xref: /linux/kernel/audit.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with SELinux.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51 
52 #include <linux/audit.h>
53 
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/selinux.h>
59 #include <linux/inotify.h>
60 
61 #include "audit.h"
62 
63 /* No auditing will take place until audit_initialized != 0.
64  * (Initialization happens after skb_init is called.) */
65 static int	audit_initialized;
66 
67 /* No syscall auditing will take place unless audit_enabled != 0. */
68 int		audit_enabled;
69 
70 /* Default state when kernel boots without any parameters. */
71 static int	audit_default;
72 
73 /* If auditing cannot proceed, audit_failure selects what happens. */
74 static int	audit_failure = AUDIT_FAIL_PRINTK;
75 
76 /* If audit records are to be written to the netlink socket, audit_pid
77  * contains the (non-zero) pid. */
78 int		audit_pid;
79 
80 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
81  * to that number per second.  This prevents DoS attacks, but results in
82  * audit records being dropped. */
83 static int	audit_rate_limit;
84 
85 /* Number of outstanding audit_buffers allowed. */
86 static int	audit_backlog_limit = 64;
87 static int	audit_backlog_wait_time = 60 * HZ;
88 static int	audit_backlog_wait_overflow = 0;
89 
90 /* The identity of the user shutting down the audit system. */
91 uid_t		audit_sig_uid = -1;
92 pid_t		audit_sig_pid = -1;
93 u32		audit_sig_sid = 0;
94 
95 /* Records can be lost in several ways:
96    0) [suppressed in audit_alloc]
97    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
98    2) out of memory in audit_log_move [alloc_skb]
99    3) suppressed due to audit_rate_limit
100    4) suppressed due to audit_backlog_limit
101 */
102 static atomic_t    audit_lost = ATOMIC_INIT(0);
103 
104 /* The netlink socket. */
105 static struct sock *audit_sock;
106 
107 /* Inotify handle. */
108 struct inotify_handle *audit_ih;
109 
110 /* Hash for inode-based rules */
111 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
112 
113 /* The audit_freelist is a list of pre-allocated audit buffers (if more
114  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
115  * being placed on the freelist). */
116 static DEFINE_SPINLOCK(audit_freelist_lock);
117 static int	   audit_freelist_count;
118 static LIST_HEAD(audit_freelist);
119 
120 static struct sk_buff_head audit_skb_queue;
121 static struct task_struct *kauditd_task;
122 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
123 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
124 
125 /* Serialize requests from userspace. */
126 static DEFINE_MUTEX(audit_cmd_mutex);
127 
128 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
129  * audit records.  Since printk uses a 1024 byte buffer, this buffer
130  * should be at least that large. */
131 #define AUDIT_BUFSIZ 1024
132 
133 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
134  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
135 #define AUDIT_MAXFREE  (2*NR_CPUS)
136 
137 /* The audit_buffer is used when formatting an audit record.  The caller
138  * locks briefly to get the record off the freelist or to allocate the
139  * buffer, and locks briefly to send the buffer to the netlink layer or
140  * to place it on a transmit queue.  Multiple audit_buffers can be in
141  * use simultaneously. */
142 struct audit_buffer {
143 	struct list_head     list;
144 	struct sk_buff       *skb;	/* formatted skb ready to send */
145 	struct audit_context *ctx;	/* NULL or associated context */
146 	gfp_t		     gfp_mask;
147 };
148 
149 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
150 {
151 	struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
152 	nlh->nlmsg_pid = pid;
153 }
154 
155 void audit_panic(const char *message)
156 {
157 	switch (audit_failure)
158 	{
159 	case AUDIT_FAIL_SILENT:
160 		break;
161 	case AUDIT_FAIL_PRINTK:
162 		printk(KERN_ERR "audit: %s\n", message);
163 		break;
164 	case AUDIT_FAIL_PANIC:
165 		panic("audit: %s\n", message);
166 		break;
167 	}
168 }
169 
170 static inline int audit_rate_check(void)
171 {
172 	static unsigned long	last_check = 0;
173 	static int		messages   = 0;
174 	static DEFINE_SPINLOCK(lock);
175 	unsigned long		flags;
176 	unsigned long		now;
177 	unsigned long		elapsed;
178 	int			retval	   = 0;
179 
180 	if (!audit_rate_limit) return 1;
181 
182 	spin_lock_irqsave(&lock, flags);
183 	if (++messages < audit_rate_limit) {
184 		retval = 1;
185 	} else {
186 		now     = jiffies;
187 		elapsed = now - last_check;
188 		if (elapsed > HZ) {
189 			last_check = now;
190 			messages   = 0;
191 			retval     = 1;
192 		}
193 	}
194 	spin_unlock_irqrestore(&lock, flags);
195 
196 	return retval;
197 }
198 
199 /**
200  * audit_log_lost - conditionally log lost audit message event
201  * @message: the message stating reason for lost audit message
202  *
203  * Emit at least 1 message per second, even if audit_rate_check is
204  * throttling.
205  * Always increment the lost messages counter.
206 */
207 void audit_log_lost(const char *message)
208 {
209 	static unsigned long	last_msg = 0;
210 	static DEFINE_SPINLOCK(lock);
211 	unsigned long		flags;
212 	unsigned long		now;
213 	int			print;
214 
215 	atomic_inc(&audit_lost);
216 
217 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
218 
219 	if (!print) {
220 		spin_lock_irqsave(&lock, flags);
221 		now = jiffies;
222 		if (now - last_msg > HZ) {
223 			print = 1;
224 			last_msg = now;
225 		}
226 		spin_unlock_irqrestore(&lock, flags);
227 	}
228 
229 	if (print) {
230 		printk(KERN_WARNING
231 		       "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
232 		       atomic_read(&audit_lost),
233 		       audit_rate_limit,
234 		       audit_backlog_limit);
235 		audit_panic(message);
236 	}
237 }
238 
239 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid)
240 {
241 	int old	= audit_rate_limit;
242 
243 	if (sid) {
244 		char *ctx = NULL;
245 		u32 len;
246 		int rc;
247 		if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
248 			return rc;
249 		else
250 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
251 				"audit_rate_limit=%d old=%d by auid=%u subj=%s",
252 				limit, old, loginuid, ctx);
253 		kfree(ctx);
254 	} else
255 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
256 			"audit_rate_limit=%d old=%d by auid=%u",
257 			limit, old, loginuid);
258 	audit_rate_limit = limit;
259 	return 0;
260 }
261 
262 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid)
263 {
264 	int old	= audit_backlog_limit;
265 
266 	if (sid) {
267 		char *ctx = NULL;
268 		u32 len;
269 		int rc;
270 		if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
271 			return rc;
272 		else
273 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
274 			    "audit_backlog_limit=%d old=%d by auid=%u subj=%s",
275 				limit, old, loginuid, ctx);
276 		kfree(ctx);
277 	} else
278 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
279 			"audit_backlog_limit=%d old=%d by auid=%u",
280 			limit, old, loginuid);
281 	audit_backlog_limit = limit;
282 	return 0;
283 }
284 
285 static int audit_set_enabled(int state, uid_t loginuid, u32 sid)
286 {
287 	int old = audit_enabled;
288 
289 	if (state != 0 && state != 1)
290 		return -EINVAL;
291 
292 	if (sid) {
293 		char *ctx = NULL;
294 		u32 len;
295 		int rc;
296 		if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
297 			return rc;
298 		else
299 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
300 				"audit_enabled=%d old=%d by auid=%u subj=%s",
301 				state, old, loginuid, ctx);
302 		kfree(ctx);
303 	} else
304 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
305 			"audit_enabled=%d old=%d by auid=%u",
306 			state, old, loginuid);
307 	audit_enabled = state;
308 	return 0;
309 }
310 
311 static int audit_set_failure(int state, uid_t loginuid, u32 sid)
312 {
313 	int old = audit_failure;
314 
315 	if (state != AUDIT_FAIL_SILENT
316 	    && state != AUDIT_FAIL_PRINTK
317 	    && state != AUDIT_FAIL_PANIC)
318 		return -EINVAL;
319 
320 	if (sid) {
321 		char *ctx = NULL;
322 		u32 len;
323 		int rc;
324 		if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
325 			return rc;
326 		else
327 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
328 				"audit_failure=%d old=%d by auid=%u subj=%s",
329 				state, old, loginuid, ctx);
330 		kfree(ctx);
331 	} else
332 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
333 			"audit_failure=%d old=%d by auid=%u",
334 			state, old, loginuid);
335 	audit_failure = state;
336 	return 0;
337 }
338 
339 static int kauditd_thread(void *dummy)
340 {
341 	struct sk_buff *skb;
342 
343 	while (1) {
344 		skb = skb_dequeue(&audit_skb_queue);
345 		wake_up(&audit_backlog_wait);
346 		if (skb) {
347 			if (audit_pid) {
348 				int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
349 				if (err < 0) {
350 					BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
351 					printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
352 					audit_pid = 0;
353 				}
354 			} else {
355 				printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
356 				kfree_skb(skb);
357 			}
358 		} else {
359 			DECLARE_WAITQUEUE(wait, current);
360 			set_current_state(TASK_INTERRUPTIBLE);
361 			add_wait_queue(&kauditd_wait, &wait);
362 
363 			if (!skb_queue_len(&audit_skb_queue)) {
364 				try_to_freeze();
365 				schedule();
366 			}
367 
368 			__set_current_state(TASK_RUNNING);
369 			remove_wait_queue(&kauditd_wait, &wait);
370 		}
371 	}
372 }
373 
374 int audit_send_list(void *_dest)
375 {
376 	struct audit_netlink_list *dest = _dest;
377 	int pid = dest->pid;
378 	struct sk_buff *skb;
379 
380 	/* wait for parent to finish and send an ACK */
381 	mutex_lock(&audit_cmd_mutex);
382 	mutex_unlock(&audit_cmd_mutex);
383 
384 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
385 		netlink_unicast(audit_sock, skb, pid, 0);
386 
387 	kfree(dest);
388 
389 	return 0;
390 }
391 
392 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
393 				 int multi, void *payload, int size)
394 {
395 	struct sk_buff	*skb;
396 	struct nlmsghdr	*nlh;
397 	int		len = NLMSG_SPACE(size);
398 	void		*data;
399 	int		flags = multi ? NLM_F_MULTI : 0;
400 	int		t     = done  ? NLMSG_DONE  : type;
401 
402 	skb = alloc_skb(len, GFP_KERNEL);
403 	if (!skb)
404 		return NULL;
405 
406 	nlh		 = NLMSG_PUT(skb, pid, seq, t, size);
407 	nlh->nlmsg_flags = flags;
408 	data		 = NLMSG_DATA(nlh);
409 	memcpy(data, payload, size);
410 	return skb;
411 
412 nlmsg_failure:			/* Used by NLMSG_PUT */
413 	if (skb)
414 		kfree_skb(skb);
415 	return NULL;
416 }
417 
418 /**
419  * audit_send_reply - send an audit reply message via netlink
420  * @pid: process id to send reply to
421  * @seq: sequence number
422  * @type: audit message type
423  * @done: done (last) flag
424  * @multi: multi-part message flag
425  * @payload: payload data
426  * @size: payload size
427  *
428  * Allocates an skb, builds the netlink message, and sends it to the pid.
429  * No failure notifications.
430  */
431 void audit_send_reply(int pid, int seq, int type, int done, int multi,
432 		      void *payload, int size)
433 {
434 	struct sk_buff	*skb;
435 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
436 	if (!skb)
437 		return;
438 	/* Ignore failure. It'll only happen if the sender goes away,
439 	   because our timeout is set to infinite. */
440 	netlink_unicast(audit_sock, skb, pid, 0);
441 	return;
442 }
443 
444 /*
445  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
446  * control messages.
447  */
448 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
449 {
450 	int err = 0;
451 
452 	switch (msg_type) {
453 	case AUDIT_GET:
454 	case AUDIT_LIST:
455 	case AUDIT_LIST_RULES:
456 	case AUDIT_SET:
457 	case AUDIT_ADD:
458 	case AUDIT_ADD_RULE:
459 	case AUDIT_DEL:
460 	case AUDIT_DEL_RULE:
461 	case AUDIT_SIGNAL_INFO:
462 		if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
463 			err = -EPERM;
464 		break;
465 	case AUDIT_USER:
466 	case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
467 	case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
468 		if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
469 			err = -EPERM;
470 		break;
471 	default:  /* bad msg */
472 		err = -EINVAL;
473 	}
474 
475 	return err;
476 }
477 
478 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
479 {
480 	u32			uid, pid, seq, sid;
481 	void			*data;
482 	struct audit_status	*status_get, status_set;
483 	int			err;
484 	struct audit_buffer	*ab;
485 	u16			msg_type = nlh->nlmsg_type;
486 	uid_t			loginuid; /* loginuid of sender */
487 	struct audit_sig_info   *sig_data;
488 	char			*ctx;
489 	u32			len;
490 
491 	err = audit_netlink_ok(skb, msg_type);
492 	if (err)
493 		return err;
494 
495 	/* As soon as there's any sign of userspace auditd,
496 	 * start kauditd to talk to it */
497 	if (!kauditd_task)
498 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
499 	if (IS_ERR(kauditd_task)) {
500 		err = PTR_ERR(kauditd_task);
501 		kauditd_task = NULL;
502 		return err;
503 	}
504 
505 	pid  = NETLINK_CREDS(skb)->pid;
506 	uid  = NETLINK_CREDS(skb)->uid;
507 	loginuid = NETLINK_CB(skb).loginuid;
508 	sid  = NETLINK_CB(skb).sid;
509 	seq  = nlh->nlmsg_seq;
510 	data = NLMSG_DATA(nlh);
511 
512 	switch (msg_type) {
513 	case AUDIT_GET:
514 		status_set.enabled	 = audit_enabled;
515 		status_set.failure	 = audit_failure;
516 		status_set.pid		 = audit_pid;
517 		status_set.rate_limit	 = audit_rate_limit;
518 		status_set.backlog_limit = audit_backlog_limit;
519 		status_set.lost		 = atomic_read(&audit_lost);
520 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
521 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
522 				 &status_set, sizeof(status_set));
523 		break;
524 	case AUDIT_SET:
525 		if (nlh->nlmsg_len < sizeof(struct audit_status))
526 			return -EINVAL;
527 		status_get   = (struct audit_status *)data;
528 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
529 			err = audit_set_enabled(status_get->enabled,
530 							loginuid, sid);
531 			if (err < 0) return err;
532 		}
533 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
534 			err = audit_set_failure(status_get->failure,
535 							 loginuid, sid);
536 			if (err < 0) return err;
537 		}
538 		if (status_get->mask & AUDIT_STATUS_PID) {
539 			int old   = audit_pid;
540 			if (sid) {
541 				if ((err = selinux_ctxid_to_string(
542 						sid, &ctx, &len)))
543 					return err;
544 				else
545 					audit_log(NULL, GFP_KERNEL,
546 						AUDIT_CONFIG_CHANGE,
547 						"audit_pid=%d old=%d by auid=%u subj=%s",
548 						status_get->pid, old,
549 						loginuid, ctx);
550 				kfree(ctx);
551 			} else
552 				audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
553 					"audit_pid=%d old=%d by auid=%u",
554 					  status_get->pid, old, loginuid);
555 			audit_pid = status_get->pid;
556 		}
557 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
558 			err = audit_set_rate_limit(status_get->rate_limit,
559 							 loginuid, sid);
560 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
561 			err = audit_set_backlog_limit(status_get->backlog_limit,
562 							loginuid, sid);
563 		break;
564 	case AUDIT_USER:
565 	case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
566 	case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
567 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
568 			return 0;
569 
570 		err = audit_filter_user(&NETLINK_CB(skb), msg_type);
571 		if (err == 1) {
572 			err = 0;
573 			ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
574 			if (ab) {
575 				audit_log_format(ab,
576 						 "user pid=%d uid=%u auid=%u",
577 						 pid, uid, loginuid);
578 				if (sid) {
579 					if (selinux_ctxid_to_string(
580 							sid, &ctx, &len)) {
581 						audit_log_format(ab,
582 							" ssid=%u", sid);
583 						/* Maybe call audit_panic? */
584 					} else
585 						audit_log_format(ab,
586 							" subj=%s", ctx);
587 					kfree(ctx);
588 				}
589 				audit_log_format(ab, " msg='%.1024s'",
590 					 (char *)data);
591 				audit_set_pid(ab, pid);
592 				audit_log_end(ab);
593 			}
594 		}
595 		break;
596 	case AUDIT_ADD:
597 	case AUDIT_DEL:
598 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
599 			return -EINVAL;
600 		/* fallthrough */
601 	case AUDIT_LIST:
602 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
603 					   uid, seq, data, nlmsg_len(nlh),
604 					   loginuid, sid);
605 		break;
606 	case AUDIT_ADD_RULE:
607 	case AUDIT_DEL_RULE:
608 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
609 			return -EINVAL;
610 		/* fallthrough */
611 	case AUDIT_LIST_RULES:
612 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
613 					   uid, seq, data, nlmsg_len(nlh),
614 					   loginuid, sid);
615 		break;
616 	case AUDIT_SIGNAL_INFO:
617 		err = selinux_ctxid_to_string(audit_sig_sid, &ctx, &len);
618 		if (err)
619 			return err;
620 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
621 		if (!sig_data) {
622 			kfree(ctx);
623 			return -ENOMEM;
624 		}
625 		sig_data->uid = audit_sig_uid;
626 		sig_data->pid = audit_sig_pid;
627 		memcpy(sig_data->ctx, ctx, len);
628 		kfree(ctx);
629 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
630 				0, 0, sig_data, sizeof(*sig_data) + len);
631 		kfree(sig_data);
632 		break;
633 	default:
634 		err = -EINVAL;
635 		break;
636 	}
637 
638 	return err < 0 ? err : 0;
639 }
640 
641 /*
642  * Get message from skb (based on rtnetlink_rcv_skb).  Each message is
643  * processed by audit_receive_msg.  Malformed skbs with wrong length are
644  * discarded silently.
645  */
646 static void audit_receive_skb(struct sk_buff *skb)
647 {
648 	int		err;
649 	struct nlmsghdr	*nlh;
650 	u32		rlen;
651 
652 	while (skb->len >= NLMSG_SPACE(0)) {
653 		nlh = (struct nlmsghdr *)skb->data;
654 		if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
655 			return;
656 		rlen = NLMSG_ALIGN(nlh->nlmsg_len);
657 		if (rlen > skb->len)
658 			rlen = skb->len;
659 		if ((err = audit_receive_msg(skb, nlh))) {
660 			netlink_ack(skb, nlh, err);
661 		} else if (nlh->nlmsg_flags & NLM_F_ACK)
662 			netlink_ack(skb, nlh, 0);
663 		skb_pull(skb, rlen);
664 	}
665 }
666 
667 /* Receive messages from netlink socket. */
668 static void audit_receive(struct sock *sk, int length)
669 {
670 	struct sk_buff  *skb;
671 	unsigned int qlen;
672 
673 	mutex_lock(&audit_cmd_mutex);
674 
675 	for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) {
676 		skb = skb_dequeue(&sk->sk_receive_queue);
677 		audit_receive_skb(skb);
678 		kfree_skb(skb);
679 	}
680 	mutex_unlock(&audit_cmd_mutex);
681 }
682 
683 #ifdef CONFIG_AUDITSYSCALL
684 static const struct inotify_operations audit_inotify_ops = {
685 	.handle_event	= audit_handle_ievent,
686 	.destroy_watch	= audit_free_parent,
687 };
688 #endif
689 
690 /* Initialize audit support at boot time. */
691 static int __init audit_init(void)
692 {
693 	int i;
694 
695 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
696 	       audit_default ? "enabled" : "disabled");
697 	audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive,
698 					   THIS_MODULE);
699 	if (!audit_sock)
700 		audit_panic("cannot initialize netlink socket");
701 	else
702 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
703 
704 	skb_queue_head_init(&audit_skb_queue);
705 	audit_initialized = 1;
706 	audit_enabled = audit_default;
707 
708 	/* Register the callback with selinux.  This callback will be invoked
709 	 * when a new policy is loaded. */
710 	selinux_audit_set_callback(&selinux_audit_rule_update);
711 
712 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
713 
714 #ifdef CONFIG_AUDITSYSCALL
715 	audit_ih = inotify_init(&audit_inotify_ops);
716 	if (IS_ERR(audit_ih))
717 		audit_panic("cannot initialize inotify handle");
718 #endif
719 
720 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
721 		INIT_LIST_HEAD(&audit_inode_hash[i]);
722 
723 	return 0;
724 }
725 __initcall(audit_init);
726 
727 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
728 static int __init audit_enable(char *str)
729 {
730 	audit_default = !!simple_strtol(str, NULL, 0);
731 	printk(KERN_INFO "audit: %s%s\n",
732 	       audit_default ? "enabled" : "disabled",
733 	       audit_initialized ? "" : " (after initialization)");
734 	if (audit_initialized)
735 		audit_enabled = audit_default;
736 	return 1;
737 }
738 
739 __setup("audit=", audit_enable);
740 
741 static void audit_buffer_free(struct audit_buffer *ab)
742 {
743 	unsigned long flags;
744 
745 	if (!ab)
746 		return;
747 
748 	if (ab->skb)
749 		kfree_skb(ab->skb);
750 
751 	spin_lock_irqsave(&audit_freelist_lock, flags);
752 	if (audit_freelist_count > AUDIT_MAXFREE)
753 		kfree(ab);
754 	else {
755 		audit_freelist_count++;
756 		list_add(&ab->list, &audit_freelist);
757 	}
758 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
759 }
760 
761 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
762 						gfp_t gfp_mask, int type)
763 {
764 	unsigned long flags;
765 	struct audit_buffer *ab = NULL;
766 	struct nlmsghdr *nlh;
767 
768 	spin_lock_irqsave(&audit_freelist_lock, flags);
769 	if (!list_empty(&audit_freelist)) {
770 		ab = list_entry(audit_freelist.next,
771 				struct audit_buffer, list);
772 		list_del(&ab->list);
773 		--audit_freelist_count;
774 	}
775 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
776 
777 	if (!ab) {
778 		ab = kmalloc(sizeof(*ab), gfp_mask);
779 		if (!ab)
780 			goto err;
781 	}
782 
783 	ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
784 	if (!ab->skb)
785 		goto err;
786 
787 	ab->ctx = ctx;
788 	ab->gfp_mask = gfp_mask;
789 	nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
790 	nlh->nlmsg_type = type;
791 	nlh->nlmsg_flags = 0;
792 	nlh->nlmsg_pid = 0;
793 	nlh->nlmsg_seq = 0;
794 	return ab;
795 err:
796 	audit_buffer_free(ab);
797 	return NULL;
798 }
799 
800 /**
801  * audit_serial - compute a serial number for the audit record
802  *
803  * Compute a serial number for the audit record.  Audit records are
804  * written to user-space as soon as they are generated, so a complete
805  * audit record may be written in several pieces.  The timestamp of the
806  * record and this serial number are used by the user-space tools to
807  * determine which pieces belong to the same audit record.  The
808  * (timestamp,serial) tuple is unique for each syscall and is live from
809  * syscall entry to syscall exit.
810  *
811  * NOTE: Another possibility is to store the formatted records off the
812  * audit context (for those records that have a context), and emit them
813  * all at syscall exit.  However, this could delay the reporting of
814  * significant errors until syscall exit (or never, if the system
815  * halts).
816  */
817 unsigned int audit_serial(void)
818 {
819 	static DEFINE_SPINLOCK(serial_lock);
820 	static unsigned int serial = 0;
821 
822 	unsigned long flags;
823 	unsigned int ret;
824 
825 	spin_lock_irqsave(&serial_lock, flags);
826 	do {
827 		ret = ++serial;
828 	} while (unlikely(!ret));
829 	spin_unlock_irqrestore(&serial_lock, flags);
830 
831 	return ret;
832 }
833 
834 static inline void audit_get_stamp(struct audit_context *ctx,
835 				   struct timespec *t, unsigned int *serial)
836 {
837 	if (ctx)
838 		auditsc_get_stamp(ctx, t, serial);
839 	else {
840 		*t = CURRENT_TIME;
841 		*serial = audit_serial();
842 	}
843 }
844 
845 /* Obtain an audit buffer.  This routine does locking to obtain the
846  * audit buffer, but then no locking is required for calls to
847  * audit_log_*format.  If the tsk is a task that is currently in a
848  * syscall, then the syscall is marked as auditable and an audit record
849  * will be written at syscall exit.  If there is no associated task, tsk
850  * should be NULL. */
851 
852 /**
853  * audit_log_start - obtain an audit buffer
854  * @ctx: audit_context (may be NULL)
855  * @gfp_mask: type of allocation
856  * @type: audit message type
857  *
858  * Returns audit_buffer pointer on success or NULL on error.
859  *
860  * Obtain an audit buffer.  This routine does locking to obtain the
861  * audit buffer, but then no locking is required for calls to
862  * audit_log_*format.  If the task (ctx) is a task that is currently in a
863  * syscall, then the syscall is marked as auditable and an audit record
864  * will be written at syscall exit.  If there is no associated task, then
865  * task context (ctx) should be NULL.
866  */
867 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
868 				     int type)
869 {
870 	struct audit_buffer	*ab	= NULL;
871 	struct timespec		t;
872 	unsigned int		serial;
873 	int reserve;
874 	unsigned long timeout_start = jiffies;
875 
876 	if (!audit_initialized)
877 		return NULL;
878 
879 	if (unlikely(audit_filter_type(type)))
880 		return NULL;
881 
882 	if (gfp_mask & __GFP_WAIT)
883 		reserve = 0;
884 	else
885 		reserve = 5; /* Allow atomic callers to go up to five
886 				entries over the normal backlog limit */
887 
888 	while (audit_backlog_limit
889 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
890 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
891 		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
892 
893 			/* Wait for auditd to drain the queue a little */
894 			DECLARE_WAITQUEUE(wait, current);
895 			set_current_state(TASK_INTERRUPTIBLE);
896 			add_wait_queue(&audit_backlog_wait, &wait);
897 
898 			if (audit_backlog_limit &&
899 			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
900 				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
901 
902 			__set_current_state(TASK_RUNNING);
903 			remove_wait_queue(&audit_backlog_wait, &wait);
904 			continue;
905 		}
906 		if (audit_rate_check())
907 			printk(KERN_WARNING
908 			       "audit: audit_backlog=%d > "
909 			       "audit_backlog_limit=%d\n",
910 			       skb_queue_len(&audit_skb_queue),
911 			       audit_backlog_limit);
912 		audit_log_lost("backlog limit exceeded");
913 		audit_backlog_wait_time = audit_backlog_wait_overflow;
914 		wake_up(&audit_backlog_wait);
915 		return NULL;
916 	}
917 
918 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
919 	if (!ab) {
920 		audit_log_lost("out of memory in audit_log_start");
921 		return NULL;
922 	}
923 
924 	audit_get_stamp(ab->ctx, &t, &serial);
925 
926 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
927 			 t.tv_sec, t.tv_nsec/1000000, serial);
928 	return ab;
929 }
930 
931 /**
932  * audit_expand - expand skb in the audit buffer
933  * @ab: audit_buffer
934  * @extra: space to add at tail of the skb
935  *
936  * Returns 0 (no space) on failed expansion, or available space if
937  * successful.
938  */
939 static inline int audit_expand(struct audit_buffer *ab, int extra)
940 {
941 	struct sk_buff *skb = ab->skb;
942 	int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
943 				   ab->gfp_mask);
944 	if (ret < 0) {
945 		audit_log_lost("out of memory in audit_expand");
946 		return 0;
947 	}
948 	return skb_tailroom(skb);
949 }
950 
951 /*
952  * Format an audit message into the audit buffer.  If there isn't enough
953  * room in the audit buffer, more room will be allocated and vsnprint
954  * will be called a second time.  Currently, we assume that a printk
955  * can't format message larger than 1024 bytes, so we don't either.
956  */
957 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
958 			      va_list args)
959 {
960 	int len, avail;
961 	struct sk_buff *skb;
962 	va_list args2;
963 
964 	if (!ab)
965 		return;
966 
967 	BUG_ON(!ab->skb);
968 	skb = ab->skb;
969 	avail = skb_tailroom(skb);
970 	if (avail == 0) {
971 		avail = audit_expand(ab, AUDIT_BUFSIZ);
972 		if (!avail)
973 			goto out;
974 	}
975 	va_copy(args2, args);
976 	len = vsnprintf(skb->tail, avail, fmt, args);
977 	if (len >= avail) {
978 		/* The printk buffer is 1024 bytes long, so if we get
979 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
980 		 * log everything that printk could have logged. */
981 		avail = audit_expand(ab,
982 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
983 		if (!avail)
984 			goto out;
985 		len = vsnprintf(skb->tail, avail, fmt, args2);
986 	}
987 	if (len > 0)
988 		skb_put(skb, len);
989 out:
990 	return;
991 }
992 
993 /**
994  * audit_log_format - format a message into the audit buffer.
995  * @ab: audit_buffer
996  * @fmt: format string
997  * @...: optional parameters matching @fmt string
998  *
999  * All the work is done in audit_log_vformat.
1000  */
1001 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1002 {
1003 	va_list args;
1004 
1005 	if (!ab)
1006 		return;
1007 	va_start(args, fmt);
1008 	audit_log_vformat(ab, fmt, args);
1009 	va_end(args);
1010 }
1011 
1012 /**
1013  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1014  * @ab: the audit_buffer
1015  * @buf: buffer to convert to hex
1016  * @len: length of @buf to be converted
1017  *
1018  * No return value; failure to expand is silently ignored.
1019  *
1020  * This function will take the passed buf and convert it into a string of
1021  * ascii hex digits. The new string is placed onto the skb.
1022  */
1023 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
1024 		size_t len)
1025 {
1026 	int i, avail, new_len;
1027 	unsigned char *ptr;
1028 	struct sk_buff *skb;
1029 	static const unsigned char *hex = "0123456789ABCDEF";
1030 
1031 	if (!ab)
1032 		return;
1033 
1034 	BUG_ON(!ab->skb);
1035 	skb = ab->skb;
1036 	avail = skb_tailroom(skb);
1037 	new_len = len<<1;
1038 	if (new_len >= avail) {
1039 		/* Round the buffer request up to the next multiple */
1040 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1041 		avail = audit_expand(ab, new_len);
1042 		if (!avail)
1043 			return;
1044 	}
1045 
1046 	ptr = skb->tail;
1047 	for (i=0; i<len; i++) {
1048 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1049 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1050 	}
1051 	*ptr = 0;
1052 	skb_put(skb, len << 1); /* new string is twice the old string */
1053 }
1054 
1055 /*
1056  * Format a string of no more than slen characters into the audit buffer,
1057  * enclosed in quote marks.
1058  */
1059 static void audit_log_n_string(struct audit_buffer *ab, size_t slen,
1060 			       const char *string)
1061 {
1062 	int avail, new_len;
1063 	unsigned char *ptr;
1064 	struct sk_buff *skb;
1065 
1066 	if (!ab)
1067 		return;
1068 
1069 	BUG_ON(!ab->skb);
1070 	skb = ab->skb;
1071 	avail = skb_tailroom(skb);
1072 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1073 	if (new_len > avail) {
1074 		avail = audit_expand(ab, new_len);
1075 		if (!avail)
1076 			return;
1077 	}
1078 	ptr = skb->tail;
1079 	*ptr++ = '"';
1080 	memcpy(ptr, string, slen);
1081 	ptr += slen;
1082 	*ptr++ = '"';
1083 	*ptr = 0;
1084 	skb_put(skb, slen + 2);	/* don't include null terminator */
1085 }
1086 
1087 /**
1088  * audit_log_n_unstrustedstring - log a string that may contain random characters
1089  * @ab: audit_buffer
1090  * @len: lenth of string (not including trailing null)
1091  * @string: string to be logged
1092  *
1093  * This code will escape a string that is passed to it if the string
1094  * contains a control character, unprintable character, double quote mark,
1095  * or a space. Unescaped strings will start and end with a double quote mark.
1096  * Strings that are escaped are printed in hex (2 digits per char).
1097  *
1098  * The caller specifies the number of characters in the string to log, which may
1099  * or may not be the entire string.
1100  */
1101 const char *audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len,
1102 					const char *string)
1103 {
1104 	const unsigned char *p = string;
1105 
1106 	while (*p) {
1107 		if (*p == '"' || *p < 0x21 || *p > 0x7f) {
1108 			audit_log_hex(ab, string, len);
1109 			return string + len + 1;
1110 		}
1111 		p++;
1112 	}
1113 	audit_log_n_string(ab, len, string);
1114 	return p + 1;
1115 }
1116 
1117 /**
1118  * audit_log_unstrustedstring - log a string that may contain random characters
1119  * @ab: audit_buffer
1120  * @string: string to be logged
1121  *
1122  * Same as audit_log_n_unstrustedstring(), except that strlen is used to
1123  * determine string length.
1124  */
1125 const char *audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1126 {
1127 	return audit_log_n_untrustedstring(ab, strlen(string), string);
1128 }
1129 
1130 /* This is a helper-function to print the escaped d_path */
1131 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1132 		      struct dentry *dentry, struct vfsmount *vfsmnt)
1133 {
1134 	char *p, *path;
1135 
1136 	if (prefix)
1137 		audit_log_format(ab, " %s", prefix);
1138 
1139 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1140 	path = kmalloc(PATH_MAX+11, ab->gfp_mask);
1141 	if (!path) {
1142 		audit_log_format(ab, "<no memory>");
1143 		return;
1144 	}
1145 	p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
1146 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1147 		/* FIXME: can we save some information here? */
1148 		audit_log_format(ab, "<too long>");
1149 	} else
1150 		audit_log_untrustedstring(ab, p);
1151 	kfree(path);
1152 }
1153 
1154 /**
1155  * audit_log_end - end one audit record
1156  * @ab: the audit_buffer
1157  *
1158  * The netlink_* functions cannot be called inside an irq context, so
1159  * the audit buffer is placed on a queue and a tasklet is scheduled to
1160  * remove them from the queue outside the irq context.  May be called in
1161  * any context.
1162  */
1163 void audit_log_end(struct audit_buffer *ab)
1164 {
1165 	if (!ab)
1166 		return;
1167 	if (!audit_rate_check()) {
1168 		audit_log_lost("rate limit exceeded");
1169 	} else {
1170 		if (audit_pid) {
1171 			struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
1172 			nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1173 			skb_queue_tail(&audit_skb_queue, ab->skb);
1174 			ab->skb = NULL;
1175 			wake_up_interruptible(&kauditd_wait);
1176 		} else {
1177 			printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0));
1178 		}
1179 	}
1180 	audit_buffer_free(ab);
1181 }
1182 
1183 /**
1184  * audit_log - Log an audit record
1185  * @ctx: audit context
1186  * @gfp_mask: type of allocation
1187  * @type: audit message type
1188  * @fmt: format string to use
1189  * @...: variable parameters matching the format string
1190  *
1191  * This is a convenience function that calls audit_log_start,
1192  * audit_log_vformat, and audit_log_end.  It may be called
1193  * in any context.
1194  */
1195 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1196 	       const char *fmt, ...)
1197 {
1198 	struct audit_buffer *ab;
1199 	va_list args;
1200 
1201 	ab = audit_log_start(ctx, gfp_mask, type);
1202 	if (ab) {
1203 		va_start(args, fmt);
1204 		audit_log_vformat(ab, fmt, args);
1205 		va_end(args);
1206 		audit_log_end(ab);
1207 	}
1208 }
1209 
1210 EXPORT_SYMBOL(audit_log_start);
1211 EXPORT_SYMBOL(audit_log_end);
1212 EXPORT_SYMBOL(audit_log_format);
1213 EXPORT_SYMBOL(audit_log);
1214