xref: /linux/kernel/auditfilter.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/audit.h>
24 #include <linux/kthread.h>
25 #include <linux/mutex.h>
26 #include <linux/fs.h>
27 #include <linux/namei.h>
28 #include <linux/netlink.h>
29 #include <linux/sched.h>
30 #include <linux/inotify.h>
31 #include <linux/selinux.h>
32 #include "audit.h"
33 
34 /*
35  * Locking model:
36  *
37  * audit_filter_mutex:
38  * 		Synchronizes writes and blocking reads of audit's filterlist
39  * 		data.  Rcu is used to traverse the filterlist and access
40  * 		contents of structs audit_entry, audit_watch and opaque
41  * 		selinux rules during filtering.  If modified, these structures
42  * 		must be copied and replace their counterparts in the filterlist.
43  * 		An audit_parent struct is not accessed during filtering, so may
44  * 		be written directly provided audit_filter_mutex is held.
45  */
46 
47 /*
48  * Reference counting:
49  *
50  * audit_parent: lifetime is from audit_init_parent() to receipt of an IN_IGNORED
51  * 	event.  Each audit_watch holds a reference to its associated parent.
52  *
53  * audit_watch: if added to lists, lifetime is from audit_init_watch() to
54  * 	audit_remove_watch().  Additionally, an audit_watch may exist
55  * 	temporarily to assist in searching existing filter data.  Each
56  * 	audit_krule holds a reference to its associated watch.
57  */
58 
59 struct audit_parent {
60 	struct list_head	ilist;	/* entry in inotify registration list */
61 	struct list_head	watches; /* associated watches */
62 	struct inotify_watch	wdata;	/* inotify watch data */
63 	unsigned		flags;	/* status flags */
64 };
65 
66 /*
67  * audit_parent status flags:
68  *
69  * AUDIT_PARENT_INVALID - set anytime rules/watches are auto-removed due to
70  * a filesystem event to ensure we're adding audit watches to a valid parent.
71  * Technically not needed for IN_DELETE_SELF or IN_UNMOUNT events, as we cannot
72  * receive them while we have nameidata, but must be used for IN_MOVE_SELF which
73  * we can receive while holding nameidata.
74  */
75 #define AUDIT_PARENT_INVALID	0x001
76 
77 /* Audit filter lists, defined in <linux/audit.h> */
78 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
79 	LIST_HEAD_INIT(audit_filter_list[0]),
80 	LIST_HEAD_INIT(audit_filter_list[1]),
81 	LIST_HEAD_INIT(audit_filter_list[2]),
82 	LIST_HEAD_INIT(audit_filter_list[3]),
83 	LIST_HEAD_INIT(audit_filter_list[4]),
84 	LIST_HEAD_INIT(audit_filter_list[5]),
85 #if AUDIT_NR_FILTERS != 6
86 #error Fix audit_filter_list initialiser
87 #endif
88 };
89 
90 static DEFINE_MUTEX(audit_filter_mutex);
91 
92 /* Inotify handle */
93 extern struct inotify_handle *audit_ih;
94 
95 /* Inotify events we care about. */
96 #define AUDIT_IN_WATCH IN_MOVE|IN_CREATE|IN_DELETE|IN_DELETE_SELF|IN_MOVE_SELF
97 
98 void audit_free_parent(struct inotify_watch *i_watch)
99 {
100 	struct audit_parent *parent;
101 
102 	parent = container_of(i_watch, struct audit_parent, wdata);
103 	WARN_ON(!list_empty(&parent->watches));
104 	kfree(parent);
105 }
106 
107 static inline void audit_get_watch(struct audit_watch *watch)
108 {
109 	atomic_inc(&watch->count);
110 }
111 
112 static void audit_put_watch(struct audit_watch *watch)
113 {
114 	if (atomic_dec_and_test(&watch->count)) {
115 		WARN_ON(watch->parent);
116 		WARN_ON(!list_empty(&watch->rules));
117 		kfree(watch->path);
118 		kfree(watch);
119 	}
120 }
121 
122 static void audit_remove_watch(struct audit_watch *watch)
123 {
124 	list_del(&watch->wlist);
125 	put_inotify_watch(&watch->parent->wdata);
126 	watch->parent = NULL;
127 	audit_put_watch(watch); /* match initial get */
128 }
129 
130 static inline void audit_free_rule(struct audit_entry *e)
131 {
132 	int i;
133 
134 	/* some rules don't have associated watches */
135 	if (e->rule.watch)
136 		audit_put_watch(e->rule.watch);
137 	if (e->rule.fields)
138 		for (i = 0; i < e->rule.field_count; i++) {
139 			struct audit_field *f = &e->rule.fields[i];
140 			kfree(f->se_str);
141 			selinux_audit_rule_free(f->se_rule);
142 		}
143 	kfree(e->rule.fields);
144 	kfree(e->rule.filterkey);
145 	kfree(e);
146 }
147 
148 static inline void audit_free_rule_rcu(struct rcu_head *head)
149 {
150 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
151 	audit_free_rule(e);
152 }
153 
154 /* Initialize a parent watch entry. */
155 static struct audit_parent *audit_init_parent(struct nameidata *ndp)
156 {
157 	struct audit_parent *parent;
158 	s32 wd;
159 
160 	parent = kzalloc(sizeof(*parent), GFP_KERNEL);
161 	if (unlikely(!parent))
162 		return ERR_PTR(-ENOMEM);
163 
164 	INIT_LIST_HEAD(&parent->watches);
165 	parent->flags = 0;
166 
167 	inotify_init_watch(&parent->wdata);
168 	/* grab a ref so inotify watch hangs around until we take audit_filter_mutex */
169 	get_inotify_watch(&parent->wdata);
170 	wd = inotify_add_watch(audit_ih, &parent->wdata, ndp->dentry->d_inode,
171 			       AUDIT_IN_WATCH);
172 	if (wd < 0) {
173 		audit_free_parent(&parent->wdata);
174 		return ERR_PTR(wd);
175 	}
176 
177 	return parent;
178 }
179 
180 /* Initialize a watch entry. */
181 static struct audit_watch *audit_init_watch(char *path)
182 {
183 	struct audit_watch *watch;
184 
185 	watch = kzalloc(sizeof(*watch), GFP_KERNEL);
186 	if (unlikely(!watch))
187 		return ERR_PTR(-ENOMEM);
188 
189 	INIT_LIST_HEAD(&watch->rules);
190 	atomic_set(&watch->count, 1);
191 	watch->path = path;
192 	watch->dev = (dev_t)-1;
193 	watch->ino = (unsigned long)-1;
194 
195 	return watch;
196 }
197 
198 /* Initialize an audit filterlist entry. */
199 static inline struct audit_entry *audit_init_entry(u32 field_count)
200 {
201 	struct audit_entry *entry;
202 	struct audit_field *fields;
203 
204 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
205 	if (unlikely(!entry))
206 		return NULL;
207 
208 	fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
209 	if (unlikely(!fields)) {
210 		kfree(entry);
211 		return NULL;
212 	}
213 	entry->rule.fields = fields;
214 
215 	return entry;
216 }
217 
218 /* Unpack a filter field's string representation from user-space
219  * buffer. */
220 static char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
221 {
222 	char *str;
223 
224 	if (!*bufp || (len == 0) || (len > *remain))
225 		return ERR_PTR(-EINVAL);
226 
227 	/* Of the currently implemented string fields, PATH_MAX
228 	 * defines the longest valid length.
229 	 */
230 	if (len > PATH_MAX)
231 		return ERR_PTR(-ENAMETOOLONG);
232 
233 	str = kmalloc(len + 1, GFP_KERNEL);
234 	if (unlikely(!str))
235 		return ERR_PTR(-ENOMEM);
236 
237 	memcpy(str, *bufp, len);
238 	str[len] = 0;
239 	*bufp += len;
240 	*remain -= len;
241 
242 	return str;
243 }
244 
245 /* Translate an inode field to kernel respresentation. */
246 static inline int audit_to_inode(struct audit_krule *krule,
247 				 struct audit_field *f)
248 {
249 	if (krule->listnr != AUDIT_FILTER_EXIT ||
250 	    krule->watch || krule->inode_f)
251 		return -EINVAL;
252 
253 	krule->inode_f = f;
254 	return 0;
255 }
256 
257 /* Translate a watch string to kernel respresentation. */
258 static int audit_to_watch(struct audit_krule *krule, char *path, int len,
259 			  u32 op)
260 {
261 	struct audit_watch *watch;
262 
263 	if (!audit_ih)
264 		return -EOPNOTSUPP;
265 
266 	if (path[0] != '/' || path[len-1] == '/' ||
267 	    krule->listnr != AUDIT_FILTER_EXIT ||
268 	    op & ~AUDIT_EQUAL ||
269 	    krule->inode_f || krule->watch) /* 1 inode # per rule, for hash */
270 		return -EINVAL;
271 
272 	watch = audit_init_watch(path);
273 	if (unlikely(IS_ERR(watch)))
274 		return PTR_ERR(watch);
275 
276 	audit_get_watch(watch);
277 	krule->watch = watch;
278 
279 	return 0;
280 }
281 
282 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
283 
284 int __init audit_register_class(int class, unsigned *list)
285 {
286 	__u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
287 	if (!p)
288 		return -ENOMEM;
289 	while (*list != ~0U) {
290 		unsigned n = *list++;
291 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
292 			kfree(p);
293 			return -EINVAL;
294 		}
295 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
296 	}
297 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
298 		kfree(p);
299 		return -EINVAL;
300 	}
301 	classes[class] = p;
302 	return 0;
303 }
304 
305 /* Common user-space to kernel rule translation. */
306 static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
307 {
308 	unsigned listnr;
309 	struct audit_entry *entry;
310 	int i, err;
311 
312 	err = -EINVAL;
313 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
314 	switch(listnr) {
315 	default:
316 		goto exit_err;
317 	case AUDIT_FILTER_USER:
318 	case AUDIT_FILTER_TYPE:
319 #ifdef CONFIG_AUDITSYSCALL
320 	case AUDIT_FILTER_ENTRY:
321 	case AUDIT_FILTER_EXIT:
322 	case AUDIT_FILTER_TASK:
323 #endif
324 		;
325 	}
326 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
327 		printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
328 		goto exit_err;
329 	}
330 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
331 		goto exit_err;
332 	if (rule->field_count > AUDIT_MAX_FIELDS)
333 		goto exit_err;
334 
335 	err = -ENOMEM;
336 	entry = audit_init_entry(rule->field_count);
337 	if (!entry)
338 		goto exit_err;
339 
340 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
341 	entry->rule.listnr = listnr;
342 	entry->rule.action = rule->action;
343 	entry->rule.field_count = rule->field_count;
344 
345 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
346 		entry->rule.mask[i] = rule->mask[i];
347 
348 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
349 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
350 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
351 		__u32 *class;
352 
353 		if (!(*p & AUDIT_BIT(bit)))
354 			continue;
355 		*p &= ~AUDIT_BIT(bit);
356 		class = classes[i];
357 		if (class) {
358 			int j;
359 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
360 				entry->rule.mask[j] |= class[j];
361 		}
362 	}
363 
364 	return entry;
365 
366 exit_err:
367 	return ERR_PTR(err);
368 }
369 
370 /* Translate struct audit_rule to kernel's rule respresentation.
371  * Exists for backward compatibility with userspace. */
372 static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule)
373 {
374 	struct audit_entry *entry;
375 	struct audit_field *f;
376 	int err = 0;
377 	int i;
378 
379 	entry = audit_to_entry_common(rule);
380 	if (IS_ERR(entry))
381 		goto exit_nofree;
382 
383 	for (i = 0; i < rule->field_count; i++) {
384 		struct audit_field *f = &entry->rule.fields[i];
385 
386 		f->op = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS);
387 		f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS);
388 		f->val = rule->values[i];
389 
390 		err = -EINVAL;
391 		switch(f->type) {
392 		default:
393 			goto exit_free;
394 		case AUDIT_PID:
395 		case AUDIT_UID:
396 		case AUDIT_EUID:
397 		case AUDIT_SUID:
398 		case AUDIT_FSUID:
399 		case AUDIT_GID:
400 		case AUDIT_EGID:
401 		case AUDIT_SGID:
402 		case AUDIT_FSGID:
403 		case AUDIT_LOGINUID:
404 		case AUDIT_PERS:
405 		case AUDIT_ARCH:
406 		case AUDIT_MSGTYPE:
407 		case AUDIT_DEVMAJOR:
408 		case AUDIT_DEVMINOR:
409 		case AUDIT_EXIT:
410 		case AUDIT_SUCCESS:
411 		case AUDIT_ARG0:
412 		case AUDIT_ARG1:
413 		case AUDIT_ARG2:
414 		case AUDIT_ARG3:
415 			break;
416 		case AUDIT_INODE:
417 			err = audit_to_inode(&entry->rule, f);
418 			if (err)
419 				goto exit_free;
420 			break;
421 		}
422 
423 		entry->rule.vers_ops = (f->op & AUDIT_OPERATORS) ? 2 : 1;
424 
425 		/* Support for legacy operators where
426 		 * AUDIT_NEGATE bit signifies != and otherwise assumes == */
427 		if (f->op & AUDIT_NEGATE)
428 			f->op = AUDIT_NOT_EQUAL;
429 		else if (!f->op)
430 			f->op = AUDIT_EQUAL;
431 		else if (f->op == AUDIT_OPERATORS) {
432 			err = -EINVAL;
433 			goto exit_free;
434 		}
435 	}
436 
437 	f = entry->rule.inode_f;
438 	if (f) {
439 		switch(f->op) {
440 		case AUDIT_NOT_EQUAL:
441 			entry->rule.inode_f = NULL;
442 		case AUDIT_EQUAL:
443 			break;
444 		default:
445 			goto exit_free;
446 		}
447 	}
448 
449 exit_nofree:
450 	return entry;
451 
452 exit_free:
453 	audit_free_rule(entry);
454 	return ERR_PTR(err);
455 }
456 
457 /* Translate struct audit_rule_data to kernel's rule respresentation. */
458 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
459 					       size_t datasz)
460 {
461 	int err = 0;
462 	struct audit_entry *entry;
463 	struct audit_field *f;
464 	void *bufp;
465 	size_t remain = datasz - sizeof(struct audit_rule_data);
466 	int i;
467 	char *str;
468 
469 	entry = audit_to_entry_common((struct audit_rule *)data);
470 	if (IS_ERR(entry))
471 		goto exit_nofree;
472 
473 	bufp = data->buf;
474 	entry->rule.vers_ops = 2;
475 	for (i = 0; i < data->field_count; i++) {
476 		struct audit_field *f = &entry->rule.fields[i];
477 
478 		err = -EINVAL;
479 		if (!(data->fieldflags[i] & AUDIT_OPERATORS) ||
480 		    data->fieldflags[i] & ~AUDIT_OPERATORS)
481 			goto exit_free;
482 
483 		f->op = data->fieldflags[i] & AUDIT_OPERATORS;
484 		f->type = data->fields[i];
485 		f->val = data->values[i];
486 		f->se_str = NULL;
487 		f->se_rule = NULL;
488 		switch(f->type) {
489 		case AUDIT_PID:
490 		case AUDIT_UID:
491 		case AUDIT_EUID:
492 		case AUDIT_SUID:
493 		case AUDIT_FSUID:
494 		case AUDIT_GID:
495 		case AUDIT_EGID:
496 		case AUDIT_SGID:
497 		case AUDIT_FSGID:
498 		case AUDIT_LOGINUID:
499 		case AUDIT_PERS:
500 		case AUDIT_ARCH:
501 		case AUDIT_MSGTYPE:
502 		case AUDIT_PPID:
503 		case AUDIT_DEVMAJOR:
504 		case AUDIT_DEVMINOR:
505 		case AUDIT_EXIT:
506 		case AUDIT_SUCCESS:
507 		case AUDIT_ARG0:
508 		case AUDIT_ARG1:
509 		case AUDIT_ARG2:
510 		case AUDIT_ARG3:
511 			break;
512 		case AUDIT_SUBJ_USER:
513 		case AUDIT_SUBJ_ROLE:
514 		case AUDIT_SUBJ_TYPE:
515 		case AUDIT_SUBJ_SEN:
516 		case AUDIT_SUBJ_CLR:
517 		case AUDIT_OBJ_USER:
518 		case AUDIT_OBJ_ROLE:
519 		case AUDIT_OBJ_TYPE:
520 		case AUDIT_OBJ_LEV_LOW:
521 		case AUDIT_OBJ_LEV_HIGH:
522 			str = audit_unpack_string(&bufp, &remain, f->val);
523 			if (IS_ERR(str))
524 				goto exit_free;
525 			entry->rule.buflen += f->val;
526 
527 			err = selinux_audit_rule_init(f->type, f->op, str,
528 						      &f->se_rule);
529 			/* Keep currently invalid fields around in case they
530 			 * become valid after a policy reload. */
531 			if (err == -EINVAL) {
532 				printk(KERN_WARNING "audit rule for selinux "
533 				       "\'%s\' is invalid\n",  str);
534 				err = 0;
535 			}
536 			if (err) {
537 				kfree(str);
538 				goto exit_free;
539 			} else
540 				f->se_str = str;
541 			break;
542 		case AUDIT_WATCH:
543 			str = audit_unpack_string(&bufp, &remain, f->val);
544 			if (IS_ERR(str))
545 				goto exit_free;
546 			entry->rule.buflen += f->val;
547 
548 			err = audit_to_watch(&entry->rule, str, f->val, f->op);
549 			if (err) {
550 				kfree(str);
551 				goto exit_free;
552 			}
553 			break;
554 		case AUDIT_INODE:
555 			err = audit_to_inode(&entry->rule, f);
556 			if (err)
557 				goto exit_free;
558 			break;
559 		case AUDIT_FILTERKEY:
560 			err = -EINVAL;
561 			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
562 				goto exit_free;
563 			str = audit_unpack_string(&bufp, &remain, f->val);
564 			if (IS_ERR(str))
565 				goto exit_free;
566 			entry->rule.buflen += f->val;
567 			entry->rule.filterkey = str;
568 			break;
569 		default:
570 			goto exit_free;
571 		}
572 	}
573 
574 	f = entry->rule.inode_f;
575 	if (f) {
576 		switch(f->op) {
577 		case AUDIT_NOT_EQUAL:
578 			entry->rule.inode_f = NULL;
579 		case AUDIT_EQUAL:
580 			break;
581 		default:
582 			goto exit_free;
583 		}
584 	}
585 
586 exit_nofree:
587 	return entry;
588 
589 exit_free:
590 	audit_free_rule(entry);
591 	return ERR_PTR(err);
592 }
593 
594 /* Pack a filter field's string representation into data block. */
595 static inline size_t audit_pack_string(void **bufp, char *str)
596 {
597 	size_t len = strlen(str);
598 
599 	memcpy(*bufp, str, len);
600 	*bufp += len;
601 
602 	return len;
603 }
604 
605 /* Translate kernel rule respresentation to struct audit_rule.
606  * Exists for backward compatibility with userspace. */
607 static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule)
608 {
609 	struct audit_rule *rule;
610 	int i;
611 
612 	rule = kmalloc(sizeof(*rule), GFP_KERNEL);
613 	if (unlikely(!rule))
614 		return NULL;
615 	memset(rule, 0, sizeof(*rule));
616 
617 	rule->flags = krule->flags | krule->listnr;
618 	rule->action = krule->action;
619 	rule->field_count = krule->field_count;
620 	for (i = 0; i < rule->field_count; i++) {
621 		rule->values[i] = krule->fields[i].val;
622 		rule->fields[i] = krule->fields[i].type;
623 
624 		if (krule->vers_ops == 1) {
625 			if (krule->fields[i].op & AUDIT_NOT_EQUAL)
626 				rule->fields[i] |= AUDIT_NEGATE;
627 		} else {
628 			rule->fields[i] |= krule->fields[i].op;
629 		}
630 	}
631 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i];
632 
633 	return rule;
634 }
635 
636 /* Translate kernel rule respresentation to struct audit_rule_data. */
637 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
638 {
639 	struct audit_rule_data *data;
640 	void *bufp;
641 	int i;
642 
643 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
644 	if (unlikely(!data))
645 		return NULL;
646 	memset(data, 0, sizeof(*data));
647 
648 	data->flags = krule->flags | krule->listnr;
649 	data->action = krule->action;
650 	data->field_count = krule->field_count;
651 	bufp = data->buf;
652 	for (i = 0; i < data->field_count; i++) {
653 		struct audit_field *f = &krule->fields[i];
654 
655 		data->fields[i] = f->type;
656 		data->fieldflags[i] = f->op;
657 		switch(f->type) {
658 		case AUDIT_SUBJ_USER:
659 		case AUDIT_SUBJ_ROLE:
660 		case AUDIT_SUBJ_TYPE:
661 		case AUDIT_SUBJ_SEN:
662 		case AUDIT_SUBJ_CLR:
663 		case AUDIT_OBJ_USER:
664 		case AUDIT_OBJ_ROLE:
665 		case AUDIT_OBJ_TYPE:
666 		case AUDIT_OBJ_LEV_LOW:
667 		case AUDIT_OBJ_LEV_HIGH:
668 			data->buflen += data->values[i] =
669 				audit_pack_string(&bufp, f->se_str);
670 			break;
671 		case AUDIT_WATCH:
672 			data->buflen += data->values[i] =
673 				audit_pack_string(&bufp, krule->watch->path);
674 			break;
675 		case AUDIT_FILTERKEY:
676 			data->buflen += data->values[i] =
677 				audit_pack_string(&bufp, krule->filterkey);
678 			break;
679 		default:
680 			data->values[i] = f->val;
681 		}
682 	}
683 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
684 
685 	return data;
686 }
687 
688 /* Compare two rules in kernel format.  Considered success if rules
689  * don't match. */
690 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
691 {
692 	int i;
693 
694 	if (a->flags != b->flags ||
695 	    a->listnr != b->listnr ||
696 	    a->action != b->action ||
697 	    a->field_count != b->field_count)
698 		return 1;
699 
700 	for (i = 0; i < a->field_count; i++) {
701 		if (a->fields[i].type != b->fields[i].type ||
702 		    a->fields[i].op != b->fields[i].op)
703 			return 1;
704 
705 		switch(a->fields[i].type) {
706 		case AUDIT_SUBJ_USER:
707 		case AUDIT_SUBJ_ROLE:
708 		case AUDIT_SUBJ_TYPE:
709 		case AUDIT_SUBJ_SEN:
710 		case AUDIT_SUBJ_CLR:
711 		case AUDIT_OBJ_USER:
712 		case AUDIT_OBJ_ROLE:
713 		case AUDIT_OBJ_TYPE:
714 		case AUDIT_OBJ_LEV_LOW:
715 		case AUDIT_OBJ_LEV_HIGH:
716 			if (strcmp(a->fields[i].se_str, b->fields[i].se_str))
717 				return 1;
718 			break;
719 		case AUDIT_WATCH:
720 			if (strcmp(a->watch->path, b->watch->path))
721 				return 1;
722 			break;
723 		case AUDIT_FILTERKEY:
724 			/* both filterkeys exist based on above type compare */
725 			if (strcmp(a->filterkey, b->filterkey))
726 				return 1;
727 			break;
728 		default:
729 			if (a->fields[i].val != b->fields[i].val)
730 				return 1;
731 		}
732 	}
733 
734 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
735 		if (a->mask[i] != b->mask[i])
736 			return 1;
737 
738 	return 0;
739 }
740 
741 /* Duplicate the given audit watch.  The new watch's rules list is initialized
742  * to an empty list and wlist is undefined. */
743 static struct audit_watch *audit_dupe_watch(struct audit_watch *old)
744 {
745 	char *path;
746 	struct audit_watch *new;
747 
748 	path = kstrdup(old->path, GFP_KERNEL);
749 	if (unlikely(!path))
750 		return ERR_PTR(-ENOMEM);
751 
752 	new = audit_init_watch(path);
753 	if (unlikely(IS_ERR(new))) {
754 		kfree(path);
755 		goto out;
756 	}
757 
758 	new->dev = old->dev;
759 	new->ino = old->ino;
760 	get_inotify_watch(&old->parent->wdata);
761 	new->parent = old->parent;
762 
763 out:
764 	return new;
765 }
766 
767 /* Duplicate selinux field information.  The se_rule is opaque, so must be
768  * re-initialized. */
769 static inline int audit_dupe_selinux_field(struct audit_field *df,
770 					   struct audit_field *sf)
771 {
772 	int ret = 0;
773 	char *se_str;
774 
775 	/* our own copy of se_str */
776 	se_str = kstrdup(sf->se_str, GFP_KERNEL);
777 	if (unlikely(IS_ERR(se_str)))
778 	    return -ENOMEM;
779 	df->se_str = se_str;
780 
781 	/* our own (refreshed) copy of se_rule */
782 	ret = selinux_audit_rule_init(df->type, df->op, df->se_str,
783 				      &df->se_rule);
784 	/* Keep currently invalid fields around in case they
785 	 * become valid after a policy reload. */
786 	if (ret == -EINVAL) {
787 		printk(KERN_WARNING "audit rule for selinux \'%s\' is "
788 		       "invalid\n", df->se_str);
789 		ret = 0;
790 	}
791 
792 	return ret;
793 }
794 
795 /* Duplicate an audit rule.  This will be a deep copy with the exception
796  * of the watch - that pointer is carried over.  The selinux specific fields
797  * will be updated in the copy.  The point is to be able to replace the old
798  * rule with the new rule in the filterlist, then free the old rule.
799  * The rlist element is undefined; list manipulations are handled apart from
800  * the initial copy. */
801 static struct audit_entry *audit_dupe_rule(struct audit_krule *old,
802 					   struct audit_watch *watch)
803 {
804 	u32 fcount = old->field_count;
805 	struct audit_entry *entry;
806 	struct audit_krule *new;
807 	char *fk;
808 	int i, err = 0;
809 
810 	entry = audit_init_entry(fcount);
811 	if (unlikely(!entry))
812 		return ERR_PTR(-ENOMEM);
813 
814 	new = &entry->rule;
815 	new->vers_ops = old->vers_ops;
816 	new->flags = old->flags;
817 	new->listnr = old->listnr;
818 	new->action = old->action;
819 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
820 		new->mask[i] = old->mask[i];
821 	new->buflen = old->buflen;
822 	new->inode_f = old->inode_f;
823 	new->watch = NULL;
824 	new->field_count = old->field_count;
825 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
826 
827 	/* deep copy this information, updating the se_rule fields, because
828 	 * the originals will all be freed when the old rule is freed. */
829 	for (i = 0; i < fcount; i++) {
830 		switch (new->fields[i].type) {
831 		case AUDIT_SUBJ_USER:
832 		case AUDIT_SUBJ_ROLE:
833 		case AUDIT_SUBJ_TYPE:
834 		case AUDIT_SUBJ_SEN:
835 		case AUDIT_SUBJ_CLR:
836 		case AUDIT_OBJ_USER:
837 		case AUDIT_OBJ_ROLE:
838 		case AUDIT_OBJ_TYPE:
839 		case AUDIT_OBJ_LEV_LOW:
840 		case AUDIT_OBJ_LEV_HIGH:
841 			err = audit_dupe_selinux_field(&new->fields[i],
842 						       &old->fields[i]);
843 			break;
844 		case AUDIT_FILTERKEY:
845 			fk = kstrdup(old->filterkey, GFP_KERNEL);
846 			if (unlikely(!fk))
847 				err = -ENOMEM;
848 			else
849 				new->filterkey = fk;
850 		}
851 		if (err) {
852 			audit_free_rule(entry);
853 			return ERR_PTR(err);
854 		}
855 	}
856 
857 	if (watch) {
858 		audit_get_watch(watch);
859 		new->watch = watch;
860 	}
861 
862 	return entry;
863 }
864 
865 /* Update inode info in audit rules based on filesystem event. */
866 static void audit_update_watch(struct audit_parent *parent,
867 			       const char *dname, dev_t dev,
868 			       unsigned long ino, unsigned invalidating)
869 {
870 	struct audit_watch *owatch, *nwatch, *nextw;
871 	struct audit_krule *r, *nextr;
872 	struct audit_entry *oentry, *nentry;
873 	struct audit_buffer *ab;
874 
875 	mutex_lock(&audit_filter_mutex);
876 	list_for_each_entry_safe(owatch, nextw, &parent->watches, wlist) {
877 		if (audit_compare_dname_path(dname, owatch->path, NULL))
878 			continue;
879 
880 		/* If the update involves invalidating rules, do the inode-based
881 		 * filtering now, so we don't omit records. */
882 		if (invalidating &&
883 		    audit_filter_inodes(current, current->audit_context) == AUDIT_RECORD_CONTEXT)
884 			audit_set_auditable(current->audit_context);
885 
886 		nwatch = audit_dupe_watch(owatch);
887 		if (unlikely(IS_ERR(nwatch))) {
888 			mutex_unlock(&audit_filter_mutex);
889 			audit_panic("error updating watch, skipping");
890 			return;
891 		}
892 		nwatch->dev = dev;
893 		nwatch->ino = ino;
894 
895 		list_for_each_entry_safe(r, nextr, &owatch->rules, rlist) {
896 
897 			oentry = container_of(r, struct audit_entry, rule);
898 			list_del(&oentry->rule.rlist);
899 			list_del_rcu(&oentry->list);
900 
901 			nentry = audit_dupe_rule(&oentry->rule, nwatch);
902 			if (unlikely(IS_ERR(nentry)))
903 				audit_panic("error updating watch, removing");
904 			else {
905 				int h = audit_hash_ino((u32)ino);
906 				list_add(&nentry->rule.rlist, &nwatch->rules);
907 				list_add_rcu(&nentry->list, &audit_inode_hash[h]);
908 			}
909 
910 			call_rcu(&oentry->rcu, audit_free_rule_rcu);
911 		}
912 
913 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
914 		audit_log_format(ab, "audit updated rules specifying watch=");
915 		audit_log_untrustedstring(ab, owatch->path);
916 		audit_log_format(ab, " with dev=%u ino=%lu\n", dev, ino);
917 		audit_log_end(ab);
918 
919 		audit_remove_watch(owatch);
920 		goto add_watch_to_parent; /* event applies to a single watch */
921 	}
922 	mutex_unlock(&audit_filter_mutex);
923 	return;
924 
925 add_watch_to_parent:
926 	list_add(&nwatch->wlist, &parent->watches);
927 	mutex_unlock(&audit_filter_mutex);
928 	return;
929 }
930 
931 /* Remove all watches & rules associated with a parent that is going away. */
932 static void audit_remove_parent_watches(struct audit_parent *parent)
933 {
934 	struct audit_watch *w, *nextw;
935 	struct audit_krule *r, *nextr;
936 	struct audit_entry *e;
937 
938 	mutex_lock(&audit_filter_mutex);
939 	parent->flags |= AUDIT_PARENT_INVALID;
940 	list_for_each_entry_safe(w, nextw, &parent->watches, wlist) {
941 		list_for_each_entry_safe(r, nextr, &w->rules, rlist) {
942 			e = container_of(r, struct audit_entry, rule);
943 			list_del(&r->rlist);
944 			list_del_rcu(&e->list);
945 			call_rcu(&e->rcu, audit_free_rule_rcu);
946 
947 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
948 				 "audit implicitly removed rule from list=%d\n",
949 				  AUDIT_FILTER_EXIT);
950 		}
951 		audit_remove_watch(w);
952 	}
953 	mutex_unlock(&audit_filter_mutex);
954 }
955 
956 /* Unregister inotify watches for parents on in_list.
957  * Generates an IN_IGNORED event. */
958 static void audit_inotify_unregister(struct list_head *in_list)
959 {
960 	struct audit_parent *p, *n;
961 
962 	list_for_each_entry_safe(p, n, in_list, ilist) {
963 		list_del(&p->ilist);
964 		inotify_rm_watch(audit_ih, &p->wdata);
965 		/* the put matching the get in audit_do_del_rule() */
966 		put_inotify_watch(&p->wdata);
967 	}
968 }
969 
970 /* Find an existing audit rule.
971  * Caller must hold audit_filter_mutex to prevent stale rule data. */
972 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
973 					   struct list_head *list)
974 {
975 	struct audit_entry *e, *found = NULL;
976 	int h;
977 
978 	if (entry->rule.watch) {
979 		/* we don't know the inode number, so must walk entire hash */
980 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
981 			list = &audit_inode_hash[h];
982 			list_for_each_entry(e, list, list)
983 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
984 					found = e;
985 					goto out;
986 				}
987 		}
988 		goto out;
989 	}
990 
991 	list_for_each_entry(e, list, list)
992 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
993 			found = e;
994 			goto out;
995 		}
996 
997 out:
998 	return found;
999 }
1000 
1001 /* Get path information necessary for adding watches. */
1002 static int audit_get_nd(char *path, struct nameidata **ndp,
1003 			struct nameidata **ndw)
1004 {
1005 	struct nameidata *ndparent, *ndwatch;
1006 	int err;
1007 
1008 	ndparent = kmalloc(sizeof(*ndparent), GFP_KERNEL);
1009 	if (unlikely(!ndparent))
1010 		return -ENOMEM;
1011 
1012 	ndwatch = kmalloc(sizeof(*ndwatch), GFP_KERNEL);
1013 	if (unlikely(!ndwatch)) {
1014 		kfree(ndparent);
1015 		return -ENOMEM;
1016 	}
1017 
1018 	err = path_lookup(path, LOOKUP_PARENT, ndparent);
1019 	if (err) {
1020 		kfree(ndparent);
1021 		kfree(ndwatch);
1022 		return err;
1023 	}
1024 
1025 	err = path_lookup(path, 0, ndwatch);
1026 	if (err) {
1027 		kfree(ndwatch);
1028 		ndwatch = NULL;
1029 	}
1030 
1031 	*ndp = ndparent;
1032 	*ndw = ndwatch;
1033 
1034 	return 0;
1035 }
1036 
1037 /* Release resources used for watch path information. */
1038 static void audit_put_nd(struct nameidata *ndp, struct nameidata *ndw)
1039 {
1040 	if (ndp) {
1041 		path_release(ndp);
1042 		kfree(ndp);
1043 	}
1044 	if (ndw) {
1045 		path_release(ndw);
1046 		kfree(ndw);
1047 	}
1048 }
1049 
1050 /* Associate the given rule with an existing parent inotify_watch.
1051  * Caller must hold audit_filter_mutex. */
1052 static void audit_add_to_parent(struct audit_krule *krule,
1053 				struct audit_parent *parent)
1054 {
1055 	struct audit_watch *w, *watch = krule->watch;
1056 	int watch_found = 0;
1057 
1058 	list_for_each_entry(w, &parent->watches, wlist) {
1059 		if (strcmp(watch->path, w->path))
1060 			continue;
1061 
1062 		watch_found = 1;
1063 
1064 		/* put krule's and initial refs to temporary watch */
1065 		audit_put_watch(watch);
1066 		audit_put_watch(watch);
1067 
1068 		audit_get_watch(w);
1069 		krule->watch = watch = w;
1070 		break;
1071 	}
1072 
1073 	if (!watch_found) {
1074 		get_inotify_watch(&parent->wdata);
1075 		watch->parent = parent;
1076 
1077 		list_add(&watch->wlist, &parent->watches);
1078 	}
1079 	list_add(&krule->rlist, &watch->rules);
1080 }
1081 
1082 /* Find a matching watch entry, or add this one.
1083  * Caller must hold audit_filter_mutex. */
1084 static int audit_add_watch(struct audit_krule *krule, struct nameidata *ndp,
1085 			   struct nameidata *ndw)
1086 {
1087 	struct audit_watch *watch = krule->watch;
1088 	struct inotify_watch *i_watch;
1089 	struct audit_parent *parent;
1090 	int ret = 0;
1091 
1092 	/* update watch filter fields */
1093 	if (ndw) {
1094 		watch->dev = ndw->dentry->d_inode->i_sb->s_dev;
1095 		watch->ino = ndw->dentry->d_inode->i_ino;
1096 	}
1097 
1098 	/* The audit_filter_mutex must not be held during inotify calls because
1099 	 * we hold it during inotify event callback processing.  If an existing
1100 	 * inotify watch is found, inotify_find_watch() grabs a reference before
1101 	 * returning.
1102 	 */
1103 	mutex_unlock(&audit_filter_mutex);
1104 
1105 	if (inotify_find_watch(audit_ih, ndp->dentry->d_inode, &i_watch) < 0) {
1106 		parent = audit_init_parent(ndp);
1107 		if (IS_ERR(parent)) {
1108 			/* caller expects mutex locked */
1109 			mutex_lock(&audit_filter_mutex);
1110 			return PTR_ERR(parent);
1111 		}
1112 	} else
1113 		parent = container_of(i_watch, struct audit_parent, wdata);
1114 
1115 	mutex_lock(&audit_filter_mutex);
1116 
1117 	/* parent was moved before we took audit_filter_mutex */
1118 	if (parent->flags & AUDIT_PARENT_INVALID)
1119 		ret = -ENOENT;
1120 	else
1121 		audit_add_to_parent(krule, parent);
1122 
1123 	/* match get in audit_init_parent or inotify_find_watch */
1124 	put_inotify_watch(&parent->wdata);
1125 	return ret;
1126 }
1127 
1128 /* Add rule to given filterlist if not a duplicate. */
1129 static inline int audit_add_rule(struct audit_entry *entry,
1130 				 struct list_head *list)
1131 {
1132 	struct audit_entry *e;
1133 	struct audit_field *inode_f = entry->rule.inode_f;
1134 	struct audit_watch *watch = entry->rule.watch;
1135 	struct nameidata *ndp, *ndw;
1136 	int h, err, putnd_needed = 0;
1137 
1138 	if (inode_f) {
1139 		h = audit_hash_ino(inode_f->val);
1140 		list = &audit_inode_hash[h];
1141 	}
1142 
1143 	mutex_lock(&audit_filter_mutex);
1144 	e = audit_find_rule(entry, list);
1145 	mutex_unlock(&audit_filter_mutex);
1146 	if (e) {
1147 		err = -EEXIST;
1148 		goto error;
1149 	}
1150 
1151 	/* Avoid calling path_lookup under audit_filter_mutex. */
1152 	if (watch) {
1153 		err = audit_get_nd(watch->path, &ndp, &ndw);
1154 		if (err)
1155 			goto error;
1156 		putnd_needed = 1;
1157 	}
1158 
1159 	mutex_lock(&audit_filter_mutex);
1160 	if (watch) {
1161 		/* audit_filter_mutex is dropped and re-taken during this call */
1162 		err = audit_add_watch(&entry->rule, ndp, ndw);
1163 		if (err) {
1164 			mutex_unlock(&audit_filter_mutex);
1165 			goto error;
1166 		}
1167 		h = audit_hash_ino((u32)watch->ino);
1168 		list = &audit_inode_hash[h];
1169 	}
1170 
1171 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
1172 		list_add_rcu(&entry->list, list);
1173 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
1174 	} else {
1175 		list_add_tail_rcu(&entry->list, list);
1176 	}
1177 	mutex_unlock(&audit_filter_mutex);
1178 
1179 	if (putnd_needed)
1180 		audit_put_nd(ndp, ndw);
1181 
1182  	return 0;
1183 
1184 error:
1185 	if (putnd_needed)
1186 		audit_put_nd(ndp, ndw);
1187 	if (watch)
1188 		audit_put_watch(watch); /* tmp watch, matches initial get */
1189 	return err;
1190 }
1191 
1192 /* Remove an existing rule from filterlist. */
1193 static inline int audit_del_rule(struct audit_entry *entry,
1194 				 struct list_head *list)
1195 {
1196 	struct audit_entry  *e;
1197 	struct audit_field *inode_f = entry->rule.inode_f;
1198 	struct audit_watch *watch, *tmp_watch = entry->rule.watch;
1199 	LIST_HEAD(inotify_list);
1200 	int h, ret = 0;
1201 
1202 	if (inode_f) {
1203 		h = audit_hash_ino(inode_f->val);
1204 		list = &audit_inode_hash[h];
1205 	}
1206 
1207 	mutex_lock(&audit_filter_mutex);
1208 	e = audit_find_rule(entry, list);
1209 	if (!e) {
1210 		mutex_unlock(&audit_filter_mutex);
1211 		ret = -ENOENT;
1212 		goto out;
1213 	}
1214 
1215 	watch = e->rule.watch;
1216 	if (watch) {
1217 		struct audit_parent *parent = watch->parent;
1218 
1219 		list_del(&e->rule.rlist);
1220 
1221 		if (list_empty(&watch->rules)) {
1222 			audit_remove_watch(watch);
1223 
1224 			if (list_empty(&parent->watches)) {
1225 				/* Put parent on the inotify un-registration
1226 				 * list.  Grab a reference before releasing
1227 				 * audit_filter_mutex, to be released in
1228 				 * audit_inotify_unregister(). */
1229 				list_add(&parent->ilist, &inotify_list);
1230 				get_inotify_watch(&parent->wdata);
1231 			}
1232 		}
1233 	}
1234 
1235 	list_del_rcu(&e->list);
1236 	call_rcu(&e->rcu, audit_free_rule_rcu);
1237 
1238 	mutex_unlock(&audit_filter_mutex);
1239 
1240 	if (!list_empty(&inotify_list))
1241 		audit_inotify_unregister(&inotify_list);
1242 
1243 out:
1244 	if (tmp_watch)
1245 		audit_put_watch(tmp_watch); /* match initial get */
1246 
1247 	return ret;
1248 }
1249 
1250 /* List rules using struct audit_rule.  Exists for backward
1251  * compatibility with userspace. */
1252 static void audit_list(int pid, int seq, struct sk_buff_head *q)
1253 {
1254 	struct sk_buff *skb;
1255 	struct audit_entry *entry;
1256 	int i;
1257 
1258 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1259 	 * iterator to sync with list writers. */
1260 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1261 		list_for_each_entry(entry, &audit_filter_list[i], list) {
1262 			struct audit_rule *rule;
1263 
1264 			rule = audit_krule_to_rule(&entry->rule);
1265 			if (unlikely(!rule))
1266 				break;
1267 			skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1268 					 rule, sizeof(*rule));
1269 			if (skb)
1270 				skb_queue_tail(q, skb);
1271 			kfree(rule);
1272 		}
1273 	}
1274 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++) {
1275 		list_for_each_entry(entry, &audit_inode_hash[i], list) {
1276 			struct audit_rule *rule;
1277 
1278 			rule = audit_krule_to_rule(&entry->rule);
1279 			if (unlikely(!rule))
1280 				break;
1281 			skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1282 					 rule, sizeof(*rule));
1283 			if (skb)
1284 				skb_queue_tail(q, skb);
1285 			kfree(rule);
1286 		}
1287 	}
1288 	skb = audit_make_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
1289 	if (skb)
1290 		skb_queue_tail(q, skb);
1291 }
1292 
1293 /* List rules using struct audit_rule_data. */
1294 static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
1295 {
1296 	struct sk_buff *skb;
1297 	struct audit_entry *e;
1298 	int i;
1299 
1300 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1301 	 * iterator to sync with list writers. */
1302 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1303 		list_for_each_entry(e, &audit_filter_list[i], list) {
1304 			struct audit_rule_data *data;
1305 
1306 			data = audit_krule_to_data(&e->rule);
1307 			if (unlikely(!data))
1308 				break;
1309 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1310 					 data, sizeof(*data) + data->buflen);
1311 			if (skb)
1312 				skb_queue_tail(q, skb);
1313 			kfree(data);
1314 		}
1315 	}
1316 	for (i=0; i< AUDIT_INODE_BUCKETS; i++) {
1317 		list_for_each_entry(e, &audit_inode_hash[i], list) {
1318 			struct audit_rule_data *data;
1319 
1320 			data = audit_krule_to_data(&e->rule);
1321 			if (unlikely(!data))
1322 				break;
1323 			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1324 					 data, sizeof(*data) + data->buflen);
1325 			if (skb)
1326 				skb_queue_tail(q, skb);
1327 			kfree(data);
1328 		}
1329 	}
1330 	skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1331 	if (skb)
1332 		skb_queue_tail(q, skb);
1333 }
1334 
1335 /* Log rule additions and removals */
1336 static void audit_log_rule_change(uid_t loginuid, u32 sid, char *action,
1337 				  struct audit_krule *rule, int res)
1338 {
1339 	struct audit_buffer *ab;
1340 
1341 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1342 	if (!ab)
1343 		return;
1344 	audit_log_format(ab, "auid=%u", loginuid);
1345 	if (sid) {
1346 		char *ctx = NULL;
1347 		u32 len;
1348 		if (selinux_ctxid_to_string(sid, &ctx, &len))
1349 			audit_log_format(ab, " ssid=%u", sid);
1350 		else
1351 			audit_log_format(ab, " subj=%s", ctx);
1352 		kfree(ctx);
1353 	}
1354 	audit_log_format(ab, " %s rule key=", action);
1355 	if (rule->filterkey)
1356 		audit_log_untrustedstring(ab, rule->filterkey);
1357 	else
1358 		audit_log_format(ab, "(null)");
1359 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1360 	audit_log_end(ab);
1361 }
1362 
1363 /**
1364  * audit_receive_filter - apply all rules to the specified message type
1365  * @type: audit message type
1366  * @pid: target pid for netlink audit messages
1367  * @uid: target uid for netlink audit messages
1368  * @seq: netlink audit message sequence (serial) number
1369  * @data: payload data
1370  * @datasz: size of payload data
1371  * @loginuid: loginuid of sender
1372  * @sid: SE Linux Security ID of sender
1373  */
1374 int audit_receive_filter(int type, int pid, int uid, int seq, void *data,
1375 			 size_t datasz, uid_t loginuid, u32 sid)
1376 {
1377 	struct task_struct *tsk;
1378 	struct audit_netlink_list *dest;
1379 	int err = 0;
1380 	struct audit_entry *entry;
1381 
1382 	switch (type) {
1383 	case AUDIT_LIST:
1384 	case AUDIT_LIST_RULES:
1385 		/* We can't just spew out the rules here because we might fill
1386 		 * the available socket buffer space and deadlock waiting for
1387 		 * auditctl to read from it... which isn't ever going to
1388 		 * happen if we're actually running in the context of auditctl
1389 		 * trying to _send_ the stuff */
1390 
1391 		dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1392 		if (!dest)
1393 			return -ENOMEM;
1394 		dest->pid = pid;
1395 		skb_queue_head_init(&dest->q);
1396 
1397 		mutex_lock(&audit_filter_mutex);
1398 		if (type == AUDIT_LIST)
1399 			audit_list(pid, seq, &dest->q);
1400 		else
1401 			audit_list_rules(pid, seq, &dest->q);
1402 		mutex_unlock(&audit_filter_mutex);
1403 
1404 		tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1405 		if (IS_ERR(tsk)) {
1406 			skb_queue_purge(&dest->q);
1407 			kfree(dest);
1408 			err = PTR_ERR(tsk);
1409 		}
1410 		break;
1411 	case AUDIT_ADD:
1412 	case AUDIT_ADD_RULE:
1413 		if (type == AUDIT_ADD)
1414 			entry = audit_rule_to_entry(data);
1415 		else
1416 			entry = audit_data_to_entry(data, datasz);
1417 		if (IS_ERR(entry))
1418 			return PTR_ERR(entry);
1419 
1420 		err = audit_add_rule(entry,
1421 				     &audit_filter_list[entry->rule.listnr]);
1422 		audit_log_rule_change(loginuid, sid, "add", &entry->rule, !err);
1423 
1424 		if (err)
1425 			audit_free_rule(entry);
1426 		break;
1427 	case AUDIT_DEL:
1428 	case AUDIT_DEL_RULE:
1429 		if (type == AUDIT_DEL)
1430 			entry = audit_rule_to_entry(data);
1431 		else
1432 			entry = audit_data_to_entry(data, datasz);
1433 		if (IS_ERR(entry))
1434 			return PTR_ERR(entry);
1435 
1436 		err = audit_del_rule(entry,
1437 				     &audit_filter_list[entry->rule.listnr]);
1438 		audit_log_rule_change(loginuid, sid, "remove", &entry->rule,
1439 				      !err);
1440 
1441 		audit_free_rule(entry);
1442 		break;
1443 	default:
1444 		return -EINVAL;
1445 	}
1446 
1447 	return err;
1448 }
1449 
1450 int audit_comparator(const u32 left, const u32 op, const u32 right)
1451 {
1452 	switch (op) {
1453 	case AUDIT_EQUAL:
1454 		return (left == right);
1455 	case AUDIT_NOT_EQUAL:
1456 		return (left != right);
1457 	case AUDIT_LESS_THAN:
1458 		return (left < right);
1459 	case AUDIT_LESS_THAN_OR_EQUAL:
1460 		return (left <= right);
1461 	case AUDIT_GREATER_THAN:
1462 		return (left > right);
1463 	case AUDIT_GREATER_THAN_OR_EQUAL:
1464 		return (left >= right);
1465 	}
1466 	BUG();
1467 	return 0;
1468 }
1469 
1470 /* Compare given dentry name with last component in given path,
1471  * return of 0 indicates a match. */
1472 int audit_compare_dname_path(const char *dname, const char *path,
1473 			     int *dirlen)
1474 {
1475 	int dlen, plen;
1476 	const char *p;
1477 
1478 	if (!dname || !path)
1479 		return 1;
1480 
1481 	dlen = strlen(dname);
1482 	plen = strlen(path);
1483 	if (plen < dlen)
1484 		return 1;
1485 
1486 	/* disregard trailing slashes */
1487 	p = path + plen - 1;
1488 	while ((*p == '/') && (p > path))
1489 		p--;
1490 
1491 	/* find last path component */
1492 	p = p - dlen + 1;
1493 	if (p < path)
1494 		return 1;
1495 	else if (p > path) {
1496 		if (*--p != '/')
1497 			return 1;
1498 		else
1499 			p++;
1500 	}
1501 
1502 	/* return length of path's directory component */
1503 	if (dirlen)
1504 		*dirlen = p - path;
1505 	return strncmp(p, dname, dlen);
1506 }
1507 
1508 static int audit_filter_user_rules(struct netlink_skb_parms *cb,
1509 				   struct audit_krule *rule,
1510 				   enum audit_state *state)
1511 {
1512 	int i;
1513 
1514 	for (i = 0; i < rule->field_count; i++) {
1515 		struct audit_field *f = &rule->fields[i];
1516 		int result = 0;
1517 
1518 		switch (f->type) {
1519 		case AUDIT_PID:
1520 			result = audit_comparator(cb->creds.pid, f->op, f->val);
1521 			break;
1522 		case AUDIT_UID:
1523 			result = audit_comparator(cb->creds.uid, f->op, f->val);
1524 			break;
1525 		case AUDIT_GID:
1526 			result = audit_comparator(cb->creds.gid, f->op, f->val);
1527 			break;
1528 		case AUDIT_LOGINUID:
1529 			result = audit_comparator(cb->loginuid, f->op, f->val);
1530 			break;
1531 		}
1532 
1533 		if (!result)
1534 			return 0;
1535 	}
1536 	switch (rule->action) {
1537 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1538 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1539 	}
1540 	return 1;
1541 }
1542 
1543 int audit_filter_user(struct netlink_skb_parms *cb, int type)
1544 {
1545 	struct audit_entry *e;
1546 	enum audit_state   state;
1547 	int ret = 1;
1548 
1549 	rcu_read_lock();
1550 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1551 		if (audit_filter_user_rules(cb, &e->rule, &state)) {
1552 			if (state == AUDIT_DISABLED)
1553 				ret = 0;
1554 			break;
1555 		}
1556 	}
1557 	rcu_read_unlock();
1558 
1559 	return ret; /* Audit by default */
1560 }
1561 
1562 int audit_filter_type(int type)
1563 {
1564 	struct audit_entry *e;
1565 	int result = 0;
1566 
1567 	rcu_read_lock();
1568 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1569 		goto unlock_and_return;
1570 
1571 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1572 				list) {
1573 		int i;
1574 		for (i = 0; i < e->rule.field_count; i++) {
1575 			struct audit_field *f = &e->rule.fields[i];
1576 			if (f->type == AUDIT_MSGTYPE) {
1577 				result = audit_comparator(type, f->op, f->val);
1578 				if (!result)
1579 					break;
1580 			}
1581 		}
1582 		if (result)
1583 			goto unlock_and_return;
1584 	}
1585 unlock_and_return:
1586 	rcu_read_unlock();
1587 	return result;
1588 }
1589 
1590 /* Check to see if the rule contains any selinux fields.  Returns 1 if there
1591    are selinux fields specified in the rule, 0 otherwise. */
1592 static inline int audit_rule_has_selinux(struct audit_krule *rule)
1593 {
1594 	int i;
1595 
1596 	for (i = 0; i < rule->field_count; i++) {
1597 		struct audit_field *f = &rule->fields[i];
1598 		switch (f->type) {
1599 		case AUDIT_SUBJ_USER:
1600 		case AUDIT_SUBJ_ROLE:
1601 		case AUDIT_SUBJ_TYPE:
1602 		case AUDIT_SUBJ_SEN:
1603 		case AUDIT_SUBJ_CLR:
1604 		case AUDIT_OBJ_USER:
1605 		case AUDIT_OBJ_ROLE:
1606 		case AUDIT_OBJ_TYPE:
1607 		case AUDIT_OBJ_LEV_LOW:
1608 		case AUDIT_OBJ_LEV_HIGH:
1609 			return 1;
1610 		}
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 /* This function will re-initialize the se_rule field of all applicable rules.
1617  * It will traverse the filter lists serarching for rules that contain selinux
1618  * specific filter fields.  When such a rule is found, it is copied, the
1619  * selinux field is re-initialized, and the old rule is replaced with the
1620  * updated rule. */
1621 int selinux_audit_rule_update(void)
1622 {
1623 	struct audit_entry *entry, *n, *nentry;
1624 	struct audit_watch *watch;
1625 	int i, err = 0;
1626 
1627 	/* audit_filter_mutex synchronizes the writers */
1628 	mutex_lock(&audit_filter_mutex);
1629 
1630 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1631 		list_for_each_entry_safe(entry, n, &audit_filter_list[i], list) {
1632 			if (!audit_rule_has_selinux(&entry->rule))
1633 				continue;
1634 
1635 			watch = entry->rule.watch;
1636 			nentry = audit_dupe_rule(&entry->rule, watch);
1637 			if (unlikely(IS_ERR(nentry))) {
1638 				/* save the first error encountered for the
1639 				 * return value */
1640 				if (!err)
1641 					err = PTR_ERR(nentry);
1642 				audit_panic("error updating selinux filters");
1643 				if (watch)
1644 					list_del(&entry->rule.rlist);
1645 				list_del_rcu(&entry->list);
1646 			} else {
1647 				if (watch) {
1648 					list_add(&nentry->rule.rlist,
1649 						 &watch->rules);
1650 					list_del(&entry->rule.rlist);
1651 				}
1652 				list_replace_rcu(&entry->list, &nentry->list);
1653 			}
1654 			call_rcu(&entry->rcu, audit_free_rule_rcu);
1655 		}
1656 	}
1657 
1658 	mutex_unlock(&audit_filter_mutex);
1659 
1660 	return err;
1661 }
1662 
1663 /* Update watch data in audit rules based on inotify events. */
1664 void audit_handle_ievent(struct inotify_watch *i_watch, u32 wd, u32 mask,
1665 			 u32 cookie, const char *dname, struct inode *inode)
1666 {
1667 	struct audit_parent *parent;
1668 
1669 	parent = container_of(i_watch, struct audit_parent, wdata);
1670 
1671 	if (mask & (IN_CREATE|IN_MOVED_TO) && inode)
1672 		audit_update_watch(parent, dname, inode->i_sb->s_dev,
1673 				   inode->i_ino, 0);
1674 	else if (mask & (IN_DELETE|IN_MOVED_FROM))
1675 		audit_update_watch(parent, dname, (dev_t)-1, (unsigned long)-1, 1);
1676 	/* inotify automatically removes the watch and sends IN_IGNORED */
1677 	else if (mask & (IN_DELETE_SELF|IN_UNMOUNT))
1678 		audit_remove_parent_watches(parent);
1679 	/* inotify does not remove the watch, so remove it manually */
1680 	else if(mask & IN_MOVE_SELF) {
1681 		audit_remove_parent_watches(parent);
1682 		inotify_remove_watch_locked(audit_ih, i_watch);
1683 	} else if (mask & IN_IGNORED)
1684 		put_inotify_watch(i_watch);
1685 }
1686