1 // SPDX-License-Identifier: GPL-2.0 2 #include "audit.h" 3 #include <linux/fsnotify_backend.h> 4 #include <linux/namei.h> 5 #include <linux/mount.h> 6 #include <linux/kthread.h> 7 #include <linux/refcount.h> 8 #include <linux/slab.h> 9 10 struct audit_tree; 11 struct audit_chunk; 12 13 struct audit_tree { 14 refcount_t count; 15 int goner; 16 struct audit_chunk *root; 17 struct list_head chunks; 18 struct list_head rules; 19 struct list_head list; 20 struct list_head same_root; 21 struct rcu_head head; 22 char pathname[]; 23 }; 24 25 struct audit_chunk { 26 struct list_head hash; 27 unsigned long key; 28 struct fsnotify_mark *mark; 29 struct list_head trees; /* with root here */ 30 int count; 31 atomic_long_t refs; 32 struct rcu_head head; 33 struct node { 34 struct list_head list; 35 struct audit_tree *owner; 36 unsigned index; /* index; upper bit indicates 'will prune' */ 37 } owners[]; 38 }; 39 40 struct audit_tree_mark { 41 struct fsnotify_mark mark; 42 struct audit_chunk *chunk; 43 }; 44 45 static LIST_HEAD(tree_list); 46 static LIST_HEAD(prune_list); 47 static struct task_struct *prune_thread; 48 49 /* 50 * One struct chunk is attached to each inode of interest through 51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging / 52 * untagging, the mark is stable as long as there is chunk attached. The 53 * association between mark and chunk is protected by hash_lock and 54 * audit_tree_group->mark_mutex. Thus as long as we hold 55 * audit_tree_group->mark_mutex and check that the mark is alive by 56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to 57 * the current chunk. 58 * 59 * Rules have pointer to struct audit_tree. 60 * Rules have struct list_head rlist forming a list of rules over 61 * the same tree. 62 * References to struct chunk are collected at audit_inode{,_child}() 63 * time and used in AUDIT_TREE rule matching. 64 * These references are dropped at the same time we are calling 65 * audit_free_names(), etc. 66 * 67 * Cyclic lists galore: 68 * tree.chunks anchors chunk.owners[].list hash_lock 69 * tree.rules anchors rule.rlist audit_filter_mutex 70 * chunk.trees anchors tree.same_root hash_lock 71 * chunk.hash is a hash with middle bits of watch.inode as 72 * a hash function. RCU, hash_lock 73 * 74 * tree is refcounted; one reference for "some rules on rules_list refer to 75 * it", one for each chunk with pointer to it. 76 * 77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds 78 * one chunk reference. This reference is dropped either when a mark is going 79 * to be freed (corresponding inode goes away) or when chunk attached to the 80 * mark gets replaced. This reference must be dropped using 81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU 82 * grace period as it protects RCU readers of the hash table. 83 * 84 * node.index allows to get from node.list to containing chunk. 85 * MSB of that sucker is stolen to mark taggings that we might have to 86 * revert - several operations have very unpleasant cleanup logics and 87 * that makes a difference. Some. 88 */ 89 90 static struct fsnotify_group *audit_tree_group; 91 static struct kmem_cache *audit_tree_mark_cachep __read_mostly; 92 93 static struct audit_tree *alloc_tree(const char *s) 94 { 95 struct audit_tree *tree; 96 97 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL); 98 if (tree) { 99 refcount_set(&tree->count, 1); 100 tree->goner = 0; 101 INIT_LIST_HEAD(&tree->chunks); 102 INIT_LIST_HEAD(&tree->rules); 103 INIT_LIST_HEAD(&tree->list); 104 INIT_LIST_HEAD(&tree->same_root); 105 tree->root = NULL; 106 strcpy(tree->pathname, s); 107 } 108 return tree; 109 } 110 111 static inline void get_tree(struct audit_tree *tree) 112 { 113 refcount_inc(&tree->count); 114 } 115 116 static inline void put_tree(struct audit_tree *tree) 117 { 118 if (refcount_dec_and_test(&tree->count)) 119 kfree_rcu(tree, head); 120 } 121 122 /* to avoid bringing the entire thing in audit.h */ 123 const char *audit_tree_path(struct audit_tree *tree) 124 { 125 return tree->pathname; 126 } 127 128 static void free_chunk(struct audit_chunk *chunk) 129 { 130 int i; 131 132 for (i = 0; i < chunk->count; i++) { 133 if (chunk->owners[i].owner) 134 put_tree(chunk->owners[i].owner); 135 } 136 kfree(chunk); 137 } 138 139 void audit_put_chunk(struct audit_chunk *chunk) 140 { 141 if (atomic_long_dec_and_test(&chunk->refs)) 142 free_chunk(chunk); 143 } 144 145 static void __put_chunk(struct rcu_head *rcu) 146 { 147 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head); 148 audit_put_chunk(chunk); 149 } 150 151 /* 152 * Drop reference to the chunk that was held by the mark. This is the reference 153 * that gets dropped after we've removed the chunk from the hash table and we 154 * use it to make sure chunk cannot be freed before RCU grace period expires. 155 */ 156 static void audit_mark_put_chunk(struct audit_chunk *chunk) 157 { 158 call_rcu(&chunk->head, __put_chunk); 159 } 160 161 static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark) 162 { 163 return container_of(mark, struct audit_tree_mark, mark); 164 } 165 166 static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark) 167 { 168 return audit_mark(mark)->chunk; 169 } 170 171 static void audit_tree_destroy_watch(struct fsnotify_mark *mark) 172 { 173 kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark)); 174 } 175 176 static struct fsnotify_mark *alloc_mark(void) 177 { 178 struct audit_tree_mark *amark; 179 180 amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL); 181 if (!amark) 182 return NULL; 183 fsnotify_init_mark(&amark->mark, audit_tree_group); 184 amark->mark.mask = FS_IN_IGNORED; 185 return &amark->mark; 186 } 187 188 static struct audit_chunk *alloc_chunk(int count) 189 { 190 struct audit_chunk *chunk; 191 size_t size; 192 int i; 193 194 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node); 195 chunk = kzalloc(size, GFP_KERNEL); 196 if (!chunk) 197 return NULL; 198 199 INIT_LIST_HEAD(&chunk->hash); 200 INIT_LIST_HEAD(&chunk->trees); 201 chunk->count = count; 202 atomic_long_set(&chunk->refs, 1); 203 for (i = 0; i < count; i++) { 204 INIT_LIST_HEAD(&chunk->owners[i].list); 205 chunk->owners[i].index = i; 206 } 207 return chunk; 208 } 209 210 enum {HASH_SIZE = 128}; 211 static struct list_head chunk_hash_heads[HASH_SIZE]; 212 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock); 213 214 /* Function to return search key in our hash from inode. */ 215 static unsigned long inode_to_key(const struct inode *inode) 216 { 217 /* Use address pointed to by connector->obj as the key */ 218 return (unsigned long)&inode->i_fsnotify_marks; 219 } 220 221 static inline struct list_head *chunk_hash(unsigned long key) 222 { 223 unsigned long n = key / L1_CACHE_BYTES; 224 return chunk_hash_heads + n % HASH_SIZE; 225 } 226 227 /* hash_lock & mark->group->mark_mutex is held by caller */ 228 static void insert_hash(struct audit_chunk *chunk) 229 { 230 struct list_head *list; 231 232 /* 233 * Make sure chunk is fully initialized before making it visible in the 234 * hash. Pairs with a data dependency barrier in READ_ONCE() in 235 * audit_tree_lookup(). 236 */ 237 smp_wmb(); 238 WARN_ON_ONCE(!chunk->key); 239 list = chunk_hash(chunk->key); 240 list_add_rcu(&chunk->hash, list); 241 } 242 243 /* called under rcu_read_lock */ 244 struct audit_chunk *audit_tree_lookup(const struct inode *inode) 245 { 246 unsigned long key = inode_to_key(inode); 247 struct list_head *list = chunk_hash(key); 248 struct audit_chunk *p; 249 250 list_for_each_entry_rcu(p, list, hash) { 251 /* 252 * We use a data dependency barrier in READ_ONCE() to make sure 253 * the chunk we see is fully initialized. 254 */ 255 if (READ_ONCE(p->key) == key) { 256 atomic_long_inc(&p->refs); 257 return p; 258 } 259 } 260 return NULL; 261 } 262 263 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree) 264 { 265 int n; 266 for (n = 0; n < chunk->count; n++) 267 if (chunk->owners[n].owner == tree) 268 return true; 269 return false; 270 } 271 272 /* tagging and untagging inodes with trees */ 273 274 static struct audit_chunk *find_chunk(struct node *p) 275 { 276 int index = p->index & ~(1U<<31); 277 p -= index; 278 return container_of(p, struct audit_chunk, owners[0]); 279 } 280 281 static void replace_mark_chunk(struct fsnotify_mark *mark, 282 struct audit_chunk *chunk) 283 { 284 struct audit_chunk *old; 285 286 assert_spin_locked(&hash_lock); 287 old = mark_chunk(mark); 288 audit_mark(mark)->chunk = chunk; 289 if (chunk) 290 chunk->mark = mark; 291 if (old) 292 old->mark = NULL; 293 } 294 295 static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old) 296 { 297 struct audit_tree *owner; 298 int i, j; 299 300 new->key = old->key; 301 list_splice_init(&old->trees, &new->trees); 302 list_for_each_entry(owner, &new->trees, same_root) 303 owner->root = new; 304 for (i = j = 0; j < old->count; i++, j++) { 305 if (!old->owners[j].owner) { 306 i--; 307 continue; 308 } 309 owner = old->owners[j].owner; 310 new->owners[i].owner = owner; 311 new->owners[i].index = old->owners[j].index - j + i; 312 if (!owner) /* result of earlier fallback */ 313 continue; 314 get_tree(owner); 315 list_replace_init(&old->owners[j].list, &new->owners[i].list); 316 } 317 replace_mark_chunk(old->mark, new); 318 /* 319 * Make sure chunk is fully initialized before making it visible in the 320 * hash. Pairs with a data dependency barrier in READ_ONCE() in 321 * audit_tree_lookup(). 322 */ 323 smp_wmb(); 324 list_replace_rcu(&old->hash, &new->hash); 325 } 326 327 static void remove_chunk_node(struct audit_chunk *chunk, struct node *p) 328 { 329 struct audit_tree *owner = p->owner; 330 331 if (owner->root == chunk) { 332 list_del_init(&owner->same_root); 333 owner->root = NULL; 334 } 335 list_del_init(&p->list); 336 p->owner = NULL; 337 put_tree(owner); 338 } 339 340 static int chunk_count_trees(struct audit_chunk *chunk) 341 { 342 int i; 343 int ret = 0; 344 345 for (i = 0; i < chunk->count; i++) 346 if (chunk->owners[i].owner) 347 ret++; 348 return ret; 349 } 350 351 static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark) 352 { 353 struct audit_chunk *new; 354 int size; 355 356 mutex_lock(&audit_tree_group->mark_mutex); 357 /* 358 * mark_mutex stabilizes chunk attached to the mark so we can check 359 * whether it didn't change while we've dropped hash_lock. 360 */ 361 if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) || 362 mark_chunk(mark) != chunk) 363 goto out_mutex; 364 365 size = chunk_count_trees(chunk); 366 if (!size) { 367 spin_lock(&hash_lock); 368 list_del_init(&chunk->trees); 369 list_del_rcu(&chunk->hash); 370 replace_mark_chunk(mark, NULL); 371 spin_unlock(&hash_lock); 372 fsnotify_detach_mark(mark); 373 mutex_unlock(&audit_tree_group->mark_mutex); 374 audit_mark_put_chunk(chunk); 375 fsnotify_free_mark(mark); 376 return; 377 } 378 379 new = alloc_chunk(size); 380 if (!new) 381 goto out_mutex; 382 383 spin_lock(&hash_lock); 384 /* 385 * This has to go last when updating chunk as once replace_chunk() is 386 * called, new RCU readers can see the new chunk. 387 */ 388 replace_chunk(new, chunk); 389 spin_unlock(&hash_lock); 390 mutex_unlock(&audit_tree_group->mark_mutex); 391 audit_mark_put_chunk(chunk); 392 return; 393 394 out_mutex: 395 mutex_unlock(&audit_tree_group->mark_mutex); 396 } 397 398 /* Call with group->mark_mutex held, releases it */ 399 static int create_chunk(struct inode *inode, struct audit_tree *tree) 400 { 401 struct fsnotify_mark *mark; 402 struct audit_chunk *chunk = alloc_chunk(1); 403 404 if (!chunk) { 405 mutex_unlock(&audit_tree_group->mark_mutex); 406 return -ENOMEM; 407 } 408 409 mark = alloc_mark(); 410 if (!mark) { 411 mutex_unlock(&audit_tree_group->mark_mutex); 412 kfree(chunk); 413 return -ENOMEM; 414 } 415 416 if (fsnotify_add_inode_mark_locked(mark, inode, 0)) { 417 mutex_unlock(&audit_tree_group->mark_mutex); 418 fsnotify_put_mark(mark); 419 kfree(chunk); 420 return -ENOSPC; 421 } 422 423 spin_lock(&hash_lock); 424 if (tree->goner) { 425 spin_unlock(&hash_lock); 426 fsnotify_detach_mark(mark); 427 mutex_unlock(&audit_tree_group->mark_mutex); 428 fsnotify_free_mark(mark); 429 fsnotify_put_mark(mark); 430 kfree(chunk); 431 return 0; 432 } 433 replace_mark_chunk(mark, chunk); 434 chunk->owners[0].index = (1U << 31); 435 chunk->owners[0].owner = tree; 436 get_tree(tree); 437 list_add(&chunk->owners[0].list, &tree->chunks); 438 if (!tree->root) { 439 tree->root = chunk; 440 list_add(&tree->same_root, &chunk->trees); 441 } 442 chunk->key = inode_to_key(inode); 443 /* 444 * Inserting into the hash table has to go last as once we do that RCU 445 * readers can see the chunk. 446 */ 447 insert_hash(chunk); 448 spin_unlock(&hash_lock); 449 mutex_unlock(&audit_tree_group->mark_mutex); 450 /* 451 * Drop our initial reference. When mark we point to is getting freed, 452 * we get notification through ->freeing_mark callback and cleanup 453 * chunk pointing to this mark. 454 */ 455 fsnotify_put_mark(mark); 456 return 0; 457 } 458 459 /* the first tagged inode becomes root of tree */ 460 static int tag_chunk(struct inode *inode, struct audit_tree *tree) 461 { 462 struct fsnotify_mark *mark; 463 struct audit_chunk *chunk, *old; 464 struct node *p; 465 int n; 466 467 mutex_lock(&audit_tree_group->mark_mutex); 468 mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group); 469 if (!mark) 470 return create_chunk(inode, tree); 471 472 /* 473 * Found mark is guaranteed to be attached and mark_mutex protects mark 474 * from getting detached and thus it makes sure there is chunk attached 475 * to the mark. 476 */ 477 /* are we already there? */ 478 spin_lock(&hash_lock); 479 old = mark_chunk(mark); 480 for (n = 0; n < old->count; n++) { 481 if (old->owners[n].owner == tree) { 482 spin_unlock(&hash_lock); 483 mutex_unlock(&audit_tree_group->mark_mutex); 484 fsnotify_put_mark(mark); 485 return 0; 486 } 487 } 488 spin_unlock(&hash_lock); 489 490 chunk = alloc_chunk(old->count + 1); 491 if (!chunk) { 492 mutex_unlock(&audit_tree_group->mark_mutex); 493 fsnotify_put_mark(mark); 494 return -ENOMEM; 495 } 496 497 spin_lock(&hash_lock); 498 if (tree->goner) { 499 spin_unlock(&hash_lock); 500 mutex_unlock(&audit_tree_group->mark_mutex); 501 fsnotify_put_mark(mark); 502 kfree(chunk); 503 return 0; 504 } 505 p = &chunk->owners[chunk->count - 1]; 506 p->index = (chunk->count - 1) | (1U<<31); 507 p->owner = tree; 508 get_tree(tree); 509 list_add(&p->list, &tree->chunks); 510 if (!tree->root) { 511 tree->root = chunk; 512 list_add(&tree->same_root, &chunk->trees); 513 } 514 /* 515 * This has to go last when updating chunk as once replace_chunk() is 516 * called, new RCU readers can see the new chunk. 517 */ 518 replace_chunk(chunk, old); 519 spin_unlock(&hash_lock); 520 mutex_unlock(&audit_tree_group->mark_mutex); 521 fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */ 522 audit_mark_put_chunk(old); 523 524 return 0; 525 } 526 527 static void audit_tree_log_remove_rule(struct audit_krule *rule) 528 { 529 struct audit_buffer *ab; 530 531 if (!audit_enabled) 532 return; 533 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 534 if (unlikely(!ab)) 535 return; 536 audit_log_format(ab, "op=remove_rule dir="); 537 audit_log_untrustedstring(ab, rule->tree->pathname); 538 audit_log_key(ab, rule->filterkey); 539 audit_log_format(ab, " list=%d res=1", rule->listnr); 540 audit_log_end(ab); 541 } 542 543 static void kill_rules(struct audit_tree *tree) 544 { 545 struct audit_krule *rule, *next; 546 struct audit_entry *entry; 547 548 list_for_each_entry_safe(rule, next, &tree->rules, rlist) { 549 entry = container_of(rule, struct audit_entry, rule); 550 551 list_del_init(&rule->rlist); 552 if (rule->tree) { 553 /* not a half-baked one */ 554 audit_tree_log_remove_rule(rule); 555 if (entry->rule.exe) 556 audit_remove_mark(entry->rule.exe); 557 rule->tree = NULL; 558 list_del_rcu(&entry->list); 559 list_del(&entry->rule.list); 560 call_rcu(&entry->rcu, audit_free_rule_rcu); 561 } 562 } 563 } 564 565 /* 566 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged 567 * chunks. The function expects tagged chunks are all at the beginning of the 568 * chunks list. 569 */ 570 static void prune_tree_chunks(struct audit_tree *victim, bool tagged) 571 { 572 spin_lock(&hash_lock); 573 while (!list_empty(&victim->chunks)) { 574 struct node *p; 575 struct audit_chunk *chunk; 576 struct fsnotify_mark *mark; 577 578 p = list_first_entry(&victim->chunks, struct node, list); 579 /* have we run out of marked? */ 580 if (tagged && !(p->index & (1U<<31))) 581 break; 582 chunk = find_chunk(p); 583 mark = chunk->mark; 584 remove_chunk_node(chunk, p); 585 /* Racing with audit_tree_freeing_mark()? */ 586 if (!mark) 587 continue; 588 fsnotify_get_mark(mark); 589 spin_unlock(&hash_lock); 590 591 untag_chunk(chunk, mark); 592 fsnotify_put_mark(mark); 593 594 spin_lock(&hash_lock); 595 } 596 spin_unlock(&hash_lock); 597 put_tree(victim); 598 } 599 600 /* 601 * finish killing struct audit_tree 602 */ 603 static void prune_one(struct audit_tree *victim) 604 { 605 prune_tree_chunks(victim, false); 606 } 607 608 /* trim the uncommitted chunks from tree */ 609 610 static void trim_marked(struct audit_tree *tree) 611 { 612 struct list_head *p, *q; 613 spin_lock(&hash_lock); 614 if (tree->goner) { 615 spin_unlock(&hash_lock); 616 return; 617 } 618 /* reorder */ 619 for (p = tree->chunks.next; p != &tree->chunks; p = q) { 620 struct node *node = list_entry(p, struct node, list); 621 q = p->next; 622 if (node->index & (1U<<31)) { 623 list_del_init(p); 624 list_add(p, &tree->chunks); 625 } 626 } 627 spin_unlock(&hash_lock); 628 629 prune_tree_chunks(tree, true); 630 631 spin_lock(&hash_lock); 632 if (!tree->root && !tree->goner) { 633 tree->goner = 1; 634 spin_unlock(&hash_lock); 635 mutex_lock(&audit_filter_mutex); 636 kill_rules(tree); 637 list_del_init(&tree->list); 638 mutex_unlock(&audit_filter_mutex); 639 prune_one(tree); 640 } else { 641 spin_unlock(&hash_lock); 642 } 643 } 644 645 static void audit_schedule_prune(void); 646 647 /* called with audit_filter_mutex */ 648 int audit_remove_tree_rule(struct audit_krule *rule) 649 { 650 struct audit_tree *tree; 651 tree = rule->tree; 652 if (tree) { 653 spin_lock(&hash_lock); 654 list_del_init(&rule->rlist); 655 if (list_empty(&tree->rules) && !tree->goner) { 656 tree->root = NULL; 657 list_del_init(&tree->same_root); 658 tree->goner = 1; 659 list_move(&tree->list, &prune_list); 660 rule->tree = NULL; 661 spin_unlock(&hash_lock); 662 audit_schedule_prune(); 663 return 1; 664 } 665 rule->tree = NULL; 666 spin_unlock(&hash_lock); 667 return 1; 668 } 669 return 0; 670 } 671 672 static int compare_root(struct vfsmount *mnt, void *arg) 673 { 674 return inode_to_key(d_backing_inode(mnt->mnt_root)) == 675 (unsigned long)arg; 676 } 677 678 void audit_trim_trees(void) 679 { 680 struct list_head cursor; 681 682 mutex_lock(&audit_filter_mutex); 683 list_add(&cursor, &tree_list); 684 while (cursor.next != &tree_list) { 685 struct audit_tree *tree; 686 struct path path; 687 struct vfsmount *root_mnt; 688 struct node *node; 689 int err; 690 691 tree = container_of(cursor.next, struct audit_tree, list); 692 get_tree(tree); 693 list_del(&cursor); 694 list_add(&cursor, &tree->list); 695 mutex_unlock(&audit_filter_mutex); 696 697 err = kern_path(tree->pathname, 0, &path); 698 if (err) 699 goto skip_it; 700 701 root_mnt = collect_mounts(&path); 702 path_put(&path); 703 if (IS_ERR(root_mnt)) 704 goto skip_it; 705 706 spin_lock(&hash_lock); 707 list_for_each_entry(node, &tree->chunks, list) { 708 struct audit_chunk *chunk = find_chunk(node); 709 /* this could be NULL if the watch is dying else where... */ 710 node->index |= 1U<<31; 711 if (iterate_mounts(compare_root, 712 (void *)(chunk->key), 713 root_mnt)) 714 node->index &= ~(1U<<31); 715 } 716 spin_unlock(&hash_lock); 717 trim_marked(tree); 718 drop_collected_mounts(root_mnt); 719 skip_it: 720 put_tree(tree); 721 mutex_lock(&audit_filter_mutex); 722 } 723 list_del(&cursor); 724 mutex_unlock(&audit_filter_mutex); 725 } 726 727 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) 728 { 729 730 if (pathname[0] != '/' || 731 rule->listnr != AUDIT_FILTER_EXIT || 732 op != Audit_equal || 733 rule->inode_f || rule->watch || rule->tree) 734 return -EINVAL; 735 rule->tree = alloc_tree(pathname); 736 if (!rule->tree) 737 return -ENOMEM; 738 return 0; 739 } 740 741 void audit_put_tree(struct audit_tree *tree) 742 { 743 put_tree(tree); 744 } 745 746 static int tag_mount(struct vfsmount *mnt, void *arg) 747 { 748 return tag_chunk(d_backing_inode(mnt->mnt_root), arg); 749 } 750 751 /* 752 * That gets run when evict_chunk() ends up needing to kill audit_tree. 753 * Runs from a separate thread. 754 */ 755 static int prune_tree_thread(void *unused) 756 { 757 for (;;) { 758 if (list_empty(&prune_list)) { 759 set_current_state(TASK_INTERRUPTIBLE); 760 schedule(); 761 } 762 763 audit_ctl_lock(); 764 mutex_lock(&audit_filter_mutex); 765 766 while (!list_empty(&prune_list)) { 767 struct audit_tree *victim; 768 769 victim = list_entry(prune_list.next, 770 struct audit_tree, list); 771 list_del_init(&victim->list); 772 773 mutex_unlock(&audit_filter_mutex); 774 775 prune_one(victim); 776 777 mutex_lock(&audit_filter_mutex); 778 } 779 780 mutex_unlock(&audit_filter_mutex); 781 audit_ctl_unlock(); 782 } 783 return 0; 784 } 785 786 static int audit_launch_prune(void) 787 { 788 if (prune_thread) 789 return 0; 790 prune_thread = kthread_run(prune_tree_thread, NULL, 791 "audit_prune_tree"); 792 if (IS_ERR(prune_thread)) { 793 pr_err("cannot start thread audit_prune_tree"); 794 prune_thread = NULL; 795 return -ENOMEM; 796 } 797 return 0; 798 } 799 800 /* called with audit_filter_mutex */ 801 int audit_add_tree_rule(struct audit_krule *rule) 802 { 803 struct audit_tree *seed = rule->tree, *tree; 804 struct path path; 805 struct vfsmount *mnt; 806 int err; 807 808 rule->tree = NULL; 809 list_for_each_entry(tree, &tree_list, list) { 810 if (!strcmp(seed->pathname, tree->pathname)) { 811 put_tree(seed); 812 rule->tree = tree; 813 list_add(&rule->rlist, &tree->rules); 814 return 0; 815 } 816 } 817 tree = seed; 818 list_add(&tree->list, &tree_list); 819 list_add(&rule->rlist, &tree->rules); 820 /* do not set rule->tree yet */ 821 mutex_unlock(&audit_filter_mutex); 822 823 if (unlikely(!prune_thread)) { 824 err = audit_launch_prune(); 825 if (err) 826 goto Err; 827 } 828 829 err = kern_path(tree->pathname, 0, &path); 830 if (err) 831 goto Err; 832 mnt = collect_mounts(&path); 833 path_put(&path); 834 if (IS_ERR(mnt)) { 835 err = PTR_ERR(mnt); 836 goto Err; 837 } 838 839 get_tree(tree); 840 err = iterate_mounts(tag_mount, tree, mnt); 841 drop_collected_mounts(mnt); 842 843 if (!err) { 844 struct node *node; 845 spin_lock(&hash_lock); 846 list_for_each_entry(node, &tree->chunks, list) 847 node->index &= ~(1U<<31); 848 spin_unlock(&hash_lock); 849 } else { 850 trim_marked(tree); 851 goto Err; 852 } 853 854 mutex_lock(&audit_filter_mutex); 855 if (list_empty(&rule->rlist)) { 856 put_tree(tree); 857 return -ENOENT; 858 } 859 rule->tree = tree; 860 put_tree(tree); 861 862 return 0; 863 Err: 864 mutex_lock(&audit_filter_mutex); 865 list_del_init(&tree->list); 866 list_del_init(&tree->rules); 867 put_tree(tree); 868 return err; 869 } 870 871 int audit_tag_tree(char *old, char *new) 872 { 873 struct list_head cursor, barrier; 874 int failed = 0; 875 struct path path1, path2; 876 struct vfsmount *tagged; 877 int err; 878 879 err = kern_path(new, 0, &path2); 880 if (err) 881 return err; 882 tagged = collect_mounts(&path2); 883 path_put(&path2); 884 if (IS_ERR(tagged)) 885 return PTR_ERR(tagged); 886 887 err = kern_path(old, 0, &path1); 888 if (err) { 889 drop_collected_mounts(tagged); 890 return err; 891 } 892 893 mutex_lock(&audit_filter_mutex); 894 list_add(&barrier, &tree_list); 895 list_add(&cursor, &barrier); 896 897 while (cursor.next != &tree_list) { 898 struct audit_tree *tree; 899 int good_one = 0; 900 901 tree = container_of(cursor.next, struct audit_tree, list); 902 get_tree(tree); 903 list_del(&cursor); 904 list_add(&cursor, &tree->list); 905 mutex_unlock(&audit_filter_mutex); 906 907 err = kern_path(tree->pathname, 0, &path2); 908 if (!err) { 909 good_one = path_is_under(&path1, &path2); 910 path_put(&path2); 911 } 912 913 if (!good_one) { 914 put_tree(tree); 915 mutex_lock(&audit_filter_mutex); 916 continue; 917 } 918 919 failed = iterate_mounts(tag_mount, tree, tagged); 920 if (failed) { 921 put_tree(tree); 922 mutex_lock(&audit_filter_mutex); 923 break; 924 } 925 926 mutex_lock(&audit_filter_mutex); 927 spin_lock(&hash_lock); 928 if (!tree->goner) { 929 list_del(&tree->list); 930 list_add(&tree->list, &tree_list); 931 } 932 spin_unlock(&hash_lock); 933 put_tree(tree); 934 } 935 936 while (barrier.prev != &tree_list) { 937 struct audit_tree *tree; 938 939 tree = container_of(barrier.prev, struct audit_tree, list); 940 get_tree(tree); 941 list_del(&tree->list); 942 list_add(&tree->list, &barrier); 943 mutex_unlock(&audit_filter_mutex); 944 945 if (!failed) { 946 struct node *node; 947 spin_lock(&hash_lock); 948 list_for_each_entry(node, &tree->chunks, list) 949 node->index &= ~(1U<<31); 950 spin_unlock(&hash_lock); 951 } else { 952 trim_marked(tree); 953 } 954 955 put_tree(tree); 956 mutex_lock(&audit_filter_mutex); 957 } 958 list_del(&barrier); 959 list_del(&cursor); 960 mutex_unlock(&audit_filter_mutex); 961 path_put(&path1); 962 drop_collected_mounts(tagged); 963 return failed; 964 } 965 966 967 static void audit_schedule_prune(void) 968 { 969 wake_up_process(prune_thread); 970 } 971 972 /* 973 * ... and that one is done if evict_chunk() decides to delay until the end 974 * of syscall. Runs synchronously. 975 */ 976 void audit_kill_trees(struct list_head *list) 977 { 978 audit_ctl_lock(); 979 mutex_lock(&audit_filter_mutex); 980 981 while (!list_empty(list)) { 982 struct audit_tree *victim; 983 984 victim = list_entry(list->next, struct audit_tree, list); 985 kill_rules(victim); 986 list_del_init(&victim->list); 987 988 mutex_unlock(&audit_filter_mutex); 989 990 prune_one(victim); 991 992 mutex_lock(&audit_filter_mutex); 993 } 994 995 mutex_unlock(&audit_filter_mutex); 996 audit_ctl_unlock(); 997 } 998 999 /* 1000 * Here comes the stuff asynchronous to auditctl operations 1001 */ 1002 1003 static void evict_chunk(struct audit_chunk *chunk) 1004 { 1005 struct audit_tree *owner; 1006 struct list_head *postponed = audit_killed_trees(); 1007 int need_prune = 0; 1008 int n; 1009 1010 mutex_lock(&audit_filter_mutex); 1011 spin_lock(&hash_lock); 1012 while (!list_empty(&chunk->trees)) { 1013 owner = list_entry(chunk->trees.next, 1014 struct audit_tree, same_root); 1015 owner->goner = 1; 1016 owner->root = NULL; 1017 list_del_init(&owner->same_root); 1018 spin_unlock(&hash_lock); 1019 if (!postponed) { 1020 kill_rules(owner); 1021 list_move(&owner->list, &prune_list); 1022 need_prune = 1; 1023 } else { 1024 list_move(&owner->list, postponed); 1025 } 1026 spin_lock(&hash_lock); 1027 } 1028 list_del_rcu(&chunk->hash); 1029 for (n = 0; n < chunk->count; n++) 1030 list_del_init(&chunk->owners[n].list); 1031 spin_unlock(&hash_lock); 1032 mutex_unlock(&audit_filter_mutex); 1033 if (need_prune) 1034 audit_schedule_prune(); 1035 } 1036 1037 static int audit_tree_handle_event(struct fsnotify_group *group, 1038 struct inode *to_tell, 1039 u32 mask, const void *data, int data_type, 1040 const unsigned char *file_name, u32 cookie, 1041 struct fsnotify_iter_info *iter_info) 1042 { 1043 return 0; 1044 } 1045 1046 static void audit_tree_freeing_mark(struct fsnotify_mark *mark, 1047 struct fsnotify_group *group) 1048 { 1049 struct audit_chunk *chunk; 1050 1051 mutex_lock(&mark->group->mark_mutex); 1052 spin_lock(&hash_lock); 1053 chunk = mark_chunk(mark); 1054 replace_mark_chunk(mark, NULL); 1055 spin_unlock(&hash_lock); 1056 mutex_unlock(&mark->group->mark_mutex); 1057 if (chunk) { 1058 evict_chunk(chunk); 1059 audit_mark_put_chunk(chunk); 1060 } 1061 1062 /* 1063 * We are guaranteed to have at least one reference to the mark from 1064 * either the inode or the caller of fsnotify_destroy_mark(). 1065 */ 1066 BUG_ON(refcount_read(&mark->refcnt) < 1); 1067 } 1068 1069 static const struct fsnotify_ops audit_tree_ops = { 1070 .handle_event = audit_tree_handle_event, 1071 .freeing_mark = audit_tree_freeing_mark, 1072 .free_mark = audit_tree_destroy_watch, 1073 }; 1074 1075 static int __init audit_tree_init(void) 1076 { 1077 int i; 1078 1079 audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC); 1080 1081 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops); 1082 if (IS_ERR(audit_tree_group)) 1083 audit_panic("cannot initialize fsnotify group for rectree watches"); 1084 1085 for (i = 0; i < HASH_SIZE; i++) 1086 INIT_LIST_HEAD(&chunk_hash_heads[i]); 1087 1088 return 0; 1089 } 1090 __initcall(audit_tree_init); 1091