xref: /linux/kernel/audit_tree.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "audit.h"
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
9 
10 struct audit_tree;
11 struct audit_chunk;
12 
13 struct audit_tree {
14 	refcount_t count;
15 	int goner;
16 	struct audit_chunk *root;
17 	struct list_head chunks;
18 	struct list_head rules;
19 	struct list_head list;
20 	struct list_head same_root;
21 	struct rcu_head head;
22 	char pathname[];
23 };
24 
25 struct audit_chunk {
26 	struct list_head hash;
27 	struct fsnotify_mark mark;
28 	struct list_head trees;		/* with root here */
29 	int dead;
30 	int count;
31 	atomic_long_t refs;
32 	struct rcu_head head;
33 	struct node {
34 		struct list_head list;
35 		struct audit_tree *owner;
36 		unsigned index;		/* index; upper bit indicates 'will prune' */
37 	} owners[];
38 };
39 
40 static LIST_HEAD(tree_list);
41 static LIST_HEAD(prune_list);
42 static struct task_struct *prune_thread;
43 
44 /*
45  * One struct chunk is attached to each inode of interest.
46  * We replace struct chunk on tagging/untagging.
47  * Rules have pointer to struct audit_tree.
48  * Rules have struct list_head rlist forming a list of rules over
49  * the same tree.
50  * References to struct chunk are collected at audit_inode{,_child}()
51  * time and used in AUDIT_TREE rule matching.
52  * These references are dropped at the same time we are calling
53  * audit_free_names(), etc.
54  *
55  * Cyclic lists galore:
56  * tree.chunks anchors chunk.owners[].list			hash_lock
57  * tree.rules anchors rule.rlist				audit_filter_mutex
58  * chunk.trees anchors tree.same_root				hash_lock
59  * chunk.hash is a hash with middle bits of watch.inode as
60  * a hash function.						RCU, hash_lock
61  *
62  * tree is refcounted; one reference for "some rules on rules_list refer to
63  * it", one for each chunk with pointer to it.
64  *
65  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
66  * of watch contributes 1 to .refs).
67  *
68  * node.index allows to get from node.list to containing chunk.
69  * MSB of that sucker is stolen to mark taggings that we might have to
70  * revert - several operations have very unpleasant cleanup logics and
71  * that makes a difference.  Some.
72  */
73 
74 static struct fsnotify_group *audit_tree_group;
75 
76 static struct audit_tree *alloc_tree(const char *s)
77 {
78 	struct audit_tree *tree;
79 
80 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
81 	if (tree) {
82 		refcount_set(&tree->count, 1);
83 		tree->goner = 0;
84 		INIT_LIST_HEAD(&tree->chunks);
85 		INIT_LIST_HEAD(&tree->rules);
86 		INIT_LIST_HEAD(&tree->list);
87 		INIT_LIST_HEAD(&tree->same_root);
88 		tree->root = NULL;
89 		strcpy(tree->pathname, s);
90 	}
91 	return tree;
92 }
93 
94 static inline void get_tree(struct audit_tree *tree)
95 {
96 	refcount_inc(&tree->count);
97 }
98 
99 static inline void put_tree(struct audit_tree *tree)
100 {
101 	if (refcount_dec_and_test(&tree->count))
102 		kfree_rcu(tree, head);
103 }
104 
105 /* to avoid bringing the entire thing in audit.h */
106 const char *audit_tree_path(struct audit_tree *tree)
107 {
108 	return tree->pathname;
109 }
110 
111 static void free_chunk(struct audit_chunk *chunk)
112 {
113 	int i;
114 
115 	for (i = 0; i < chunk->count; i++) {
116 		if (chunk->owners[i].owner)
117 			put_tree(chunk->owners[i].owner);
118 	}
119 	kfree(chunk);
120 }
121 
122 void audit_put_chunk(struct audit_chunk *chunk)
123 {
124 	if (atomic_long_dec_and_test(&chunk->refs))
125 		free_chunk(chunk);
126 }
127 
128 static void __put_chunk(struct rcu_head *rcu)
129 {
130 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
131 	audit_put_chunk(chunk);
132 }
133 
134 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
135 {
136 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
137 	call_rcu(&chunk->head, __put_chunk);
138 }
139 
140 static struct audit_chunk *alloc_chunk(int count)
141 {
142 	struct audit_chunk *chunk;
143 	size_t size;
144 	int i;
145 
146 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
147 	chunk = kzalloc(size, GFP_KERNEL);
148 	if (!chunk)
149 		return NULL;
150 
151 	INIT_LIST_HEAD(&chunk->hash);
152 	INIT_LIST_HEAD(&chunk->trees);
153 	chunk->count = count;
154 	atomic_long_set(&chunk->refs, 1);
155 	for (i = 0; i < count; i++) {
156 		INIT_LIST_HEAD(&chunk->owners[i].list);
157 		chunk->owners[i].index = i;
158 	}
159 	fsnotify_init_mark(&chunk->mark, audit_tree_group);
160 	chunk->mark.mask = FS_IN_IGNORED;
161 	return chunk;
162 }
163 
164 enum {HASH_SIZE = 128};
165 static struct list_head chunk_hash_heads[HASH_SIZE];
166 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
167 
168 /* Function to return search key in our hash from inode. */
169 static unsigned long inode_to_key(const struct inode *inode)
170 {
171 	/* Use address pointed to by connector->obj as the key */
172 	return (unsigned long)&inode->i_fsnotify_marks;
173 }
174 
175 /*
176  * Function to return search key in our hash from chunk. Key 0 is special and
177  * should never be present in the hash.
178  */
179 static unsigned long chunk_to_key(struct audit_chunk *chunk)
180 {
181 	/*
182 	 * We have a reference to the mark so it should be attached to a
183 	 * connector.
184 	 */
185 	if (WARN_ON_ONCE(!chunk->mark.connector))
186 		return 0;
187 	return (unsigned long)chunk->mark.connector->obj;
188 }
189 
190 static inline struct list_head *chunk_hash(unsigned long key)
191 {
192 	unsigned long n = key / L1_CACHE_BYTES;
193 	return chunk_hash_heads + n % HASH_SIZE;
194 }
195 
196 /* hash_lock & entry->lock is held by caller */
197 static void insert_hash(struct audit_chunk *chunk)
198 {
199 	unsigned long key = chunk_to_key(chunk);
200 	struct list_head *list;
201 
202 	if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
203 		return;
204 	list = chunk_hash(key);
205 	list_add_rcu(&chunk->hash, list);
206 }
207 
208 /* called under rcu_read_lock */
209 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
210 {
211 	unsigned long key = inode_to_key(inode);
212 	struct list_head *list = chunk_hash(key);
213 	struct audit_chunk *p;
214 
215 	list_for_each_entry_rcu(p, list, hash) {
216 		if (chunk_to_key(p) == key) {
217 			atomic_long_inc(&p->refs);
218 			return p;
219 		}
220 	}
221 	return NULL;
222 }
223 
224 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
225 {
226 	int n;
227 	for (n = 0; n < chunk->count; n++)
228 		if (chunk->owners[n].owner == tree)
229 			return true;
230 	return false;
231 }
232 
233 /* tagging and untagging inodes with trees */
234 
235 static struct audit_chunk *find_chunk(struct node *p)
236 {
237 	int index = p->index & ~(1U<<31);
238 	p -= index;
239 	return container_of(p, struct audit_chunk, owners[0]);
240 }
241 
242 static void untag_chunk(struct node *p)
243 {
244 	struct audit_chunk *chunk = find_chunk(p);
245 	struct fsnotify_mark *entry = &chunk->mark;
246 	struct audit_chunk *new = NULL;
247 	struct audit_tree *owner;
248 	int size = chunk->count - 1;
249 	int i, j;
250 
251 	fsnotify_get_mark(entry);
252 
253 	spin_unlock(&hash_lock);
254 
255 	if (size)
256 		new = alloc_chunk(size);
257 
258 	mutex_lock(&entry->group->mark_mutex);
259 	spin_lock(&entry->lock);
260 	/*
261 	 * mark_mutex protects mark from getting detached and thus also from
262 	 * mark->connector->obj getting NULL.
263 	 */
264 	if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
265 		spin_unlock(&entry->lock);
266 		mutex_unlock(&entry->group->mark_mutex);
267 		if (new)
268 			fsnotify_put_mark(&new->mark);
269 		goto out;
270 	}
271 
272 	owner = p->owner;
273 
274 	if (!size) {
275 		chunk->dead = 1;
276 		spin_lock(&hash_lock);
277 		list_del_init(&chunk->trees);
278 		if (owner->root == chunk)
279 			owner->root = NULL;
280 		list_del_init(&p->list);
281 		list_del_rcu(&chunk->hash);
282 		spin_unlock(&hash_lock);
283 		spin_unlock(&entry->lock);
284 		mutex_unlock(&entry->group->mark_mutex);
285 		fsnotify_destroy_mark(entry, audit_tree_group);
286 		goto out;
287 	}
288 
289 	if (!new)
290 		goto Fallback;
291 
292 	if (fsnotify_add_mark_locked(&new->mark, entry->connector->obj,
293 				     FSNOTIFY_OBJ_TYPE_INODE, 1)) {
294 		fsnotify_put_mark(&new->mark);
295 		goto Fallback;
296 	}
297 
298 	chunk->dead = 1;
299 	spin_lock(&hash_lock);
300 	list_replace_init(&chunk->trees, &new->trees);
301 	if (owner->root == chunk) {
302 		list_del_init(&owner->same_root);
303 		owner->root = NULL;
304 	}
305 
306 	for (i = j = 0; j <= size; i++, j++) {
307 		struct audit_tree *s;
308 		if (&chunk->owners[j] == p) {
309 			list_del_init(&p->list);
310 			i--;
311 			continue;
312 		}
313 		s = chunk->owners[j].owner;
314 		new->owners[i].owner = s;
315 		new->owners[i].index = chunk->owners[j].index - j + i;
316 		if (!s) /* result of earlier fallback */
317 			continue;
318 		get_tree(s);
319 		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
320 	}
321 
322 	list_replace_rcu(&chunk->hash, &new->hash);
323 	list_for_each_entry(owner, &new->trees, same_root)
324 		owner->root = new;
325 	spin_unlock(&hash_lock);
326 	spin_unlock(&entry->lock);
327 	mutex_unlock(&entry->group->mark_mutex);
328 	fsnotify_destroy_mark(entry, audit_tree_group);
329 	fsnotify_put_mark(&new->mark);	/* drop initial reference */
330 	goto out;
331 
332 Fallback:
333 	// do the best we can
334 	spin_lock(&hash_lock);
335 	if (owner->root == chunk) {
336 		list_del_init(&owner->same_root);
337 		owner->root = NULL;
338 	}
339 	list_del_init(&p->list);
340 	p->owner = NULL;
341 	put_tree(owner);
342 	spin_unlock(&hash_lock);
343 	spin_unlock(&entry->lock);
344 	mutex_unlock(&entry->group->mark_mutex);
345 out:
346 	fsnotify_put_mark(entry);
347 	spin_lock(&hash_lock);
348 }
349 
350 static int create_chunk(struct inode *inode, struct audit_tree *tree)
351 {
352 	struct fsnotify_mark *entry;
353 	struct audit_chunk *chunk = alloc_chunk(1);
354 	if (!chunk)
355 		return -ENOMEM;
356 
357 	entry = &chunk->mark;
358 	if (fsnotify_add_inode_mark(entry, inode, 0)) {
359 		fsnotify_put_mark(entry);
360 		return -ENOSPC;
361 	}
362 
363 	spin_lock(&entry->lock);
364 	spin_lock(&hash_lock);
365 	if (tree->goner) {
366 		spin_unlock(&hash_lock);
367 		chunk->dead = 1;
368 		spin_unlock(&entry->lock);
369 		fsnotify_destroy_mark(entry, audit_tree_group);
370 		fsnotify_put_mark(entry);
371 		return 0;
372 	}
373 	chunk->owners[0].index = (1U << 31);
374 	chunk->owners[0].owner = tree;
375 	get_tree(tree);
376 	list_add(&chunk->owners[0].list, &tree->chunks);
377 	if (!tree->root) {
378 		tree->root = chunk;
379 		list_add(&tree->same_root, &chunk->trees);
380 	}
381 	insert_hash(chunk);
382 	spin_unlock(&hash_lock);
383 	spin_unlock(&entry->lock);
384 	fsnotify_put_mark(entry);	/* drop initial reference */
385 	return 0;
386 }
387 
388 /* the first tagged inode becomes root of tree */
389 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
390 {
391 	struct fsnotify_mark *old_entry, *chunk_entry;
392 	struct audit_tree *owner;
393 	struct audit_chunk *chunk, *old;
394 	struct node *p;
395 	int n;
396 
397 	old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
398 				       audit_tree_group);
399 	if (!old_entry)
400 		return create_chunk(inode, tree);
401 
402 	old = container_of(old_entry, struct audit_chunk, mark);
403 
404 	/* are we already there? */
405 	spin_lock(&hash_lock);
406 	for (n = 0; n < old->count; n++) {
407 		if (old->owners[n].owner == tree) {
408 			spin_unlock(&hash_lock);
409 			fsnotify_put_mark(old_entry);
410 			return 0;
411 		}
412 	}
413 	spin_unlock(&hash_lock);
414 
415 	chunk = alloc_chunk(old->count + 1);
416 	if (!chunk) {
417 		fsnotify_put_mark(old_entry);
418 		return -ENOMEM;
419 	}
420 
421 	chunk_entry = &chunk->mark;
422 
423 	mutex_lock(&old_entry->group->mark_mutex);
424 	spin_lock(&old_entry->lock);
425 	/*
426 	 * mark_mutex protects mark from getting detached and thus also from
427 	 * mark->connector->obj getting NULL.
428 	 */
429 	if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
430 		/* old_entry is being shot, lets just lie */
431 		spin_unlock(&old_entry->lock);
432 		mutex_unlock(&old_entry->group->mark_mutex);
433 		fsnotify_put_mark(old_entry);
434 		fsnotify_put_mark(&chunk->mark);
435 		return -ENOENT;
436 	}
437 
438 	if (fsnotify_add_mark_locked(chunk_entry, old_entry->connector->obj,
439 				     FSNOTIFY_OBJ_TYPE_INODE, 1)) {
440 		spin_unlock(&old_entry->lock);
441 		mutex_unlock(&old_entry->group->mark_mutex);
442 		fsnotify_put_mark(chunk_entry);
443 		fsnotify_put_mark(old_entry);
444 		return -ENOSPC;
445 	}
446 
447 	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
448 	spin_lock(&chunk_entry->lock);
449 	spin_lock(&hash_lock);
450 
451 	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
452 	if (tree->goner) {
453 		spin_unlock(&hash_lock);
454 		chunk->dead = 1;
455 		spin_unlock(&chunk_entry->lock);
456 		spin_unlock(&old_entry->lock);
457 		mutex_unlock(&old_entry->group->mark_mutex);
458 
459 		fsnotify_destroy_mark(chunk_entry, audit_tree_group);
460 
461 		fsnotify_put_mark(chunk_entry);
462 		fsnotify_put_mark(old_entry);
463 		return 0;
464 	}
465 	list_replace_init(&old->trees, &chunk->trees);
466 	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
467 		struct audit_tree *s = old->owners[n].owner;
468 		p->owner = s;
469 		p->index = old->owners[n].index;
470 		if (!s) /* result of fallback in untag */
471 			continue;
472 		get_tree(s);
473 		list_replace_init(&old->owners[n].list, &p->list);
474 	}
475 	p->index = (chunk->count - 1) | (1U<<31);
476 	p->owner = tree;
477 	get_tree(tree);
478 	list_add(&p->list, &tree->chunks);
479 	list_replace_rcu(&old->hash, &chunk->hash);
480 	list_for_each_entry(owner, &chunk->trees, same_root)
481 		owner->root = chunk;
482 	old->dead = 1;
483 	if (!tree->root) {
484 		tree->root = chunk;
485 		list_add(&tree->same_root, &chunk->trees);
486 	}
487 	spin_unlock(&hash_lock);
488 	spin_unlock(&chunk_entry->lock);
489 	spin_unlock(&old_entry->lock);
490 	mutex_unlock(&old_entry->group->mark_mutex);
491 	fsnotify_destroy_mark(old_entry, audit_tree_group);
492 	fsnotify_put_mark(chunk_entry);	/* drop initial reference */
493 	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
494 	return 0;
495 }
496 
497 static void audit_tree_log_remove_rule(struct audit_krule *rule)
498 {
499 	struct audit_buffer *ab;
500 
501 	if (!audit_enabled)
502 		return;
503 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
504 	if (unlikely(!ab))
505 		return;
506 	audit_log_format(ab, "op=remove_rule");
507 	audit_log_format(ab, " dir=");
508 	audit_log_untrustedstring(ab, rule->tree->pathname);
509 	audit_log_key(ab, rule->filterkey);
510 	audit_log_format(ab, " list=%d res=1", rule->listnr);
511 	audit_log_end(ab);
512 }
513 
514 static void kill_rules(struct audit_tree *tree)
515 {
516 	struct audit_krule *rule, *next;
517 	struct audit_entry *entry;
518 
519 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
520 		entry = container_of(rule, struct audit_entry, rule);
521 
522 		list_del_init(&rule->rlist);
523 		if (rule->tree) {
524 			/* not a half-baked one */
525 			audit_tree_log_remove_rule(rule);
526 			if (entry->rule.exe)
527 				audit_remove_mark(entry->rule.exe);
528 			rule->tree = NULL;
529 			list_del_rcu(&entry->list);
530 			list_del(&entry->rule.list);
531 			call_rcu(&entry->rcu, audit_free_rule_rcu);
532 		}
533 	}
534 }
535 
536 /*
537  * finish killing struct audit_tree
538  */
539 static void prune_one(struct audit_tree *victim)
540 {
541 	spin_lock(&hash_lock);
542 	while (!list_empty(&victim->chunks)) {
543 		struct node *p;
544 
545 		p = list_entry(victim->chunks.next, struct node, list);
546 
547 		untag_chunk(p);
548 	}
549 	spin_unlock(&hash_lock);
550 	put_tree(victim);
551 }
552 
553 /* trim the uncommitted chunks from tree */
554 
555 static void trim_marked(struct audit_tree *tree)
556 {
557 	struct list_head *p, *q;
558 	spin_lock(&hash_lock);
559 	if (tree->goner) {
560 		spin_unlock(&hash_lock);
561 		return;
562 	}
563 	/* reorder */
564 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
565 		struct node *node = list_entry(p, struct node, list);
566 		q = p->next;
567 		if (node->index & (1U<<31)) {
568 			list_del_init(p);
569 			list_add(p, &tree->chunks);
570 		}
571 	}
572 
573 	while (!list_empty(&tree->chunks)) {
574 		struct node *node;
575 
576 		node = list_entry(tree->chunks.next, struct node, list);
577 
578 		/* have we run out of marked? */
579 		if (!(node->index & (1U<<31)))
580 			break;
581 
582 		untag_chunk(node);
583 	}
584 	if (!tree->root && !tree->goner) {
585 		tree->goner = 1;
586 		spin_unlock(&hash_lock);
587 		mutex_lock(&audit_filter_mutex);
588 		kill_rules(tree);
589 		list_del_init(&tree->list);
590 		mutex_unlock(&audit_filter_mutex);
591 		prune_one(tree);
592 	} else {
593 		spin_unlock(&hash_lock);
594 	}
595 }
596 
597 static void audit_schedule_prune(void);
598 
599 /* called with audit_filter_mutex */
600 int audit_remove_tree_rule(struct audit_krule *rule)
601 {
602 	struct audit_tree *tree;
603 	tree = rule->tree;
604 	if (tree) {
605 		spin_lock(&hash_lock);
606 		list_del_init(&rule->rlist);
607 		if (list_empty(&tree->rules) && !tree->goner) {
608 			tree->root = NULL;
609 			list_del_init(&tree->same_root);
610 			tree->goner = 1;
611 			list_move(&tree->list, &prune_list);
612 			rule->tree = NULL;
613 			spin_unlock(&hash_lock);
614 			audit_schedule_prune();
615 			return 1;
616 		}
617 		rule->tree = NULL;
618 		spin_unlock(&hash_lock);
619 		return 1;
620 	}
621 	return 0;
622 }
623 
624 static int compare_root(struct vfsmount *mnt, void *arg)
625 {
626 	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
627 	       (unsigned long)arg;
628 }
629 
630 void audit_trim_trees(void)
631 {
632 	struct list_head cursor;
633 
634 	mutex_lock(&audit_filter_mutex);
635 	list_add(&cursor, &tree_list);
636 	while (cursor.next != &tree_list) {
637 		struct audit_tree *tree;
638 		struct path path;
639 		struct vfsmount *root_mnt;
640 		struct node *node;
641 		int err;
642 
643 		tree = container_of(cursor.next, struct audit_tree, list);
644 		get_tree(tree);
645 		list_del(&cursor);
646 		list_add(&cursor, &tree->list);
647 		mutex_unlock(&audit_filter_mutex);
648 
649 		err = kern_path(tree->pathname, 0, &path);
650 		if (err)
651 			goto skip_it;
652 
653 		root_mnt = collect_mounts(&path);
654 		path_put(&path);
655 		if (IS_ERR(root_mnt))
656 			goto skip_it;
657 
658 		spin_lock(&hash_lock);
659 		list_for_each_entry(node, &tree->chunks, list) {
660 			struct audit_chunk *chunk = find_chunk(node);
661 			/* this could be NULL if the watch is dying else where... */
662 			node->index |= 1U<<31;
663 			if (iterate_mounts(compare_root,
664 					   (void *)chunk_to_key(chunk),
665 					   root_mnt))
666 				node->index &= ~(1U<<31);
667 		}
668 		spin_unlock(&hash_lock);
669 		trim_marked(tree);
670 		drop_collected_mounts(root_mnt);
671 skip_it:
672 		put_tree(tree);
673 		mutex_lock(&audit_filter_mutex);
674 	}
675 	list_del(&cursor);
676 	mutex_unlock(&audit_filter_mutex);
677 }
678 
679 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
680 {
681 
682 	if (pathname[0] != '/' ||
683 	    rule->listnr != AUDIT_FILTER_EXIT ||
684 	    op != Audit_equal ||
685 	    rule->inode_f || rule->watch || rule->tree)
686 		return -EINVAL;
687 	rule->tree = alloc_tree(pathname);
688 	if (!rule->tree)
689 		return -ENOMEM;
690 	return 0;
691 }
692 
693 void audit_put_tree(struct audit_tree *tree)
694 {
695 	put_tree(tree);
696 }
697 
698 static int tag_mount(struct vfsmount *mnt, void *arg)
699 {
700 	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
701 }
702 
703 /*
704  * That gets run when evict_chunk() ends up needing to kill audit_tree.
705  * Runs from a separate thread.
706  */
707 static int prune_tree_thread(void *unused)
708 {
709 	for (;;) {
710 		if (list_empty(&prune_list)) {
711 			set_current_state(TASK_INTERRUPTIBLE);
712 			schedule();
713 		}
714 
715 		audit_ctl_lock();
716 		mutex_lock(&audit_filter_mutex);
717 
718 		while (!list_empty(&prune_list)) {
719 			struct audit_tree *victim;
720 
721 			victim = list_entry(prune_list.next,
722 					struct audit_tree, list);
723 			list_del_init(&victim->list);
724 
725 			mutex_unlock(&audit_filter_mutex);
726 
727 			prune_one(victim);
728 
729 			mutex_lock(&audit_filter_mutex);
730 		}
731 
732 		mutex_unlock(&audit_filter_mutex);
733 		audit_ctl_unlock();
734 	}
735 	return 0;
736 }
737 
738 static int audit_launch_prune(void)
739 {
740 	if (prune_thread)
741 		return 0;
742 	prune_thread = kthread_run(prune_tree_thread, NULL,
743 				"audit_prune_tree");
744 	if (IS_ERR(prune_thread)) {
745 		pr_err("cannot start thread audit_prune_tree");
746 		prune_thread = NULL;
747 		return -ENOMEM;
748 	}
749 	return 0;
750 }
751 
752 /* called with audit_filter_mutex */
753 int audit_add_tree_rule(struct audit_krule *rule)
754 {
755 	struct audit_tree *seed = rule->tree, *tree;
756 	struct path path;
757 	struct vfsmount *mnt;
758 	int err;
759 
760 	rule->tree = NULL;
761 	list_for_each_entry(tree, &tree_list, list) {
762 		if (!strcmp(seed->pathname, tree->pathname)) {
763 			put_tree(seed);
764 			rule->tree = tree;
765 			list_add(&rule->rlist, &tree->rules);
766 			return 0;
767 		}
768 	}
769 	tree = seed;
770 	list_add(&tree->list, &tree_list);
771 	list_add(&rule->rlist, &tree->rules);
772 	/* do not set rule->tree yet */
773 	mutex_unlock(&audit_filter_mutex);
774 
775 	if (unlikely(!prune_thread)) {
776 		err = audit_launch_prune();
777 		if (err)
778 			goto Err;
779 	}
780 
781 	err = kern_path(tree->pathname, 0, &path);
782 	if (err)
783 		goto Err;
784 	mnt = collect_mounts(&path);
785 	path_put(&path);
786 	if (IS_ERR(mnt)) {
787 		err = PTR_ERR(mnt);
788 		goto Err;
789 	}
790 
791 	get_tree(tree);
792 	err = iterate_mounts(tag_mount, tree, mnt);
793 	drop_collected_mounts(mnt);
794 
795 	if (!err) {
796 		struct node *node;
797 		spin_lock(&hash_lock);
798 		list_for_each_entry(node, &tree->chunks, list)
799 			node->index &= ~(1U<<31);
800 		spin_unlock(&hash_lock);
801 	} else {
802 		trim_marked(tree);
803 		goto Err;
804 	}
805 
806 	mutex_lock(&audit_filter_mutex);
807 	if (list_empty(&rule->rlist)) {
808 		put_tree(tree);
809 		return -ENOENT;
810 	}
811 	rule->tree = tree;
812 	put_tree(tree);
813 
814 	return 0;
815 Err:
816 	mutex_lock(&audit_filter_mutex);
817 	list_del_init(&tree->list);
818 	list_del_init(&tree->rules);
819 	put_tree(tree);
820 	return err;
821 }
822 
823 int audit_tag_tree(char *old, char *new)
824 {
825 	struct list_head cursor, barrier;
826 	int failed = 0;
827 	struct path path1, path2;
828 	struct vfsmount *tagged;
829 	int err;
830 
831 	err = kern_path(new, 0, &path2);
832 	if (err)
833 		return err;
834 	tagged = collect_mounts(&path2);
835 	path_put(&path2);
836 	if (IS_ERR(tagged))
837 		return PTR_ERR(tagged);
838 
839 	err = kern_path(old, 0, &path1);
840 	if (err) {
841 		drop_collected_mounts(tagged);
842 		return err;
843 	}
844 
845 	mutex_lock(&audit_filter_mutex);
846 	list_add(&barrier, &tree_list);
847 	list_add(&cursor, &barrier);
848 
849 	while (cursor.next != &tree_list) {
850 		struct audit_tree *tree;
851 		int good_one = 0;
852 
853 		tree = container_of(cursor.next, struct audit_tree, list);
854 		get_tree(tree);
855 		list_del(&cursor);
856 		list_add(&cursor, &tree->list);
857 		mutex_unlock(&audit_filter_mutex);
858 
859 		err = kern_path(tree->pathname, 0, &path2);
860 		if (!err) {
861 			good_one = path_is_under(&path1, &path2);
862 			path_put(&path2);
863 		}
864 
865 		if (!good_one) {
866 			put_tree(tree);
867 			mutex_lock(&audit_filter_mutex);
868 			continue;
869 		}
870 
871 		failed = iterate_mounts(tag_mount, tree, tagged);
872 		if (failed) {
873 			put_tree(tree);
874 			mutex_lock(&audit_filter_mutex);
875 			break;
876 		}
877 
878 		mutex_lock(&audit_filter_mutex);
879 		spin_lock(&hash_lock);
880 		if (!tree->goner) {
881 			list_del(&tree->list);
882 			list_add(&tree->list, &tree_list);
883 		}
884 		spin_unlock(&hash_lock);
885 		put_tree(tree);
886 	}
887 
888 	while (barrier.prev != &tree_list) {
889 		struct audit_tree *tree;
890 
891 		tree = container_of(barrier.prev, struct audit_tree, list);
892 		get_tree(tree);
893 		list_del(&tree->list);
894 		list_add(&tree->list, &barrier);
895 		mutex_unlock(&audit_filter_mutex);
896 
897 		if (!failed) {
898 			struct node *node;
899 			spin_lock(&hash_lock);
900 			list_for_each_entry(node, &tree->chunks, list)
901 				node->index &= ~(1U<<31);
902 			spin_unlock(&hash_lock);
903 		} else {
904 			trim_marked(tree);
905 		}
906 
907 		put_tree(tree);
908 		mutex_lock(&audit_filter_mutex);
909 	}
910 	list_del(&barrier);
911 	list_del(&cursor);
912 	mutex_unlock(&audit_filter_mutex);
913 	path_put(&path1);
914 	drop_collected_mounts(tagged);
915 	return failed;
916 }
917 
918 
919 static void audit_schedule_prune(void)
920 {
921 	wake_up_process(prune_thread);
922 }
923 
924 /*
925  * ... and that one is done if evict_chunk() decides to delay until the end
926  * of syscall.  Runs synchronously.
927  */
928 void audit_kill_trees(struct list_head *list)
929 {
930 	audit_ctl_lock();
931 	mutex_lock(&audit_filter_mutex);
932 
933 	while (!list_empty(list)) {
934 		struct audit_tree *victim;
935 
936 		victim = list_entry(list->next, struct audit_tree, list);
937 		kill_rules(victim);
938 		list_del_init(&victim->list);
939 
940 		mutex_unlock(&audit_filter_mutex);
941 
942 		prune_one(victim);
943 
944 		mutex_lock(&audit_filter_mutex);
945 	}
946 
947 	mutex_unlock(&audit_filter_mutex);
948 	audit_ctl_unlock();
949 }
950 
951 /*
952  *  Here comes the stuff asynchronous to auditctl operations
953  */
954 
955 static void evict_chunk(struct audit_chunk *chunk)
956 {
957 	struct audit_tree *owner;
958 	struct list_head *postponed = audit_killed_trees();
959 	int need_prune = 0;
960 	int n;
961 
962 	if (chunk->dead)
963 		return;
964 
965 	chunk->dead = 1;
966 	mutex_lock(&audit_filter_mutex);
967 	spin_lock(&hash_lock);
968 	while (!list_empty(&chunk->trees)) {
969 		owner = list_entry(chunk->trees.next,
970 				   struct audit_tree, same_root);
971 		owner->goner = 1;
972 		owner->root = NULL;
973 		list_del_init(&owner->same_root);
974 		spin_unlock(&hash_lock);
975 		if (!postponed) {
976 			kill_rules(owner);
977 			list_move(&owner->list, &prune_list);
978 			need_prune = 1;
979 		} else {
980 			list_move(&owner->list, postponed);
981 		}
982 		spin_lock(&hash_lock);
983 	}
984 	list_del_rcu(&chunk->hash);
985 	for (n = 0; n < chunk->count; n++)
986 		list_del_init(&chunk->owners[n].list);
987 	spin_unlock(&hash_lock);
988 	mutex_unlock(&audit_filter_mutex);
989 	if (need_prune)
990 		audit_schedule_prune();
991 }
992 
993 static int audit_tree_handle_event(struct fsnotify_group *group,
994 				   struct inode *to_tell,
995 				   u32 mask, const void *data, int data_type,
996 				   const unsigned char *file_name, u32 cookie,
997 				   struct fsnotify_iter_info *iter_info)
998 {
999 	return 0;
1000 }
1001 
1002 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
1003 {
1004 	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
1005 
1006 	evict_chunk(chunk);
1007 
1008 	/*
1009 	 * We are guaranteed to have at least one reference to the mark from
1010 	 * either the inode or the caller of fsnotify_destroy_mark().
1011 	 */
1012 	BUG_ON(refcount_read(&entry->refcnt) < 1);
1013 }
1014 
1015 static const struct fsnotify_ops audit_tree_ops = {
1016 	.handle_event = audit_tree_handle_event,
1017 	.freeing_mark = audit_tree_freeing_mark,
1018 	.free_mark = audit_tree_destroy_watch,
1019 };
1020 
1021 static int __init audit_tree_init(void)
1022 {
1023 	int i;
1024 
1025 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1026 	if (IS_ERR(audit_tree_group))
1027 		audit_panic("cannot initialize fsnotify group for rectree watches");
1028 
1029 	for (i = 0; i < HASH_SIZE; i++)
1030 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1031 
1032 	return 0;
1033 }
1034 __initcall(audit_tree_init);
1035