xref: /linux/kernel/audit_tree.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7 
8 struct audit_tree;
9 struct audit_chunk;
10 
11 struct audit_tree {
12 	atomic_t count;
13 	int goner;
14 	struct audit_chunk *root;
15 	struct list_head chunks;
16 	struct list_head rules;
17 	struct list_head list;
18 	struct list_head same_root;
19 	struct rcu_head head;
20 	char pathname[];
21 };
22 
23 struct audit_chunk {
24 	struct list_head hash;
25 	struct fsnotify_mark mark;
26 	struct list_head trees;		/* with root here */
27 	int dead;
28 	int count;
29 	atomic_long_t refs;
30 	struct rcu_head head;
31 	struct node {
32 		struct list_head list;
33 		struct audit_tree *owner;
34 		unsigned index;		/* index; upper bit indicates 'will prune' */
35 	} owners[];
36 };
37 
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 
41 /*
42  * One struct chunk is attached to each inode of interest.
43  * We replace struct chunk on tagging/untagging.
44  * Rules have pointer to struct audit_tree.
45  * Rules have struct list_head rlist forming a list of rules over
46  * the same tree.
47  * References to struct chunk are collected at audit_inode{,_child}()
48  * time and used in AUDIT_TREE rule matching.
49  * These references are dropped at the same time we are calling
50  * audit_free_names(), etc.
51  *
52  * Cyclic lists galore:
53  * tree.chunks anchors chunk.owners[].list			hash_lock
54  * tree.rules anchors rule.rlist				audit_filter_mutex
55  * chunk.trees anchors tree.same_root				hash_lock
56  * chunk.hash is a hash with middle bits of watch.inode as
57  * a hash function.						RCU, hash_lock
58  *
59  * tree is refcounted; one reference for "some rules on rules_list refer to
60  * it", one for each chunk with pointer to it.
61  *
62  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63  * of watch contributes 1 to .refs).
64  *
65  * node.index allows to get from node.list to containing chunk.
66  * MSB of that sucker is stolen to mark taggings that we might have to
67  * revert - several operations have very unpleasant cleanup logics and
68  * that makes a difference.  Some.
69  */
70 
71 static struct fsnotify_group *audit_tree_group;
72 
73 static struct audit_tree *alloc_tree(const char *s)
74 {
75 	struct audit_tree *tree;
76 
77 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78 	if (tree) {
79 		atomic_set(&tree->count, 1);
80 		tree->goner = 0;
81 		INIT_LIST_HEAD(&tree->chunks);
82 		INIT_LIST_HEAD(&tree->rules);
83 		INIT_LIST_HEAD(&tree->list);
84 		INIT_LIST_HEAD(&tree->same_root);
85 		tree->root = NULL;
86 		strcpy(tree->pathname, s);
87 	}
88 	return tree;
89 }
90 
91 static inline void get_tree(struct audit_tree *tree)
92 {
93 	atomic_inc(&tree->count);
94 }
95 
96 static void __put_tree(struct rcu_head *rcu)
97 {
98 	struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
99 	kfree(tree);
100 }
101 
102 static inline void put_tree(struct audit_tree *tree)
103 {
104 	if (atomic_dec_and_test(&tree->count))
105 		call_rcu(&tree->head, __put_tree);
106 }
107 
108 /* to avoid bringing the entire thing in audit.h */
109 const char *audit_tree_path(struct audit_tree *tree)
110 {
111 	return tree->pathname;
112 }
113 
114 static void free_chunk(struct audit_chunk *chunk)
115 {
116 	int i;
117 
118 	for (i = 0; i < chunk->count; i++) {
119 		if (chunk->owners[i].owner)
120 			put_tree(chunk->owners[i].owner);
121 	}
122 	kfree(chunk);
123 }
124 
125 void audit_put_chunk(struct audit_chunk *chunk)
126 {
127 	if (atomic_long_dec_and_test(&chunk->refs))
128 		free_chunk(chunk);
129 }
130 
131 static void __put_chunk(struct rcu_head *rcu)
132 {
133 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
134 	audit_put_chunk(chunk);
135 }
136 
137 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
138 {
139 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
140 	call_rcu(&chunk->head, __put_chunk);
141 }
142 
143 static struct audit_chunk *alloc_chunk(int count)
144 {
145 	struct audit_chunk *chunk;
146 	size_t size;
147 	int i;
148 
149 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
150 	chunk = kzalloc(size, GFP_KERNEL);
151 	if (!chunk)
152 		return NULL;
153 
154 	INIT_LIST_HEAD(&chunk->hash);
155 	INIT_LIST_HEAD(&chunk->trees);
156 	chunk->count = count;
157 	atomic_long_set(&chunk->refs, 1);
158 	for (i = 0; i < count; i++) {
159 		INIT_LIST_HEAD(&chunk->owners[i].list);
160 		chunk->owners[i].index = i;
161 	}
162 	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
163 	return chunk;
164 }
165 
166 enum {HASH_SIZE = 128};
167 static struct list_head chunk_hash_heads[HASH_SIZE];
168 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
169 
170 static inline struct list_head *chunk_hash(const struct inode *inode)
171 {
172 	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
173 	return chunk_hash_heads + n % HASH_SIZE;
174 }
175 
176 /* hash_lock & entry->lock is held by caller */
177 static void insert_hash(struct audit_chunk *chunk)
178 {
179 	struct fsnotify_mark *entry = &chunk->mark;
180 	struct list_head *list;
181 
182 	if (!entry->i.inode)
183 		return;
184 	list = chunk_hash(entry->i.inode);
185 	list_add_rcu(&chunk->hash, list);
186 }
187 
188 /* called under rcu_read_lock */
189 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
190 {
191 	struct list_head *list = chunk_hash(inode);
192 	struct audit_chunk *p;
193 
194 	list_for_each_entry_rcu(p, list, hash) {
195 		/* mark.inode may have gone NULL, but who cares? */
196 		if (p->mark.i.inode == inode) {
197 			atomic_long_inc(&p->refs);
198 			return p;
199 		}
200 	}
201 	return NULL;
202 }
203 
204 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
205 {
206 	int n;
207 	for (n = 0; n < chunk->count; n++)
208 		if (chunk->owners[n].owner == tree)
209 			return 1;
210 	return 0;
211 }
212 
213 /* tagging and untagging inodes with trees */
214 
215 static struct audit_chunk *find_chunk(struct node *p)
216 {
217 	int index = p->index & ~(1U<<31);
218 	p -= index;
219 	return container_of(p, struct audit_chunk, owners[0]);
220 }
221 
222 static void untag_chunk(struct node *p)
223 {
224 	struct audit_chunk *chunk = find_chunk(p);
225 	struct fsnotify_mark *entry = &chunk->mark;
226 	struct audit_chunk *new;
227 	struct audit_tree *owner;
228 	int size = chunk->count - 1;
229 	int i, j;
230 
231 	fsnotify_get_mark(entry);
232 
233 	spin_unlock(&hash_lock);
234 
235 	spin_lock(&entry->lock);
236 	if (chunk->dead || !entry->i.inode) {
237 		spin_unlock(&entry->lock);
238 		goto out;
239 	}
240 
241 	owner = p->owner;
242 
243 	if (!size) {
244 		chunk->dead = 1;
245 		spin_lock(&hash_lock);
246 		list_del_init(&chunk->trees);
247 		if (owner->root == chunk)
248 			owner->root = NULL;
249 		list_del_init(&p->list);
250 		list_del_rcu(&chunk->hash);
251 		spin_unlock(&hash_lock);
252 		spin_unlock(&entry->lock);
253 		fsnotify_destroy_mark(entry);
254 		fsnotify_put_mark(entry);
255 		goto out;
256 	}
257 
258 	new = alloc_chunk(size);
259 	if (!new)
260 		goto Fallback;
261 	fsnotify_duplicate_mark(&new->mark, entry);
262 	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
263 		free_chunk(new);
264 		goto Fallback;
265 	}
266 
267 	chunk->dead = 1;
268 	spin_lock(&hash_lock);
269 	list_replace_init(&chunk->trees, &new->trees);
270 	if (owner->root == chunk) {
271 		list_del_init(&owner->same_root);
272 		owner->root = NULL;
273 	}
274 
275 	for (i = j = 0; j <= size; i++, j++) {
276 		struct audit_tree *s;
277 		if (&chunk->owners[j] == p) {
278 			list_del_init(&p->list);
279 			i--;
280 			continue;
281 		}
282 		s = chunk->owners[j].owner;
283 		new->owners[i].owner = s;
284 		new->owners[i].index = chunk->owners[j].index - j + i;
285 		if (!s) /* result of earlier fallback */
286 			continue;
287 		get_tree(s);
288 		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
289 	}
290 
291 	list_replace_rcu(&chunk->hash, &new->hash);
292 	list_for_each_entry(owner, &new->trees, same_root)
293 		owner->root = new;
294 	spin_unlock(&hash_lock);
295 	spin_unlock(&entry->lock);
296 	fsnotify_destroy_mark(entry);
297 	fsnotify_put_mark(entry);
298 	goto out;
299 
300 Fallback:
301 	// do the best we can
302 	spin_lock(&hash_lock);
303 	if (owner->root == chunk) {
304 		list_del_init(&owner->same_root);
305 		owner->root = NULL;
306 	}
307 	list_del_init(&p->list);
308 	p->owner = NULL;
309 	put_tree(owner);
310 	spin_unlock(&hash_lock);
311 	spin_unlock(&entry->lock);
312 out:
313 	fsnotify_put_mark(entry);
314 	spin_lock(&hash_lock);
315 }
316 
317 static int create_chunk(struct inode *inode, struct audit_tree *tree)
318 {
319 	struct fsnotify_mark *entry;
320 	struct audit_chunk *chunk = alloc_chunk(1);
321 	if (!chunk)
322 		return -ENOMEM;
323 
324 	entry = &chunk->mark;
325 	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
326 		free_chunk(chunk);
327 		return -ENOSPC;
328 	}
329 
330 	spin_lock(&entry->lock);
331 	spin_lock(&hash_lock);
332 	if (tree->goner) {
333 		spin_unlock(&hash_lock);
334 		chunk->dead = 1;
335 		spin_unlock(&entry->lock);
336 		fsnotify_destroy_mark(entry);
337 		fsnotify_put_mark(entry);
338 		return 0;
339 	}
340 	chunk->owners[0].index = (1U << 31);
341 	chunk->owners[0].owner = tree;
342 	get_tree(tree);
343 	list_add(&chunk->owners[0].list, &tree->chunks);
344 	if (!tree->root) {
345 		tree->root = chunk;
346 		list_add(&tree->same_root, &chunk->trees);
347 	}
348 	insert_hash(chunk);
349 	spin_unlock(&hash_lock);
350 	spin_unlock(&entry->lock);
351 	return 0;
352 }
353 
354 /* the first tagged inode becomes root of tree */
355 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
356 {
357 	struct fsnotify_mark *old_entry, *chunk_entry;
358 	struct audit_tree *owner;
359 	struct audit_chunk *chunk, *old;
360 	struct node *p;
361 	int n;
362 
363 	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
364 	if (!old_entry)
365 		return create_chunk(inode, tree);
366 
367 	old = container_of(old_entry, struct audit_chunk, mark);
368 
369 	/* are we already there? */
370 	spin_lock(&hash_lock);
371 	for (n = 0; n < old->count; n++) {
372 		if (old->owners[n].owner == tree) {
373 			spin_unlock(&hash_lock);
374 			fsnotify_put_mark(old_entry);
375 			return 0;
376 		}
377 	}
378 	spin_unlock(&hash_lock);
379 
380 	chunk = alloc_chunk(old->count + 1);
381 	if (!chunk) {
382 		fsnotify_put_mark(old_entry);
383 		return -ENOMEM;
384 	}
385 
386 	chunk_entry = &chunk->mark;
387 
388 	spin_lock(&old_entry->lock);
389 	if (!old_entry->i.inode) {
390 		/* old_entry is being shot, lets just lie */
391 		spin_unlock(&old_entry->lock);
392 		fsnotify_put_mark(old_entry);
393 		free_chunk(chunk);
394 		return -ENOENT;
395 	}
396 
397 	fsnotify_duplicate_mark(chunk_entry, old_entry);
398 	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
399 		spin_unlock(&old_entry->lock);
400 		free_chunk(chunk);
401 		fsnotify_put_mark(old_entry);
402 		return -ENOSPC;
403 	}
404 
405 	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
406 	spin_lock(&chunk_entry->lock);
407 	spin_lock(&hash_lock);
408 
409 	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
410 	if (tree->goner) {
411 		spin_unlock(&hash_lock);
412 		chunk->dead = 1;
413 		spin_unlock(&chunk_entry->lock);
414 		spin_unlock(&old_entry->lock);
415 
416 		fsnotify_destroy_mark(chunk_entry);
417 
418 		fsnotify_put_mark(chunk_entry);
419 		fsnotify_put_mark(old_entry);
420 		return 0;
421 	}
422 	list_replace_init(&old->trees, &chunk->trees);
423 	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
424 		struct audit_tree *s = old->owners[n].owner;
425 		p->owner = s;
426 		p->index = old->owners[n].index;
427 		if (!s) /* result of fallback in untag */
428 			continue;
429 		get_tree(s);
430 		list_replace_init(&old->owners[n].list, &p->list);
431 	}
432 	p->index = (chunk->count - 1) | (1U<<31);
433 	p->owner = tree;
434 	get_tree(tree);
435 	list_add(&p->list, &tree->chunks);
436 	list_replace_rcu(&old->hash, &chunk->hash);
437 	list_for_each_entry(owner, &chunk->trees, same_root)
438 		owner->root = chunk;
439 	old->dead = 1;
440 	if (!tree->root) {
441 		tree->root = chunk;
442 		list_add(&tree->same_root, &chunk->trees);
443 	}
444 	spin_unlock(&hash_lock);
445 	spin_unlock(&chunk_entry->lock);
446 	spin_unlock(&old_entry->lock);
447 	fsnotify_destroy_mark(old_entry);
448 	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
449 	fsnotify_put_mark(old_entry); /* and kill it */
450 	return 0;
451 }
452 
453 static void kill_rules(struct audit_tree *tree)
454 {
455 	struct audit_krule *rule, *next;
456 	struct audit_entry *entry;
457 	struct audit_buffer *ab;
458 
459 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
460 		entry = container_of(rule, struct audit_entry, rule);
461 
462 		list_del_init(&rule->rlist);
463 		if (rule->tree) {
464 			/* not a half-baked one */
465 			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
466 			audit_log_format(ab, "op=");
467 			audit_log_string(ab, "remove rule");
468 			audit_log_format(ab, " dir=");
469 			audit_log_untrustedstring(ab, rule->tree->pathname);
470 			audit_log_key(ab, rule->filterkey);
471 			audit_log_format(ab, " list=%d res=1", rule->listnr);
472 			audit_log_end(ab);
473 			rule->tree = NULL;
474 			list_del_rcu(&entry->list);
475 			list_del(&entry->rule.list);
476 			call_rcu(&entry->rcu, audit_free_rule_rcu);
477 		}
478 	}
479 }
480 
481 /*
482  * finish killing struct audit_tree
483  */
484 static void prune_one(struct audit_tree *victim)
485 {
486 	spin_lock(&hash_lock);
487 	while (!list_empty(&victim->chunks)) {
488 		struct node *p;
489 
490 		p = list_entry(victim->chunks.next, struct node, list);
491 
492 		untag_chunk(p);
493 	}
494 	spin_unlock(&hash_lock);
495 	put_tree(victim);
496 }
497 
498 /* trim the uncommitted chunks from tree */
499 
500 static void trim_marked(struct audit_tree *tree)
501 {
502 	struct list_head *p, *q;
503 	spin_lock(&hash_lock);
504 	if (tree->goner) {
505 		spin_unlock(&hash_lock);
506 		return;
507 	}
508 	/* reorder */
509 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
510 		struct node *node = list_entry(p, struct node, list);
511 		q = p->next;
512 		if (node->index & (1U<<31)) {
513 			list_del_init(p);
514 			list_add(p, &tree->chunks);
515 		}
516 	}
517 
518 	while (!list_empty(&tree->chunks)) {
519 		struct node *node;
520 
521 		node = list_entry(tree->chunks.next, struct node, list);
522 
523 		/* have we run out of marked? */
524 		if (!(node->index & (1U<<31)))
525 			break;
526 
527 		untag_chunk(node);
528 	}
529 	if (!tree->root && !tree->goner) {
530 		tree->goner = 1;
531 		spin_unlock(&hash_lock);
532 		mutex_lock(&audit_filter_mutex);
533 		kill_rules(tree);
534 		list_del_init(&tree->list);
535 		mutex_unlock(&audit_filter_mutex);
536 		prune_one(tree);
537 	} else {
538 		spin_unlock(&hash_lock);
539 	}
540 }
541 
542 static void audit_schedule_prune(void);
543 
544 /* called with audit_filter_mutex */
545 int audit_remove_tree_rule(struct audit_krule *rule)
546 {
547 	struct audit_tree *tree;
548 	tree = rule->tree;
549 	if (tree) {
550 		spin_lock(&hash_lock);
551 		list_del_init(&rule->rlist);
552 		if (list_empty(&tree->rules) && !tree->goner) {
553 			tree->root = NULL;
554 			list_del_init(&tree->same_root);
555 			tree->goner = 1;
556 			list_move(&tree->list, &prune_list);
557 			rule->tree = NULL;
558 			spin_unlock(&hash_lock);
559 			audit_schedule_prune();
560 			return 1;
561 		}
562 		rule->tree = NULL;
563 		spin_unlock(&hash_lock);
564 		return 1;
565 	}
566 	return 0;
567 }
568 
569 static int compare_root(struct vfsmount *mnt, void *arg)
570 {
571 	return mnt->mnt_root->d_inode == arg;
572 }
573 
574 void audit_trim_trees(void)
575 {
576 	struct list_head cursor;
577 
578 	mutex_lock(&audit_filter_mutex);
579 	list_add(&cursor, &tree_list);
580 	while (cursor.next != &tree_list) {
581 		struct audit_tree *tree;
582 		struct path path;
583 		struct vfsmount *root_mnt;
584 		struct node *node;
585 		int err;
586 
587 		tree = container_of(cursor.next, struct audit_tree, list);
588 		get_tree(tree);
589 		list_del(&cursor);
590 		list_add(&cursor, &tree->list);
591 		mutex_unlock(&audit_filter_mutex);
592 
593 		err = kern_path(tree->pathname, 0, &path);
594 		if (err)
595 			goto skip_it;
596 
597 		root_mnt = collect_mounts(&path);
598 		path_put(&path);
599 		if (!root_mnt)
600 			goto skip_it;
601 
602 		spin_lock(&hash_lock);
603 		list_for_each_entry(node, &tree->chunks, list) {
604 			struct audit_chunk *chunk = find_chunk(node);
605 			/* this could be NULL if the watch is dieing else where... */
606 			struct inode *inode = chunk->mark.i.inode;
607 			node->index |= 1U<<31;
608 			if (iterate_mounts(compare_root, inode, root_mnt))
609 				node->index &= ~(1U<<31);
610 		}
611 		spin_unlock(&hash_lock);
612 		trim_marked(tree);
613 		put_tree(tree);
614 		drop_collected_mounts(root_mnt);
615 skip_it:
616 		mutex_lock(&audit_filter_mutex);
617 	}
618 	list_del(&cursor);
619 	mutex_unlock(&audit_filter_mutex);
620 }
621 
622 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
623 {
624 
625 	if (pathname[0] != '/' ||
626 	    rule->listnr != AUDIT_FILTER_EXIT ||
627 	    op != Audit_equal ||
628 	    rule->inode_f || rule->watch || rule->tree)
629 		return -EINVAL;
630 	rule->tree = alloc_tree(pathname);
631 	if (!rule->tree)
632 		return -ENOMEM;
633 	return 0;
634 }
635 
636 void audit_put_tree(struct audit_tree *tree)
637 {
638 	put_tree(tree);
639 }
640 
641 static int tag_mount(struct vfsmount *mnt, void *arg)
642 {
643 	return tag_chunk(mnt->mnt_root->d_inode, arg);
644 }
645 
646 /* called with audit_filter_mutex */
647 int audit_add_tree_rule(struct audit_krule *rule)
648 {
649 	struct audit_tree *seed = rule->tree, *tree;
650 	struct path path;
651 	struct vfsmount *mnt;
652 	int err;
653 
654 	list_for_each_entry(tree, &tree_list, list) {
655 		if (!strcmp(seed->pathname, tree->pathname)) {
656 			put_tree(seed);
657 			rule->tree = tree;
658 			list_add(&rule->rlist, &tree->rules);
659 			return 0;
660 		}
661 	}
662 	tree = seed;
663 	list_add(&tree->list, &tree_list);
664 	list_add(&rule->rlist, &tree->rules);
665 	/* do not set rule->tree yet */
666 	mutex_unlock(&audit_filter_mutex);
667 
668 	err = kern_path(tree->pathname, 0, &path);
669 	if (err)
670 		goto Err;
671 	mnt = collect_mounts(&path);
672 	path_put(&path);
673 	if (!mnt) {
674 		err = -ENOMEM;
675 		goto Err;
676 	}
677 
678 	get_tree(tree);
679 	err = iterate_mounts(tag_mount, tree, mnt);
680 	drop_collected_mounts(mnt);
681 
682 	if (!err) {
683 		struct node *node;
684 		spin_lock(&hash_lock);
685 		list_for_each_entry(node, &tree->chunks, list)
686 			node->index &= ~(1U<<31);
687 		spin_unlock(&hash_lock);
688 	} else {
689 		trim_marked(tree);
690 		goto Err;
691 	}
692 
693 	mutex_lock(&audit_filter_mutex);
694 	if (list_empty(&rule->rlist)) {
695 		put_tree(tree);
696 		return -ENOENT;
697 	}
698 	rule->tree = tree;
699 	put_tree(tree);
700 
701 	return 0;
702 Err:
703 	mutex_lock(&audit_filter_mutex);
704 	list_del_init(&tree->list);
705 	list_del_init(&tree->rules);
706 	put_tree(tree);
707 	return err;
708 }
709 
710 int audit_tag_tree(char *old, char *new)
711 {
712 	struct list_head cursor, barrier;
713 	int failed = 0;
714 	struct path path1, path2;
715 	struct vfsmount *tagged;
716 	int err;
717 
718 	err = kern_path(new, 0, &path2);
719 	if (err)
720 		return err;
721 	tagged = collect_mounts(&path2);
722 	path_put(&path2);
723 	if (!tagged)
724 		return -ENOMEM;
725 
726 	err = kern_path(old, 0, &path1);
727 	if (err) {
728 		drop_collected_mounts(tagged);
729 		return err;
730 	}
731 
732 	mutex_lock(&audit_filter_mutex);
733 	list_add(&barrier, &tree_list);
734 	list_add(&cursor, &barrier);
735 
736 	while (cursor.next != &tree_list) {
737 		struct audit_tree *tree;
738 		int good_one = 0;
739 
740 		tree = container_of(cursor.next, struct audit_tree, list);
741 		get_tree(tree);
742 		list_del(&cursor);
743 		list_add(&cursor, &tree->list);
744 		mutex_unlock(&audit_filter_mutex);
745 
746 		err = kern_path(tree->pathname, 0, &path2);
747 		if (!err) {
748 			good_one = path_is_under(&path1, &path2);
749 			path_put(&path2);
750 		}
751 
752 		if (!good_one) {
753 			put_tree(tree);
754 			mutex_lock(&audit_filter_mutex);
755 			continue;
756 		}
757 
758 		failed = iterate_mounts(tag_mount, tree, tagged);
759 		if (failed) {
760 			put_tree(tree);
761 			mutex_lock(&audit_filter_mutex);
762 			break;
763 		}
764 
765 		mutex_lock(&audit_filter_mutex);
766 		spin_lock(&hash_lock);
767 		if (!tree->goner) {
768 			list_del(&tree->list);
769 			list_add(&tree->list, &tree_list);
770 		}
771 		spin_unlock(&hash_lock);
772 		put_tree(tree);
773 	}
774 
775 	while (barrier.prev != &tree_list) {
776 		struct audit_tree *tree;
777 
778 		tree = container_of(barrier.prev, struct audit_tree, list);
779 		get_tree(tree);
780 		list_del(&tree->list);
781 		list_add(&tree->list, &barrier);
782 		mutex_unlock(&audit_filter_mutex);
783 
784 		if (!failed) {
785 			struct node *node;
786 			spin_lock(&hash_lock);
787 			list_for_each_entry(node, &tree->chunks, list)
788 				node->index &= ~(1U<<31);
789 			spin_unlock(&hash_lock);
790 		} else {
791 			trim_marked(tree);
792 		}
793 
794 		put_tree(tree);
795 		mutex_lock(&audit_filter_mutex);
796 	}
797 	list_del(&barrier);
798 	list_del(&cursor);
799 	mutex_unlock(&audit_filter_mutex);
800 	path_put(&path1);
801 	drop_collected_mounts(tagged);
802 	return failed;
803 }
804 
805 /*
806  * That gets run when evict_chunk() ends up needing to kill audit_tree.
807  * Runs from a separate thread.
808  */
809 static int prune_tree_thread(void *unused)
810 {
811 	mutex_lock(&audit_cmd_mutex);
812 	mutex_lock(&audit_filter_mutex);
813 
814 	while (!list_empty(&prune_list)) {
815 		struct audit_tree *victim;
816 
817 		victim = list_entry(prune_list.next, struct audit_tree, list);
818 		list_del_init(&victim->list);
819 
820 		mutex_unlock(&audit_filter_mutex);
821 
822 		prune_one(victim);
823 
824 		mutex_lock(&audit_filter_mutex);
825 	}
826 
827 	mutex_unlock(&audit_filter_mutex);
828 	mutex_unlock(&audit_cmd_mutex);
829 	return 0;
830 }
831 
832 static void audit_schedule_prune(void)
833 {
834 	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
835 }
836 
837 /*
838  * ... and that one is done if evict_chunk() decides to delay until the end
839  * of syscall.  Runs synchronously.
840  */
841 void audit_kill_trees(struct list_head *list)
842 {
843 	mutex_lock(&audit_cmd_mutex);
844 	mutex_lock(&audit_filter_mutex);
845 
846 	while (!list_empty(list)) {
847 		struct audit_tree *victim;
848 
849 		victim = list_entry(list->next, struct audit_tree, list);
850 		kill_rules(victim);
851 		list_del_init(&victim->list);
852 
853 		mutex_unlock(&audit_filter_mutex);
854 
855 		prune_one(victim);
856 
857 		mutex_lock(&audit_filter_mutex);
858 	}
859 
860 	mutex_unlock(&audit_filter_mutex);
861 	mutex_unlock(&audit_cmd_mutex);
862 }
863 
864 /*
865  *  Here comes the stuff asynchronous to auditctl operations
866  */
867 
868 static void evict_chunk(struct audit_chunk *chunk)
869 {
870 	struct audit_tree *owner;
871 	struct list_head *postponed = audit_killed_trees();
872 	int need_prune = 0;
873 	int n;
874 
875 	if (chunk->dead)
876 		return;
877 
878 	chunk->dead = 1;
879 	mutex_lock(&audit_filter_mutex);
880 	spin_lock(&hash_lock);
881 	while (!list_empty(&chunk->trees)) {
882 		owner = list_entry(chunk->trees.next,
883 				   struct audit_tree, same_root);
884 		owner->goner = 1;
885 		owner->root = NULL;
886 		list_del_init(&owner->same_root);
887 		spin_unlock(&hash_lock);
888 		if (!postponed) {
889 			kill_rules(owner);
890 			list_move(&owner->list, &prune_list);
891 			need_prune = 1;
892 		} else {
893 			list_move(&owner->list, postponed);
894 		}
895 		spin_lock(&hash_lock);
896 	}
897 	list_del_rcu(&chunk->hash);
898 	for (n = 0; n < chunk->count; n++)
899 		list_del_init(&chunk->owners[n].list);
900 	spin_unlock(&hash_lock);
901 	if (need_prune)
902 		audit_schedule_prune();
903 	mutex_unlock(&audit_filter_mutex);
904 }
905 
906 static int audit_tree_handle_event(struct fsnotify_group *group,
907 				   struct fsnotify_mark *inode_mark,
908 				   struct fsnotify_mark *vfsmonut_mark,
909 				   struct fsnotify_event *event)
910 {
911 	BUG();
912 	return -EOPNOTSUPP;
913 }
914 
915 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
916 {
917 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
918 
919 	evict_chunk(chunk);
920 	fsnotify_put_mark(entry);
921 }
922 
923 static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
924 				  struct fsnotify_mark *inode_mark,
925 				  struct fsnotify_mark *vfsmount_mark,
926 				  __u32 mask, void *data, int data_type)
927 {
928 	return false;
929 }
930 
931 static const struct fsnotify_ops audit_tree_ops = {
932 	.handle_event = audit_tree_handle_event,
933 	.should_send_event = audit_tree_send_event,
934 	.free_group_priv = NULL,
935 	.free_event_priv = NULL,
936 	.freeing_mark = audit_tree_freeing_mark,
937 };
938 
939 static int __init audit_tree_init(void)
940 {
941 	int i;
942 
943 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
944 	if (IS_ERR(audit_tree_group))
945 		audit_panic("cannot initialize fsnotify group for rectree watches");
946 
947 	for (i = 0; i < HASH_SIZE; i++)
948 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
949 
950 	return 0;
951 }
952 __initcall(audit_tree_init);
953