xref: /linux/kernel/auditfilter.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/audit.h>
24 #include <linux/kthread.h>
25 #include <linux/mutex.h>
26 #include <linux/fs.h>
27 #include <linux/namei.h>
28 #include <linux/netlink.h>
29 #include <linux/sched.h>
30 #include <linux/inotify.h>
31 #include <linux/selinux.h>
32 #include "audit.h"
33 
34 /*
35  * Locking model:
36  *
37  * audit_filter_mutex:
38  * 		Synchronizes writes and blocking reads of audit's filterlist
39  * 		data.  Rcu is used to traverse the filterlist and access
40  * 		contents of structs audit_entry, audit_watch and opaque
41  * 		selinux rules during filtering.  If modified, these structures
42  * 		must be copied and replace their counterparts in the filterlist.
43  * 		An audit_parent struct is not accessed during filtering, so may
44  * 		be written directly provided audit_filter_mutex is held.
45  */
46 
47 /*
48  * Reference counting:
49  *
50  * audit_parent: lifetime is from audit_init_parent() to receipt of an IN_IGNORED
51  * 	event.  Each audit_watch holds a reference to its associated parent.
52  *
53  * audit_watch: if added to lists, lifetime is from audit_init_watch() to
54  * 	audit_remove_watch().  Additionally, an audit_watch may exist
55  * 	temporarily to assist in searching existing filter data.  Each
56  * 	audit_krule holds a reference to its associated watch.
57  */
58 
59 struct audit_parent {
60 	struct list_head	ilist;	/* entry in inotify registration list */
61 	struct list_head	watches; /* associated watches */
62 	struct inotify_watch	wdata;	/* inotify watch data */
63 	unsigned		flags;	/* status flags */
64 };
65 
66 /*
67  * audit_parent status flags:
68  *
69  * AUDIT_PARENT_INVALID - set anytime rules/watches are auto-removed due to
70  * a filesystem event to ensure we're adding audit watches to a valid parent.
71  * Technically not needed for IN_DELETE_SELF or IN_UNMOUNT events, as we cannot
72  * receive them while we have nameidata, but must be used for IN_MOVE_SELF which
73  * we can receive while holding nameidata.
74  */
75 #define AUDIT_PARENT_INVALID	0x001
76 
77 /* Audit filter lists, defined in <linux/audit.h> */
78 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
79 	LIST_HEAD_INIT(audit_filter_list[0]),
80 	LIST_HEAD_INIT(audit_filter_list[1]),
81 	LIST_HEAD_INIT(audit_filter_list[2]),
82 	LIST_HEAD_INIT(audit_filter_list[3]),
83 	LIST_HEAD_INIT(audit_filter_list[4]),
84 	LIST_HEAD_INIT(audit_filter_list[5]),
85 #if AUDIT_NR_FILTERS != 6
86 #error Fix audit_filter_list initialiser
87 #endif
88 };
89 
90 static DEFINE_MUTEX(audit_filter_mutex);
91 
92 /* Inotify handle */
93 extern struct inotify_handle *audit_ih;
94 
95 /* Inotify events we care about. */
96 #define AUDIT_IN_WATCH IN_MOVE|IN_CREATE|IN_DELETE|IN_DELETE_SELF|IN_MOVE_SELF
97 
98 void audit_free_parent(struct inotify_watch *i_watch)
99 {
100 	struct audit_parent *parent;
101 
102 	parent = container_of(i_watch, struct audit_parent, wdata);
103 	WARN_ON(!list_empty(&parent->watches));
104 	kfree(parent);
105 }
106 
107 static inline void audit_get_watch(struct audit_watch *watch)
108 {
109 	atomic_inc(&watch->count);
110 }
111 
112 static void audit_put_watch(struct audit_watch *watch)
113 {
114 	if (atomic_dec_and_test(&watch->count)) {
115 		WARN_ON(watch->parent);
116 		WARN_ON(!list_empty(&watch->rules));
117 		kfree(watch->path);
118 		kfree(watch);
119 	}
120 }
121 
122 static void audit_remove_watch(struct audit_watch *watch)
123 {
124 	list_del(&watch->wlist);
125 	put_inotify_watch(&watch->parent->wdata);
126 	watch->parent = NULL;
127 	audit_put_watch(watch); /* match initial get */
128 }
129 
130 static inline void audit_free_rule(struct audit_entry *e)
131 {
132 	int i;
133 
134 	/* some rules don't have associated watches */
135 	if (e->rule.watch)
136 		audit_put_watch(e->rule.watch);
137 	if (e->rule.fields)
138 		for (i = 0; i < e->rule.field_count; i++) {
139 			struct audit_field *f = &e->rule.fields[i];
140 			kfree(f->se_str);
141 			selinux_audit_rule_free(f->se_rule);
142 		}
143 	kfree(e->rule.fields);
144 	kfree(e->rule.filterkey);
145 	kfree(e);
146 }
147 
148 static inline void audit_free_rule_rcu(struct rcu_head *head)
149 {
150 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
151 	audit_free_rule(e);
152 }
153 
154 /* Initialize a parent watch entry. */
155 static struct audit_parent *audit_init_parent(struct nameidata *ndp)
156 {
157 	struct audit_parent *parent;
158 	s32 wd;
159 
160 	parent = kzalloc(sizeof(*parent), GFP_KERNEL);
161 	if (unlikely(!parent))
162 		return ERR_PTR(-ENOMEM);
163 
164 	INIT_LIST_HEAD(&parent->watches);
165 	parent->flags = 0;
166 
167 	inotify_init_watch(&parent->wdata);
168 	/* grab a ref so inotify watch hangs around until we take audit_filter_mutex */
169 	get_inotify_watch(&parent->wdata);
170 	wd = inotify_add_watch(audit_ih, &parent->wdata, ndp->dentry->d_inode,
171 			       AUDIT_IN_WATCH);
172 	if (wd < 0) {
173 		audit_free_parent(&parent->wdata);
174 		return ERR_PTR(wd);
175 	}
176 
177 	return parent;
178 }
179 
180 /* Initialize a watch entry. */
181 static struct audit_watch *audit_init_watch(char *path)
182 {
183 	struct audit_watch *watch;
184 
185 	watch = kzalloc(sizeof(*watch), GFP_KERNEL);
186 	if (unlikely(!watch))
187 		return ERR_PTR(-ENOMEM);
188 
189 	INIT_LIST_HEAD(&watch->rules);
190 	atomic_set(&watch->count, 1);
191 	watch->path = path;
192 	watch->dev = (dev_t)-1;
193 	watch->ino = (unsigned long)-1;
194 
195 	return watch;
196 }
197 
198 /* Initialize an audit filterlist entry. */
199 static inline struct audit_entry *audit_init_entry(u32 field_count)
200 {
201 	struct audit_entry *entry;
202 	struct audit_field *fields;
203 
204 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
205 	if (unlikely(!entry))
206 		return NULL;
207 
208 	fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
209 	if (unlikely(!fields)) {
210 		kfree(entry);
211 		return NULL;
212 	}
213 	entry->rule.fields = fields;
214 
215 	return entry;
216 }
217 
218 /* Unpack a filter field's string representation from user-space
219  * buffer. */
220 static char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
221 {
222 	char *str;
223 
224 	if (!*bufp || (len == 0) || (len > *remain))
225 		return ERR_PTR(-EINVAL);
226 
227 	/* Of the currently implemented string fields, PATH_MAX
228 	 * defines the longest valid length.
229 	 */
230 	if (len > PATH_MAX)
231 		return ERR_PTR(-ENAMETOOLONG);
232 
233 	str = kmalloc(len + 1, GFP_KERNEL);
234 	if (unlikely(!str))
235 		return ERR_PTR(-ENOMEM);
236 
237 	memcpy(str, *bufp, len);
238 	str[len] = 0;
239 	*bufp += len;
240 	*remain -= len;
241 
242 	return str;
243 }
244 
245 /* Translate an inode field to kernel respresentation. */
246 static inline int audit_to_inode(struct audit_krule *krule,
247 				 struct audit_field *f)
248 {
249 	if (krule->listnr != AUDIT_FILTER_EXIT ||
250 	    krule->watch || krule->inode_f)
251 		return -EINVAL;
252 
253 	krule->inode_f = f;
254 	return 0;
255 }
256 
257 /* Translate a watch string to kernel respresentation. */
258 static int audit_to_watch(struct audit_krule *krule, char *path, int len,
259 			  u32 op)
260 {
261 	struct audit_watch *watch;
262 
263 	if (!audit_ih)
264 		return -EOPNOTSUPP;
265 
266 	if (path[0] != '/' || path[len-1] == '/' ||
267 	    krule->listnr != AUDIT_FILTER_EXIT ||
268 	    op & ~AUDIT_EQUAL ||
269 	    krule->inode_f || krule->watch) /* 1 inode # per rule, for hash */
270 		return -EINVAL;
271 
272 	watch = audit_init_watch(path);
273 	if (unlikely(IS_ERR(watch)))
274 		return PTR_ERR(watch);
275 
276 	audit_get_watch(watch);
277 	krule->watch = watch;
278 
279 	return 0;
280 }
281 
282 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
283 
284 int __init audit_register_class(int class, unsigned *list)
285 {
286 	__u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
287 	if (!p)
288 		return -ENOMEM;
289 	while (*list != ~0U) {
290 		unsigned n = *list++;
291 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
292 			kfree(p);
293 			return -EINVAL;
294 		}
295 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
296 	}
297 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
298 		kfree(p);
299 		return -EINVAL;
300 	}
301 	classes[class] = p;
302 	return 0;
303 }
304 
305 int audit_match_class(int class, unsigned syscall)
306 {
307 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * sizeof(__u32)))
308 		return 0;
309 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
310 		return 0;
311 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
312 }
313 
314 #ifdef CONFIG_AUDITSYSCALL
315 static inline int audit_match_class_bits(int class, u32 *mask)
316 {
317 	int i;
318 
319 	if (classes[class]) {
320 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
321 			if (mask[i] & classes[class][i])
322 				return 0;
323 	}
324 	return 1;
325 }
326 
327 static int audit_match_signal(struct audit_entry *entry)
328 {
329 	struct audit_field *arch = entry->rule.arch_f;
330 
331 	if (!arch) {
332 		/* When arch is unspecified, we must check both masks on biarch
333 		 * as syscall number alone is ambiguous. */
334 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
335 					       entry->rule.mask) &&
336 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
337 					       entry->rule.mask));
338 	}
339 
340 	switch(audit_classify_arch(arch->val)) {
341 	case 0: /* native */
342 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
343 					       entry->rule.mask));
344 	case 1: /* 32bit on biarch */
345 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
346 					       entry->rule.mask));
347 	default:
348 		return 1;
349 	}
350 }
351 #endif
352 
353 /* Common user-space to kernel rule translation. */
354 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
355 {
356 	unsigned listnr;
357 	struct audit_entry *entry;
358 	int i, err;
359 
360 	err = -EINVAL;
361 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
362 	switch(listnr) {
363 	default:
364 		goto exit_err;
365 	case AUDIT_FILTER_USER:
366 	case AUDIT_FILTER_TYPE:
367 #ifdef CONFIG_AUDITSYSCALL
368 	case AUDIT_FILTER_ENTRY:
369 	case AUDIT_FILTER_EXIT:
370 	case AUDIT_FILTER_TASK:
371 #endif
372 		;
373 	}
374 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
375 		printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
376 		goto exit_err;
377 	}
378 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
379 		goto exit_err;
380 	if (rule->field_count > AUDIT_MAX_FIELDS)
381 		goto exit_err;
382 
383 	err = -ENOMEM;
384 	entry = audit_init_entry(rule->field_count);
385 	if (!entry)
386 		goto exit_err;
387 
388 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
389 	entry->rule.listnr = listnr;
390 	entry->rule.action = rule->action;
391 	entry->rule.field_count = rule->field_count;
392 
393 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
394 		entry->rule.mask[i] = rule->mask[i];
395 
396 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
397 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
398 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
399 		__u32 *class;
400 
401 		if (!(*p & AUDIT_BIT(bit)))
402 			continue;
403 		*p &= ~AUDIT_BIT(bit);
404 		class = classes[i];
405 		if (class) {
406 			int j;
407 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
408 				entry->rule.mask[j] |= class[j];
409 		}
410 	}
411 
412 	return entry;
413 
414 exit_err:
415 	return ERR_PTR(err);
416 }
417 
418 /* Translate struct audit_rule to kernel's rule respresentation.
419  * Exists for backward compatibility with userspace. */
420 static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule)
421 {
422 	struct audit_entry *entry;
423 	struct audit_field *f;
424 	int err = 0;
425 	int i;
426 
427 	entry = audit_to_entry_common(rule);
428 	if (IS_ERR(entry))
429 		goto exit_nofree;
430 
431 	for (i = 0; i < rule->field_count; i++) {
432 		struct audit_field *f = &entry->rule.fields[i];
433 
434 		f->op = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS);
435 		f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS);
436 		f->val = rule->values[i];
437 
438 		err = -EINVAL;
439 		switch(f->type) {
440 		default:
441 			goto exit_free;
442 		case AUDIT_PID:
443 		case AUDIT_UID:
444 		case AUDIT_EUID:
445 		case AUDIT_SUID:
446 		case AUDIT_FSUID:
447 		case AUDIT_GID:
448 		case AUDIT_EGID:
449 		case AUDIT_SGID:
450 		case AUDIT_FSGID:
451 		case AUDIT_LOGINUID:
452 		case AUDIT_PERS:
453 		case AUDIT_MSGTYPE:
454 		case AUDIT_PPID:
455 		case AUDIT_DEVMAJOR:
456 		case AUDIT_DEVMINOR:
457 		case AUDIT_EXIT:
458 		case AUDIT_SUCCESS:
459 		case AUDIT_ARG0:
460 		case AUDIT_ARG1:
461 		case AUDIT_ARG2:
462 		case AUDIT_ARG3:
463 			break;
464 		/* arch is only allowed to be = or != */
465 		case AUDIT_ARCH:
466 			if ((f->op != AUDIT_NOT_EQUAL) && (f->op != AUDIT_EQUAL)
467 					&& (f->op != AUDIT_NEGATE) && (f->op)) {
468 				err = -EINVAL;
469 				goto exit_free;
470 			}
471 			entry->rule.arch_f = f;
472 			break;
473 		case AUDIT_PERM:
474 			if (f->val & ~15)
475 				goto exit_free;
476 			break;
477 		case AUDIT_INODE:
478 			err = audit_to_inode(&entry->rule, f);
479 			if (err)
480 				goto exit_free;
481 			break;
482 		}
483 
484 		entry->rule.vers_ops = (f->op & AUDIT_OPERATORS) ? 2 : 1;
485 
486 		/* Support for legacy operators where
487 		 * AUDIT_NEGATE bit signifies != and otherwise assumes == */
488 		if (f->op & AUDIT_NEGATE)
489 			f->op = AUDIT_NOT_EQUAL;
490 		else if (!f->op)
491 			f->op = AUDIT_EQUAL;
492 		else if (f->op == AUDIT_OPERATORS) {
493 			err = -EINVAL;
494 			goto exit_free;
495 		}
496 	}
497 
498 	f = entry->rule.inode_f;
499 	if (f) {
500 		switch(f->op) {
501 		case AUDIT_NOT_EQUAL:
502 			entry->rule.inode_f = NULL;
503 		case AUDIT_EQUAL:
504 			break;
505 		default:
506 			err = -EINVAL;
507 			goto exit_free;
508 		}
509 	}
510 
511 exit_nofree:
512 	return entry;
513 
514 exit_free:
515 	audit_free_rule(entry);
516 	return ERR_PTR(err);
517 }
518 
519 /* Translate struct audit_rule_data to kernel's rule respresentation. */
520 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
521 					       size_t datasz)
522 {
523 	int err = 0;
524 	struct audit_entry *entry;
525 	struct audit_field *f;
526 	void *bufp;
527 	size_t remain = datasz - sizeof(struct audit_rule_data);
528 	int i;
529 	char *str;
530 
531 	entry = audit_to_entry_common((struct audit_rule *)data);
532 	if (IS_ERR(entry))
533 		goto exit_nofree;
534 
535 	bufp = data->buf;
536 	entry->rule.vers_ops = 2;
537 	for (i = 0; i < data->field_count; i++) {
538 		struct audit_field *f = &entry->rule.fields[i];
539 
540 		err = -EINVAL;
541 		if (!(data->fieldflags[i] & AUDIT_OPERATORS) ||
542 		    data->fieldflags[i] & ~AUDIT_OPERATORS)
543 			goto exit_free;
544 
545 		f->op = data->fieldflags[i] & AUDIT_OPERATORS;
546 		f->type = data->fields[i];
547 		f->val = data->values[i];
548 		f->se_str = NULL;
549 		f->se_rule = NULL;
550 		switch(f->type) {
551 		case AUDIT_PID:
552 		case AUDIT_UID:
553 		case AUDIT_EUID:
554 		case AUDIT_SUID:
555 		case AUDIT_FSUID:
556 		case AUDIT_GID:
557 		case AUDIT_EGID:
558 		case AUDIT_SGID:
559 		case AUDIT_FSGID:
560 		case AUDIT_LOGINUID:
561 		case AUDIT_PERS:
562 		case AUDIT_MSGTYPE:
563 		case AUDIT_PPID:
564 		case AUDIT_DEVMAJOR:
565 		case AUDIT_DEVMINOR:
566 		case AUDIT_EXIT:
567 		case AUDIT_SUCCESS:
568 		case AUDIT_ARG0:
569 		case AUDIT_ARG1:
570 		case AUDIT_ARG2:
571 		case AUDIT_ARG3:
572 			break;
573 		case AUDIT_ARCH:
574 			entry->rule.arch_f = f;
575 			break;
576 		case AUDIT_SUBJ_USER:
577 		case AUDIT_SUBJ_ROLE:
578 		case AUDIT_SUBJ_TYPE:
579 		case AUDIT_SUBJ_SEN:
580 		case AUDIT_SUBJ_CLR:
581 		case AUDIT_OBJ_USER:
582 		case AUDIT_OBJ_ROLE:
583 		case AUDIT_OBJ_TYPE:
584 		case AUDIT_OBJ_LEV_LOW:
585 		case AUDIT_OBJ_LEV_HIGH:
586 			str = audit_unpack_string(&bufp, &remain, f->val);
587 			if (IS_ERR(str))
588 				goto exit_free;
589 			entry->rule.buflen += f->val;
590 
591 			err = selinux_audit_rule_init(f->type, f->op, str,
592 						      &f->se_rule);
593 			/* Keep currently invalid fields around in case they
594 			 * become valid after a policy reload. */
595 			if (err == -EINVAL) {
596 				printk(KERN_WARNING "audit rule for selinux "
597 				       "\'%s\' is invalid\n",  str);
598 				err = 0;
599 			}
600 			if (err) {
601 				kfree(str);
602 				goto exit_free;
603 			} else
604 				f->se_str = str;
605 			break;
606 		case AUDIT_WATCH:
607 			str = audit_unpack_string(&bufp, &remain, f->val);
608 			if (IS_ERR(str))
609 				goto exit_free;
610 			entry->rule.buflen += f->val;
611 
612 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
613 			if (err) {
614 				kfree(str);
615 				goto exit_free;
616 			}
617 			break;
618 		case AUDIT_INODE:
619 			err = audit_to_inode(&entry->rule, f);
620 			if (err)
621 				goto exit_free;
622 			break;
623 		case AUDIT_FILTERKEY:
624 			err = -EINVAL;
625 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
626 				goto exit_free;
627 			str = audit_unpack_string(&bufp, &remain, f->val);
628 			if (IS_ERR(str))
629 				goto exit_free;
630 			entry->rule.buflen += f->val;
631 			entry->rule.filterkey = str;
632 			break;
633 		case AUDIT_PERM:
634 			if (f->val & ~15)
635 				goto exit_free;
636 			break;
637 		default:
638 			goto exit_free;
639 		}
640 	}
641 
642 	f = entry->rule.inode_f;
643 	if (f) {
644 		switch(f->op) {
645 		case AUDIT_NOT_EQUAL:
646 			entry->rule.inode_f = NULL;
647 		case AUDIT_EQUAL:
648 			break;
649 		default:
650 			err = -EINVAL;
651 			goto exit_free;
652 		}
653 	}
654 
655 exit_nofree:
656 	return entry;
657 
658 exit_free:
659 	audit_free_rule(entry);
660 	return ERR_PTR(err);
661 }
662 
663 /* Pack a filter field's string representation into data block. */
664 static inline size_t audit_pack_string(void **bufp, char *str)
665 {
666 	size_t len = strlen(str);
667 
668 	memcpy(*bufp, str, len);
669 	*bufp += len;
670 
671 	return len;
672 }
673 
674 /* Translate kernel rule respresentation to struct audit_rule.
675  * Exists for backward compatibility with userspace. */
676 static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule)
677 {
678 	struct audit_rule *rule;
679 	int i;
680 
681 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
682 	if (unlikely(!rule))
683 		return NULL;
684 
685 	rule->flags = krule->flags | krule->listnr;
686 	rule->action = krule->action;
687 	rule->field_count = krule->field_count;
688 	for (i = 0; i < rule->field_count; i++) {
689 		rule->values[i] = krule->fields[i].val;
690 		rule->fields[i] = krule->fields[i].type;
691 
692 		if (krule->vers_ops == 1) {
693 			if (krule->fields[i].op & AUDIT_NOT_EQUAL)
694 				rule->fields[i] |= AUDIT_NEGATE;
695 		} else {
696 			rule->fields[i] |= krule->fields[i].op;
697 		}
698 	}
699 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i];
700 
701 	return rule;
702 }
703 
704 /* Translate kernel rule respresentation to struct audit_rule_data. */
705 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
706 {
707 	struct audit_rule_data *data;
708 	void *bufp;
709 	int i;
710 
711 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
712 	if (unlikely(!data))
713 		return NULL;
714 	memset(data, 0, sizeof(*data));
715 
716 	data->flags = krule->flags | krule->listnr;
717 	data->action = krule->action;
718 	data->field_count = krule->field_count;
719 	bufp = data->buf;
720 	for (i = 0; i < data->field_count; i++) {
721 		struct audit_field *f = &krule->fields[i];
722 
723 		data->fields[i] = f->type;
724 		data->fieldflags[i] = f->op;
725 		switch(f->type) {
726 		case AUDIT_SUBJ_USER:
727 		case AUDIT_SUBJ_ROLE:
728 		case AUDIT_SUBJ_TYPE:
729 		case AUDIT_SUBJ_SEN:
730 		case AUDIT_SUBJ_CLR:
731 		case AUDIT_OBJ_USER:
732 		case AUDIT_OBJ_ROLE:
733 		case AUDIT_OBJ_TYPE:
734 		case AUDIT_OBJ_LEV_LOW:
735 		case AUDIT_OBJ_LEV_HIGH:
736 			data->buflen += data->values[i] =
737 				audit_pack_string(&bufp, f->se_str);
738 			break;
739 		case AUDIT_WATCH:
740 			data->buflen += data->values[i] =
741 				audit_pack_string(&bufp, krule->watch->path);
742 			break;
743 		case AUDIT_FILTERKEY:
744 			data->buflen += data->values[i] =
745 				audit_pack_string(&bufp, krule->filterkey);
746 			break;
747 		default:
748 			data->values[i] = f->val;
749 		}
750 	}
751 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
752 
753 	return data;
754 }
755 
756 /* Compare two rules in kernel format.  Considered success if rules
757  * don't match. */
758 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
759 {
760 	int i;
761 
762 	if (a->flags != b->flags ||
763 	    a->listnr != b->listnr ||
764 	    a->action != b->action ||
765 	    a->field_count != b->field_count)
766 		return 1;
767 
768 	for (i = 0; i < a->field_count; i++) {
769 		if (a->fields[i].type != b->fields[i].type ||
770 		    a->fields[i].op != b->fields[i].op)
771 			return 1;
772 
773 		switch(a->fields[i].type) {
774 		case AUDIT_SUBJ_USER:
775 		case AUDIT_SUBJ_ROLE:
776 		case AUDIT_SUBJ_TYPE:
777 		case AUDIT_SUBJ_SEN:
778 		case AUDIT_SUBJ_CLR:
779 		case AUDIT_OBJ_USER:
780 		case AUDIT_OBJ_ROLE:
781 		case AUDIT_OBJ_TYPE:
782 		case AUDIT_OBJ_LEV_LOW:
783 		case AUDIT_OBJ_LEV_HIGH:
784 			if (strcmp(a->fields[i].se_str, b->fields[i].se_str))
785 				return 1;
786 			break;
787 		case AUDIT_WATCH:
788 			if (strcmp(a->watch->path, b->watch->path))
789 				return 1;
790 			break;
791 		case AUDIT_FILTERKEY:
792 			/* both filterkeys exist based on above type compare */
793 			if (strcmp(a->filterkey, b->filterkey))
794 				return 1;
795 			break;
796 		default:
797 			if (a->fields[i].val != b->fields[i].val)
798 				return 1;
799 		}
800 	}
801 
802 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
803 		if (a->mask[i] != b->mask[i])
804 			return 1;
805 
806 	return 0;
807 }
808 
809 /* Duplicate the given audit watch.  The new watch's rules list is initialized
810  * to an empty list and wlist is undefined. */
811 static struct audit_watch *audit_dupe_watch(struct audit_watch *old)
812 {
813 	char *path;
814 	struct audit_watch *new;
815 
816 	path = kstrdup(old->path, GFP_KERNEL);
817 	if (unlikely(!path))
818 		return ERR_PTR(-ENOMEM);
819 
820 	new = audit_init_watch(path);
821 	if (unlikely(IS_ERR(new))) {
822 		kfree(path);
823 		goto out;
824 	}
825 
826 	new->dev = old->dev;
827 	new->ino = old->ino;
828 	get_inotify_watch(&old->parent->wdata);
829 	new->parent = old->parent;
830 
831 out:
832 	return new;
833 }
834 
835 /* Duplicate selinux field information.  The se_rule is opaque, so must be
836  * re-initialized. */
837 static inline int audit_dupe_selinux_field(struct audit_field *df,
838 					   struct audit_field *sf)
839 {
840 	int ret = 0;
841 	char *se_str;
842 
843 	/* our own copy of se_str */
844 	se_str = kstrdup(sf->se_str, GFP_KERNEL);
845 	if (unlikely(!se_str))
846 		return -ENOMEM;
847 	df->se_str = se_str;
848 
849 	/* our own (refreshed) copy of se_rule */
850 	ret = selinux_audit_rule_init(df->type, df->op, df->se_str,
851 				      &df->se_rule);
852 	/* Keep currently invalid fields around in case they
853 	 * become valid after a policy reload. */
854 	if (ret == -EINVAL) {
855 		printk(KERN_WARNING "audit rule for selinux \'%s\' is "
856 		       "invalid\n", df->se_str);
857 		ret = 0;
858 	}
859 
860 	return ret;
861 }
862 
863 /* Duplicate an audit rule.  This will be a deep copy with the exception
864  * of the watch - that pointer is carried over.  The selinux specific fields
865  * will be updated in the copy.  The point is to be able to replace the old
866  * rule with the new rule in the filterlist, then free the old rule.
867  * The rlist element is undefined; list manipulations are handled apart from
868  * the initial copy. */
869 static struct audit_entry *audit_dupe_rule(struct audit_krule *old,
870 					   struct audit_watch *watch)
871 {
872 	u32 fcount = old->field_count;
873 	struct audit_entry *entry;
874 	struct audit_krule *new;
875 	char *fk;
876 	int i, err = 0;
877 
878 	entry = audit_init_entry(fcount);
879 	if (unlikely(!entry))
880 		return ERR_PTR(-ENOMEM);
881 
882 	new = &entry->rule;
883 	new->vers_ops = old->vers_ops;
884 	new->flags = old->flags;
885 	new->listnr = old->listnr;
886 	new->action = old->action;
887 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
888 		new->mask[i] = old->mask[i];
889 	new->buflen = old->buflen;
890 	new->inode_f = old->inode_f;
891 	new->watch = NULL;
892 	new->field_count = old->field_count;
893 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
894 
895 	/* deep copy this information, updating the se_rule fields, because
896 	 * the originals will all be freed when the old rule is freed. */
897 	for (i = 0; i < fcount; i++) {
898 		switch (new->fields[i].type) {
899 		case AUDIT_SUBJ_USER:
900 		case AUDIT_SUBJ_ROLE:
901 		case AUDIT_SUBJ_TYPE:
902 		case AUDIT_SUBJ_SEN:
903 		case AUDIT_SUBJ_CLR:
904 		case AUDIT_OBJ_USER:
905 		case AUDIT_OBJ_ROLE:
906 		case AUDIT_OBJ_TYPE:
907 		case AUDIT_OBJ_LEV_LOW:
908 		case AUDIT_OBJ_LEV_HIGH:
909 			err = audit_dupe_selinux_field(&new->fields[i],
910 						       &old->fields[i]);
911 			break;
912 		case AUDIT_FILTERKEY:
913 			fk = kstrdup(old->filterkey, GFP_KERNEL);
914 			if (unlikely(!fk))
915 				err = -ENOMEM;
916 			else
917 				new->filterkey = fk;
918 		}
919 		if (err) {
920 			audit_free_rule(entry);
921 			return ERR_PTR(err);
922 		}
923 	}
924 
925 	if (watch) {
926 		audit_get_watch(watch);
927 		new->watch = watch;
928 	}
929 
930 	return entry;
931 }
932 
933 /* Update inode info in audit rules based on filesystem event. */
934 static void audit_update_watch(struct audit_parent *parent,
935 			       const char *dname, dev_t dev,
936 			       unsigned long ino, unsigned invalidating)
937 {
938 	struct audit_watch *owatch, *nwatch, *nextw;
939 	struct audit_krule *r, *nextr;
940 	struct audit_entry *oentry, *nentry;
941 	struct audit_buffer *ab;
942 
943 	mutex_lock(&audit_filter_mutex);
944 	list_for_each_entry_safe(owatch, nextw, &parent->watches, wlist) {
945 		if (audit_compare_dname_path(dname, owatch->path, NULL))
946 			continue;
947 
948 		/* If the update involves invalidating rules, do the inode-based
949 		 * filtering now, so we don't omit records. */
950 		if (invalidating && current->audit_context &&
951 		    audit_filter_inodes(current, current->audit_context) == AUDIT_RECORD_CONTEXT)
952 			audit_set_auditable(current->audit_context);
953 
954 		nwatch = audit_dupe_watch(owatch);
955 		if (unlikely(IS_ERR(nwatch))) {
956 			mutex_unlock(&audit_filter_mutex);
957 			audit_panic("error updating watch, skipping");
958 			return;
959 		}
960 		nwatch->dev = dev;
961 		nwatch->ino = ino;
962 
963 		list_for_each_entry_safe(r, nextr, &owatch->rules, rlist) {
964 
965 			oentry = container_of(r, struct audit_entry, rule);
966 			list_del(&oentry->rule.rlist);
967 			list_del_rcu(&oentry->list);
968 
969 			nentry = audit_dupe_rule(&oentry->rule, nwatch);
970 			if (unlikely(IS_ERR(nentry)))
971 				audit_panic("error updating watch, removing");
972 			else {
973 				int h = audit_hash_ino((u32)ino);
974 				list_add(&nentry->rule.rlist, &nwatch->rules);
975 				list_add_rcu(&nentry->list, &audit_inode_hash[h]);
976 			}
977 
978 			call_rcu(&oentry->rcu, audit_free_rule_rcu);
979 		}
980 
981 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
982 		audit_log_format(ab, "op=updated rules specifying path=");
983 		audit_log_untrustedstring(ab, owatch->path);
984 		audit_log_format(ab, " with dev=%u ino=%lu\n", dev, ino);
985 		audit_log_format(ab, " list=%d res=1", r->listnr);
986 		audit_log_end(ab);
987 
988 		audit_remove_watch(owatch);
989 		goto add_watch_to_parent; /* event applies to a single watch */
990 	}
991 	mutex_unlock(&audit_filter_mutex);
992 	return;
993 
994 add_watch_to_parent:
995 	list_add(&nwatch->wlist, &parent->watches);
996 	mutex_unlock(&audit_filter_mutex);
997 	return;
998 }
999 
1000 /* Remove all watches & rules associated with a parent that is going away. */
1001 static void audit_remove_parent_watches(struct audit_parent *parent)
1002 {
1003 	struct audit_watch *w, *nextw;
1004 	struct audit_krule *r, *nextr;
1005 	struct audit_entry *e;
1006 	struct audit_buffer *ab;
1007 
1008 	mutex_lock(&audit_filter_mutex);
1009 	parent->flags |= AUDIT_PARENT_INVALID;
1010 	list_for_each_entry_safe(w, nextw, &parent->watches, wlist) {
1011 		list_for_each_entry_safe(r, nextr, &w->rules, rlist) {
1012 			e = container_of(r, struct audit_entry, rule);
1013 
1014 			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1015 			audit_log_format(ab, "op=remove rule path=");
1016 			audit_log_untrustedstring(ab, w->path);
1017 			if (r->filterkey) {
1018 				audit_log_format(ab, " key=");
1019 				audit_log_untrustedstring(ab, r->filterkey);
1020 			} else
1021 				audit_log_format(ab, " key=(null)");
1022 			audit_log_format(ab, " list=%d res=1", r->listnr);
1023 			audit_log_end(ab);
1024 
1025 			list_del(&r->rlist);
1026 			list_del_rcu(&e->list);
1027 			call_rcu(&e->rcu, audit_free_rule_rcu);
1028 		}
1029 		audit_remove_watch(w);
1030 	}
1031 	mutex_unlock(&audit_filter_mutex);
1032 }
1033 
1034 /* Unregister inotify watches for parents on in_list.
1035  * Generates an IN_IGNORED event. */
1036 static void audit_inotify_unregister(struct list_head *in_list)
1037 {
1038 	struct audit_parent *p, *n;
1039 
1040 	list_for_each_entry_safe(p, n, in_list, ilist) {
1041 		list_del(&p->ilist);
1042 		inotify_rm_watch(audit_ih, &p->wdata);
1043 		/* the put matching the get in audit_do_del_rule() */
1044 		put_inotify_watch(&p->wdata);
1045 	}
1046 }
1047 
1048 /* Find an existing audit rule.
1049  * Caller must hold audit_filter_mutex to prevent stale rule data. */
1050 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
1051 					   struct list_head *list)
1052 {
1053 	struct audit_entry *e, *found = NULL;
1054 	int h;
1055 
1056 	if (entry->rule.watch) {
1057 		/* we don't know the inode number, so must walk entire hash */
1058 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
1059 			list = &audit_inode_hash[h];
1060 			list_for_each_entry(e, list, list)
1061 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
1062 					found = e;
1063 					goto out;
1064 				}
1065 		}
1066 		goto out;
1067 	}
1068 
1069 	list_for_each_entry(e, list, list)
1070 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
1071 			found = e;
1072 			goto out;
1073 		}
1074 
1075 out:
1076 	return found;
1077 }
1078 
1079 /* Get path information necessary for adding watches. */
1080 static int audit_get_nd(char *path, struct nameidata **ndp,
1081 			struct nameidata **ndw)
1082 {
1083 	struct nameidata *ndparent, *ndwatch;
1084 	int err;
1085 
1086 	ndparent = kmalloc(sizeof(*ndparent), GFP_KERNEL);
1087 	if (unlikely(!ndparent))
1088 		return -ENOMEM;
1089 
1090 	ndwatch = kmalloc(sizeof(*ndwatch), GFP_KERNEL);
1091 	if (unlikely(!ndwatch)) {
1092 		kfree(ndparent);
1093 		return -ENOMEM;
1094 	}
1095 
1096 	err = path_lookup(path, LOOKUP_PARENT, ndparent);
1097 	if (err) {
1098 		kfree(ndparent);
1099 		kfree(ndwatch);
1100 		return err;
1101 	}
1102 
1103 	err = path_lookup(path, 0, ndwatch);
1104 	if (err) {
1105 		kfree(ndwatch);
1106 		ndwatch = NULL;
1107 	}
1108 
1109 	*ndp = ndparent;
1110 	*ndw = ndwatch;
1111 
1112 	return 0;
1113 }
1114 
1115 /* Release resources used for watch path information. */
1116 static void audit_put_nd(struct nameidata *ndp, struct nameidata *ndw)
1117 {
1118 	if (ndp) {
1119 		path_release(ndp);
1120 		kfree(ndp);
1121 	}
1122 	if (ndw) {
1123 		path_release(ndw);
1124 		kfree(ndw);
1125 	}
1126 }
1127 
1128 /* Associate the given rule with an existing parent inotify_watch.
1129  * Caller must hold audit_filter_mutex. */
1130 static void audit_add_to_parent(struct audit_krule *krule,
1131 				struct audit_parent *parent)
1132 {
1133 	struct audit_watch *w, *watch = krule->watch;
1134 	int watch_found = 0;
1135 
1136 	list_for_each_entry(w, &parent->watches, wlist) {
1137 		if (strcmp(watch->path, w->path))
1138 			continue;
1139 
1140 		watch_found = 1;
1141 
1142 		/* put krule's and initial refs to temporary watch */
1143 		audit_put_watch(watch);
1144 		audit_put_watch(watch);
1145 
1146 		audit_get_watch(w);
1147 		krule->watch = watch = w;
1148 		break;
1149 	}
1150 
1151 	if (!watch_found) {
1152 		get_inotify_watch(&parent->wdata);
1153 		watch->parent = parent;
1154 
1155 		list_add(&watch->wlist, &parent->watches);
1156 	}
1157 	list_add(&krule->rlist, &watch->rules);
1158 }
1159 
1160 /* Find a matching watch entry, or add this one.
1161  * Caller must hold audit_filter_mutex. */
1162 static int audit_add_watch(struct audit_krule *krule, struct nameidata *ndp,
1163 			   struct nameidata *ndw)
1164 {
1165 	struct audit_watch *watch = krule->watch;
1166 	struct inotify_watch *i_watch;
1167 	struct audit_parent *parent;
1168 	int ret = 0;
1169 
1170 	/* update watch filter fields */
1171 	if (ndw) {
1172 		watch->dev = ndw->dentry->d_inode->i_sb->s_dev;
1173 		watch->ino = ndw->dentry->d_inode->i_ino;
1174 	}
1175 
1176 	/* The audit_filter_mutex must not be held during inotify calls because
1177 	 * we hold it during inotify event callback processing.  If an existing
1178 	 * inotify watch is found, inotify_find_watch() grabs a reference before
1179 	 * returning.
1180 	 */
1181 	mutex_unlock(&audit_filter_mutex);
1182 
1183 	if (inotify_find_watch(audit_ih, ndp->dentry->d_inode, &i_watch) < 0) {
1184 		parent = audit_init_parent(ndp);
1185 		if (IS_ERR(parent)) {
1186 			/* caller expects mutex locked */
1187 			mutex_lock(&audit_filter_mutex);
1188 			return PTR_ERR(parent);
1189 		}
1190 	} else
1191 		parent = container_of(i_watch, struct audit_parent, wdata);
1192 
1193 	mutex_lock(&audit_filter_mutex);
1194 
1195 	/* parent was moved before we took audit_filter_mutex */
1196 	if (parent->flags & AUDIT_PARENT_INVALID)
1197 		ret = -ENOENT;
1198 	else
1199 		audit_add_to_parent(krule, parent);
1200 
1201 	/* match get in audit_init_parent or inotify_find_watch */
1202 	put_inotify_watch(&parent->wdata);
1203 	return ret;
1204 }
1205 
1206 /* Add rule to given filterlist if not a duplicate. */
1207 static inline int audit_add_rule(struct audit_entry *entry,
1208 				 struct list_head *list)
1209 {
1210 	struct audit_entry *e;
1211 	struct audit_field *inode_f = entry->rule.inode_f;
1212 	struct audit_watch *watch = entry->rule.watch;
1213 	struct nameidata *ndp = NULL, *ndw = NULL;
1214 	int h, err;
1215 #ifdef CONFIG_AUDITSYSCALL
1216 	int dont_count = 0;
1217 
1218 	/* If either of these, don't count towards total */
1219 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
1220 		entry->rule.listnr == AUDIT_FILTER_TYPE)
1221 		dont_count = 1;
1222 #endif
1223 
1224 	if (inode_f) {
1225 		h = audit_hash_ino(inode_f->val);
1226 		list = &audit_inode_hash[h];
1227 	}
1228 
1229 	mutex_lock(&audit_filter_mutex);
1230 	e = audit_find_rule(entry, list);
1231 	mutex_unlock(&audit_filter_mutex);
1232 	if (e) {
1233 		err = -EEXIST;
1234 		goto error;
1235 	}
1236 
1237 	/* Avoid calling path_lookup under audit_filter_mutex. */
1238 	if (watch) {
1239 		err = audit_get_nd(watch->path, &ndp, &ndw);
1240 		if (err)
1241 			goto error;
1242 	}
1243 
1244 	mutex_lock(&audit_filter_mutex);
1245 	if (watch) {
1246 		/* audit_filter_mutex is dropped and re-taken during this call */
1247 		err = audit_add_watch(&entry->rule, ndp, ndw);
1248 		if (err) {
1249 			mutex_unlock(&audit_filter_mutex);
1250 			goto error;
1251 		}
1252 		h = audit_hash_ino((u32)watch->ino);
1253 		list = &audit_inode_hash[h];
1254 	}
1255 
1256 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
1257 		list_add_rcu(&entry->list, list);
1258 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
1259 	} else {
1260 		list_add_tail_rcu(&entry->list, list);
1261 	}
1262 #ifdef CONFIG_AUDITSYSCALL
1263 	if (!dont_count)
1264 		audit_n_rules++;
1265 
1266 	if (!audit_match_signal(entry))
1267 		audit_signals++;
1268 #endif
1269 	mutex_unlock(&audit_filter_mutex);
1270 
1271 	audit_put_nd(ndp, ndw);		/* NULL args OK */
1272  	return 0;
1273 
1274 error:
1275 	audit_put_nd(ndp, ndw);		/* NULL args OK */
1276 	if (watch)
1277 		audit_put_watch(watch); /* tmp watch, matches initial get */
1278 	return err;
1279 }
1280 
1281 /* Remove an existing rule from filterlist. */
1282 static inline int audit_del_rule(struct audit_entry *entry,
1283 				 struct list_head *list)
1284 {
1285 	struct audit_entry  *e;
1286 	struct audit_field *inode_f = entry->rule.inode_f;
1287 	struct audit_watch *watch, *tmp_watch = entry->rule.watch;
1288 	LIST_HEAD(inotify_list);
1289 	int h, ret = 0;
1290 #ifdef CONFIG_AUDITSYSCALL
1291 	int dont_count = 0;
1292 
1293 	/* If either of these, don't count towards total */
1294 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
1295 		entry->rule.listnr == AUDIT_FILTER_TYPE)
1296 		dont_count = 1;
1297 #endif
1298 
1299 	if (inode_f) {
1300 		h = audit_hash_ino(inode_f->val);
1301 		list = &audit_inode_hash[h];
1302 	}
1303 
1304 	mutex_lock(&audit_filter_mutex);
1305 	e = audit_find_rule(entry, list);
1306 	if (!e) {
1307 		mutex_unlock(&audit_filter_mutex);
1308 		ret = -ENOENT;
1309 		goto out;
1310 	}
1311 
1312 	watch = e->rule.watch;
1313 	if (watch) {
1314 		struct audit_parent *parent = watch->parent;
1315 
1316 		list_del(&e->rule.rlist);
1317 
1318 		if (list_empty(&watch->rules)) {
1319 			audit_remove_watch(watch);
1320 
1321 			if (list_empty(&parent->watches)) {
1322 				/* Put parent on the inotify un-registration
1323 				 * list.  Grab a reference before releasing
1324 				 * audit_filter_mutex, to be released in
1325 				 * audit_inotify_unregister(). */
1326 				list_add(&parent->ilist, &inotify_list);
1327 				get_inotify_watch(&parent->wdata);
1328 			}
1329 		}
1330 	}
1331 
1332 	list_del_rcu(&e->list);
1333 	call_rcu(&e->rcu, audit_free_rule_rcu);
1334 
1335 #ifdef CONFIG_AUDITSYSCALL
1336 	if (!dont_count)
1337 		audit_n_rules--;
1338 
1339 	if (!audit_match_signal(entry))
1340 		audit_signals--;
1341 #endif
1342 	mutex_unlock(&audit_filter_mutex);
1343 
1344 	if (!list_empty(&inotify_list))
1345 		audit_inotify_unregister(&inotify_list);
1346 
1347 out:
1348 	if (tmp_watch)
1349 		audit_put_watch(tmp_watch); /* match initial get */
1350 
1351 	return ret;
1352 }
1353 
1354 /* List rules using struct audit_rule.  Exists for backward
1355  * compatibility with userspace. */
1356 static void audit_list(int pid, int seq, struct sk_buff_head *q)
1357 {
1358 	struct sk_buff *skb;
1359 	struct audit_entry *entry;
1360 	int i;
1361 
1362 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1363 	 * iterator to sync with list writers. */
1364 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1365 		list_for_each_entry(entry, &audit_filter_list[i], list) {
1366 			struct audit_rule *rule;
1367 
1368 			rule = audit_krule_to_rule(&entry->rule);
1369 			if (unlikely(!rule))
1370 				break;
1371 			skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1372 					 rule, sizeof(*rule));
1373 			if (skb)
1374 				skb_queue_tail(q, skb);
1375 			kfree(rule);
1376 		}
1377 	}
1378 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++) {
1379 		list_for_each_entry(entry, &audit_inode_hash[i], list) {
1380 			struct audit_rule *rule;
1381 
1382 			rule = audit_krule_to_rule(&entry->rule);
1383 			if (unlikely(!rule))
1384 				break;
1385 			skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1386 					 rule, sizeof(*rule));
1387 			if (skb)
1388 				skb_queue_tail(q, skb);
1389 			kfree(rule);
1390 		}
1391 	}
1392 	skb = audit_make_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
1393 	if (skb)
1394 		skb_queue_tail(q, skb);
1395 }
1396 
1397 /* List rules using struct audit_rule_data. */
1398 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
1399 {
1400 	struct sk_buff *skb;
1401 	struct audit_entry *e;
1402 	int i;
1403 
1404 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1405 	 * iterator to sync with list writers. */
1406 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1407 		list_for_each_entry(e, &audit_filter_list[i], list) {
1408 			struct audit_rule_data *data;
1409 
1410 			data = audit_krule_to_data(&e->rule);
1411 			if (unlikely(!data))
1412 				break;
1413 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1414 					 data, sizeof(*data) + data->buflen);
1415 			if (skb)
1416 				skb_queue_tail(q, skb);
1417 			kfree(data);
1418 		}
1419 	}
1420 	for (i=0; i< AUDIT_INODE_BUCKETS; i++) {
1421 		list_for_each_entry(e, &audit_inode_hash[i], list) {
1422 			struct audit_rule_data *data;
1423 
1424 			data = audit_krule_to_data(&e->rule);
1425 			if (unlikely(!data))
1426 				break;
1427 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1428 					 data, sizeof(*data) + data->buflen);
1429 			if (skb)
1430 				skb_queue_tail(q, skb);
1431 			kfree(data);
1432 		}
1433 	}
1434 	skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1435 	if (skb)
1436 		skb_queue_tail(q, skb);
1437 }
1438 
1439 /* Log rule additions and removals */
1440 static void audit_log_rule_change(uid_t loginuid, u32 sid, char *action,
1441 				  struct audit_krule *rule, int res)
1442 {
1443 	struct audit_buffer *ab;
1444 
1445 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1446 	if (!ab)
1447 		return;
1448 	audit_log_format(ab, "auid=%u", loginuid);
1449 	if (sid) {
1450 		char *ctx = NULL;
1451 		u32 len;
1452 		if (selinux_sid_to_string(sid, &ctx, &len))
1453 			audit_log_format(ab, " ssid=%u", sid);
1454 		else
1455 			audit_log_format(ab, " subj=%s", ctx);
1456 		kfree(ctx);
1457 	}
1458 	audit_log_format(ab, " op=%s rule key=", action);
1459 	if (rule->filterkey)
1460 		audit_log_untrustedstring(ab, rule->filterkey);
1461 	else
1462 		audit_log_format(ab, "(null)");
1463 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1464 	audit_log_end(ab);
1465 }
1466 
1467 /**
1468  * audit_receive_filter - apply all rules to the specified message type
1469  * @type: audit message type
1470  * @pid: target pid for netlink audit messages
1471  * @uid: target uid for netlink audit messages
1472  * @seq: netlink audit message sequence (serial) number
1473  * @data: payload data
1474  * @datasz: size of payload data
1475  * @loginuid: loginuid of sender
1476  * @sid: SE Linux Security ID of sender
1477  */
1478 int audit_receive_filter(int type, int pid, int uid, int seq, void *data,
1479 			 size_t datasz, uid_t loginuid, u32 sid)
1480 {
1481 	struct task_struct *tsk;
1482 	struct audit_netlink_list *dest;
1483 	int err = 0;
1484 	struct audit_entry *entry;
1485 
1486 	switch (type) {
1487 	case AUDIT_LIST:
1488 	case AUDIT_LIST_RULES:
1489 		/* We can't just spew out the rules here because we might fill
1490 		 * the available socket buffer space and deadlock waiting for
1491 		 * auditctl to read from it... which isn't ever going to
1492 		 * happen if we're actually running in the context of auditctl
1493 		 * trying to _send_ the stuff */
1494 
1495 		dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1496 		if (!dest)
1497 			return -ENOMEM;
1498 		dest->pid = pid;
1499 		skb_queue_head_init(&dest->q);
1500 
1501 		mutex_lock(&audit_filter_mutex);
1502 		if (type == AUDIT_LIST)
1503 			audit_list(pid, seq, &dest->q);
1504 		else
1505 			audit_list_rules(pid, seq, &dest->q);
1506 		mutex_unlock(&audit_filter_mutex);
1507 
1508 		tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1509 		if (IS_ERR(tsk)) {
1510 			skb_queue_purge(&dest->q);
1511 			kfree(dest);
1512 			err = PTR_ERR(tsk);
1513 		}
1514 		break;
1515 	case AUDIT_ADD:
1516 	case AUDIT_ADD_RULE:
1517 		if (type == AUDIT_ADD)
1518 			entry = audit_rule_to_entry(data);
1519 		else
1520 			entry = audit_data_to_entry(data, datasz);
1521 		if (IS_ERR(entry))
1522 			return PTR_ERR(entry);
1523 
1524 		err = audit_add_rule(entry,
1525 				     &audit_filter_list[entry->rule.listnr]);
1526 		audit_log_rule_change(loginuid, sid, "add", &entry->rule, !err);
1527 
1528 		if (err)
1529 			audit_free_rule(entry);
1530 		break;
1531 	case AUDIT_DEL:
1532 	case AUDIT_DEL_RULE:
1533 		if (type == AUDIT_DEL)
1534 			entry = audit_rule_to_entry(data);
1535 		else
1536 			entry = audit_data_to_entry(data, datasz);
1537 		if (IS_ERR(entry))
1538 			return PTR_ERR(entry);
1539 
1540 		err = audit_del_rule(entry,
1541 				     &audit_filter_list[entry->rule.listnr]);
1542 		audit_log_rule_change(loginuid, sid, "remove", &entry->rule,
1543 				      !err);
1544 
1545 		audit_free_rule(entry);
1546 		break;
1547 	default:
1548 		return -EINVAL;
1549 	}
1550 
1551 	return err;
1552 }
1553 
1554 int audit_comparator(const u32 left, const u32 op, const u32 right)
1555 {
1556 	switch (op) {
1557 	case AUDIT_EQUAL:
1558 		return (left == right);
1559 	case AUDIT_NOT_EQUAL:
1560 		return (left != right);
1561 	case AUDIT_LESS_THAN:
1562 		return (left < right);
1563 	case AUDIT_LESS_THAN_OR_EQUAL:
1564 		return (left <= right);
1565 	case AUDIT_GREATER_THAN:
1566 		return (left > right);
1567 	case AUDIT_GREATER_THAN_OR_EQUAL:
1568 		return (left >= right);
1569 	}
1570 	BUG();
1571 	return 0;
1572 }
1573 
1574 /* Compare given dentry name with last component in given path,
1575  * return of 0 indicates a match. */
1576 int audit_compare_dname_path(const char *dname, const char *path,
1577 			     int *dirlen)
1578 {
1579 	int dlen, plen;
1580 	const char *p;
1581 
1582 	if (!dname || !path)
1583 		return 1;
1584 
1585 	dlen = strlen(dname);
1586 	plen = strlen(path);
1587 	if (plen < dlen)
1588 		return 1;
1589 
1590 	/* disregard trailing slashes */
1591 	p = path + plen - 1;
1592 	while ((*p == '/') && (p > path))
1593 		p--;
1594 
1595 	/* find last path component */
1596 	p = p - dlen + 1;
1597 	if (p < path)
1598 		return 1;
1599 	else if (p > path) {
1600 		if (*--p != '/')
1601 			return 1;
1602 		else
1603 			p++;
1604 	}
1605 
1606 	/* return length of path's directory component */
1607 	if (dirlen)
1608 		*dirlen = p - path;
1609 	return strncmp(p, dname, dlen);
1610 }
1611 
1612 static int audit_filter_user_rules(struct netlink_skb_parms *cb,
1613 				   struct audit_krule *rule,
1614 				   enum audit_state *state)
1615 {
1616 	int i;
1617 
1618 	for (i = 0; i < rule->field_count; i++) {
1619 		struct audit_field *f = &rule->fields[i];
1620 		int result = 0;
1621 
1622 		switch (f->type) {
1623 		case AUDIT_PID:
1624 			result = audit_comparator(cb->creds.pid, f->op, f->val);
1625 			break;
1626 		case AUDIT_UID:
1627 			result = audit_comparator(cb->creds.uid, f->op, f->val);
1628 			break;
1629 		case AUDIT_GID:
1630 			result = audit_comparator(cb->creds.gid, f->op, f->val);
1631 			break;
1632 		case AUDIT_LOGINUID:
1633 			result = audit_comparator(cb->loginuid, f->op, f->val);
1634 			break;
1635 		}
1636 
1637 		if (!result)
1638 			return 0;
1639 	}
1640 	switch (rule->action) {
1641 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1642 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1643 	}
1644 	return 1;
1645 }
1646 
1647 int audit_filter_user(struct netlink_skb_parms *cb, int type)
1648 {
1649 	enum audit_state state = AUDIT_DISABLED;
1650 	struct audit_entry *e;
1651 	int ret = 1;
1652 
1653 	rcu_read_lock();
1654 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1655 		if (audit_filter_user_rules(cb, &e->rule, &state)) {
1656 			if (state == AUDIT_DISABLED)
1657 				ret = 0;
1658 			break;
1659 		}
1660 	}
1661 	rcu_read_unlock();
1662 
1663 	return ret; /* Audit by default */
1664 }
1665 
1666 int audit_filter_type(int type)
1667 {
1668 	struct audit_entry *e;
1669 	int result = 0;
1670 
1671 	rcu_read_lock();
1672 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1673 		goto unlock_and_return;
1674 
1675 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1676 				list) {
1677 		int i;
1678 		for (i = 0; i < e->rule.field_count; i++) {
1679 			struct audit_field *f = &e->rule.fields[i];
1680 			if (f->type == AUDIT_MSGTYPE) {
1681 				result = audit_comparator(type, f->op, f->val);
1682 				if (!result)
1683 					break;
1684 			}
1685 		}
1686 		if (result)
1687 			goto unlock_and_return;
1688 	}
1689 unlock_and_return:
1690 	rcu_read_unlock();
1691 	return result;
1692 }
1693 
1694 /* Check to see if the rule contains any selinux fields.  Returns 1 if there
1695    are selinux fields specified in the rule, 0 otherwise. */
1696 static inline int audit_rule_has_selinux(struct audit_krule *rule)
1697 {
1698 	int i;
1699 
1700 	for (i = 0; i < rule->field_count; i++) {
1701 		struct audit_field *f = &rule->fields[i];
1702 		switch (f->type) {
1703 		case AUDIT_SUBJ_USER:
1704 		case AUDIT_SUBJ_ROLE:
1705 		case AUDIT_SUBJ_TYPE:
1706 		case AUDIT_SUBJ_SEN:
1707 		case AUDIT_SUBJ_CLR:
1708 		case AUDIT_OBJ_USER:
1709 		case AUDIT_OBJ_ROLE:
1710 		case AUDIT_OBJ_TYPE:
1711 		case AUDIT_OBJ_LEV_LOW:
1712 		case AUDIT_OBJ_LEV_HIGH:
1713 			return 1;
1714 		}
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 /* This function will re-initialize the se_rule field of all applicable rules.
1721  * It will traverse the filter lists serarching for rules that contain selinux
1722  * specific filter fields.  When such a rule is found, it is copied, the
1723  * selinux field is re-initialized, and the old rule is replaced with the
1724  * updated rule. */
1725 int selinux_audit_rule_update(void)
1726 {
1727 	struct audit_entry *entry, *n, *nentry;
1728 	struct audit_watch *watch;
1729 	int i, err = 0;
1730 
1731 	/* audit_filter_mutex synchronizes the writers */
1732 	mutex_lock(&audit_filter_mutex);
1733 
1734 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1735 		list_for_each_entry_safe(entry, n, &audit_filter_list[i], list) {
1736 			if (!audit_rule_has_selinux(&entry->rule))
1737 				continue;
1738 
1739 			watch = entry->rule.watch;
1740 			nentry = audit_dupe_rule(&entry->rule, watch);
1741 			if (unlikely(IS_ERR(nentry))) {
1742 				/* save the first error encountered for the
1743 				 * return value */
1744 				if (!err)
1745 					err = PTR_ERR(nentry);
1746 				audit_panic("error updating selinux filters");
1747 				if (watch)
1748 					list_del(&entry->rule.rlist);
1749 				list_del_rcu(&entry->list);
1750 			} else {
1751 				if (watch) {
1752 					list_add(&nentry->rule.rlist,
1753 						 &watch->rules);
1754 					list_del(&entry->rule.rlist);
1755 				}
1756 				list_replace_rcu(&entry->list, &nentry->list);
1757 			}
1758 			call_rcu(&entry->rcu, audit_free_rule_rcu);
1759 		}
1760 	}
1761 
1762 	mutex_unlock(&audit_filter_mutex);
1763 
1764 	return err;
1765 }
1766 
1767 /* Update watch data in audit rules based on inotify events. */
1768 void audit_handle_ievent(struct inotify_watch *i_watch, u32 wd, u32 mask,
1769 			 u32 cookie, const char *dname, struct inode *inode)
1770 {
1771 	struct audit_parent *parent;
1772 
1773 	parent = container_of(i_watch, struct audit_parent, wdata);
1774 
1775 	if (mask & (IN_CREATE|IN_MOVED_TO) && inode)
1776 		audit_update_watch(parent, dname, inode->i_sb->s_dev,
1777 				   inode->i_ino, 0);
1778 	else if (mask & (IN_DELETE|IN_MOVED_FROM))
1779 		audit_update_watch(parent, dname, (dev_t)-1, (unsigned long)-1, 1);
1780 	/* inotify automatically removes the watch and sends IN_IGNORED */
1781 	else if (mask & (IN_DELETE_SELF|IN_UNMOUNT))
1782 		audit_remove_parent_watches(parent);
1783 	/* inotify does not remove the watch, so remove it manually */
1784 	else if(mask & IN_MOVE_SELF) {
1785 		audit_remove_parent_watches(parent);
1786 		inotify_remove_watch_locked(audit_ih, i_watch);
1787 	} else if (mask & IN_IGNORED)
1788 		put_inotify_watch(i_watch);
1789 }
1790