xref: /linux/kernel/audit.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51 
52 #include <linux/audit.h>
53 
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/inotify.h>
59 #include <linux/freezer.h>
60 #include <linux/tty.h>
61 
62 #include "audit.h"
63 
64 /* No auditing will take place until audit_initialized != 0.
65  * (Initialization happens after skb_init is called.) */
66 static int	audit_initialized;
67 
68 #define AUDIT_OFF	0
69 #define AUDIT_ON	1
70 #define AUDIT_LOCKED	2
71 int		audit_enabled;
72 int		audit_ever_enabled;
73 
74 /* Default state when kernel boots without any parameters. */
75 static int	audit_default;
76 
77 /* If auditing cannot proceed, audit_failure selects what happens. */
78 static int	audit_failure = AUDIT_FAIL_PRINTK;
79 
80 /*
81  * If audit records are to be written to the netlink socket, audit_pid
82  * contains the pid of the auditd process and audit_nlk_pid contains
83  * the pid to use to send netlink messages to that process.
84  */
85 int		audit_pid;
86 static int	audit_nlk_pid;
87 
88 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
89  * to that number per second.  This prevents DoS attacks, but results in
90  * audit records being dropped. */
91 static int	audit_rate_limit;
92 
93 /* Number of outstanding audit_buffers allowed. */
94 static int	audit_backlog_limit = 64;
95 static int	audit_backlog_wait_time = 60 * HZ;
96 static int	audit_backlog_wait_overflow = 0;
97 
98 /* The identity of the user shutting down the audit system. */
99 uid_t		audit_sig_uid = -1;
100 pid_t		audit_sig_pid = -1;
101 u32		audit_sig_sid = 0;
102 
103 /* Records can be lost in several ways:
104    0) [suppressed in audit_alloc]
105    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
106    2) out of memory in audit_log_move [alloc_skb]
107    3) suppressed due to audit_rate_limit
108    4) suppressed due to audit_backlog_limit
109 */
110 static atomic_t    audit_lost = ATOMIC_INIT(0);
111 
112 /* The netlink socket. */
113 static struct sock *audit_sock;
114 
115 /* Inotify handle. */
116 struct inotify_handle *audit_ih;
117 
118 /* Hash for inode-based rules */
119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
120 
121 /* The audit_freelist is a list of pre-allocated audit buffers (if more
122  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
123  * being placed on the freelist). */
124 static DEFINE_SPINLOCK(audit_freelist_lock);
125 static int	   audit_freelist_count;
126 static LIST_HEAD(audit_freelist);
127 
128 static struct sk_buff_head audit_skb_queue;
129 /* queue of skbs to send to auditd when/if it comes back */
130 static struct sk_buff_head audit_skb_hold_queue;
131 static struct task_struct *kauditd_task;
132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
134 
135 /* Serialize requests from userspace. */
136 static DEFINE_MUTEX(audit_cmd_mutex);
137 
138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
139  * audit records.  Since printk uses a 1024 byte buffer, this buffer
140  * should be at least that large. */
141 #define AUDIT_BUFSIZ 1024
142 
143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
144  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
145 #define AUDIT_MAXFREE  (2*NR_CPUS)
146 
147 /* The audit_buffer is used when formatting an audit record.  The caller
148  * locks briefly to get the record off the freelist or to allocate the
149  * buffer, and locks briefly to send the buffer to the netlink layer or
150  * to place it on a transmit queue.  Multiple audit_buffers can be in
151  * use simultaneously. */
152 struct audit_buffer {
153 	struct list_head     list;
154 	struct sk_buff       *skb;	/* formatted skb ready to send */
155 	struct audit_context *ctx;	/* NULL or associated context */
156 	gfp_t		     gfp_mask;
157 };
158 
159 struct audit_reply {
160 	int pid;
161 	struct sk_buff *skb;
162 };
163 
164 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
165 {
166 	if (ab) {
167 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
168 		nlh->nlmsg_pid = pid;
169 	}
170 }
171 
172 void audit_panic(const char *message)
173 {
174 	switch (audit_failure)
175 	{
176 	case AUDIT_FAIL_SILENT:
177 		break;
178 	case AUDIT_FAIL_PRINTK:
179 		if (printk_ratelimit())
180 			printk(KERN_ERR "audit: %s\n", message);
181 		break;
182 	case AUDIT_FAIL_PANIC:
183 		/* test audit_pid since printk is always losey, why bother? */
184 		if (audit_pid)
185 			panic("audit: %s\n", message);
186 		break;
187 	}
188 }
189 
190 static inline int audit_rate_check(void)
191 {
192 	static unsigned long	last_check = 0;
193 	static int		messages   = 0;
194 	static DEFINE_SPINLOCK(lock);
195 	unsigned long		flags;
196 	unsigned long		now;
197 	unsigned long		elapsed;
198 	int			retval	   = 0;
199 
200 	if (!audit_rate_limit) return 1;
201 
202 	spin_lock_irqsave(&lock, flags);
203 	if (++messages < audit_rate_limit) {
204 		retval = 1;
205 	} else {
206 		now     = jiffies;
207 		elapsed = now - last_check;
208 		if (elapsed > HZ) {
209 			last_check = now;
210 			messages   = 0;
211 			retval     = 1;
212 		}
213 	}
214 	spin_unlock_irqrestore(&lock, flags);
215 
216 	return retval;
217 }
218 
219 /**
220  * audit_log_lost - conditionally log lost audit message event
221  * @message: the message stating reason for lost audit message
222  *
223  * Emit at least 1 message per second, even if audit_rate_check is
224  * throttling.
225  * Always increment the lost messages counter.
226 */
227 void audit_log_lost(const char *message)
228 {
229 	static unsigned long	last_msg = 0;
230 	static DEFINE_SPINLOCK(lock);
231 	unsigned long		flags;
232 	unsigned long		now;
233 	int			print;
234 
235 	atomic_inc(&audit_lost);
236 
237 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
238 
239 	if (!print) {
240 		spin_lock_irqsave(&lock, flags);
241 		now = jiffies;
242 		if (now - last_msg > HZ) {
243 			print = 1;
244 			last_msg = now;
245 		}
246 		spin_unlock_irqrestore(&lock, flags);
247 	}
248 
249 	if (print) {
250 		if (printk_ratelimit())
251 			printk(KERN_WARNING
252 				"audit: audit_lost=%d audit_rate_limit=%d "
253 				"audit_backlog_limit=%d\n",
254 				atomic_read(&audit_lost),
255 				audit_rate_limit,
256 				audit_backlog_limit);
257 		audit_panic(message);
258 	}
259 }
260 
261 static int audit_log_config_change(char *function_name, int new, int old,
262 				   uid_t loginuid, u32 sessionid, u32 sid,
263 				   int allow_changes)
264 {
265 	struct audit_buffer *ab;
266 	int rc = 0;
267 
268 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
269 	audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
270 			 old, loginuid, sessionid);
271 	if (sid) {
272 		char *ctx = NULL;
273 		u32 len;
274 
275 		rc = security_secid_to_secctx(sid, &ctx, &len);
276 		if (rc) {
277 			audit_log_format(ab, " sid=%u", sid);
278 			allow_changes = 0; /* Something weird, deny request */
279 		} else {
280 			audit_log_format(ab, " subj=%s", ctx);
281 			security_release_secctx(ctx, len);
282 		}
283 	}
284 	audit_log_format(ab, " res=%d", allow_changes);
285 	audit_log_end(ab);
286 	return rc;
287 }
288 
289 static int audit_do_config_change(char *function_name, int *to_change,
290 				  int new, uid_t loginuid, u32 sessionid,
291 				  u32 sid)
292 {
293 	int allow_changes, rc = 0, old = *to_change;
294 
295 	/* check if we are locked */
296 	if (audit_enabled == AUDIT_LOCKED)
297 		allow_changes = 0;
298 	else
299 		allow_changes = 1;
300 
301 	if (audit_enabled != AUDIT_OFF) {
302 		rc = audit_log_config_change(function_name, new, old, loginuid,
303 					     sessionid, sid, allow_changes);
304 		if (rc)
305 			allow_changes = 0;
306 	}
307 
308 	/* If we are allowed, make the change */
309 	if (allow_changes == 1)
310 		*to_change = new;
311 	/* Not allowed, update reason */
312 	else if (rc == 0)
313 		rc = -EPERM;
314 	return rc;
315 }
316 
317 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
318 				u32 sid)
319 {
320 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
321 				      limit, loginuid, sessionid, sid);
322 }
323 
324 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
325 				   u32 sid)
326 {
327 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
328 				      limit, loginuid, sessionid, sid);
329 }
330 
331 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
332 {
333 	int rc;
334 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
335 		return -EINVAL;
336 
337 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state,
338 				     loginuid, sessionid, sid);
339 
340 	if (!rc)
341 		audit_ever_enabled |= !!state;
342 
343 	return rc;
344 }
345 
346 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
347 {
348 	if (state != AUDIT_FAIL_SILENT
349 	    && state != AUDIT_FAIL_PRINTK
350 	    && state != AUDIT_FAIL_PANIC)
351 		return -EINVAL;
352 
353 	return audit_do_config_change("audit_failure", &audit_failure, state,
354 				      loginuid, sessionid, sid);
355 }
356 
357 /*
358  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
359  * already have been sent via prink/syslog and so if these messages are dropped
360  * it is not a huge concern since we already passed the audit_log_lost()
361  * notification and stuff.  This is just nice to get audit messages during
362  * boot before auditd is running or messages generated while auditd is stopped.
363  * This only holds messages is audit_default is set, aka booting with audit=1
364  * or building your kernel that way.
365  */
366 static void audit_hold_skb(struct sk_buff *skb)
367 {
368 	if (audit_default &&
369 	    skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
370 		skb_queue_tail(&audit_skb_hold_queue, skb);
371 	else
372 		kfree_skb(skb);
373 }
374 
375 static void kauditd_send_skb(struct sk_buff *skb)
376 {
377 	int err;
378 	/* take a reference in case we can't send it and we want to hold it */
379 	skb_get(skb);
380 	err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
381 	if (err < 0) {
382 		BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
383 		printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
384 		audit_log_lost("auditd dissapeared\n");
385 		audit_pid = 0;
386 		/* we might get lucky and get this in the next auditd */
387 		audit_hold_skb(skb);
388 	} else
389 		/* drop the extra reference if sent ok */
390 		kfree_skb(skb);
391 }
392 
393 static int kauditd_thread(void *dummy)
394 {
395 	struct sk_buff *skb;
396 
397 	set_freezable();
398 	while (!kthread_should_stop()) {
399 		/*
400 		 * if auditd just started drain the queue of messages already
401 		 * sent to syslog/printk.  remember loss here is ok.  we already
402 		 * called audit_log_lost() if it didn't go out normally.  so the
403 		 * race between the skb_dequeue and the next check for audit_pid
404 		 * doesn't matter.
405 		 *
406 		 * if you ever find kauditd to be too slow we can get a perf win
407 		 * by doing our own locking and keeping better track if there
408 		 * are messages in this queue.  I don't see the need now, but
409 		 * in 5 years when I want to play with this again I'll see this
410 		 * note and still have no friggin idea what i'm thinking today.
411 		 */
412 		if (audit_default && audit_pid) {
413 			skb = skb_dequeue(&audit_skb_hold_queue);
414 			if (unlikely(skb)) {
415 				while (skb && audit_pid) {
416 					kauditd_send_skb(skb);
417 					skb = skb_dequeue(&audit_skb_hold_queue);
418 				}
419 			}
420 		}
421 
422 		skb = skb_dequeue(&audit_skb_queue);
423 		wake_up(&audit_backlog_wait);
424 		if (skb) {
425 			if (audit_pid)
426 				kauditd_send_skb(skb);
427 			else {
428 				if (printk_ratelimit())
429 					printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
430 				else
431 					audit_log_lost("printk limit exceeded\n");
432 
433 				audit_hold_skb(skb);
434 			}
435 		} else {
436 			DECLARE_WAITQUEUE(wait, current);
437 			set_current_state(TASK_INTERRUPTIBLE);
438 			add_wait_queue(&kauditd_wait, &wait);
439 
440 			if (!skb_queue_len(&audit_skb_queue)) {
441 				try_to_freeze();
442 				schedule();
443 			}
444 
445 			__set_current_state(TASK_RUNNING);
446 			remove_wait_queue(&kauditd_wait, &wait);
447 		}
448 	}
449 	return 0;
450 }
451 
452 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
453 {
454 	struct task_struct *tsk;
455 	int err;
456 
457 	read_lock(&tasklist_lock);
458 	tsk = find_task_by_vpid(pid);
459 	err = -ESRCH;
460 	if (!tsk)
461 		goto out;
462 	err = 0;
463 
464 	spin_lock_irq(&tsk->sighand->siglock);
465 	if (!tsk->signal->audit_tty)
466 		err = -EPERM;
467 	spin_unlock_irq(&tsk->sighand->siglock);
468 	if (err)
469 		goto out;
470 
471 	tty_audit_push_task(tsk, loginuid, sessionid);
472 out:
473 	read_unlock(&tasklist_lock);
474 	return err;
475 }
476 
477 int audit_send_list(void *_dest)
478 {
479 	struct audit_netlink_list *dest = _dest;
480 	int pid = dest->pid;
481 	struct sk_buff *skb;
482 
483 	/* wait for parent to finish and send an ACK */
484 	mutex_lock(&audit_cmd_mutex);
485 	mutex_unlock(&audit_cmd_mutex);
486 
487 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
488 		netlink_unicast(audit_sock, skb, pid, 0);
489 
490 	kfree(dest);
491 
492 	return 0;
493 }
494 
495 #ifdef CONFIG_AUDIT_TREE
496 static int prune_tree_thread(void *unused)
497 {
498 	mutex_lock(&audit_cmd_mutex);
499 	audit_prune_trees();
500 	mutex_unlock(&audit_cmd_mutex);
501 	return 0;
502 }
503 
504 void audit_schedule_prune(void)
505 {
506 	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
507 }
508 #endif
509 
510 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
511 				 int multi, void *payload, int size)
512 {
513 	struct sk_buff	*skb;
514 	struct nlmsghdr	*nlh;
515 	int		len = NLMSG_SPACE(size);
516 	void		*data;
517 	int		flags = multi ? NLM_F_MULTI : 0;
518 	int		t     = done  ? NLMSG_DONE  : type;
519 
520 	skb = alloc_skb(len, GFP_KERNEL);
521 	if (!skb)
522 		return NULL;
523 
524 	nlh		 = NLMSG_PUT(skb, pid, seq, t, size);
525 	nlh->nlmsg_flags = flags;
526 	data		 = NLMSG_DATA(nlh);
527 	memcpy(data, payload, size);
528 	return skb;
529 
530 nlmsg_failure:			/* Used by NLMSG_PUT */
531 	if (skb)
532 		kfree_skb(skb);
533 	return NULL;
534 }
535 
536 static int audit_send_reply_thread(void *arg)
537 {
538 	struct audit_reply *reply = (struct audit_reply *)arg;
539 
540 	mutex_lock(&audit_cmd_mutex);
541 	mutex_unlock(&audit_cmd_mutex);
542 
543 	/* Ignore failure. It'll only happen if the sender goes away,
544 	   because our timeout is set to infinite. */
545 	netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
546 	kfree(reply);
547 	return 0;
548 }
549 /**
550  * audit_send_reply - send an audit reply message via netlink
551  * @pid: process id to send reply to
552  * @seq: sequence number
553  * @type: audit message type
554  * @done: done (last) flag
555  * @multi: multi-part message flag
556  * @payload: payload data
557  * @size: payload size
558  *
559  * Allocates an skb, builds the netlink message, and sends it to the pid.
560  * No failure notifications.
561  */
562 void audit_send_reply(int pid, int seq, int type, int done, int multi,
563 		      void *payload, int size)
564 {
565 	struct sk_buff *skb;
566 	struct task_struct *tsk;
567 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
568 					    GFP_KERNEL);
569 
570 	if (!reply)
571 		return;
572 
573 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
574 	if (!skb)
575 		return;
576 
577 	reply->pid = pid;
578 	reply->skb = skb;
579 
580 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
581 	if (IS_ERR(tsk)) {
582 		kfree(reply);
583 		kfree_skb(skb);
584 	}
585 }
586 
587 /*
588  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
589  * control messages.
590  */
591 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
592 {
593 	int err = 0;
594 
595 	switch (msg_type) {
596 	case AUDIT_GET:
597 	case AUDIT_LIST:
598 	case AUDIT_LIST_RULES:
599 	case AUDIT_SET:
600 	case AUDIT_ADD:
601 	case AUDIT_ADD_RULE:
602 	case AUDIT_DEL:
603 	case AUDIT_DEL_RULE:
604 	case AUDIT_SIGNAL_INFO:
605 	case AUDIT_TTY_GET:
606 	case AUDIT_TTY_SET:
607 	case AUDIT_TRIM:
608 	case AUDIT_MAKE_EQUIV:
609 		if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
610 			err = -EPERM;
611 		break;
612 	case AUDIT_USER:
613 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
614 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
615 		if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
616 			err = -EPERM;
617 		break;
618 	default:  /* bad msg */
619 		err = -EINVAL;
620 	}
621 
622 	return err;
623 }
624 
625 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
626 				     u32 pid, u32 uid, uid_t auid, u32 ses,
627 				     u32 sid)
628 {
629 	int rc = 0;
630 	char *ctx = NULL;
631 	u32 len;
632 
633 	if (!audit_enabled) {
634 		*ab = NULL;
635 		return rc;
636 	}
637 
638 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
639 	audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
640 			 pid, uid, auid, ses);
641 	if (sid) {
642 		rc = security_secid_to_secctx(sid, &ctx, &len);
643 		if (rc)
644 			audit_log_format(*ab, " ssid=%u", sid);
645 		else {
646 			audit_log_format(*ab, " subj=%s", ctx);
647 			security_release_secctx(ctx, len);
648 		}
649 	}
650 
651 	return rc;
652 }
653 
654 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
655 {
656 	u32			uid, pid, seq, sid;
657 	void			*data;
658 	struct audit_status	*status_get, status_set;
659 	int			err;
660 	struct audit_buffer	*ab;
661 	u16			msg_type = nlh->nlmsg_type;
662 	uid_t			loginuid; /* loginuid of sender */
663 	u32			sessionid;
664 	struct audit_sig_info   *sig_data;
665 	char			*ctx = NULL;
666 	u32			len;
667 
668 	err = audit_netlink_ok(skb, msg_type);
669 	if (err)
670 		return err;
671 
672 	/* As soon as there's any sign of userspace auditd,
673 	 * start kauditd to talk to it */
674 	if (!kauditd_task)
675 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
676 	if (IS_ERR(kauditd_task)) {
677 		err = PTR_ERR(kauditd_task);
678 		kauditd_task = NULL;
679 		return err;
680 	}
681 
682 	pid  = NETLINK_CREDS(skb)->pid;
683 	uid  = NETLINK_CREDS(skb)->uid;
684 	loginuid = NETLINK_CB(skb).loginuid;
685 	sessionid = NETLINK_CB(skb).sessionid;
686 	sid  = NETLINK_CB(skb).sid;
687 	seq  = nlh->nlmsg_seq;
688 	data = NLMSG_DATA(nlh);
689 
690 	switch (msg_type) {
691 	case AUDIT_GET:
692 		status_set.enabled	 = audit_enabled;
693 		status_set.failure	 = audit_failure;
694 		status_set.pid		 = audit_pid;
695 		status_set.rate_limit	 = audit_rate_limit;
696 		status_set.backlog_limit = audit_backlog_limit;
697 		status_set.lost		 = atomic_read(&audit_lost);
698 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
699 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
700 				 &status_set, sizeof(status_set));
701 		break;
702 	case AUDIT_SET:
703 		if (nlh->nlmsg_len < sizeof(struct audit_status))
704 			return -EINVAL;
705 		status_get   = (struct audit_status *)data;
706 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
707 			err = audit_set_enabled(status_get->enabled,
708 						loginuid, sessionid, sid);
709 			if (err < 0) return err;
710 		}
711 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
712 			err = audit_set_failure(status_get->failure,
713 						loginuid, sessionid, sid);
714 			if (err < 0) return err;
715 		}
716 		if (status_get->mask & AUDIT_STATUS_PID) {
717 			int new_pid = status_get->pid;
718 
719 			if (audit_enabled != AUDIT_OFF)
720 				audit_log_config_change("audit_pid", new_pid,
721 							audit_pid, loginuid,
722 							sessionid, sid, 1);
723 
724 			audit_pid = new_pid;
725 			audit_nlk_pid = NETLINK_CB(skb).pid;
726 		}
727 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
728 			err = audit_set_rate_limit(status_get->rate_limit,
729 						   loginuid, sessionid, sid);
730 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
731 			err = audit_set_backlog_limit(status_get->backlog_limit,
732 						      loginuid, sessionid, sid);
733 		break;
734 	case AUDIT_USER:
735 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
736 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
737 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
738 			return 0;
739 
740 		err = audit_filter_user(&NETLINK_CB(skb), msg_type);
741 		if (err == 1) {
742 			err = 0;
743 			if (msg_type == AUDIT_USER_TTY) {
744 				err = audit_prepare_user_tty(pid, loginuid,
745 							     sessionid);
746 				if (err)
747 					break;
748 			}
749 			audit_log_common_recv_msg(&ab, msg_type, pid, uid,
750 						  loginuid, sessionid, sid);
751 
752 			if (msg_type != AUDIT_USER_TTY)
753 				audit_log_format(ab, " msg='%.1024s'",
754 						 (char *)data);
755 			else {
756 				int size;
757 
758 				audit_log_format(ab, " msg=");
759 				size = nlmsg_len(nlh);
760 				audit_log_n_untrustedstring(ab, data, size);
761 			}
762 			audit_set_pid(ab, pid);
763 			audit_log_end(ab);
764 		}
765 		break;
766 	case AUDIT_ADD:
767 	case AUDIT_DEL:
768 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
769 			return -EINVAL;
770 		if (audit_enabled == AUDIT_LOCKED) {
771 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
772 						  uid, loginuid, sessionid, sid);
773 
774 			audit_log_format(ab, " audit_enabled=%d res=0",
775 					 audit_enabled);
776 			audit_log_end(ab);
777 			return -EPERM;
778 		}
779 		/* fallthrough */
780 	case AUDIT_LIST:
781 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
782 					   uid, seq, data, nlmsg_len(nlh),
783 					   loginuid, sessionid, sid);
784 		break;
785 	case AUDIT_ADD_RULE:
786 	case AUDIT_DEL_RULE:
787 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
788 			return -EINVAL;
789 		if (audit_enabled == AUDIT_LOCKED) {
790 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
791 						  uid, loginuid, sessionid, sid);
792 
793 			audit_log_format(ab, " audit_enabled=%d res=0",
794 					 audit_enabled);
795 			audit_log_end(ab);
796 			return -EPERM;
797 		}
798 		/* fallthrough */
799 	case AUDIT_LIST_RULES:
800 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
801 					   uid, seq, data, nlmsg_len(nlh),
802 					   loginuid, sessionid, sid);
803 		break;
804 	case AUDIT_TRIM:
805 		audit_trim_trees();
806 
807 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
808 					  uid, loginuid, sessionid, sid);
809 
810 		audit_log_format(ab, " op=trim res=1");
811 		audit_log_end(ab);
812 		break;
813 	case AUDIT_MAKE_EQUIV: {
814 		void *bufp = data;
815 		u32 sizes[2];
816 		size_t msglen = nlmsg_len(nlh);
817 		char *old, *new;
818 
819 		err = -EINVAL;
820 		if (msglen < 2 * sizeof(u32))
821 			break;
822 		memcpy(sizes, bufp, 2 * sizeof(u32));
823 		bufp += 2 * sizeof(u32);
824 		msglen -= 2 * sizeof(u32);
825 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
826 		if (IS_ERR(old)) {
827 			err = PTR_ERR(old);
828 			break;
829 		}
830 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
831 		if (IS_ERR(new)) {
832 			err = PTR_ERR(new);
833 			kfree(old);
834 			break;
835 		}
836 		/* OK, here comes... */
837 		err = audit_tag_tree(old, new);
838 
839 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
840 					  uid, loginuid, sessionid, sid);
841 
842 		audit_log_format(ab, " op=make_equiv old=");
843 		audit_log_untrustedstring(ab, old);
844 		audit_log_format(ab, " new=");
845 		audit_log_untrustedstring(ab, new);
846 		audit_log_format(ab, " res=%d", !err);
847 		audit_log_end(ab);
848 		kfree(old);
849 		kfree(new);
850 		break;
851 	}
852 	case AUDIT_SIGNAL_INFO:
853 		err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
854 		if (err)
855 			return err;
856 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
857 		if (!sig_data) {
858 			security_release_secctx(ctx, len);
859 			return -ENOMEM;
860 		}
861 		sig_data->uid = audit_sig_uid;
862 		sig_data->pid = audit_sig_pid;
863 		memcpy(sig_data->ctx, ctx, len);
864 		security_release_secctx(ctx, len);
865 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
866 				0, 0, sig_data, sizeof(*sig_data) + len);
867 		kfree(sig_data);
868 		break;
869 	case AUDIT_TTY_GET: {
870 		struct audit_tty_status s;
871 		struct task_struct *tsk;
872 
873 		read_lock(&tasklist_lock);
874 		tsk = find_task_by_vpid(pid);
875 		if (!tsk)
876 			err = -ESRCH;
877 		else {
878 			spin_lock_irq(&tsk->sighand->siglock);
879 			s.enabled = tsk->signal->audit_tty != 0;
880 			spin_unlock_irq(&tsk->sighand->siglock);
881 		}
882 		read_unlock(&tasklist_lock);
883 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
884 				 &s, sizeof(s));
885 		break;
886 	}
887 	case AUDIT_TTY_SET: {
888 		struct audit_tty_status *s;
889 		struct task_struct *tsk;
890 
891 		if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
892 			return -EINVAL;
893 		s = data;
894 		if (s->enabled != 0 && s->enabled != 1)
895 			return -EINVAL;
896 		read_lock(&tasklist_lock);
897 		tsk = find_task_by_vpid(pid);
898 		if (!tsk)
899 			err = -ESRCH;
900 		else {
901 			spin_lock_irq(&tsk->sighand->siglock);
902 			tsk->signal->audit_tty = s->enabled != 0;
903 			spin_unlock_irq(&tsk->sighand->siglock);
904 		}
905 		read_unlock(&tasklist_lock);
906 		break;
907 	}
908 	default:
909 		err = -EINVAL;
910 		break;
911 	}
912 
913 	return err < 0 ? err : 0;
914 }
915 
916 /*
917  * Get message from skb (based on rtnetlink_rcv_skb).  Each message is
918  * processed by audit_receive_msg.  Malformed skbs with wrong length are
919  * discarded silently.
920  */
921 static void audit_receive_skb(struct sk_buff *skb)
922 {
923 	int		err;
924 	struct nlmsghdr	*nlh;
925 	u32		rlen;
926 
927 	while (skb->len >= NLMSG_SPACE(0)) {
928 		nlh = nlmsg_hdr(skb);
929 		if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
930 			return;
931 		rlen = NLMSG_ALIGN(nlh->nlmsg_len);
932 		if (rlen > skb->len)
933 			rlen = skb->len;
934 		if ((err = audit_receive_msg(skb, nlh))) {
935 			netlink_ack(skb, nlh, err);
936 		} else if (nlh->nlmsg_flags & NLM_F_ACK)
937 			netlink_ack(skb, nlh, 0);
938 		skb_pull(skb, rlen);
939 	}
940 }
941 
942 /* Receive messages from netlink socket. */
943 static void audit_receive(struct sk_buff  *skb)
944 {
945 	mutex_lock(&audit_cmd_mutex);
946 	audit_receive_skb(skb);
947 	mutex_unlock(&audit_cmd_mutex);
948 }
949 
950 #ifdef CONFIG_AUDITSYSCALL
951 static const struct inotify_operations audit_inotify_ops = {
952 	.handle_event	= audit_handle_ievent,
953 	.destroy_watch	= audit_free_parent,
954 };
955 #endif
956 
957 /* Initialize audit support at boot time. */
958 static int __init audit_init(void)
959 {
960 	int i;
961 
962 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
963 	       audit_default ? "enabled" : "disabled");
964 	audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
965 					   audit_receive, NULL, THIS_MODULE);
966 	if (!audit_sock)
967 		audit_panic("cannot initialize netlink socket");
968 	else
969 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
970 
971 	skb_queue_head_init(&audit_skb_queue);
972 	skb_queue_head_init(&audit_skb_hold_queue);
973 	audit_initialized = 1;
974 	audit_enabled = audit_default;
975 	audit_ever_enabled |= !!audit_default;
976 
977 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
978 
979 #ifdef CONFIG_AUDITSYSCALL
980 	audit_ih = inotify_init(&audit_inotify_ops);
981 	if (IS_ERR(audit_ih))
982 		audit_panic("cannot initialize inotify handle");
983 #endif
984 
985 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
986 		INIT_LIST_HEAD(&audit_inode_hash[i]);
987 
988 	return 0;
989 }
990 __initcall(audit_init);
991 
992 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
993 static int __init audit_enable(char *str)
994 {
995 	audit_default = !!simple_strtol(str, NULL, 0);
996 	printk(KERN_INFO "audit: %s%s\n",
997 	       audit_default ? "enabled" : "disabled",
998 	       audit_initialized ? "" : " (after initialization)");
999 	if (audit_initialized) {
1000 		audit_enabled = audit_default;
1001 		audit_ever_enabled |= !!audit_default;
1002 	}
1003 	return 1;
1004 }
1005 
1006 __setup("audit=", audit_enable);
1007 
1008 static void audit_buffer_free(struct audit_buffer *ab)
1009 {
1010 	unsigned long flags;
1011 
1012 	if (!ab)
1013 		return;
1014 
1015 	if (ab->skb)
1016 		kfree_skb(ab->skb);
1017 
1018 	spin_lock_irqsave(&audit_freelist_lock, flags);
1019 	if (audit_freelist_count > AUDIT_MAXFREE)
1020 		kfree(ab);
1021 	else {
1022 		audit_freelist_count++;
1023 		list_add(&ab->list, &audit_freelist);
1024 	}
1025 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1026 }
1027 
1028 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1029 						gfp_t gfp_mask, int type)
1030 {
1031 	unsigned long flags;
1032 	struct audit_buffer *ab = NULL;
1033 	struct nlmsghdr *nlh;
1034 
1035 	spin_lock_irqsave(&audit_freelist_lock, flags);
1036 	if (!list_empty(&audit_freelist)) {
1037 		ab = list_entry(audit_freelist.next,
1038 				struct audit_buffer, list);
1039 		list_del(&ab->list);
1040 		--audit_freelist_count;
1041 	}
1042 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1043 
1044 	if (!ab) {
1045 		ab = kmalloc(sizeof(*ab), gfp_mask);
1046 		if (!ab)
1047 			goto err;
1048 	}
1049 
1050 	ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
1051 	if (!ab->skb)
1052 		goto err;
1053 
1054 	ab->ctx = ctx;
1055 	ab->gfp_mask = gfp_mask;
1056 	nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
1057 	nlh->nlmsg_type = type;
1058 	nlh->nlmsg_flags = 0;
1059 	nlh->nlmsg_pid = 0;
1060 	nlh->nlmsg_seq = 0;
1061 	return ab;
1062 err:
1063 	audit_buffer_free(ab);
1064 	return NULL;
1065 }
1066 
1067 /**
1068  * audit_serial - compute a serial number for the audit record
1069  *
1070  * Compute a serial number for the audit record.  Audit records are
1071  * written to user-space as soon as they are generated, so a complete
1072  * audit record may be written in several pieces.  The timestamp of the
1073  * record and this serial number are used by the user-space tools to
1074  * determine which pieces belong to the same audit record.  The
1075  * (timestamp,serial) tuple is unique for each syscall and is live from
1076  * syscall entry to syscall exit.
1077  *
1078  * NOTE: Another possibility is to store the formatted records off the
1079  * audit context (for those records that have a context), and emit them
1080  * all at syscall exit.  However, this could delay the reporting of
1081  * significant errors until syscall exit (or never, if the system
1082  * halts).
1083  */
1084 unsigned int audit_serial(void)
1085 {
1086 	static DEFINE_SPINLOCK(serial_lock);
1087 	static unsigned int serial = 0;
1088 
1089 	unsigned long flags;
1090 	unsigned int ret;
1091 
1092 	spin_lock_irqsave(&serial_lock, flags);
1093 	do {
1094 		ret = ++serial;
1095 	} while (unlikely(!ret));
1096 	spin_unlock_irqrestore(&serial_lock, flags);
1097 
1098 	return ret;
1099 }
1100 
1101 static inline void audit_get_stamp(struct audit_context *ctx,
1102 				   struct timespec *t, unsigned int *serial)
1103 {
1104 	if (ctx)
1105 		auditsc_get_stamp(ctx, t, serial);
1106 	else {
1107 		*t = CURRENT_TIME;
1108 		*serial = audit_serial();
1109 	}
1110 }
1111 
1112 /* Obtain an audit buffer.  This routine does locking to obtain the
1113  * audit buffer, but then no locking is required for calls to
1114  * audit_log_*format.  If the tsk is a task that is currently in a
1115  * syscall, then the syscall is marked as auditable and an audit record
1116  * will be written at syscall exit.  If there is no associated task, tsk
1117  * should be NULL. */
1118 
1119 /**
1120  * audit_log_start - obtain an audit buffer
1121  * @ctx: audit_context (may be NULL)
1122  * @gfp_mask: type of allocation
1123  * @type: audit message type
1124  *
1125  * Returns audit_buffer pointer on success or NULL on error.
1126  *
1127  * Obtain an audit buffer.  This routine does locking to obtain the
1128  * audit buffer, but then no locking is required for calls to
1129  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1130  * syscall, then the syscall is marked as auditable and an audit record
1131  * will be written at syscall exit.  If there is no associated task, then
1132  * task context (ctx) should be NULL.
1133  */
1134 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1135 				     int type)
1136 {
1137 	struct audit_buffer	*ab	= NULL;
1138 	struct timespec		t;
1139 	unsigned int		uninitialized_var(serial);
1140 	int reserve;
1141 	unsigned long timeout_start = jiffies;
1142 
1143 	if (!audit_initialized)
1144 		return NULL;
1145 
1146 	if (unlikely(audit_filter_type(type)))
1147 		return NULL;
1148 
1149 	if (gfp_mask & __GFP_WAIT)
1150 		reserve = 0;
1151 	else
1152 		reserve = 5; /* Allow atomic callers to go up to five
1153 				entries over the normal backlog limit */
1154 
1155 	while (audit_backlog_limit
1156 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1157 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1158 		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1159 
1160 			/* Wait for auditd to drain the queue a little */
1161 			DECLARE_WAITQUEUE(wait, current);
1162 			set_current_state(TASK_INTERRUPTIBLE);
1163 			add_wait_queue(&audit_backlog_wait, &wait);
1164 
1165 			if (audit_backlog_limit &&
1166 			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1167 				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1168 
1169 			__set_current_state(TASK_RUNNING);
1170 			remove_wait_queue(&audit_backlog_wait, &wait);
1171 			continue;
1172 		}
1173 		if (audit_rate_check() && printk_ratelimit())
1174 			printk(KERN_WARNING
1175 			       "audit: audit_backlog=%d > "
1176 			       "audit_backlog_limit=%d\n",
1177 			       skb_queue_len(&audit_skb_queue),
1178 			       audit_backlog_limit);
1179 		audit_log_lost("backlog limit exceeded");
1180 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1181 		wake_up(&audit_backlog_wait);
1182 		return NULL;
1183 	}
1184 
1185 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1186 	if (!ab) {
1187 		audit_log_lost("out of memory in audit_log_start");
1188 		return NULL;
1189 	}
1190 
1191 	audit_get_stamp(ab->ctx, &t, &serial);
1192 
1193 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1194 			 t.tv_sec, t.tv_nsec/1000000, serial);
1195 	return ab;
1196 }
1197 
1198 /**
1199  * audit_expand - expand skb in the audit buffer
1200  * @ab: audit_buffer
1201  * @extra: space to add at tail of the skb
1202  *
1203  * Returns 0 (no space) on failed expansion, or available space if
1204  * successful.
1205  */
1206 static inline int audit_expand(struct audit_buffer *ab, int extra)
1207 {
1208 	struct sk_buff *skb = ab->skb;
1209 	int oldtail = skb_tailroom(skb);
1210 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1211 	int newtail = skb_tailroom(skb);
1212 
1213 	if (ret < 0) {
1214 		audit_log_lost("out of memory in audit_expand");
1215 		return 0;
1216 	}
1217 
1218 	skb->truesize += newtail - oldtail;
1219 	return newtail;
1220 }
1221 
1222 /*
1223  * Format an audit message into the audit buffer.  If there isn't enough
1224  * room in the audit buffer, more room will be allocated and vsnprint
1225  * will be called a second time.  Currently, we assume that a printk
1226  * can't format message larger than 1024 bytes, so we don't either.
1227  */
1228 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1229 			      va_list args)
1230 {
1231 	int len, avail;
1232 	struct sk_buff *skb;
1233 	va_list args2;
1234 
1235 	if (!ab)
1236 		return;
1237 
1238 	BUG_ON(!ab->skb);
1239 	skb = ab->skb;
1240 	avail = skb_tailroom(skb);
1241 	if (avail == 0) {
1242 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1243 		if (!avail)
1244 			goto out;
1245 	}
1246 	va_copy(args2, args);
1247 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1248 	if (len >= avail) {
1249 		/* The printk buffer is 1024 bytes long, so if we get
1250 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1251 		 * log everything that printk could have logged. */
1252 		avail = audit_expand(ab,
1253 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1254 		if (!avail)
1255 			goto out;
1256 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1257 	}
1258 	va_end(args2);
1259 	if (len > 0)
1260 		skb_put(skb, len);
1261 out:
1262 	return;
1263 }
1264 
1265 /**
1266  * audit_log_format - format a message into the audit buffer.
1267  * @ab: audit_buffer
1268  * @fmt: format string
1269  * @...: optional parameters matching @fmt string
1270  *
1271  * All the work is done in audit_log_vformat.
1272  */
1273 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1274 {
1275 	va_list args;
1276 
1277 	if (!ab)
1278 		return;
1279 	va_start(args, fmt);
1280 	audit_log_vformat(ab, fmt, args);
1281 	va_end(args);
1282 }
1283 
1284 /**
1285  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1286  * @ab: the audit_buffer
1287  * @buf: buffer to convert to hex
1288  * @len: length of @buf to be converted
1289  *
1290  * No return value; failure to expand is silently ignored.
1291  *
1292  * This function will take the passed buf and convert it into a string of
1293  * ascii hex digits. The new string is placed onto the skb.
1294  */
1295 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1296 		size_t len)
1297 {
1298 	int i, avail, new_len;
1299 	unsigned char *ptr;
1300 	struct sk_buff *skb;
1301 	static const unsigned char *hex = "0123456789ABCDEF";
1302 
1303 	if (!ab)
1304 		return;
1305 
1306 	BUG_ON(!ab->skb);
1307 	skb = ab->skb;
1308 	avail = skb_tailroom(skb);
1309 	new_len = len<<1;
1310 	if (new_len >= avail) {
1311 		/* Round the buffer request up to the next multiple */
1312 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1313 		avail = audit_expand(ab, new_len);
1314 		if (!avail)
1315 			return;
1316 	}
1317 
1318 	ptr = skb_tail_pointer(skb);
1319 	for (i=0; i<len; i++) {
1320 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1321 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1322 	}
1323 	*ptr = 0;
1324 	skb_put(skb, len << 1); /* new string is twice the old string */
1325 }
1326 
1327 /*
1328  * Format a string of no more than slen characters into the audit buffer,
1329  * enclosed in quote marks.
1330  */
1331 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1332 			size_t slen)
1333 {
1334 	int avail, new_len;
1335 	unsigned char *ptr;
1336 	struct sk_buff *skb;
1337 
1338 	if (!ab)
1339 		return;
1340 
1341 	BUG_ON(!ab->skb);
1342 	skb = ab->skb;
1343 	avail = skb_tailroom(skb);
1344 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1345 	if (new_len > avail) {
1346 		avail = audit_expand(ab, new_len);
1347 		if (!avail)
1348 			return;
1349 	}
1350 	ptr = skb_tail_pointer(skb);
1351 	*ptr++ = '"';
1352 	memcpy(ptr, string, slen);
1353 	ptr += slen;
1354 	*ptr++ = '"';
1355 	*ptr = 0;
1356 	skb_put(skb, slen + 2);	/* don't include null terminator */
1357 }
1358 
1359 /**
1360  * audit_string_contains_control - does a string need to be logged in hex
1361  * @string: string to be checked
1362  * @len: max length of the string to check
1363  */
1364 int audit_string_contains_control(const char *string, size_t len)
1365 {
1366 	const unsigned char *p;
1367 	for (p = string; p < (const unsigned char *)string + len && *p; p++) {
1368 		if (*p == '"' || *p < 0x21 || *p > 0x7f)
1369 			return 1;
1370 	}
1371 	return 0;
1372 }
1373 
1374 /**
1375  * audit_log_n_untrustedstring - log a string that may contain random characters
1376  * @ab: audit_buffer
1377  * @len: length of string (not including trailing null)
1378  * @string: string to be logged
1379  *
1380  * This code will escape a string that is passed to it if the string
1381  * contains a control character, unprintable character, double quote mark,
1382  * or a space. Unescaped strings will start and end with a double quote mark.
1383  * Strings that are escaped are printed in hex (2 digits per char).
1384  *
1385  * The caller specifies the number of characters in the string to log, which may
1386  * or may not be the entire string.
1387  */
1388 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1389 				 size_t len)
1390 {
1391 	if (audit_string_contains_control(string, len))
1392 		audit_log_n_hex(ab, string, len);
1393 	else
1394 		audit_log_n_string(ab, string, len);
1395 }
1396 
1397 /**
1398  * audit_log_untrustedstring - log a string that may contain random characters
1399  * @ab: audit_buffer
1400  * @string: string to be logged
1401  *
1402  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1403  * determine string length.
1404  */
1405 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1406 {
1407 	audit_log_n_untrustedstring(ab, string, strlen(string));
1408 }
1409 
1410 /* This is a helper-function to print the escaped d_path */
1411 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1412 		      struct path *path)
1413 {
1414 	char *p, *pathname;
1415 
1416 	if (prefix)
1417 		audit_log_format(ab, " %s", prefix);
1418 
1419 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1420 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1421 	if (!pathname) {
1422 		audit_log_format(ab, "<no memory>");
1423 		return;
1424 	}
1425 	p = d_path(path, pathname, PATH_MAX+11);
1426 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1427 		/* FIXME: can we save some information here? */
1428 		audit_log_format(ab, "<too long>");
1429 	} else
1430 		audit_log_untrustedstring(ab, p);
1431 	kfree(pathname);
1432 }
1433 
1434 /**
1435  * audit_log_end - end one audit record
1436  * @ab: the audit_buffer
1437  *
1438  * The netlink_* functions cannot be called inside an irq context, so
1439  * the audit buffer is placed on a queue and a tasklet is scheduled to
1440  * remove them from the queue outside the irq context.  May be called in
1441  * any context.
1442  */
1443 void audit_log_end(struct audit_buffer *ab)
1444 {
1445 	if (!ab)
1446 		return;
1447 	if (!audit_rate_check()) {
1448 		audit_log_lost("rate limit exceeded");
1449 	} else {
1450 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1451 		nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1452 
1453 		if (audit_pid) {
1454 			skb_queue_tail(&audit_skb_queue, ab->skb);
1455 			wake_up_interruptible(&kauditd_wait);
1456 		} else {
1457 			if (nlh->nlmsg_type != AUDIT_EOE) {
1458 				if (printk_ratelimit()) {
1459 					printk(KERN_NOTICE "type=%d %s\n",
1460 						nlh->nlmsg_type,
1461 						ab->skb->data + NLMSG_SPACE(0));
1462 				} else
1463 					audit_log_lost("printk limit exceeded\n");
1464 			}
1465 			audit_hold_skb(ab->skb);
1466 		}
1467 		ab->skb = NULL;
1468 	}
1469 	audit_buffer_free(ab);
1470 }
1471 
1472 /**
1473  * audit_log - Log an audit record
1474  * @ctx: audit context
1475  * @gfp_mask: type of allocation
1476  * @type: audit message type
1477  * @fmt: format string to use
1478  * @...: variable parameters matching the format string
1479  *
1480  * This is a convenience function that calls audit_log_start,
1481  * audit_log_vformat, and audit_log_end.  It may be called
1482  * in any context.
1483  */
1484 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1485 	       const char *fmt, ...)
1486 {
1487 	struct audit_buffer *ab;
1488 	va_list args;
1489 
1490 	ab = audit_log_start(ctx, gfp_mask, type);
1491 	if (ab) {
1492 		va_start(args, fmt);
1493 		audit_log_vformat(ab, fmt, args);
1494 		va_end(args);
1495 		audit_log_end(ab);
1496 	}
1497 }
1498 
1499 EXPORT_SYMBOL(audit_log_start);
1500 EXPORT_SYMBOL(audit_log_end);
1501 EXPORT_SYMBOL(audit_log_format);
1502 EXPORT_SYMBOL(audit_log);
1503