xref: /linux/kernel/audit_tree.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 #include "audit.h"
2 #include <linux/inotify.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7 
8 struct audit_tree;
9 struct audit_chunk;
10 
11 struct audit_tree {
12 	atomic_t count;
13 	int goner;
14 	struct audit_chunk *root;
15 	struct list_head chunks;
16 	struct list_head rules;
17 	struct list_head list;
18 	struct list_head same_root;
19 	struct rcu_head head;
20 	char pathname[];
21 };
22 
23 struct audit_chunk {
24 	struct list_head hash;
25 	struct inotify_watch watch;
26 	struct list_head trees;		/* with root here */
27 	int dead;
28 	int count;
29 	atomic_long_t refs;
30 	struct rcu_head head;
31 	struct node {
32 		struct list_head list;
33 		struct audit_tree *owner;
34 		unsigned index;		/* index; upper bit indicates 'will prune' */
35 	} owners[];
36 };
37 
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 
41 /*
42  * One struct chunk is attached to each inode of interest.
43  * We replace struct chunk on tagging/untagging.
44  * Rules have pointer to struct audit_tree.
45  * Rules have struct list_head rlist forming a list of rules over
46  * the same tree.
47  * References to struct chunk are collected at audit_inode{,_child}()
48  * time and used in AUDIT_TREE rule matching.
49  * These references are dropped at the same time we are calling
50  * audit_free_names(), etc.
51  *
52  * Cyclic lists galore:
53  * tree.chunks anchors chunk.owners[].list			hash_lock
54  * tree.rules anchors rule.rlist				audit_filter_mutex
55  * chunk.trees anchors tree.same_root				hash_lock
56  * chunk.hash is a hash with middle bits of watch.inode as
57  * a hash function.						RCU, hash_lock
58  *
59  * tree is refcounted; one reference for "some rules on rules_list refer to
60  * it", one for each chunk with pointer to it.
61  *
62  * chunk is refcounted by embedded inotify_watch + .refs (non-zero refcount
63  * of watch contributes 1 to .refs).
64  *
65  * node.index allows to get from node.list to containing chunk.
66  * MSB of that sucker is stolen to mark taggings that we might have to
67  * revert - several operations have very unpleasant cleanup logics and
68  * that makes a difference.  Some.
69  */
70 
71 static struct inotify_handle *rtree_ih;
72 
73 static struct audit_tree *alloc_tree(const char *s)
74 {
75 	struct audit_tree *tree;
76 
77 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78 	if (tree) {
79 		atomic_set(&tree->count, 1);
80 		tree->goner = 0;
81 		INIT_LIST_HEAD(&tree->chunks);
82 		INIT_LIST_HEAD(&tree->rules);
83 		INIT_LIST_HEAD(&tree->list);
84 		INIT_LIST_HEAD(&tree->same_root);
85 		tree->root = NULL;
86 		strcpy(tree->pathname, s);
87 	}
88 	return tree;
89 }
90 
91 static inline void get_tree(struct audit_tree *tree)
92 {
93 	atomic_inc(&tree->count);
94 }
95 
96 static void __put_tree(struct rcu_head *rcu)
97 {
98 	struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
99 	kfree(tree);
100 }
101 
102 static inline void put_tree(struct audit_tree *tree)
103 {
104 	if (atomic_dec_and_test(&tree->count))
105 		call_rcu(&tree->head, __put_tree);
106 }
107 
108 /* to avoid bringing the entire thing in audit.h */
109 const char *audit_tree_path(struct audit_tree *tree)
110 {
111 	return tree->pathname;
112 }
113 
114 static struct audit_chunk *alloc_chunk(int count)
115 {
116 	struct audit_chunk *chunk;
117 	size_t size;
118 	int i;
119 
120 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
121 	chunk = kzalloc(size, GFP_KERNEL);
122 	if (!chunk)
123 		return NULL;
124 
125 	INIT_LIST_HEAD(&chunk->hash);
126 	INIT_LIST_HEAD(&chunk->trees);
127 	chunk->count = count;
128 	atomic_long_set(&chunk->refs, 1);
129 	for (i = 0; i < count; i++) {
130 		INIT_LIST_HEAD(&chunk->owners[i].list);
131 		chunk->owners[i].index = i;
132 	}
133 	inotify_init_watch(&chunk->watch);
134 	return chunk;
135 }
136 
137 static void free_chunk(struct audit_chunk *chunk)
138 {
139 	int i;
140 
141 	for (i = 0; i < chunk->count; i++) {
142 		if (chunk->owners[i].owner)
143 			put_tree(chunk->owners[i].owner);
144 	}
145 	kfree(chunk);
146 }
147 
148 void audit_put_chunk(struct audit_chunk *chunk)
149 {
150 	if (atomic_long_dec_and_test(&chunk->refs))
151 		free_chunk(chunk);
152 }
153 
154 static void __put_chunk(struct rcu_head *rcu)
155 {
156 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
157 	audit_put_chunk(chunk);
158 }
159 
160 enum {HASH_SIZE = 128};
161 static struct list_head chunk_hash_heads[HASH_SIZE];
162 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
163 
164 static inline struct list_head *chunk_hash(const struct inode *inode)
165 {
166 	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167 	return chunk_hash_heads + n % HASH_SIZE;
168 }
169 
170 /* hash_lock is held by caller */
171 static void insert_hash(struct audit_chunk *chunk)
172 {
173 	struct list_head *list = chunk_hash(chunk->watch.inode);
174 	list_add_rcu(&chunk->hash, list);
175 }
176 
177 /* called under rcu_read_lock */
178 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
179 {
180 	struct list_head *list = chunk_hash(inode);
181 	struct audit_chunk *p;
182 
183 	list_for_each_entry_rcu(p, list, hash) {
184 		if (p->watch.inode == inode) {
185 			atomic_long_inc(&p->refs);
186 			return p;
187 		}
188 	}
189 	return NULL;
190 }
191 
192 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
193 {
194 	int n;
195 	for (n = 0; n < chunk->count; n++)
196 		if (chunk->owners[n].owner == tree)
197 			return 1;
198 	return 0;
199 }
200 
201 /* tagging and untagging inodes with trees */
202 
203 static struct audit_chunk *find_chunk(struct node *p)
204 {
205 	int index = p->index & ~(1U<<31);
206 	p -= index;
207 	return container_of(p, struct audit_chunk, owners[0]);
208 }
209 
210 static void untag_chunk(struct node *p)
211 {
212 	struct audit_chunk *chunk = find_chunk(p);
213 	struct audit_chunk *new;
214 	struct audit_tree *owner;
215 	int size = chunk->count - 1;
216 	int i, j;
217 
218 	if (!pin_inotify_watch(&chunk->watch)) {
219 		/*
220 		 * Filesystem is shutting down; all watches are getting
221 		 * evicted, just take it off the node list for this
222 		 * tree and let the eviction logics take care of the
223 		 * rest.
224 		 */
225 		owner = p->owner;
226 		if (owner->root == chunk) {
227 			list_del_init(&owner->same_root);
228 			owner->root = NULL;
229 		}
230 		list_del_init(&p->list);
231 		p->owner = NULL;
232 		put_tree(owner);
233 		return;
234 	}
235 
236 	spin_unlock(&hash_lock);
237 
238 	/*
239 	 * pin_inotify_watch() succeeded, so the watch won't go away
240 	 * from under us.
241 	 */
242 	mutex_lock(&chunk->watch.inode->inotify_mutex);
243 	if (chunk->dead) {
244 		mutex_unlock(&chunk->watch.inode->inotify_mutex);
245 		goto out;
246 	}
247 
248 	owner = p->owner;
249 
250 	if (!size) {
251 		chunk->dead = 1;
252 		spin_lock(&hash_lock);
253 		list_del_init(&chunk->trees);
254 		if (owner->root == chunk)
255 			owner->root = NULL;
256 		list_del_init(&p->list);
257 		list_del_rcu(&chunk->hash);
258 		spin_unlock(&hash_lock);
259 		inotify_evict_watch(&chunk->watch);
260 		mutex_unlock(&chunk->watch.inode->inotify_mutex);
261 		put_inotify_watch(&chunk->watch);
262 		goto out;
263 	}
264 
265 	new = alloc_chunk(size);
266 	if (!new)
267 		goto Fallback;
268 	if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
269 		free_chunk(new);
270 		goto Fallback;
271 	}
272 
273 	chunk->dead = 1;
274 	spin_lock(&hash_lock);
275 	list_replace_init(&chunk->trees, &new->trees);
276 	if (owner->root == chunk) {
277 		list_del_init(&owner->same_root);
278 		owner->root = NULL;
279 	}
280 
281 	for (i = j = 0; j <= size; i++, j++) {
282 		struct audit_tree *s;
283 		if (&chunk->owners[j] == p) {
284 			list_del_init(&p->list);
285 			i--;
286 			continue;
287 		}
288 		s = chunk->owners[j].owner;
289 		new->owners[i].owner = s;
290 		new->owners[i].index = chunk->owners[j].index - j + i;
291 		if (!s) /* result of earlier fallback */
292 			continue;
293 		get_tree(s);
294 		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
295 	}
296 
297 	list_replace_rcu(&chunk->hash, &new->hash);
298 	list_for_each_entry(owner, &new->trees, same_root)
299 		owner->root = new;
300 	spin_unlock(&hash_lock);
301 	inotify_evict_watch(&chunk->watch);
302 	mutex_unlock(&chunk->watch.inode->inotify_mutex);
303 	put_inotify_watch(&chunk->watch);
304 	goto out;
305 
306 Fallback:
307 	// do the best we can
308 	spin_lock(&hash_lock);
309 	if (owner->root == chunk) {
310 		list_del_init(&owner->same_root);
311 		owner->root = NULL;
312 	}
313 	list_del_init(&p->list);
314 	p->owner = NULL;
315 	put_tree(owner);
316 	spin_unlock(&hash_lock);
317 	mutex_unlock(&chunk->watch.inode->inotify_mutex);
318 out:
319 	unpin_inotify_watch(&chunk->watch);
320 	spin_lock(&hash_lock);
321 }
322 
323 static int create_chunk(struct inode *inode, struct audit_tree *tree)
324 {
325 	struct audit_chunk *chunk = alloc_chunk(1);
326 	if (!chunk)
327 		return -ENOMEM;
328 
329 	if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
330 		free_chunk(chunk);
331 		return -ENOSPC;
332 	}
333 
334 	mutex_lock(&inode->inotify_mutex);
335 	spin_lock(&hash_lock);
336 	if (tree->goner) {
337 		spin_unlock(&hash_lock);
338 		chunk->dead = 1;
339 		inotify_evict_watch(&chunk->watch);
340 		mutex_unlock(&inode->inotify_mutex);
341 		put_inotify_watch(&chunk->watch);
342 		return 0;
343 	}
344 	chunk->owners[0].index = (1U << 31);
345 	chunk->owners[0].owner = tree;
346 	get_tree(tree);
347 	list_add(&chunk->owners[0].list, &tree->chunks);
348 	if (!tree->root) {
349 		tree->root = chunk;
350 		list_add(&tree->same_root, &chunk->trees);
351 	}
352 	insert_hash(chunk);
353 	spin_unlock(&hash_lock);
354 	mutex_unlock(&inode->inotify_mutex);
355 	return 0;
356 }
357 
358 /* the first tagged inode becomes root of tree */
359 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
360 {
361 	struct inotify_watch *watch;
362 	struct audit_tree *owner;
363 	struct audit_chunk *chunk, *old;
364 	struct node *p;
365 	int n;
366 
367 	if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
368 		return create_chunk(inode, tree);
369 
370 	old = container_of(watch, struct audit_chunk, watch);
371 
372 	/* are we already there? */
373 	spin_lock(&hash_lock);
374 	for (n = 0; n < old->count; n++) {
375 		if (old->owners[n].owner == tree) {
376 			spin_unlock(&hash_lock);
377 			put_inotify_watch(&old->watch);
378 			return 0;
379 		}
380 	}
381 	spin_unlock(&hash_lock);
382 
383 	chunk = alloc_chunk(old->count + 1);
384 	if (!chunk) {
385 		put_inotify_watch(&old->watch);
386 		return -ENOMEM;
387 	}
388 
389 	mutex_lock(&inode->inotify_mutex);
390 	if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
391 		mutex_unlock(&inode->inotify_mutex);
392 		put_inotify_watch(&old->watch);
393 		free_chunk(chunk);
394 		return -ENOSPC;
395 	}
396 	spin_lock(&hash_lock);
397 	if (tree->goner) {
398 		spin_unlock(&hash_lock);
399 		chunk->dead = 1;
400 		inotify_evict_watch(&chunk->watch);
401 		mutex_unlock(&inode->inotify_mutex);
402 		put_inotify_watch(&old->watch);
403 		put_inotify_watch(&chunk->watch);
404 		return 0;
405 	}
406 	list_replace_init(&old->trees, &chunk->trees);
407 	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
408 		struct audit_tree *s = old->owners[n].owner;
409 		p->owner = s;
410 		p->index = old->owners[n].index;
411 		if (!s) /* result of fallback in untag */
412 			continue;
413 		get_tree(s);
414 		list_replace_init(&old->owners[n].list, &p->list);
415 	}
416 	p->index = (chunk->count - 1) | (1U<<31);
417 	p->owner = tree;
418 	get_tree(tree);
419 	list_add(&p->list, &tree->chunks);
420 	list_replace_rcu(&old->hash, &chunk->hash);
421 	list_for_each_entry(owner, &chunk->trees, same_root)
422 		owner->root = chunk;
423 	old->dead = 1;
424 	if (!tree->root) {
425 		tree->root = chunk;
426 		list_add(&tree->same_root, &chunk->trees);
427 	}
428 	spin_unlock(&hash_lock);
429 	inotify_evict_watch(&old->watch);
430 	mutex_unlock(&inode->inotify_mutex);
431 	put_inotify_watch(&old->watch); /* pair to inotify_find_watch */
432 	put_inotify_watch(&old->watch); /* and kill it */
433 	return 0;
434 }
435 
436 static void kill_rules(struct audit_tree *tree)
437 {
438 	struct audit_krule *rule, *next;
439 	struct audit_entry *entry;
440 	struct audit_buffer *ab;
441 
442 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
443 		entry = container_of(rule, struct audit_entry, rule);
444 
445 		list_del_init(&rule->rlist);
446 		if (rule->tree) {
447 			/* not a half-baked one */
448 			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
449 			audit_log_format(ab, "op=");
450 			audit_log_string(ab, "remove rule");
451 			audit_log_format(ab, " dir=");
452 			audit_log_untrustedstring(ab, rule->tree->pathname);
453 			audit_log_key(ab, rule->filterkey);
454 			audit_log_format(ab, " list=%d res=1", rule->listnr);
455 			audit_log_end(ab);
456 			rule->tree = NULL;
457 			list_del_rcu(&entry->list);
458 			list_del(&entry->rule.list);
459 			call_rcu(&entry->rcu, audit_free_rule_rcu);
460 		}
461 	}
462 }
463 
464 /*
465  * finish killing struct audit_tree
466  */
467 static void prune_one(struct audit_tree *victim)
468 {
469 	spin_lock(&hash_lock);
470 	while (!list_empty(&victim->chunks)) {
471 		struct node *p;
472 
473 		p = list_entry(victim->chunks.next, struct node, list);
474 
475 		untag_chunk(p);
476 	}
477 	spin_unlock(&hash_lock);
478 	put_tree(victim);
479 }
480 
481 /* trim the uncommitted chunks from tree */
482 
483 static void trim_marked(struct audit_tree *tree)
484 {
485 	struct list_head *p, *q;
486 	spin_lock(&hash_lock);
487 	if (tree->goner) {
488 		spin_unlock(&hash_lock);
489 		return;
490 	}
491 	/* reorder */
492 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
493 		struct node *node = list_entry(p, struct node, list);
494 		q = p->next;
495 		if (node->index & (1U<<31)) {
496 			list_del_init(p);
497 			list_add(p, &tree->chunks);
498 		}
499 	}
500 
501 	while (!list_empty(&tree->chunks)) {
502 		struct node *node;
503 
504 		node = list_entry(tree->chunks.next, struct node, list);
505 
506 		/* have we run out of marked? */
507 		if (!(node->index & (1U<<31)))
508 			break;
509 
510 		untag_chunk(node);
511 	}
512 	if (!tree->root && !tree->goner) {
513 		tree->goner = 1;
514 		spin_unlock(&hash_lock);
515 		mutex_lock(&audit_filter_mutex);
516 		kill_rules(tree);
517 		list_del_init(&tree->list);
518 		mutex_unlock(&audit_filter_mutex);
519 		prune_one(tree);
520 	} else {
521 		spin_unlock(&hash_lock);
522 	}
523 }
524 
525 static void audit_schedule_prune(void);
526 
527 /* called with audit_filter_mutex */
528 int audit_remove_tree_rule(struct audit_krule *rule)
529 {
530 	struct audit_tree *tree;
531 	tree = rule->tree;
532 	if (tree) {
533 		spin_lock(&hash_lock);
534 		list_del_init(&rule->rlist);
535 		if (list_empty(&tree->rules) && !tree->goner) {
536 			tree->root = NULL;
537 			list_del_init(&tree->same_root);
538 			tree->goner = 1;
539 			list_move(&tree->list, &prune_list);
540 			rule->tree = NULL;
541 			spin_unlock(&hash_lock);
542 			audit_schedule_prune();
543 			return 1;
544 		}
545 		rule->tree = NULL;
546 		spin_unlock(&hash_lock);
547 		return 1;
548 	}
549 	return 0;
550 }
551 
552 static int compare_root(struct vfsmount *mnt, void *arg)
553 {
554 	return mnt->mnt_root->d_inode == arg;
555 }
556 
557 void audit_trim_trees(void)
558 {
559 	struct list_head cursor;
560 
561 	mutex_lock(&audit_filter_mutex);
562 	list_add(&cursor, &tree_list);
563 	while (cursor.next != &tree_list) {
564 		struct audit_tree *tree;
565 		struct path path;
566 		struct vfsmount *root_mnt;
567 		struct node *node;
568 		int err;
569 
570 		tree = container_of(cursor.next, struct audit_tree, list);
571 		get_tree(tree);
572 		list_del(&cursor);
573 		list_add(&cursor, &tree->list);
574 		mutex_unlock(&audit_filter_mutex);
575 
576 		err = kern_path(tree->pathname, 0, &path);
577 		if (err)
578 			goto skip_it;
579 
580 		root_mnt = collect_mounts(&path);
581 		path_put(&path);
582 		if (!root_mnt)
583 			goto skip_it;
584 
585 		spin_lock(&hash_lock);
586 		list_for_each_entry(node, &tree->chunks, list) {
587 			struct inode *inode = find_chunk(node)->watch.inode;
588 			node->index |= 1U<<31;
589 			if (iterate_mounts(compare_root, inode, root_mnt))
590 				node->index &= ~(1U<<31);
591 		}
592 		spin_unlock(&hash_lock);
593 		trim_marked(tree);
594 		put_tree(tree);
595 		drop_collected_mounts(root_mnt);
596 skip_it:
597 		mutex_lock(&audit_filter_mutex);
598 	}
599 	list_del(&cursor);
600 	mutex_unlock(&audit_filter_mutex);
601 }
602 
603 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
604 {
605 
606 	if (pathname[0] != '/' ||
607 	    rule->listnr != AUDIT_FILTER_EXIT ||
608 	    op != Audit_equal ||
609 	    rule->inode_f || rule->watch || rule->tree)
610 		return -EINVAL;
611 	rule->tree = alloc_tree(pathname);
612 	if (!rule->tree)
613 		return -ENOMEM;
614 	return 0;
615 }
616 
617 void audit_put_tree(struct audit_tree *tree)
618 {
619 	put_tree(tree);
620 }
621 
622 static int tag_mount(struct vfsmount *mnt, void *arg)
623 {
624 	return tag_chunk(mnt->mnt_root->d_inode, arg);
625 }
626 
627 /* called with audit_filter_mutex */
628 int audit_add_tree_rule(struct audit_krule *rule)
629 {
630 	struct audit_tree *seed = rule->tree, *tree;
631 	struct path path;
632 	struct vfsmount *mnt;
633 	int err;
634 
635 	list_for_each_entry(tree, &tree_list, list) {
636 		if (!strcmp(seed->pathname, tree->pathname)) {
637 			put_tree(seed);
638 			rule->tree = tree;
639 			list_add(&rule->rlist, &tree->rules);
640 			return 0;
641 		}
642 	}
643 	tree = seed;
644 	list_add(&tree->list, &tree_list);
645 	list_add(&rule->rlist, &tree->rules);
646 	/* do not set rule->tree yet */
647 	mutex_unlock(&audit_filter_mutex);
648 
649 	err = kern_path(tree->pathname, 0, &path);
650 	if (err)
651 		goto Err;
652 	mnt = collect_mounts(&path);
653 	path_put(&path);
654 	if (!mnt) {
655 		err = -ENOMEM;
656 		goto Err;
657 	}
658 
659 	get_tree(tree);
660 	err = iterate_mounts(tag_mount, tree, mnt);
661 	drop_collected_mounts(mnt);
662 
663 	if (!err) {
664 		struct node *node;
665 		spin_lock(&hash_lock);
666 		list_for_each_entry(node, &tree->chunks, list)
667 			node->index &= ~(1U<<31);
668 		spin_unlock(&hash_lock);
669 	} else {
670 		trim_marked(tree);
671 		goto Err;
672 	}
673 
674 	mutex_lock(&audit_filter_mutex);
675 	if (list_empty(&rule->rlist)) {
676 		put_tree(tree);
677 		return -ENOENT;
678 	}
679 	rule->tree = tree;
680 	put_tree(tree);
681 
682 	return 0;
683 Err:
684 	mutex_lock(&audit_filter_mutex);
685 	list_del_init(&tree->list);
686 	list_del_init(&tree->rules);
687 	put_tree(tree);
688 	return err;
689 }
690 
691 int audit_tag_tree(char *old, char *new)
692 {
693 	struct list_head cursor, barrier;
694 	int failed = 0;
695 	struct path path1, path2;
696 	struct vfsmount *tagged;
697 	int err;
698 
699 	err = kern_path(new, 0, &path2);
700 	if (err)
701 		return err;
702 	tagged = collect_mounts(&path2);
703 	path_put(&path2);
704 	if (!tagged)
705 		return -ENOMEM;
706 
707 	err = kern_path(old, 0, &path1);
708 	if (err) {
709 		drop_collected_mounts(tagged);
710 		return err;
711 	}
712 
713 	mutex_lock(&audit_filter_mutex);
714 	list_add(&barrier, &tree_list);
715 	list_add(&cursor, &barrier);
716 
717 	while (cursor.next != &tree_list) {
718 		struct audit_tree *tree;
719 		int good_one = 0;
720 
721 		tree = container_of(cursor.next, struct audit_tree, list);
722 		get_tree(tree);
723 		list_del(&cursor);
724 		list_add(&cursor, &tree->list);
725 		mutex_unlock(&audit_filter_mutex);
726 
727 		err = kern_path(tree->pathname, 0, &path2);
728 		if (!err) {
729 			good_one = path_is_under(&path1, &path2);
730 			path_put(&path2);
731 		}
732 
733 		if (!good_one) {
734 			put_tree(tree);
735 			mutex_lock(&audit_filter_mutex);
736 			continue;
737 		}
738 
739 		failed = iterate_mounts(tag_mount, tree, tagged);
740 		if (failed) {
741 			put_tree(tree);
742 			mutex_lock(&audit_filter_mutex);
743 			break;
744 		}
745 
746 		mutex_lock(&audit_filter_mutex);
747 		spin_lock(&hash_lock);
748 		if (!tree->goner) {
749 			list_del(&tree->list);
750 			list_add(&tree->list, &tree_list);
751 		}
752 		spin_unlock(&hash_lock);
753 		put_tree(tree);
754 	}
755 
756 	while (barrier.prev != &tree_list) {
757 		struct audit_tree *tree;
758 
759 		tree = container_of(barrier.prev, struct audit_tree, list);
760 		get_tree(tree);
761 		list_del(&tree->list);
762 		list_add(&tree->list, &barrier);
763 		mutex_unlock(&audit_filter_mutex);
764 
765 		if (!failed) {
766 			struct node *node;
767 			spin_lock(&hash_lock);
768 			list_for_each_entry(node, &tree->chunks, list)
769 				node->index &= ~(1U<<31);
770 			spin_unlock(&hash_lock);
771 		} else {
772 			trim_marked(tree);
773 		}
774 
775 		put_tree(tree);
776 		mutex_lock(&audit_filter_mutex);
777 	}
778 	list_del(&barrier);
779 	list_del(&cursor);
780 	mutex_unlock(&audit_filter_mutex);
781 	path_put(&path1);
782 	drop_collected_mounts(tagged);
783 	return failed;
784 }
785 
786 /*
787  * That gets run when evict_chunk() ends up needing to kill audit_tree.
788  * Runs from a separate thread.
789  */
790 static int prune_tree_thread(void *unused)
791 {
792 	mutex_lock(&audit_cmd_mutex);
793 	mutex_lock(&audit_filter_mutex);
794 
795 	while (!list_empty(&prune_list)) {
796 		struct audit_tree *victim;
797 
798 		victim = list_entry(prune_list.next, struct audit_tree, list);
799 		list_del_init(&victim->list);
800 
801 		mutex_unlock(&audit_filter_mutex);
802 
803 		prune_one(victim);
804 
805 		mutex_lock(&audit_filter_mutex);
806 	}
807 
808 	mutex_unlock(&audit_filter_mutex);
809 	mutex_unlock(&audit_cmd_mutex);
810 	return 0;
811 }
812 
813 static void audit_schedule_prune(void)
814 {
815 	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
816 }
817 
818 /*
819  * ... and that one is done if evict_chunk() decides to delay until the end
820  * of syscall.  Runs synchronously.
821  */
822 void audit_kill_trees(struct list_head *list)
823 {
824 	mutex_lock(&audit_cmd_mutex);
825 	mutex_lock(&audit_filter_mutex);
826 
827 	while (!list_empty(list)) {
828 		struct audit_tree *victim;
829 
830 		victim = list_entry(list->next, struct audit_tree, list);
831 		kill_rules(victim);
832 		list_del_init(&victim->list);
833 
834 		mutex_unlock(&audit_filter_mutex);
835 
836 		prune_one(victim);
837 
838 		mutex_lock(&audit_filter_mutex);
839 	}
840 
841 	mutex_unlock(&audit_filter_mutex);
842 	mutex_unlock(&audit_cmd_mutex);
843 }
844 
845 /*
846  *  Here comes the stuff asynchronous to auditctl operations
847  */
848 
849 /* inode->inotify_mutex is locked */
850 static void evict_chunk(struct audit_chunk *chunk)
851 {
852 	struct audit_tree *owner;
853 	struct list_head *postponed = audit_killed_trees();
854 	int need_prune = 0;
855 	int n;
856 
857 	if (chunk->dead)
858 		return;
859 
860 	chunk->dead = 1;
861 	mutex_lock(&audit_filter_mutex);
862 	spin_lock(&hash_lock);
863 	while (!list_empty(&chunk->trees)) {
864 		owner = list_entry(chunk->trees.next,
865 				   struct audit_tree, same_root);
866 		owner->goner = 1;
867 		owner->root = NULL;
868 		list_del_init(&owner->same_root);
869 		spin_unlock(&hash_lock);
870 		if (!postponed) {
871 			kill_rules(owner);
872 			list_move(&owner->list, &prune_list);
873 			need_prune = 1;
874 		} else {
875 			list_move(&owner->list, postponed);
876 		}
877 		spin_lock(&hash_lock);
878 	}
879 	list_del_rcu(&chunk->hash);
880 	for (n = 0; n < chunk->count; n++)
881 		list_del_init(&chunk->owners[n].list);
882 	spin_unlock(&hash_lock);
883 	if (need_prune)
884 		audit_schedule_prune();
885 	mutex_unlock(&audit_filter_mutex);
886 }
887 
888 static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
889                          u32 cookie, const char *dname, struct inode *inode)
890 {
891 	struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
892 
893 	if (mask & IN_IGNORED) {
894 		evict_chunk(chunk);
895 		put_inotify_watch(watch);
896 	}
897 }
898 
899 static void destroy_watch(struct inotify_watch *watch)
900 {
901 	struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
902 	call_rcu(&chunk->head, __put_chunk);
903 }
904 
905 static const struct inotify_operations rtree_inotify_ops = {
906 	.handle_event	= handle_event,
907 	.destroy_watch	= destroy_watch,
908 };
909 
910 static int __init audit_tree_init(void)
911 {
912 	int i;
913 
914 	rtree_ih = inotify_init(&rtree_inotify_ops);
915 	if (IS_ERR(rtree_ih))
916 		audit_panic("cannot initialize inotify handle for rectree watches");
917 
918 	for (i = 0; i < HASH_SIZE; i++)
919 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
920 
921 	return 0;
922 }
923 __initcall(audit_tree_init);
924