1 /* auditfilter.c -- filtering of audit events 2 * 3 * Copyright 2003-2004 Red Hat, Inc. 4 * Copyright 2005 Hewlett-Packard Development Company, L.P. 5 * Copyright 2005 IBM Corporation 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/audit.h> 24 #include <linux/kthread.h> 25 #include <linux/mutex.h> 26 #include <linux/fs.h> 27 #include <linux/namei.h> 28 #include <linux/netlink.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/security.h> 32 #include <net/net_namespace.h> 33 #include <net/sock.h> 34 #include "audit.h" 35 36 /* 37 * Locking model: 38 * 39 * audit_filter_mutex: 40 * Synchronizes writes and blocking reads of audit's filterlist 41 * data. Rcu is used to traverse the filterlist and access 42 * contents of structs audit_entry, audit_watch and opaque 43 * LSM rules during filtering. If modified, these structures 44 * must be copied and replace their counterparts in the filterlist. 45 * An audit_parent struct is not accessed during filtering, so may 46 * be written directly provided audit_filter_mutex is held. 47 */ 48 49 /* Audit filter lists, defined in <linux/audit.h> */ 50 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { 51 LIST_HEAD_INIT(audit_filter_list[0]), 52 LIST_HEAD_INIT(audit_filter_list[1]), 53 LIST_HEAD_INIT(audit_filter_list[2]), 54 LIST_HEAD_INIT(audit_filter_list[3]), 55 LIST_HEAD_INIT(audit_filter_list[4]), 56 LIST_HEAD_INIT(audit_filter_list[5]), 57 #if AUDIT_NR_FILTERS != 6 58 #error Fix audit_filter_list initialiser 59 #endif 60 }; 61 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = { 62 LIST_HEAD_INIT(audit_rules_list[0]), 63 LIST_HEAD_INIT(audit_rules_list[1]), 64 LIST_HEAD_INIT(audit_rules_list[2]), 65 LIST_HEAD_INIT(audit_rules_list[3]), 66 LIST_HEAD_INIT(audit_rules_list[4]), 67 LIST_HEAD_INIT(audit_rules_list[5]), 68 }; 69 70 DEFINE_MUTEX(audit_filter_mutex); 71 72 static inline void audit_free_rule(struct audit_entry *e) 73 { 74 int i; 75 struct audit_krule *erule = &e->rule; 76 77 /* some rules don't have associated watches */ 78 if (erule->watch) 79 audit_put_watch(erule->watch); 80 if (erule->fields) 81 for (i = 0; i < erule->field_count; i++) { 82 struct audit_field *f = &erule->fields[i]; 83 kfree(f->lsm_str); 84 security_audit_rule_free(f->lsm_rule); 85 } 86 kfree(erule->fields); 87 kfree(erule->filterkey); 88 kfree(e); 89 } 90 91 void audit_free_rule_rcu(struct rcu_head *head) 92 { 93 struct audit_entry *e = container_of(head, struct audit_entry, rcu); 94 audit_free_rule(e); 95 } 96 97 /* Initialize an audit filterlist entry. */ 98 static inline struct audit_entry *audit_init_entry(u32 field_count) 99 { 100 struct audit_entry *entry; 101 struct audit_field *fields; 102 103 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 104 if (unlikely(!entry)) 105 return NULL; 106 107 fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL); 108 if (unlikely(!fields)) { 109 kfree(entry); 110 return NULL; 111 } 112 entry->rule.fields = fields; 113 114 return entry; 115 } 116 117 /* Unpack a filter field's string representation from user-space 118 * buffer. */ 119 char *audit_unpack_string(void **bufp, size_t *remain, size_t len) 120 { 121 char *str; 122 123 if (!*bufp || (len == 0) || (len > *remain)) 124 return ERR_PTR(-EINVAL); 125 126 /* Of the currently implemented string fields, PATH_MAX 127 * defines the longest valid length. 128 */ 129 if (len > PATH_MAX) 130 return ERR_PTR(-ENAMETOOLONG); 131 132 str = kmalloc(len + 1, GFP_KERNEL); 133 if (unlikely(!str)) 134 return ERR_PTR(-ENOMEM); 135 136 memcpy(str, *bufp, len); 137 str[len] = 0; 138 *bufp += len; 139 *remain -= len; 140 141 return str; 142 } 143 144 /* Translate an inode field to kernel respresentation. */ 145 static inline int audit_to_inode(struct audit_krule *krule, 146 struct audit_field *f) 147 { 148 if (krule->listnr != AUDIT_FILTER_EXIT || 149 krule->watch || krule->inode_f || krule->tree || 150 (f->op != Audit_equal && f->op != Audit_not_equal)) 151 return -EINVAL; 152 153 krule->inode_f = f; 154 return 0; 155 } 156 157 static __u32 *classes[AUDIT_SYSCALL_CLASSES]; 158 159 int __init audit_register_class(int class, unsigned *list) 160 { 161 __u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL); 162 if (!p) 163 return -ENOMEM; 164 while (*list != ~0U) { 165 unsigned n = *list++; 166 if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) { 167 kfree(p); 168 return -EINVAL; 169 } 170 p[AUDIT_WORD(n)] |= AUDIT_BIT(n); 171 } 172 if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) { 173 kfree(p); 174 return -EINVAL; 175 } 176 classes[class] = p; 177 return 0; 178 } 179 180 int audit_match_class(int class, unsigned syscall) 181 { 182 if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32)) 183 return 0; 184 if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class])) 185 return 0; 186 return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall); 187 } 188 189 #ifdef CONFIG_AUDITSYSCALL 190 static inline int audit_match_class_bits(int class, u32 *mask) 191 { 192 int i; 193 194 if (classes[class]) { 195 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 196 if (mask[i] & classes[class][i]) 197 return 0; 198 } 199 return 1; 200 } 201 202 static int audit_match_signal(struct audit_entry *entry) 203 { 204 struct audit_field *arch = entry->rule.arch_f; 205 206 if (!arch) { 207 /* When arch is unspecified, we must check both masks on biarch 208 * as syscall number alone is ambiguous. */ 209 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 210 entry->rule.mask) && 211 audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 212 entry->rule.mask)); 213 } 214 215 switch(audit_classify_arch(arch->val)) { 216 case 0: /* native */ 217 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, 218 entry->rule.mask)); 219 case 1: /* 32bit on biarch */ 220 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, 221 entry->rule.mask)); 222 default: 223 return 1; 224 } 225 } 226 #endif 227 228 /* Common user-space to kernel rule translation. */ 229 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule) 230 { 231 unsigned listnr; 232 struct audit_entry *entry; 233 int i, err; 234 235 err = -EINVAL; 236 listnr = rule->flags & ~AUDIT_FILTER_PREPEND; 237 switch(listnr) { 238 default: 239 goto exit_err; 240 #ifdef CONFIG_AUDITSYSCALL 241 case AUDIT_FILTER_ENTRY: 242 if (rule->action == AUDIT_ALWAYS) 243 goto exit_err; 244 case AUDIT_FILTER_EXIT: 245 case AUDIT_FILTER_TASK: 246 #endif 247 case AUDIT_FILTER_USER: 248 case AUDIT_FILTER_TYPE: 249 ; 250 } 251 if (unlikely(rule->action == AUDIT_POSSIBLE)) { 252 printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n"); 253 goto exit_err; 254 } 255 if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS) 256 goto exit_err; 257 if (rule->field_count > AUDIT_MAX_FIELDS) 258 goto exit_err; 259 260 err = -ENOMEM; 261 entry = audit_init_entry(rule->field_count); 262 if (!entry) 263 goto exit_err; 264 265 entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; 266 entry->rule.listnr = listnr; 267 entry->rule.action = rule->action; 268 entry->rule.field_count = rule->field_count; 269 270 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 271 entry->rule.mask[i] = rule->mask[i]; 272 273 for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) { 274 int bit = AUDIT_BITMASK_SIZE * 32 - i - 1; 275 __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)]; 276 __u32 *class; 277 278 if (!(*p & AUDIT_BIT(bit))) 279 continue; 280 *p &= ~AUDIT_BIT(bit); 281 class = classes[i]; 282 if (class) { 283 int j; 284 for (j = 0; j < AUDIT_BITMASK_SIZE; j++) 285 entry->rule.mask[j] |= class[j]; 286 } 287 } 288 289 return entry; 290 291 exit_err: 292 return ERR_PTR(err); 293 } 294 295 static u32 audit_ops[] = 296 { 297 [Audit_equal] = AUDIT_EQUAL, 298 [Audit_not_equal] = AUDIT_NOT_EQUAL, 299 [Audit_bitmask] = AUDIT_BIT_MASK, 300 [Audit_bittest] = AUDIT_BIT_TEST, 301 [Audit_lt] = AUDIT_LESS_THAN, 302 [Audit_gt] = AUDIT_GREATER_THAN, 303 [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL, 304 [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL, 305 }; 306 307 static u32 audit_to_op(u32 op) 308 { 309 u32 n; 310 for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++) 311 ; 312 return n; 313 } 314 315 /* check if an audit field is valid */ 316 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f) 317 { 318 switch(f->type) { 319 case AUDIT_MSGTYPE: 320 if (entry->rule.listnr != AUDIT_FILTER_TYPE && 321 entry->rule.listnr != AUDIT_FILTER_USER) 322 return -EINVAL; 323 break; 324 }; 325 326 switch(f->type) { 327 default: 328 return -EINVAL; 329 case AUDIT_UID: 330 case AUDIT_EUID: 331 case AUDIT_SUID: 332 case AUDIT_FSUID: 333 case AUDIT_LOGINUID: 334 case AUDIT_OBJ_UID: 335 case AUDIT_GID: 336 case AUDIT_EGID: 337 case AUDIT_SGID: 338 case AUDIT_FSGID: 339 case AUDIT_OBJ_GID: 340 case AUDIT_PID: 341 case AUDIT_PERS: 342 case AUDIT_MSGTYPE: 343 case AUDIT_PPID: 344 case AUDIT_DEVMAJOR: 345 case AUDIT_DEVMINOR: 346 case AUDIT_EXIT: 347 case AUDIT_SUCCESS: 348 case AUDIT_INODE: 349 /* bit ops are only useful on syscall args */ 350 if (f->op == Audit_bitmask || f->op == Audit_bittest) 351 return -EINVAL; 352 break; 353 case AUDIT_ARG0: 354 case AUDIT_ARG1: 355 case AUDIT_ARG2: 356 case AUDIT_ARG3: 357 case AUDIT_SUBJ_USER: 358 case AUDIT_SUBJ_ROLE: 359 case AUDIT_SUBJ_TYPE: 360 case AUDIT_SUBJ_SEN: 361 case AUDIT_SUBJ_CLR: 362 case AUDIT_OBJ_USER: 363 case AUDIT_OBJ_ROLE: 364 case AUDIT_OBJ_TYPE: 365 case AUDIT_OBJ_LEV_LOW: 366 case AUDIT_OBJ_LEV_HIGH: 367 case AUDIT_WATCH: 368 case AUDIT_DIR: 369 case AUDIT_FILTERKEY: 370 break; 371 case AUDIT_LOGINUID_SET: 372 if ((f->val != 0) && (f->val != 1)) 373 return -EINVAL; 374 /* FALL THROUGH */ 375 case AUDIT_ARCH: 376 if (f->op != Audit_not_equal && f->op != Audit_equal) 377 return -EINVAL; 378 break; 379 case AUDIT_PERM: 380 if (f->val & ~15) 381 return -EINVAL; 382 break; 383 case AUDIT_FILETYPE: 384 if (f->val & ~S_IFMT) 385 return -EINVAL; 386 break; 387 case AUDIT_FIELD_COMPARE: 388 if (f->val > AUDIT_MAX_FIELD_COMPARE) 389 return -EINVAL; 390 break; 391 }; 392 return 0; 393 } 394 395 /* Translate struct audit_rule_data to kernel's rule respresentation. */ 396 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, 397 size_t datasz) 398 { 399 int err = 0; 400 struct audit_entry *entry; 401 void *bufp; 402 size_t remain = datasz - sizeof(struct audit_rule_data); 403 int i; 404 char *str; 405 406 entry = audit_to_entry_common((struct audit_rule *)data); 407 if (IS_ERR(entry)) 408 goto exit_nofree; 409 410 bufp = data->buf; 411 entry->rule.vers_ops = 2; 412 for (i = 0; i < data->field_count; i++) { 413 struct audit_field *f = &entry->rule.fields[i]; 414 415 err = -EINVAL; 416 417 f->op = audit_to_op(data->fieldflags[i]); 418 if (f->op == Audit_bad) 419 goto exit_free; 420 421 f->type = data->fields[i]; 422 f->val = data->values[i]; 423 f->uid = INVALID_UID; 424 f->gid = INVALID_GID; 425 f->lsm_str = NULL; 426 f->lsm_rule = NULL; 427 428 /* Support legacy tests for a valid loginuid */ 429 if ((f->type == AUDIT_LOGINUID) && (f->val == AUDIT_UID_UNSET)) { 430 f->type = AUDIT_LOGINUID_SET; 431 f->val = 0; 432 } 433 434 err = audit_field_valid(entry, f); 435 if (err) 436 goto exit_free; 437 438 err = -EINVAL; 439 switch (f->type) { 440 case AUDIT_LOGINUID: 441 case AUDIT_UID: 442 case AUDIT_EUID: 443 case AUDIT_SUID: 444 case AUDIT_FSUID: 445 case AUDIT_OBJ_UID: 446 f->uid = make_kuid(current_user_ns(), f->val); 447 if (!uid_valid(f->uid)) 448 goto exit_free; 449 break; 450 case AUDIT_GID: 451 case AUDIT_EGID: 452 case AUDIT_SGID: 453 case AUDIT_FSGID: 454 case AUDIT_OBJ_GID: 455 f->gid = make_kgid(current_user_ns(), f->val); 456 if (!gid_valid(f->gid)) 457 goto exit_free; 458 break; 459 case AUDIT_ARCH: 460 entry->rule.arch_f = f; 461 break; 462 case AUDIT_SUBJ_USER: 463 case AUDIT_SUBJ_ROLE: 464 case AUDIT_SUBJ_TYPE: 465 case AUDIT_SUBJ_SEN: 466 case AUDIT_SUBJ_CLR: 467 case AUDIT_OBJ_USER: 468 case AUDIT_OBJ_ROLE: 469 case AUDIT_OBJ_TYPE: 470 case AUDIT_OBJ_LEV_LOW: 471 case AUDIT_OBJ_LEV_HIGH: 472 str = audit_unpack_string(&bufp, &remain, f->val); 473 if (IS_ERR(str)) 474 goto exit_free; 475 entry->rule.buflen += f->val; 476 477 err = security_audit_rule_init(f->type, f->op, str, 478 (void **)&f->lsm_rule); 479 /* Keep currently invalid fields around in case they 480 * become valid after a policy reload. */ 481 if (err == -EINVAL) { 482 printk(KERN_WARNING "audit rule for LSM " 483 "\'%s\' is invalid\n", str); 484 err = 0; 485 } 486 if (err) { 487 kfree(str); 488 goto exit_free; 489 } else 490 f->lsm_str = str; 491 break; 492 case AUDIT_WATCH: 493 str = audit_unpack_string(&bufp, &remain, f->val); 494 if (IS_ERR(str)) 495 goto exit_free; 496 entry->rule.buflen += f->val; 497 498 err = audit_to_watch(&entry->rule, str, f->val, f->op); 499 if (err) { 500 kfree(str); 501 goto exit_free; 502 } 503 break; 504 case AUDIT_DIR: 505 str = audit_unpack_string(&bufp, &remain, f->val); 506 if (IS_ERR(str)) 507 goto exit_free; 508 entry->rule.buflen += f->val; 509 510 err = audit_make_tree(&entry->rule, str, f->op); 511 kfree(str); 512 if (err) 513 goto exit_free; 514 break; 515 case AUDIT_INODE: 516 err = audit_to_inode(&entry->rule, f); 517 if (err) 518 goto exit_free; 519 break; 520 case AUDIT_FILTERKEY: 521 if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN) 522 goto exit_free; 523 str = audit_unpack_string(&bufp, &remain, f->val); 524 if (IS_ERR(str)) 525 goto exit_free; 526 entry->rule.buflen += f->val; 527 entry->rule.filterkey = str; 528 break; 529 } 530 } 531 532 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) 533 entry->rule.inode_f = NULL; 534 535 exit_nofree: 536 return entry; 537 538 exit_free: 539 if (entry->rule.watch) 540 audit_put_watch(entry->rule.watch); /* matches initial get */ 541 if (entry->rule.tree) 542 audit_put_tree(entry->rule.tree); /* that's the temporary one */ 543 audit_free_rule(entry); 544 return ERR_PTR(err); 545 } 546 547 /* Pack a filter field's string representation into data block. */ 548 static inline size_t audit_pack_string(void **bufp, const char *str) 549 { 550 size_t len = strlen(str); 551 552 memcpy(*bufp, str, len); 553 *bufp += len; 554 555 return len; 556 } 557 558 /* Translate kernel rule respresentation to struct audit_rule_data. */ 559 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) 560 { 561 struct audit_rule_data *data; 562 void *bufp; 563 int i; 564 565 data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); 566 if (unlikely(!data)) 567 return NULL; 568 memset(data, 0, sizeof(*data)); 569 570 data->flags = krule->flags | krule->listnr; 571 data->action = krule->action; 572 data->field_count = krule->field_count; 573 bufp = data->buf; 574 for (i = 0; i < data->field_count; i++) { 575 struct audit_field *f = &krule->fields[i]; 576 577 data->fields[i] = f->type; 578 data->fieldflags[i] = audit_ops[f->op]; 579 switch(f->type) { 580 case AUDIT_SUBJ_USER: 581 case AUDIT_SUBJ_ROLE: 582 case AUDIT_SUBJ_TYPE: 583 case AUDIT_SUBJ_SEN: 584 case AUDIT_SUBJ_CLR: 585 case AUDIT_OBJ_USER: 586 case AUDIT_OBJ_ROLE: 587 case AUDIT_OBJ_TYPE: 588 case AUDIT_OBJ_LEV_LOW: 589 case AUDIT_OBJ_LEV_HIGH: 590 data->buflen += data->values[i] = 591 audit_pack_string(&bufp, f->lsm_str); 592 break; 593 case AUDIT_WATCH: 594 data->buflen += data->values[i] = 595 audit_pack_string(&bufp, 596 audit_watch_path(krule->watch)); 597 break; 598 case AUDIT_DIR: 599 data->buflen += data->values[i] = 600 audit_pack_string(&bufp, 601 audit_tree_path(krule->tree)); 602 break; 603 case AUDIT_FILTERKEY: 604 data->buflen += data->values[i] = 605 audit_pack_string(&bufp, krule->filterkey); 606 break; 607 default: 608 data->values[i] = f->val; 609 } 610 } 611 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; 612 613 return data; 614 } 615 616 /* Compare two rules in kernel format. Considered success if rules 617 * don't match. */ 618 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) 619 { 620 int i; 621 622 if (a->flags != b->flags || 623 a->listnr != b->listnr || 624 a->action != b->action || 625 a->field_count != b->field_count) 626 return 1; 627 628 for (i = 0; i < a->field_count; i++) { 629 if (a->fields[i].type != b->fields[i].type || 630 a->fields[i].op != b->fields[i].op) 631 return 1; 632 633 switch(a->fields[i].type) { 634 case AUDIT_SUBJ_USER: 635 case AUDIT_SUBJ_ROLE: 636 case AUDIT_SUBJ_TYPE: 637 case AUDIT_SUBJ_SEN: 638 case AUDIT_SUBJ_CLR: 639 case AUDIT_OBJ_USER: 640 case AUDIT_OBJ_ROLE: 641 case AUDIT_OBJ_TYPE: 642 case AUDIT_OBJ_LEV_LOW: 643 case AUDIT_OBJ_LEV_HIGH: 644 if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str)) 645 return 1; 646 break; 647 case AUDIT_WATCH: 648 if (strcmp(audit_watch_path(a->watch), 649 audit_watch_path(b->watch))) 650 return 1; 651 break; 652 case AUDIT_DIR: 653 if (strcmp(audit_tree_path(a->tree), 654 audit_tree_path(b->tree))) 655 return 1; 656 break; 657 case AUDIT_FILTERKEY: 658 /* both filterkeys exist based on above type compare */ 659 if (strcmp(a->filterkey, b->filterkey)) 660 return 1; 661 break; 662 case AUDIT_UID: 663 case AUDIT_EUID: 664 case AUDIT_SUID: 665 case AUDIT_FSUID: 666 case AUDIT_LOGINUID: 667 case AUDIT_OBJ_UID: 668 if (!uid_eq(a->fields[i].uid, b->fields[i].uid)) 669 return 1; 670 break; 671 case AUDIT_GID: 672 case AUDIT_EGID: 673 case AUDIT_SGID: 674 case AUDIT_FSGID: 675 case AUDIT_OBJ_GID: 676 if (!gid_eq(a->fields[i].gid, b->fields[i].gid)) 677 return 1; 678 break; 679 default: 680 if (a->fields[i].val != b->fields[i].val) 681 return 1; 682 } 683 } 684 685 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 686 if (a->mask[i] != b->mask[i]) 687 return 1; 688 689 return 0; 690 } 691 692 /* Duplicate LSM field information. The lsm_rule is opaque, so must be 693 * re-initialized. */ 694 static inline int audit_dupe_lsm_field(struct audit_field *df, 695 struct audit_field *sf) 696 { 697 int ret = 0; 698 char *lsm_str; 699 700 /* our own copy of lsm_str */ 701 lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL); 702 if (unlikely(!lsm_str)) 703 return -ENOMEM; 704 df->lsm_str = lsm_str; 705 706 /* our own (refreshed) copy of lsm_rule */ 707 ret = security_audit_rule_init(df->type, df->op, df->lsm_str, 708 (void **)&df->lsm_rule); 709 /* Keep currently invalid fields around in case they 710 * become valid after a policy reload. */ 711 if (ret == -EINVAL) { 712 printk(KERN_WARNING "audit rule for LSM \'%s\' is " 713 "invalid\n", df->lsm_str); 714 ret = 0; 715 } 716 717 return ret; 718 } 719 720 /* Duplicate an audit rule. This will be a deep copy with the exception 721 * of the watch - that pointer is carried over. The LSM specific fields 722 * will be updated in the copy. The point is to be able to replace the old 723 * rule with the new rule in the filterlist, then free the old rule. 724 * The rlist element is undefined; list manipulations are handled apart from 725 * the initial copy. */ 726 struct audit_entry *audit_dupe_rule(struct audit_krule *old) 727 { 728 u32 fcount = old->field_count; 729 struct audit_entry *entry; 730 struct audit_krule *new; 731 char *fk; 732 int i, err = 0; 733 734 entry = audit_init_entry(fcount); 735 if (unlikely(!entry)) 736 return ERR_PTR(-ENOMEM); 737 738 new = &entry->rule; 739 new->vers_ops = old->vers_ops; 740 new->flags = old->flags; 741 new->listnr = old->listnr; 742 new->action = old->action; 743 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) 744 new->mask[i] = old->mask[i]; 745 new->prio = old->prio; 746 new->buflen = old->buflen; 747 new->inode_f = old->inode_f; 748 new->field_count = old->field_count; 749 750 /* 751 * note that we are OK with not refcounting here; audit_match_tree() 752 * never dereferences tree and we can't get false positives there 753 * since we'd have to have rule gone from the list *and* removed 754 * before the chunks found by lookup had been allocated, i.e. before 755 * the beginning of list scan. 756 */ 757 new->tree = old->tree; 758 memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); 759 760 /* deep copy this information, updating the lsm_rule fields, because 761 * the originals will all be freed when the old rule is freed. */ 762 for (i = 0; i < fcount; i++) { 763 switch (new->fields[i].type) { 764 case AUDIT_SUBJ_USER: 765 case AUDIT_SUBJ_ROLE: 766 case AUDIT_SUBJ_TYPE: 767 case AUDIT_SUBJ_SEN: 768 case AUDIT_SUBJ_CLR: 769 case AUDIT_OBJ_USER: 770 case AUDIT_OBJ_ROLE: 771 case AUDIT_OBJ_TYPE: 772 case AUDIT_OBJ_LEV_LOW: 773 case AUDIT_OBJ_LEV_HIGH: 774 err = audit_dupe_lsm_field(&new->fields[i], 775 &old->fields[i]); 776 break; 777 case AUDIT_FILTERKEY: 778 fk = kstrdup(old->filterkey, GFP_KERNEL); 779 if (unlikely(!fk)) 780 err = -ENOMEM; 781 else 782 new->filterkey = fk; 783 } 784 if (err) { 785 audit_free_rule(entry); 786 return ERR_PTR(err); 787 } 788 } 789 790 if (old->watch) { 791 audit_get_watch(old->watch); 792 new->watch = old->watch; 793 } 794 795 return entry; 796 } 797 798 /* Find an existing audit rule. 799 * Caller must hold audit_filter_mutex to prevent stale rule data. */ 800 static struct audit_entry *audit_find_rule(struct audit_entry *entry, 801 struct list_head **p) 802 { 803 struct audit_entry *e, *found = NULL; 804 struct list_head *list; 805 int h; 806 807 if (entry->rule.inode_f) { 808 h = audit_hash_ino(entry->rule.inode_f->val); 809 *p = list = &audit_inode_hash[h]; 810 } else if (entry->rule.watch) { 811 /* we don't know the inode number, so must walk entire hash */ 812 for (h = 0; h < AUDIT_INODE_BUCKETS; h++) { 813 list = &audit_inode_hash[h]; 814 list_for_each_entry(e, list, list) 815 if (!audit_compare_rule(&entry->rule, &e->rule)) { 816 found = e; 817 goto out; 818 } 819 } 820 goto out; 821 } else { 822 *p = list = &audit_filter_list[entry->rule.listnr]; 823 } 824 825 list_for_each_entry(e, list, list) 826 if (!audit_compare_rule(&entry->rule, &e->rule)) { 827 found = e; 828 goto out; 829 } 830 831 out: 832 return found; 833 } 834 835 static u64 prio_low = ~0ULL/2; 836 static u64 prio_high = ~0ULL/2 - 1; 837 838 /* Add rule to given filterlist if not a duplicate. */ 839 static inline int audit_add_rule(struct audit_entry *entry) 840 { 841 struct audit_entry *e; 842 struct audit_watch *watch = entry->rule.watch; 843 struct audit_tree *tree = entry->rule.tree; 844 struct list_head *list; 845 int err; 846 #ifdef CONFIG_AUDITSYSCALL 847 int dont_count = 0; 848 849 /* If either of these, don't count towards total */ 850 if (entry->rule.listnr == AUDIT_FILTER_USER || 851 entry->rule.listnr == AUDIT_FILTER_TYPE) 852 dont_count = 1; 853 #endif 854 855 mutex_lock(&audit_filter_mutex); 856 e = audit_find_rule(entry, &list); 857 if (e) { 858 mutex_unlock(&audit_filter_mutex); 859 err = -EEXIST; 860 /* normally audit_add_tree_rule() will free it on failure */ 861 if (tree) 862 audit_put_tree(tree); 863 goto error; 864 } 865 866 if (watch) { 867 /* audit_filter_mutex is dropped and re-taken during this call */ 868 err = audit_add_watch(&entry->rule, &list); 869 if (err) { 870 mutex_unlock(&audit_filter_mutex); 871 /* 872 * normally audit_add_tree_rule() will free it 873 * on failure 874 */ 875 if (tree) 876 audit_put_tree(tree); 877 goto error; 878 } 879 } 880 if (tree) { 881 err = audit_add_tree_rule(&entry->rule); 882 if (err) { 883 mutex_unlock(&audit_filter_mutex); 884 goto error; 885 } 886 } 887 888 entry->rule.prio = ~0ULL; 889 if (entry->rule.listnr == AUDIT_FILTER_EXIT) { 890 if (entry->rule.flags & AUDIT_FILTER_PREPEND) 891 entry->rule.prio = ++prio_high; 892 else 893 entry->rule.prio = --prio_low; 894 } 895 896 if (entry->rule.flags & AUDIT_FILTER_PREPEND) { 897 list_add(&entry->rule.list, 898 &audit_rules_list[entry->rule.listnr]); 899 list_add_rcu(&entry->list, list); 900 entry->rule.flags &= ~AUDIT_FILTER_PREPEND; 901 } else { 902 list_add_tail(&entry->rule.list, 903 &audit_rules_list[entry->rule.listnr]); 904 list_add_tail_rcu(&entry->list, list); 905 } 906 #ifdef CONFIG_AUDITSYSCALL 907 if (!dont_count) 908 audit_n_rules++; 909 910 if (!audit_match_signal(entry)) 911 audit_signals++; 912 #endif 913 mutex_unlock(&audit_filter_mutex); 914 915 return 0; 916 917 error: 918 if (watch) 919 audit_put_watch(watch); /* tmp watch, matches initial get */ 920 return err; 921 } 922 923 /* Remove an existing rule from filterlist. */ 924 static inline int audit_del_rule(struct audit_entry *entry) 925 { 926 struct audit_entry *e; 927 struct audit_watch *watch = entry->rule.watch; 928 struct audit_tree *tree = entry->rule.tree; 929 struct list_head *list; 930 int ret = 0; 931 #ifdef CONFIG_AUDITSYSCALL 932 int dont_count = 0; 933 934 /* If either of these, don't count towards total */ 935 if (entry->rule.listnr == AUDIT_FILTER_USER || 936 entry->rule.listnr == AUDIT_FILTER_TYPE) 937 dont_count = 1; 938 #endif 939 940 mutex_lock(&audit_filter_mutex); 941 e = audit_find_rule(entry, &list); 942 if (!e) { 943 mutex_unlock(&audit_filter_mutex); 944 ret = -ENOENT; 945 goto out; 946 } 947 948 if (e->rule.watch) 949 audit_remove_watch_rule(&e->rule); 950 951 if (e->rule.tree) 952 audit_remove_tree_rule(&e->rule); 953 954 list_del_rcu(&e->list); 955 list_del(&e->rule.list); 956 call_rcu(&e->rcu, audit_free_rule_rcu); 957 958 #ifdef CONFIG_AUDITSYSCALL 959 if (!dont_count) 960 audit_n_rules--; 961 962 if (!audit_match_signal(entry)) 963 audit_signals--; 964 #endif 965 mutex_unlock(&audit_filter_mutex); 966 967 out: 968 if (watch) 969 audit_put_watch(watch); /* match initial get */ 970 if (tree) 971 audit_put_tree(tree); /* that's the temporary one */ 972 973 return ret; 974 } 975 976 /* List rules using struct audit_rule_data. */ 977 static void audit_list_rules(__u32 portid, int seq, struct sk_buff_head *q) 978 { 979 struct sk_buff *skb; 980 struct audit_krule *r; 981 int i; 982 983 /* This is a blocking read, so use audit_filter_mutex instead of rcu 984 * iterator to sync with list writers. */ 985 for (i=0; i<AUDIT_NR_FILTERS; i++) { 986 list_for_each_entry(r, &audit_rules_list[i], list) { 987 struct audit_rule_data *data; 988 989 data = audit_krule_to_data(r); 990 if (unlikely(!data)) 991 break; 992 skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES, 993 0, 1, data, 994 sizeof(*data) + data->buflen); 995 if (skb) 996 skb_queue_tail(q, skb); 997 kfree(data); 998 } 999 } 1000 skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); 1001 if (skb) 1002 skb_queue_tail(q, skb); 1003 } 1004 1005 /* Log rule additions and removals */ 1006 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res) 1007 { 1008 struct audit_buffer *ab; 1009 uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1010 unsigned int sessionid = audit_get_sessionid(current); 1011 1012 if (!audit_enabled) 1013 return; 1014 1015 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 1016 if (!ab) 1017 return; 1018 audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid); 1019 audit_log_task_context(ab); 1020 audit_log_format(ab, " op="); 1021 audit_log_string(ab, action); 1022 audit_log_key(ab, rule->filterkey); 1023 audit_log_format(ab, " list=%d res=%d", rule->listnr, res); 1024 audit_log_end(ab); 1025 } 1026 1027 /** 1028 * audit_rule_change - apply all rules to the specified message type 1029 * @type: audit message type 1030 * @portid: target port id for netlink audit messages 1031 * @seq: netlink audit message sequence (serial) number 1032 * @data: payload data 1033 * @datasz: size of payload data 1034 */ 1035 int audit_rule_change(int type, __u32 portid, int seq, void *data, 1036 size_t datasz) 1037 { 1038 int err = 0; 1039 struct audit_entry *entry; 1040 1041 switch (type) { 1042 case AUDIT_ADD_RULE: 1043 entry = audit_data_to_entry(data, datasz); 1044 if (IS_ERR(entry)) 1045 return PTR_ERR(entry); 1046 1047 err = audit_add_rule(entry); 1048 audit_log_rule_change("add rule", &entry->rule, !err); 1049 if (err) 1050 audit_free_rule(entry); 1051 break; 1052 case AUDIT_DEL_RULE: 1053 entry = audit_data_to_entry(data, datasz); 1054 if (IS_ERR(entry)) 1055 return PTR_ERR(entry); 1056 1057 err = audit_del_rule(entry); 1058 audit_log_rule_change("remove rule", &entry->rule, !err); 1059 audit_free_rule(entry); 1060 break; 1061 default: 1062 return -EINVAL; 1063 } 1064 1065 return err; 1066 } 1067 1068 /** 1069 * audit_list_rules_send - list the audit rules 1070 * @request_skb: skb of request we are replying to (used to target the reply) 1071 * @seq: netlink audit message sequence (serial) number 1072 */ 1073 int audit_list_rules_send(struct sk_buff *request_skb, int seq) 1074 { 1075 u32 portid = NETLINK_CB(request_skb).portid; 1076 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 1077 struct task_struct *tsk; 1078 struct audit_netlink_list *dest; 1079 int err = 0; 1080 1081 /* We can't just spew out the rules here because we might fill 1082 * the available socket buffer space and deadlock waiting for 1083 * auditctl to read from it... which isn't ever going to 1084 * happen if we're actually running in the context of auditctl 1085 * trying to _send_ the stuff */ 1086 1087 dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL); 1088 if (!dest) 1089 return -ENOMEM; 1090 dest->net = get_net(net); 1091 dest->portid = portid; 1092 skb_queue_head_init(&dest->q); 1093 1094 mutex_lock(&audit_filter_mutex); 1095 audit_list_rules(portid, seq, &dest->q); 1096 mutex_unlock(&audit_filter_mutex); 1097 1098 tsk = kthread_run(audit_send_list, dest, "audit_send_list"); 1099 if (IS_ERR(tsk)) { 1100 skb_queue_purge(&dest->q); 1101 kfree(dest); 1102 err = PTR_ERR(tsk); 1103 } 1104 1105 return err; 1106 } 1107 1108 int audit_comparator(u32 left, u32 op, u32 right) 1109 { 1110 switch (op) { 1111 case Audit_equal: 1112 return (left == right); 1113 case Audit_not_equal: 1114 return (left != right); 1115 case Audit_lt: 1116 return (left < right); 1117 case Audit_le: 1118 return (left <= right); 1119 case Audit_gt: 1120 return (left > right); 1121 case Audit_ge: 1122 return (left >= right); 1123 case Audit_bitmask: 1124 return (left & right); 1125 case Audit_bittest: 1126 return ((left & right) == right); 1127 default: 1128 BUG(); 1129 return 0; 1130 } 1131 } 1132 1133 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right) 1134 { 1135 switch (op) { 1136 case Audit_equal: 1137 return uid_eq(left, right); 1138 case Audit_not_equal: 1139 return !uid_eq(left, right); 1140 case Audit_lt: 1141 return uid_lt(left, right); 1142 case Audit_le: 1143 return uid_lte(left, right); 1144 case Audit_gt: 1145 return uid_gt(left, right); 1146 case Audit_ge: 1147 return uid_gte(left, right); 1148 case Audit_bitmask: 1149 case Audit_bittest: 1150 default: 1151 BUG(); 1152 return 0; 1153 } 1154 } 1155 1156 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right) 1157 { 1158 switch (op) { 1159 case Audit_equal: 1160 return gid_eq(left, right); 1161 case Audit_not_equal: 1162 return !gid_eq(left, right); 1163 case Audit_lt: 1164 return gid_lt(left, right); 1165 case Audit_le: 1166 return gid_lte(left, right); 1167 case Audit_gt: 1168 return gid_gt(left, right); 1169 case Audit_ge: 1170 return gid_gte(left, right); 1171 case Audit_bitmask: 1172 case Audit_bittest: 1173 default: 1174 BUG(); 1175 return 0; 1176 } 1177 } 1178 1179 /** 1180 * parent_len - find the length of the parent portion of a pathname 1181 * @path: pathname of which to determine length 1182 */ 1183 int parent_len(const char *path) 1184 { 1185 int plen; 1186 const char *p; 1187 1188 plen = strlen(path); 1189 1190 if (plen == 0) 1191 return plen; 1192 1193 /* disregard trailing slashes */ 1194 p = path + plen - 1; 1195 while ((*p == '/') && (p > path)) 1196 p--; 1197 1198 /* walk backward until we find the next slash or hit beginning */ 1199 while ((*p != '/') && (p > path)) 1200 p--; 1201 1202 /* did we find a slash? Then increment to include it in path */ 1203 if (*p == '/') 1204 p++; 1205 1206 return p - path; 1207 } 1208 1209 /** 1210 * audit_compare_dname_path - compare given dentry name with last component in 1211 * given path. Return of 0 indicates a match. 1212 * @dname: dentry name that we're comparing 1213 * @path: full pathname that we're comparing 1214 * @parentlen: length of the parent if known. Passing in AUDIT_NAME_FULL 1215 * here indicates that we must compute this value. 1216 */ 1217 int audit_compare_dname_path(const char *dname, const char *path, int parentlen) 1218 { 1219 int dlen, pathlen; 1220 const char *p; 1221 1222 dlen = strlen(dname); 1223 pathlen = strlen(path); 1224 if (pathlen < dlen) 1225 return 1; 1226 1227 parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen; 1228 if (pathlen - parentlen != dlen) 1229 return 1; 1230 1231 p = path + parentlen; 1232 1233 return strncmp(p, dname, dlen); 1234 } 1235 1236 static int audit_filter_user_rules(struct audit_krule *rule, int type, 1237 enum audit_state *state) 1238 { 1239 int i; 1240 1241 for (i = 0; i < rule->field_count; i++) { 1242 struct audit_field *f = &rule->fields[i]; 1243 int result = 0; 1244 u32 sid; 1245 1246 switch (f->type) { 1247 case AUDIT_PID: 1248 result = audit_comparator(task_pid_vnr(current), f->op, f->val); 1249 break; 1250 case AUDIT_UID: 1251 result = audit_uid_comparator(current_uid(), f->op, f->uid); 1252 break; 1253 case AUDIT_GID: 1254 result = audit_gid_comparator(current_gid(), f->op, f->gid); 1255 break; 1256 case AUDIT_LOGINUID: 1257 result = audit_uid_comparator(audit_get_loginuid(current), 1258 f->op, f->uid); 1259 break; 1260 case AUDIT_LOGINUID_SET: 1261 result = audit_comparator(audit_loginuid_set(current), 1262 f->op, f->val); 1263 break; 1264 case AUDIT_MSGTYPE: 1265 result = audit_comparator(type, f->op, f->val); 1266 break; 1267 case AUDIT_SUBJ_USER: 1268 case AUDIT_SUBJ_ROLE: 1269 case AUDIT_SUBJ_TYPE: 1270 case AUDIT_SUBJ_SEN: 1271 case AUDIT_SUBJ_CLR: 1272 if (f->lsm_rule) { 1273 security_task_getsecid(current, &sid); 1274 result = security_audit_rule_match(sid, 1275 f->type, 1276 f->op, 1277 f->lsm_rule, 1278 NULL); 1279 } 1280 break; 1281 } 1282 1283 if (!result) 1284 return 0; 1285 } 1286 switch (rule->action) { 1287 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 1288 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 1289 } 1290 return 1; 1291 } 1292 1293 int audit_filter_user(int type) 1294 { 1295 enum audit_state state = AUDIT_DISABLED; 1296 struct audit_entry *e; 1297 int rc, ret; 1298 1299 ret = 1; /* Audit by default */ 1300 1301 rcu_read_lock(); 1302 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { 1303 rc = audit_filter_user_rules(&e->rule, type, &state); 1304 if (rc) { 1305 if (rc > 0 && state == AUDIT_DISABLED) 1306 ret = 0; 1307 break; 1308 } 1309 } 1310 rcu_read_unlock(); 1311 1312 return ret; 1313 } 1314 1315 int audit_filter_type(int type) 1316 { 1317 struct audit_entry *e; 1318 int result = 0; 1319 1320 rcu_read_lock(); 1321 if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE])) 1322 goto unlock_and_return; 1323 1324 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE], 1325 list) { 1326 int i; 1327 for (i = 0; i < e->rule.field_count; i++) { 1328 struct audit_field *f = &e->rule.fields[i]; 1329 if (f->type == AUDIT_MSGTYPE) { 1330 result = audit_comparator(type, f->op, f->val); 1331 if (!result) 1332 break; 1333 } 1334 } 1335 if (result) 1336 goto unlock_and_return; 1337 } 1338 unlock_and_return: 1339 rcu_read_unlock(); 1340 return result; 1341 } 1342 1343 static int update_lsm_rule(struct audit_krule *r) 1344 { 1345 struct audit_entry *entry = container_of(r, struct audit_entry, rule); 1346 struct audit_entry *nentry; 1347 int err = 0; 1348 1349 if (!security_audit_rule_known(r)) 1350 return 0; 1351 1352 nentry = audit_dupe_rule(r); 1353 if (IS_ERR(nentry)) { 1354 /* save the first error encountered for the 1355 * return value */ 1356 err = PTR_ERR(nentry); 1357 audit_panic("error updating LSM filters"); 1358 if (r->watch) 1359 list_del(&r->rlist); 1360 list_del_rcu(&entry->list); 1361 list_del(&r->list); 1362 } else { 1363 if (r->watch || r->tree) 1364 list_replace_init(&r->rlist, &nentry->rule.rlist); 1365 list_replace_rcu(&entry->list, &nentry->list); 1366 list_replace(&r->list, &nentry->rule.list); 1367 } 1368 call_rcu(&entry->rcu, audit_free_rule_rcu); 1369 1370 return err; 1371 } 1372 1373 /* This function will re-initialize the lsm_rule field of all applicable rules. 1374 * It will traverse the filter lists serarching for rules that contain LSM 1375 * specific filter fields. When such a rule is found, it is copied, the 1376 * LSM field is re-initialized, and the old rule is replaced with the 1377 * updated rule. */ 1378 int audit_update_lsm_rules(void) 1379 { 1380 struct audit_krule *r, *n; 1381 int i, err = 0; 1382 1383 /* audit_filter_mutex synchronizes the writers */ 1384 mutex_lock(&audit_filter_mutex); 1385 1386 for (i = 0; i < AUDIT_NR_FILTERS; i++) { 1387 list_for_each_entry_safe(r, n, &audit_rules_list[i], list) { 1388 int res = update_lsm_rule(r); 1389 if (!err) 1390 err = res; 1391 } 1392 } 1393 mutex_unlock(&audit_filter_mutex); 1394 1395 return err; 1396 } 1397