio;
746 	new->buflen = old->buflen;
747 	new->inode_f = old->inode_f;
748 	new->field_count = old->field_count;
749 
750 	/*
751 	 * note that we are OK with not refcounting here; audit_match_tree()
752 	 * never dereferences tree and we can't get false positives there
753 	 * since we'd have to have rule gone from the list *and* removed
754 	 * before the chunks found by lookup had been allocated, i.e. before
755 	 * the beginning of list scan.
756 	 */
757 	new->tree = old->tree;
758 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
759 
760 	/* deep copy this information, updating the lsm_rule fields, because
761 	 * the originals will all be freed when the old rule is freed. */
762 	for (i = 0; i < fcount; i++) {
763 		switch (new->fields[i].type) {
764 		case AUDIT_SUBJ_USER:
765 		case AUDIT_SUBJ_ROLE:
766 		case AUDIT_SUBJ_TYPE:
767 		case AUDIT_SUBJ_SEN:
768 		case AUDIT_SUBJ_CLR:
769 		case AUDIT_OBJ_USER:
770 		case AUDIT_OBJ_ROLE:
771 		case AUDIT_OBJ_TYPE:
772 		case AUDIT_OBJ_LEV_LOW:
773 		case AUDIT_OBJ_LEV_HIGH:
774 			err = audit_dupe_lsm_field(&new->fields[i],
775 						       &old->fields[i]);
776 			break;
777 		case AUDIT_FILTERKEY:
778 			fk = kstrdup(old->filterkey, GFP_KERNEL);
779 			if (unlikely(!fk))
780 				err = -ENOMEM;
781 			else
782 				new->filterkey = fk;
783 		}
784 		if (err) {
785 			audit_free_rule(entry);
786 			return ERR_PTR(err);
787 		}
788 	}
789 
790 	if (old->watch) {
791 		audit_get_watch(old->watch);
792 		new->watch = old->watch;
793 	}
794 
795 	return entry;
796 }
797 
798 /* Find an existing audit rule.
799  * Caller must hold audit_filter_mutex to prevent stale rule data. */
800 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
801 					   struct list_head **p)
802 {
803 	struct audit_entry *e, *found = NULL;
804 	struct list_head *list;
805 	int h;
806 
807 	if (entry->rule.inode_f) {
808 		h = audit_hash_ino(entry->rule.inode_f->val);
809 		*p = list = &audit_inode_hash[h];
810 	} else if (entry->rule.watch) {
811 		/* we don't know the inode number, so must walk entire hash */
812 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
813 			list = &audit_inode_hash[h];
814 			list_for_each_entry(e, list, list)
815 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
816 					found = e;
817 					goto out;
818 				}
819 		}
820 		goto out;
821 	} else {
822 		*p = list = &audit_filter_list[entry->rule.listnr];
823 	}
824 
825 	list_for_each_entry(e, list, list)
826 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
827 			found = e;
828 			goto out;
829 		}
830 
831 out:
832 	return found;
833 }
834 
835 static u64 prio_low = ~0ULL/2;
836 static u64 prio_high = ~0ULL/2 - 1;
837 
838 /* Add rule to given filterlist if not a duplicate. */
839 static inline int audit_add_rule(struct audit_entry *entry)
840 {
841 	struct audit_entry *e;
842 	struct audit_watch *watch = entry->rule.watch;
843 	struct audit_tree *tree = entry->rule.tree;
844 	struct list_head *list;
845 	int err;
846 #ifdef CONFIG_AUDITSYSCALL
847 	int dont_count = 0;
848 
849 	/* If either of these, don't count towards total */
850 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
851 		entry->rule.listnr == AUDIT_FILTER_TYPE)
852 		dont_count = 1;
853 #endif
854 
855 	mutex_lock(&audit_filter_mutex);
856 	e = audit_find_rule(entry, &list);
857 	if (e) {
858 		mutex_unlock(&audit_filter_mutex);
859 		err = -EEXIST;
860 		/* normally audit_add_tree_rule() will free it on failure */
861 		if (tree)
862 			audit_put_tree(tree);
863 		goto error;
864 	}
865 
866 	if (watch) {
867 		/* audit_filter_mutex is dropped and re-taken during this call */
868 		err = audit_add_watch(&entry->rule, &list);
869 		if (err) {
870 			mutex_unlock(&audit_filter_mutex);
871 			/*
872 			 * normally audit_add_tree_rule() will free it
873 			 * on failure
874 			 */
875 			if (tree)
876 				audit_put_tree(tree);
877 			goto error;
878 		}
879 	}
880 	if (tree) {
881 		err = audit_add_tree_rule(&entry->rule);
882 		if (err) {
883 			mutex_unlock(&audit_filter_mutex);
884 			goto error;
885 		}
886 	}
887 
888 	entry->rule.prio = ~0ULL;
889 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
890 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
891 			entry->rule.prio = ++prio_high;
892 		else
893 			entry->rule.prio = --prio_low;
894 	}
895 
896 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
897 		list_add(&entry->rule.list,
898 			 &audit_rules_list[entry->rule.listnr]);
899 		list_add_rcu(&entry->list, list);
900 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
901 	} else {
902 		list_add_tail(&entry->rule.list,
903 			      &audit_rules_list[entry->rule.listnr]);
904 		list_add_tail_rcu(&entry->list, list);
905 	}
906 #ifdef CONFIG_AUDITSYSCALL
907 	if (!dont_count)
908 		audit_n_rules++;
909 
910 	if (!audit_match_signal(entry))
911 		audit_signals++;
912 #endif
913 	mutex_unlock(&audit_filter_mutex);
914 
915  	return 0;
916 
917 error:
918 	if (watch)
919 		audit_put_watch(watch); /* tmp watch, matches initial get */
920 	return err;
921 }
922 
923 /* Remove an existing rule from filterlist. */
924 static inline int audit_del_rule(struct audit_entry *entry)
925 {
926 	struct audit_entry  *e;
927 	struct audit_watch *watch = entry->rule.watch;
928 	struct audit_tree *tree = entry->rule.tree;
929 	struct list_head *list;
930 	int ret = 0;
931 #ifdef CONFIG_AUDITSYSCALL
932 	int dont_count = 0;
933 
934 	/* If either of these, don't count towards total */
935 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
936 		entry->rule.listnr == AUDIT_FILTER_TYPE)
937 		dont_count = 1;
938 #endif
939 
940 	mutex_lock(&audit_filter_mutex);
941 	e = audit_find_rule(entry, &list);
942 	if (!e) {
943 		mutex_unlock(&audit_filter_mutex);
944 		ret = -ENOENT;
945 		goto out;
946 	}
947 
948 	if (e->rule.watch)
949 		audit_remove_watch_rule(&e->rule);
950 
951 	if (e->rule.tree)
952 		audit_remove_tree_rule(&e->rule);
953 
954 	list_del_rcu(&e->list);
955 	list_del(&e->rule.list);
956 	call_rcu(&e->rcu, audit_free_rule_rcu);
957 
958 #ifdef CONFIG_AUDITSYSCALL
959 	if (!dont_count)
960 		audit_n_rules--;
961 
962 	if (!audit_match_signal(entry))
963 		audit_signals--;
964 #endif
965 	mutex_unlock(&audit_filter_mutex);
966 
967 out:
968 	if (watch)
969 		audit_put_watch(watch); /* match initial get */
970 	if (tree)
971 		audit_put_tree(tree);	/* that's the temporary one */
972 
973 	return ret;
974 }
975 
976 /* List rules using struct audit_rule_data. */
977 static void audit_list_rules(__u32 portid, int seq, struct sk_buff_head *q)
978 {
979 	struct sk_buff *skb;
980 	struct audit_krule *r;
981 	int i;
982 
983 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
984 	 * iterator to sync with list writers. */
985 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
986 		list_for_each_entry(r, &audit_rules_list[i], list) {
987 			struct audit_rule_data *data;
988 
989 			data = audit_krule_to_data(r);
990 			if (unlikely(!data))
991 				break;
992 			skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES,
993 					       0, 1, data,
994 					       sizeof(*data) + data->buflen);
995 			if (skb)
996 				skb_queue_tail(q, skb);
997 			kfree(data);
998 		}
999 	}
1000 	skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1001 	if (skb)
1002 		skb_queue_tail(q, skb);
1003 }
1004 
1005 /* Log rule additions and removals */
1006 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
1007 {
1008 	struct audit_buffer *ab;
1009 	uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1010 	unsigned int sessionid = audit_get_sessionid(current);
1011 
1012 	if (!audit_enabled)
1013 		return;
1014 
1015 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1016 	if (!ab)
1017 		return;
1018 	audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid);
1019 	audit_log_task_context(ab);
1020 	audit_log_format(ab, " op=");
1021 	audit_log_string(ab, action);
1022 	audit_log_key(ab, rule->filterkey);
1023 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1024 	audit_log_end(ab);
1025 }
1026 
1027 /**
1028  * audit_rule_change - apply all rules to the specified message type
1029  * @type: audit message type
1030  * @portid: target port id for netlink audit messages
1031  * @seq: netlink audit message sequence (serial) number
1032  * @data: payload data
1033  * @datasz: size of payload data
1034  */
1035 int audit_rule_change(int type, __u32 portid, int seq, void *data,
1036 			size_t datasz)
1037 {
1038 	int err = 0;
1039 	struct audit_entry *entry;
1040 
1041 	switch (type) {
1042 	case AUDIT_ADD_RULE:
1043 		entry = audit_data_to_entry(data, datasz);
1044 		if (IS_ERR(entry))
1045 			return PTR_ERR(entry);
1046 
1047 		err = audit_add_rule(entry);
1048 		audit_log_rule_change("add rule", &entry->rule, !err);
1049 		if (err)
1050 			audit_free_rule(entry);
1051 		break;
1052 	case AUDIT_DEL_RULE:
1053 		entry = audit_data_to_entry(data, datasz);
1054 		if (IS_ERR(entry))
1055 			return PTR_ERR(entry);
1056 
1057 		err = audit_del_rule(entry);
1058 		audit_log_rule_change("remove rule", &entry->rule, !err);
1059 		audit_free_rule(entry);
1060 		break;
1061 	default:
1062 		return -EINVAL;
1063 	}
1064 
1065 	return err;
1066 }
1067 
1068 /**
1069  * audit_list_rules_send - list the audit rules
1070  * @request_skb: skb of request we are replying to (used to target the reply)
1071  * @seq: netlink audit message sequence (serial) number
1072  */
1073 int audit_list_rules_send(struct sk_buff *request_skb, int seq)
1074 {
1075 	u32 portid = NETLINK_CB(request_skb).portid;
1076 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
1077 	struct task_struct *tsk;
1078 	struct audit_netlink_list *dest;
1079 	int err = 0;
1080 
1081 	/* We can't just spew out the rules here because we might fill
1082 	 * the available socket buffer space and deadlock waiting for
1083 	 * auditctl to read from it... which isn't ever going to
1084 	 * happen if we're actually running in the context of auditctl
1085 	 * trying to _send_ the stuff */
1086 
1087 	dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1088 	if (!dest)
1089 		return -ENOMEM;
1090 	dest->net = get_net(net);
1091 	dest->portid = portid;
1092 	skb_queue_head_init(&dest->q);
1093 
1094 	mutex_lock(&audit_filter_mutex);
1095 	audit_list_rules(portid, seq, &dest->q);
1096 	mutex_unlock(&audit_filter_mutex);
1097 
1098 	tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1099 	if (IS_ERR(tsk)) {
1100 		skb_queue_purge(&dest->q);
1101 		kfree(dest);
1102 		err = PTR_ERR(tsk);
1103 	}
1104 
1105 	return err;
1106 }
1107 
1108 int audit_comparator(u32 left, u32 op, u32 right)
1109 {
1110 	switch (op) {
1111 	case Audit_equal:
1112 		return (left == right);
1113 	case Audit_not_equal:
1114 		return (left != right);
1115 	case Audit_lt:
1116 		return (left < right);
1117 	case Audit_le:
1118 		return (left <= right);
1119 	case Audit_gt:
1120 		return (left > right);
1121 	case Audit_ge:
1122 		return (left >= right);
1123 	case Audit_bitmask:
1124 		return (left & right);
1125 	case Audit_bittest:
1126 		return ((left & right) == right);
1127 	default:
1128 		BUG();
1129 		return 0;
1130 	}
1131 }
1132 
1133 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1134 {
1135 	switch (op) {
1136 	case Audit_equal:
1137 		return uid_eq(left, right);
1138 	case Audit_not_equal:
1139 		return !uid_eq(left, right);
1140 	case Audit_lt:
1141 		return uid_lt(left, right);
1142 	case Audit_le:
1143 		return uid_lte(left, right);
1144 	case Audit_gt:
1145 		return uid_gt(left, right);
1146 	case Audit_ge:
1147 		return uid_gte(left, right);
1148 	case Audit_bitmask:
1149 	case Audit_bittest:
1150 	default:
1151 		BUG();
1152 		return 0;
1153 	}
1154 }
1155 
1156 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1157 {
1158 	switch (op) {
1159 	case Audit_equal:
1160 		return gid_eq(left, right);
1161 	case Audit_not_equal:
1162 		return !gid_eq(left, right);
1163 	case Audit_lt:
1164 		return gid_lt(left, right);
1165 	case Audit_le:
1166 		return gid_lte(left, right);
1167 	case Audit_gt:
1168 		return gid_gt(left, right);
1169 	case Audit_ge:
1170 		return gid_gte(left, right);
1171 	case Audit_bitmask:
1172 	case Audit_bittest:
1173 	default:
1174 		BUG();
1175 		return 0;
1176 	}
1177 }
1178 
1179 /**
1180  * parent_len - find the length of the parent portion of a pathname
1181  * @path: pathname of which to determine length
1182  */
1183 int parent_len(const char *path)
1184 {
1185 	int plen;
1186 	const char *p;
1187 
1188 	plen = strlen(path);
1189 
1190 	if (plen == 0)
1191 		return plen;
1192 
1193 	/* disregard trailing slashes */
1194 	p = path + plen - 1;
1195 	while ((*p == '/') && (p > path))
1196 		p--;
1197 
1198 	/* walk backward until we find the next slash or hit beginning */
1199 	while ((*p != '/') && (p > path))
1200 		p--;
1201 
1202 	/* did we find a slash? Then increment to include it in path */
1203 	if (*p == '/')
1204 		p++;
1205 
1206 	return p - path;
1207 }
1208 
1209 /**
1210  * audit_compare_dname_path - compare given dentry name with last component in
1211  * 			      given path. Return of 0 indicates a match.
1212  * @dname:	dentry name that we're comparing
1213  * @path:	full pathname that we're comparing
1214  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1215  * 		here indicates that we must compute this value.
1216  */
1217 int audit_compare_dname_path(const char *dname, const char *path, int parentlen)
1218 {
1219 	int dlen, pathlen;
1220 	const char *p;
1221 
1222 	dlen = strlen(dname);
1223 	pathlen = strlen(path);
1224 	if (pathlen < dlen)
1225 		return 1;
1226 
1227 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1228 	if (pathlen - parentlen != dlen)
1229 		return 1;
1230 
1231 	p = path + parentlen;
1232 
1233 	return strncmp(p, dname, dlen);
1234 }
1235 
1236 static int audit_filter_user_rules(struct audit_krule *rule, int type,
1237 				   enum audit_state *state)
1238 {
1239 	int i;
1240 
1241 	for (i = 0; i < rule->field_count; i++) {
1242 		struct audit_field *f = &rule->fields[i];
1243 		int result = 0;
1244 		u32 sid;
1245 
1246 		switch (f->type) {
1247 		case AUDIT_PID:
1248 			result = audit_comparator(task_pid_vnr(current), f->op, f->val);
1249 			break;
1250 		case AUDIT_UID:
1251 			result = audit_uid_comparator(current_uid(), f->op, f->uid);
1252 			break;
1253 		case AUDIT_GID:
1254 			result = audit_gid_comparator(current_gid(), f->op, f->gid);
1255 			break;
1256 		case AUDIT_LOGINUID:
1257 			result = audit_uid_comparator(audit_get_loginuid(current),
1258 						  f->op, f->uid);
1259 			break;
1260 		case AUDIT_LOGINUID_SET:
1261 			result = audit_comparator(audit_loginuid_set(current),
1262 						  f->op, f->val);
1263 			break;
1264 		case AUDIT_MSGTYPE:
1265 			result = audit_comparator(type, f->op, f->val);
1266 			break;
1267 		case AUDIT_SUBJ_USER:
1268 		case AUDIT_SUBJ_ROLE:
1269 		case AUDIT_SUBJ_TYPE:
1270 		case AUDIT_SUBJ_SEN:
1271 		case AUDIT_SUBJ_CLR:
1272 			if (f->lsm_rule) {
1273 				security_task_getsecid(current, &sid);
1274 				result = security_audit_rule_match(sid,
1275 								   f->type,
1276 								   f->op,
1277 								   f->lsm_rule,
1278 								   NULL);
1279 			}
1280 			break;
1281 		}
1282 
1283 		if (!result)
1284 			return 0;
1285 	}
1286 	switch (rule->action) {
1287 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1288 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1289 	}
1290 	return 1;
1291 }
1292 
1293 int audit_filter_user(int type)
1294 {
1295 	enum audit_state state = AUDIT_DISABLED;
1296 	struct audit_entry *e;
1297 	int rc, ret;
1298 
1299 	ret = 1; /* Audit by default */
1300 
1301 	rcu_read_lock();
1302 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1303 		rc = audit_filter_user_rules(&e->rule, type, &state);
1304 		if (rc) {
1305 			if (rc > 0 && state == AUDIT_DISABLED)
1306 				ret = 0;
1307 			break;
1308 		}
1309 	}
1310 	rcu_read_unlock();
1311 
1312 	return ret;
1313 }
1314 
1315 int audit_filter_type(int type)
1316 {
1317 	struct audit_entry *e;
1318 	int result = 0;
1319 
1320 	rcu_read_lock();
1321 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1322 		goto unlock_and_return;
1323 
1324 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1325 				list) {
1326 		int i;
1327 		for (i = 0; i < e->rule.field_count; i++) {
1328 			struct audit_field *f = &e->rule.fields[i];
1329 			if (f->type == AUDIT_MSGTYPE) {
1330 				result = audit_comparator(type, f->op, f->val);
1331 				if (!result)
1332 					break;
1333 			}
1334 		}
1335 		if (result)
1336 			goto unlock_and_return;
1337 	}
1338 unlock_and_return:
1339 	rcu_read_unlock();
1340 	return result;
1341 }
1342 
1343 static int update_lsm_rule(struct audit_krule *r)
1344 {
1345 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1346 	struct audit_entry *nentry;
1347 	int err = 0;
1348 
1349 	if (!security_audit_rule_known(r))
1350 		return 0;
1351 
1352 	nentry = audit_dupe_rule(r);
1353 	if (IS_ERR(nentry)) {
1354 		/* save the first error encountered for the
1355 		 * return value */
1356 		err = PTR_ERR(nentry);
1357 		audit_panic("error updating LSM filters");
1358 		if (r->watch)
1359 			list_del(&r->rlist);
1360 		list_del_rcu(&entry->list);
1361 		list_del(&r->list);
1362 	} else {
1363 		if (r->watch || r->tree)
1364 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1365 		list_replace_rcu(&entry->list, &nentry->list);
1366 		list_replace(&r->list, &nentry->rule.list);
1367 	}
1368 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1369 
1370 	return err;
1371 }
1372 
1373 /* This function will re-initialize the lsm_rule field of all applicable rules.
1374  * It will traverse the filter lists serarching for rules that contain LSM
1375  * specific filter fields.  When such a rule is found, it is copied, the
1376  * LSM field is re-initialized, and the old rule is replaced with the
1377  * updated rule. */
1378 int audit_update_lsm_rules(void)
1379 {
1380 	struct audit_krule *r, *n;
1381 	int i, err = 0;
1382 
1383 	/* audit_filter_mutex synchronizes the writers */
1384 	mutex_lock(&audit_filter_mutex);
1385 
1386 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1387 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1388 			int res = update_lsm_rule(r);
1389 			if (!err)
1390 				err = res;
1391 		}
1392 	}
1393 	mutex_unlock(&audit_filter_mutex);
1394 
1395 	return err;
1396 }
1397