1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with SELinux. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/err.h> 50 #include <linux/kthread.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/selinux.h> 59 #include <linux/inotify.h> 60 61 #include "audit.h" 62 63 /* No auditing will take place until audit_initialized != 0. 64 * (Initialization happens after skb_init is called.) */ 65 static int audit_initialized; 66 67 /* No syscall auditing will take place unless audit_enabled != 0. */ 68 int audit_enabled; 69 70 /* Default state when kernel boots without any parameters. */ 71 static int audit_default; 72 73 /* If auditing cannot proceed, audit_failure selects what happens. */ 74 static int audit_failure = AUDIT_FAIL_PRINTK; 75 76 /* If audit records are to be written to the netlink socket, audit_pid 77 * contains the (non-zero) pid. */ 78 int audit_pid; 79 80 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 81 * to that number per second. This prevents DoS attacks, but results in 82 * audit records being dropped. */ 83 static int audit_rate_limit; 84 85 /* Number of outstanding audit_buffers allowed. */ 86 static int audit_backlog_limit = 64; 87 static int audit_backlog_wait_time = 60 * HZ; 88 static int audit_backlog_wait_overflow = 0; 89 90 /* The identity of the user shutting down the audit system. */ 91 uid_t audit_sig_uid = -1; 92 pid_t audit_sig_pid = -1; 93 u32 audit_sig_sid = 0; 94 95 /* Records can be lost in several ways: 96 0) [suppressed in audit_alloc] 97 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 98 2) out of memory in audit_log_move [alloc_skb] 99 3) suppressed due to audit_rate_limit 100 4) suppressed due to audit_backlog_limit 101 */ 102 static atomic_t audit_lost = ATOMIC_INIT(0); 103 104 /* The netlink socket. */ 105 static struct sock *audit_sock; 106 107 /* Inotify handle. */ 108 struct inotify_handle *audit_ih; 109 110 /* Hash for inode-based rules */ 111 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 112 113 /* The audit_freelist is a list of pre-allocated audit buffers (if more 114 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 115 * being placed on the freelist). */ 116 static DEFINE_SPINLOCK(audit_freelist_lock); 117 static int audit_freelist_count; 118 static LIST_HEAD(audit_freelist); 119 120 static struct sk_buff_head audit_skb_queue; 121 static struct task_struct *kauditd_task; 122 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 123 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 124 125 /* Serialize requests from userspace. */ 126 static DEFINE_MUTEX(audit_cmd_mutex); 127 128 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 129 * audit records. Since printk uses a 1024 byte buffer, this buffer 130 * should be at least that large. */ 131 #define AUDIT_BUFSIZ 1024 132 133 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 134 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 135 #define AUDIT_MAXFREE (2*NR_CPUS) 136 137 /* The audit_buffer is used when formatting an audit record. The caller 138 * locks briefly to get the record off the freelist or to allocate the 139 * buffer, and locks briefly to send the buffer to the netlink layer or 140 * to place it on a transmit queue. Multiple audit_buffers can be in 141 * use simultaneously. */ 142 struct audit_buffer { 143 struct list_head list; 144 struct sk_buff *skb; /* formatted skb ready to send */ 145 struct audit_context *ctx; /* NULL or associated context */ 146 gfp_t gfp_mask; 147 }; 148 149 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 150 { 151 struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data; 152 nlh->nlmsg_pid = pid; 153 } 154 155 void audit_panic(const char *message) 156 { 157 switch (audit_failure) 158 { 159 case AUDIT_FAIL_SILENT: 160 break; 161 case AUDIT_FAIL_PRINTK: 162 printk(KERN_ERR "audit: %s\n", message); 163 break; 164 case AUDIT_FAIL_PANIC: 165 panic("audit: %s\n", message); 166 break; 167 } 168 } 169 170 static inline int audit_rate_check(void) 171 { 172 static unsigned long last_check = 0; 173 static int messages = 0; 174 static DEFINE_SPINLOCK(lock); 175 unsigned long flags; 176 unsigned long now; 177 unsigned long elapsed; 178 int retval = 0; 179 180 if (!audit_rate_limit) return 1; 181 182 spin_lock_irqsave(&lock, flags); 183 if (++messages < audit_rate_limit) { 184 retval = 1; 185 } else { 186 now = jiffies; 187 elapsed = now - last_check; 188 if (elapsed > HZ) { 189 last_check = now; 190 messages = 0; 191 retval = 1; 192 } 193 } 194 spin_unlock_irqrestore(&lock, flags); 195 196 return retval; 197 } 198 199 /** 200 * audit_log_lost - conditionally log lost audit message event 201 * @message: the message stating reason for lost audit message 202 * 203 * Emit at least 1 message per second, even if audit_rate_check is 204 * throttling. 205 * Always increment the lost messages counter. 206 */ 207 void audit_log_lost(const char *message) 208 { 209 static unsigned long last_msg = 0; 210 static DEFINE_SPINLOCK(lock); 211 unsigned long flags; 212 unsigned long now; 213 int print; 214 215 atomic_inc(&audit_lost); 216 217 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 218 219 if (!print) { 220 spin_lock_irqsave(&lock, flags); 221 now = jiffies; 222 if (now - last_msg > HZ) { 223 print = 1; 224 last_msg = now; 225 } 226 spin_unlock_irqrestore(&lock, flags); 227 } 228 229 if (print) { 230 printk(KERN_WARNING 231 "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n", 232 atomic_read(&audit_lost), 233 audit_rate_limit, 234 audit_backlog_limit); 235 audit_panic(message); 236 } 237 } 238 239 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid) 240 { 241 int old = audit_rate_limit; 242 243 if (sid) { 244 char *ctx = NULL; 245 u32 len; 246 int rc; 247 if ((rc = selinux_ctxid_to_string(sid, &ctx, &len))) 248 return rc; 249 else 250 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 251 "audit_rate_limit=%d old=%d by auid=%u subj=%s", 252 limit, old, loginuid, ctx); 253 kfree(ctx); 254 } else 255 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 256 "audit_rate_limit=%d old=%d by auid=%u", 257 limit, old, loginuid); 258 audit_rate_limit = limit; 259 return 0; 260 } 261 262 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid) 263 { 264 int old = audit_backlog_limit; 265 266 if (sid) { 267 char *ctx = NULL; 268 u32 len; 269 int rc; 270 if ((rc = selinux_ctxid_to_string(sid, &ctx, &len))) 271 return rc; 272 else 273 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 274 "audit_backlog_limit=%d old=%d by auid=%u subj=%s", 275 limit, old, loginuid, ctx); 276 kfree(ctx); 277 } else 278 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 279 "audit_backlog_limit=%d old=%d by auid=%u", 280 limit, old, loginuid); 281 audit_backlog_limit = limit; 282 return 0; 283 } 284 285 static int audit_set_enabled(int state, uid_t loginuid, u32 sid) 286 { 287 int old = audit_enabled; 288 289 if (state != 0 && state != 1) 290 return -EINVAL; 291 292 if (sid) { 293 char *ctx = NULL; 294 u32 len; 295 int rc; 296 if ((rc = selinux_ctxid_to_string(sid, &ctx, &len))) 297 return rc; 298 else 299 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 300 "audit_enabled=%d old=%d by auid=%u subj=%s", 301 state, old, loginuid, ctx); 302 kfree(ctx); 303 } else 304 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 305 "audit_enabled=%d old=%d by auid=%u", 306 state, old, loginuid); 307 audit_enabled = state; 308 return 0; 309 } 310 311 static int audit_set_failure(int state, uid_t loginuid, u32 sid) 312 { 313 int old = audit_failure; 314 315 if (state != AUDIT_FAIL_SILENT 316 && state != AUDIT_FAIL_PRINTK 317 && state != AUDIT_FAIL_PANIC) 318 return -EINVAL; 319 320 if (sid) { 321 char *ctx = NULL; 322 u32 len; 323 int rc; 324 if ((rc = selinux_ctxid_to_string(sid, &ctx, &len))) 325 return rc; 326 else 327 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 328 "audit_failure=%d old=%d by auid=%u subj=%s", 329 state, old, loginuid, ctx); 330 kfree(ctx); 331 } else 332 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 333 "audit_failure=%d old=%d by auid=%u", 334 state, old, loginuid); 335 audit_failure = state; 336 return 0; 337 } 338 339 static int kauditd_thread(void *dummy) 340 { 341 struct sk_buff *skb; 342 343 while (1) { 344 skb = skb_dequeue(&audit_skb_queue); 345 wake_up(&audit_backlog_wait); 346 if (skb) { 347 if (audit_pid) { 348 int err = netlink_unicast(audit_sock, skb, audit_pid, 0); 349 if (err < 0) { 350 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 351 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 352 audit_pid = 0; 353 } 354 } else { 355 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0)); 356 kfree_skb(skb); 357 } 358 } else { 359 DECLARE_WAITQUEUE(wait, current); 360 set_current_state(TASK_INTERRUPTIBLE); 361 add_wait_queue(&kauditd_wait, &wait); 362 363 if (!skb_queue_len(&audit_skb_queue)) { 364 try_to_freeze(); 365 schedule(); 366 } 367 368 __set_current_state(TASK_RUNNING); 369 remove_wait_queue(&kauditd_wait, &wait); 370 } 371 } 372 } 373 374 int audit_send_list(void *_dest) 375 { 376 struct audit_netlink_list *dest = _dest; 377 int pid = dest->pid; 378 struct sk_buff *skb; 379 380 /* wait for parent to finish and send an ACK */ 381 mutex_lock(&audit_cmd_mutex); 382 mutex_unlock(&audit_cmd_mutex); 383 384 while ((skb = __skb_dequeue(&dest->q)) != NULL) 385 netlink_unicast(audit_sock, skb, pid, 0); 386 387 kfree(dest); 388 389 return 0; 390 } 391 392 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 393 int multi, void *payload, int size) 394 { 395 struct sk_buff *skb; 396 struct nlmsghdr *nlh; 397 int len = NLMSG_SPACE(size); 398 void *data; 399 int flags = multi ? NLM_F_MULTI : 0; 400 int t = done ? NLMSG_DONE : type; 401 402 skb = alloc_skb(len, GFP_KERNEL); 403 if (!skb) 404 return NULL; 405 406 nlh = NLMSG_PUT(skb, pid, seq, t, size); 407 nlh->nlmsg_flags = flags; 408 data = NLMSG_DATA(nlh); 409 memcpy(data, payload, size); 410 return skb; 411 412 nlmsg_failure: /* Used by NLMSG_PUT */ 413 if (skb) 414 kfree_skb(skb); 415 return NULL; 416 } 417 418 /** 419 * audit_send_reply - send an audit reply message via netlink 420 * @pid: process id to send reply to 421 * @seq: sequence number 422 * @type: audit message type 423 * @done: done (last) flag 424 * @multi: multi-part message flag 425 * @payload: payload data 426 * @size: payload size 427 * 428 * Allocates an skb, builds the netlink message, and sends it to the pid. 429 * No failure notifications. 430 */ 431 void audit_send_reply(int pid, int seq, int type, int done, int multi, 432 void *payload, int size) 433 { 434 struct sk_buff *skb; 435 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 436 if (!skb) 437 return; 438 /* Ignore failure. It'll only happen if the sender goes away, 439 because our timeout is set to infinite. */ 440 netlink_unicast(audit_sock, skb, pid, 0); 441 return; 442 } 443 444 /* 445 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 446 * control messages. 447 */ 448 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 449 { 450 int err = 0; 451 452 switch (msg_type) { 453 case AUDIT_GET: 454 case AUDIT_LIST: 455 case AUDIT_LIST_RULES: 456 case AUDIT_SET: 457 case AUDIT_ADD: 458 case AUDIT_ADD_RULE: 459 case AUDIT_DEL: 460 case AUDIT_DEL_RULE: 461 case AUDIT_SIGNAL_INFO: 462 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 463 err = -EPERM; 464 break; 465 case AUDIT_USER: 466 case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG: 467 case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2: 468 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 469 err = -EPERM; 470 break; 471 default: /* bad msg */ 472 err = -EINVAL; 473 } 474 475 return err; 476 } 477 478 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 479 { 480 u32 uid, pid, seq, sid; 481 void *data; 482 struct audit_status *status_get, status_set; 483 int err; 484 struct audit_buffer *ab; 485 u16 msg_type = nlh->nlmsg_type; 486 uid_t loginuid; /* loginuid of sender */ 487 struct audit_sig_info *sig_data; 488 char *ctx; 489 u32 len; 490 491 err = audit_netlink_ok(skb, msg_type); 492 if (err) 493 return err; 494 495 /* As soon as there's any sign of userspace auditd, 496 * start kauditd to talk to it */ 497 if (!kauditd_task) 498 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 499 if (IS_ERR(kauditd_task)) { 500 err = PTR_ERR(kauditd_task); 501 kauditd_task = NULL; 502 return err; 503 } 504 505 pid = NETLINK_CREDS(skb)->pid; 506 uid = NETLINK_CREDS(skb)->uid; 507 loginuid = NETLINK_CB(skb).loginuid; 508 sid = NETLINK_CB(skb).sid; 509 seq = nlh->nlmsg_seq; 510 data = NLMSG_DATA(nlh); 511 512 switch (msg_type) { 513 case AUDIT_GET: 514 status_set.enabled = audit_enabled; 515 status_set.failure = audit_failure; 516 status_set.pid = audit_pid; 517 status_set.rate_limit = audit_rate_limit; 518 status_set.backlog_limit = audit_backlog_limit; 519 status_set.lost = atomic_read(&audit_lost); 520 status_set.backlog = skb_queue_len(&audit_skb_queue); 521 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 522 &status_set, sizeof(status_set)); 523 break; 524 case AUDIT_SET: 525 if (nlh->nlmsg_len < sizeof(struct audit_status)) 526 return -EINVAL; 527 status_get = (struct audit_status *)data; 528 if (status_get->mask & AUDIT_STATUS_ENABLED) { 529 err = audit_set_enabled(status_get->enabled, 530 loginuid, sid); 531 if (err < 0) return err; 532 } 533 if (status_get->mask & AUDIT_STATUS_FAILURE) { 534 err = audit_set_failure(status_get->failure, 535 loginuid, sid); 536 if (err < 0) return err; 537 } 538 if (status_get->mask & AUDIT_STATUS_PID) { 539 int old = audit_pid; 540 if (sid) { 541 if ((err = selinux_ctxid_to_string( 542 sid, &ctx, &len))) 543 return err; 544 else 545 audit_log(NULL, GFP_KERNEL, 546 AUDIT_CONFIG_CHANGE, 547 "audit_pid=%d old=%d by auid=%u subj=%s", 548 status_get->pid, old, 549 loginuid, ctx); 550 kfree(ctx); 551 } else 552 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, 553 "audit_pid=%d old=%d by auid=%u", 554 status_get->pid, old, loginuid); 555 audit_pid = status_get->pid; 556 } 557 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) 558 err = audit_set_rate_limit(status_get->rate_limit, 559 loginuid, sid); 560 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 561 err = audit_set_backlog_limit(status_get->backlog_limit, 562 loginuid, sid); 563 break; 564 case AUDIT_USER: 565 case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG: 566 case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2: 567 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 568 return 0; 569 570 err = audit_filter_user(&NETLINK_CB(skb), msg_type); 571 if (err == 1) { 572 err = 0; 573 ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 574 if (ab) { 575 audit_log_format(ab, 576 "user pid=%d uid=%u auid=%u", 577 pid, uid, loginuid); 578 if (sid) { 579 if (selinux_ctxid_to_string( 580 sid, &ctx, &len)) { 581 audit_log_format(ab, 582 " ssid=%u", sid); 583 /* Maybe call audit_panic? */ 584 } else 585 audit_log_format(ab, 586 " subj=%s", ctx); 587 kfree(ctx); 588 } 589 audit_log_format(ab, " msg='%.1024s'", 590 (char *)data); 591 audit_set_pid(ab, pid); 592 audit_log_end(ab); 593 } 594 } 595 break; 596 case AUDIT_ADD: 597 case AUDIT_DEL: 598 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 599 return -EINVAL; 600 /* fallthrough */ 601 case AUDIT_LIST: 602 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, 603 uid, seq, data, nlmsg_len(nlh), 604 loginuid, sid); 605 break; 606 case AUDIT_ADD_RULE: 607 case AUDIT_DEL_RULE: 608 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 609 return -EINVAL; 610 /* fallthrough */ 611 case AUDIT_LIST_RULES: 612 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, 613 uid, seq, data, nlmsg_len(nlh), 614 loginuid, sid); 615 break; 616 case AUDIT_SIGNAL_INFO: 617 err = selinux_ctxid_to_string(audit_sig_sid, &ctx, &len); 618 if (err) 619 return err; 620 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 621 if (!sig_data) { 622 kfree(ctx); 623 return -ENOMEM; 624 } 625 sig_data->uid = audit_sig_uid; 626 sig_data->pid = audit_sig_pid; 627 memcpy(sig_data->ctx, ctx, len); 628 kfree(ctx); 629 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 630 0, 0, sig_data, sizeof(*sig_data) + len); 631 kfree(sig_data); 632 break; 633 default: 634 err = -EINVAL; 635 break; 636 } 637 638 return err < 0 ? err : 0; 639 } 640 641 /* 642 * Get message from skb (based on rtnetlink_rcv_skb). Each message is 643 * processed by audit_receive_msg. Malformed skbs with wrong length are 644 * discarded silently. 645 */ 646 static void audit_receive_skb(struct sk_buff *skb) 647 { 648 int err; 649 struct nlmsghdr *nlh; 650 u32 rlen; 651 652 while (skb->len >= NLMSG_SPACE(0)) { 653 nlh = (struct nlmsghdr *)skb->data; 654 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) 655 return; 656 rlen = NLMSG_ALIGN(nlh->nlmsg_len); 657 if (rlen > skb->len) 658 rlen = skb->len; 659 if ((err = audit_receive_msg(skb, nlh))) { 660 netlink_ack(skb, nlh, err); 661 } else if (nlh->nlmsg_flags & NLM_F_ACK) 662 netlink_ack(skb, nlh, 0); 663 skb_pull(skb, rlen); 664 } 665 } 666 667 /* Receive messages from netlink socket. */ 668 static void audit_receive(struct sock *sk, int length) 669 { 670 struct sk_buff *skb; 671 unsigned int qlen; 672 673 mutex_lock(&audit_cmd_mutex); 674 675 for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) { 676 skb = skb_dequeue(&sk->sk_receive_queue); 677 audit_receive_skb(skb); 678 kfree_skb(skb); 679 } 680 mutex_unlock(&audit_cmd_mutex); 681 } 682 683 #ifdef CONFIG_AUDITSYSCALL 684 static const struct inotify_operations audit_inotify_ops = { 685 .handle_event = audit_handle_ievent, 686 .destroy_watch = audit_free_parent, 687 }; 688 #endif 689 690 /* Initialize audit support at boot time. */ 691 static int __init audit_init(void) 692 { 693 int i; 694 695 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 696 audit_default ? "enabled" : "disabled"); 697 audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive, 698 THIS_MODULE); 699 if (!audit_sock) 700 audit_panic("cannot initialize netlink socket"); 701 else 702 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 703 704 skb_queue_head_init(&audit_skb_queue); 705 audit_initialized = 1; 706 audit_enabled = audit_default; 707 708 /* Register the callback with selinux. This callback will be invoked 709 * when a new policy is loaded. */ 710 selinux_audit_set_callback(&selinux_audit_rule_update); 711 712 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 713 714 #ifdef CONFIG_AUDITSYSCALL 715 audit_ih = inotify_init(&audit_inotify_ops); 716 if (IS_ERR(audit_ih)) 717 audit_panic("cannot initialize inotify handle"); 718 #endif 719 720 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 721 INIT_LIST_HEAD(&audit_inode_hash[i]); 722 723 return 0; 724 } 725 __initcall(audit_init); 726 727 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 728 static int __init audit_enable(char *str) 729 { 730 audit_default = !!simple_strtol(str, NULL, 0); 731 printk(KERN_INFO "audit: %s%s\n", 732 audit_default ? "enabled" : "disabled", 733 audit_initialized ? "" : " (after initialization)"); 734 if (audit_initialized) 735 audit_enabled = audit_default; 736 return 1; 737 } 738 739 __setup("audit=", audit_enable); 740 741 static void audit_buffer_free(struct audit_buffer *ab) 742 { 743 unsigned long flags; 744 745 if (!ab) 746 return; 747 748 if (ab->skb) 749 kfree_skb(ab->skb); 750 751 spin_lock_irqsave(&audit_freelist_lock, flags); 752 if (audit_freelist_count > AUDIT_MAXFREE) 753 kfree(ab); 754 else { 755 audit_freelist_count++; 756 list_add(&ab->list, &audit_freelist); 757 } 758 spin_unlock_irqrestore(&audit_freelist_lock, flags); 759 } 760 761 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 762 gfp_t gfp_mask, int type) 763 { 764 unsigned long flags; 765 struct audit_buffer *ab = NULL; 766 struct nlmsghdr *nlh; 767 768 spin_lock_irqsave(&audit_freelist_lock, flags); 769 if (!list_empty(&audit_freelist)) { 770 ab = list_entry(audit_freelist.next, 771 struct audit_buffer, list); 772 list_del(&ab->list); 773 --audit_freelist_count; 774 } 775 spin_unlock_irqrestore(&audit_freelist_lock, flags); 776 777 if (!ab) { 778 ab = kmalloc(sizeof(*ab), gfp_mask); 779 if (!ab) 780 goto err; 781 } 782 783 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); 784 if (!ab->skb) 785 goto err; 786 787 ab->ctx = ctx; 788 ab->gfp_mask = gfp_mask; 789 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); 790 nlh->nlmsg_type = type; 791 nlh->nlmsg_flags = 0; 792 nlh->nlmsg_pid = 0; 793 nlh->nlmsg_seq = 0; 794 return ab; 795 err: 796 audit_buffer_free(ab); 797 return NULL; 798 } 799 800 /** 801 * audit_serial - compute a serial number for the audit record 802 * 803 * Compute a serial number for the audit record. Audit records are 804 * written to user-space as soon as they are generated, so a complete 805 * audit record may be written in several pieces. The timestamp of the 806 * record and this serial number are used by the user-space tools to 807 * determine which pieces belong to the same audit record. The 808 * (timestamp,serial) tuple is unique for each syscall and is live from 809 * syscall entry to syscall exit. 810 * 811 * NOTE: Another possibility is to store the formatted records off the 812 * audit context (for those records that have a context), and emit them 813 * all at syscall exit. However, this could delay the reporting of 814 * significant errors until syscall exit (or never, if the system 815 * halts). 816 */ 817 unsigned int audit_serial(void) 818 { 819 static DEFINE_SPINLOCK(serial_lock); 820 static unsigned int serial = 0; 821 822 unsigned long flags; 823 unsigned int ret; 824 825 spin_lock_irqsave(&serial_lock, flags); 826 do { 827 ret = ++serial; 828 } while (unlikely(!ret)); 829 spin_unlock_irqrestore(&serial_lock, flags); 830 831 return ret; 832 } 833 834 static inline void audit_get_stamp(struct audit_context *ctx, 835 struct timespec *t, unsigned int *serial) 836 { 837 if (ctx) 838 auditsc_get_stamp(ctx, t, serial); 839 else { 840 *t = CURRENT_TIME; 841 *serial = audit_serial(); 842 } 843 } 844 845 /* Obtain an audit buffer. This routine does locking to obtain the 846 * audit buffer, but then no locking is required for calls to 847 * audit_log_*format. If the tsk is a task that is currently in a 848 * syscall, then the syscall is marked as auditable and an audit record 849 * will be written at syscall exit. If there is no associated task, tsk 850 * should be NULL. */ 851 852 /** 853 * audit_log_start - obtain an audit buffer 854 * @ctx: audit_context (may be NULL) 855 * @gfp_mask: type of allocation 856 * @type: audit message type 857 * 858 * Returns audit_buffer pointer on success or NULL on error. 859 * 860 * Obtain an audit buffer. This routine does locking to obtain the 861 * audit buffer, but then no locking is required for calls to 862 * audit_log_*format. If the task (ctx) is a task that is currently in a 863 * syscall, then the syscall is marked as auditable and an audit record 864 * will be written at syscall exit. If there is no associated task, then 865 * task context (ctx) should be NULL. 866 */ 867 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 868 int type) 869 { 870 struct audit_buffer *ab = NULL; 871 struct timespec t; 872 unsigned int serial; 873 int reserve; 874 unsigned long timeout_start = jiffies; 875 876 if (!audit_initialized) 877 return NULL; 878 879 if (unlikely(audit_filter_type(type))) 880 return NULL; 881 882 if (gfp_mask & __GFP_WAIT) 883 reserve = 0; 884 else 885 reserve = 5; /* Allow atomic callers to go up to five 886 entries over the normal backlog limit */ 887 888 while (audit_backlog_limit 889 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 890 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 891 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 892 893 /* Wait for auditd to drain the queue a little */ 894 DECLARE_WAITQUEUE(wait, current); 895 set_current_state(TASK_INTERRUPTIBLE); 896 add_wait_queue(&audit_backlog_wait, &wait); 897 898 if (audit_backlog_limit && 899 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 900 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 901 902 __set_current_state(TASK_RUNNING); 903 remove_wait_queue(&audit_backlog_wait, &wait); 904 continue; 905 } 906 if (audit_rate_check()) 907 printk(KERN_WARNING 908 "audit: audit_backlog=%d > " 909 "audit_backlog_limit=%d\n", 910 skb_queue_len(&audit_skb_queue), 911 audit_backlog_limit); 912 audit_log_lost("backlog limit exceeded"); 913 audit_backlog_wait_time = audit_backlog_wait_overflow; 914 wake_up(&audit_backlog_wait); 915 return NULL; 916 } 917 918 ab = audit_buffer_alloc(ctx, gfp_mask, type); 919 if (!ab) { 920 audit_log_lost("out of memory in audit_log_start"); 921 return NULL; 922 } 923 924 audit_get_stamp(ab->ctx, &t, &serial); 925 926 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 927 t.tv_sec, t.tv_nsec/1000000, serial); 928 return ab; 929 } 930 931 /** 932 * audit_expand - expand skb in the audit buffer 933 * @ab: audit_buffer 934 * @extra: space to add at tail of the skb 935 * 936 * Returns 0 (no space) on failed expansion, or available space if 937 * successful. 938 */ 939 static inline int audit_expand(struct audit_buffer *ab, int extra) 940 { 941 struct sk_buff *skb = ab->skb; 942 int ret = pskb_expand_head(skb, skb_headroom(skb), extra, 943 ab->gfp_mask); 944 if (ret < 0) { 945 audit_log_lost("out of memory in audit_expand"); 946 return 0; 947 } 948 return skb_tailroom(skb); 949 } 950 951 /* 952 * Format an audit message into the audit buffer. If there isn't enough 953 * room in the audit buffer, more room will be allocated and vsnprint 954 * will be called a second time. Currently, we assume that a printk 955 * can't format message larger than 1024 bytes, so we don't either. 956 */ 957 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 958 va_list args) 959 { 960 int len, avail; 961 struct sk_buff *skb; 962 va_list args2; 963 964 if (!ab) 965 return; 966 967 BUG_ON(!ab->skb); 968 skb = ab->skb; 969 avail = skb_tailroom(skb); 970 if (avail == 0) { 971 avail = audit_expand(ab, AUDIT_BUFSIZ); 972 if (!avail) 973 goto out; 974 } 975 va_copy(args2, args); 976 len = vsnprintf(skb->tail, avail, fmt, args); 977 if (len >= avail) { 978 /* The printk buffer is 1024 bytes long, so if we get 979 * here and AUDIT_BUFSIZ is at least 1024, then we can 980 * log everything that printk could have logged. */ 981 avail = audit_expand(ab, 982 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 983 if (!avail) 984 goto out; 985 len = vsnprintf(skb->tail, avail, fmt, args2); 986 } 987 if (len > 0) 988 skb_put(skb, len); 989 out: 990 return; 991 } 992 993 /** 994 * audit_log_format - format a message into the audit buffer. 995 * @ab: audit_buffer 996 * @fmt: format string 997 * @...: optional parameters matching @fmt string 998 * 999 * All the work is done in audit_log_vformat. 1000 */ 1001 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1002 { 1003 va_list args; 1004 1005 if (!ab) 1006 return; 1007 va_start(args, fmt); 1008 audit_log_vformat(ab, fmt, args); 1009 va_end(args); 1010 } 1011 1012 /** 1013 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1014 * @ab: the audit_buffer 1015 * @buf: buffer to convert to hex 1016 * @len: length of @buf to be converted 1017 * 1018 * No return value; failure to expand is silently ignored. 1019 * 1020 * This function will take the passed buf and convert it into a string of 1021 * ascii hex digits. The new string is placed onto the skb. 1022 */ 1023 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, 1024 size_t len) 1025 { 1026 int i, avail, new_len; 1027 unsigned char *ptr; 1028 struct sk_buff *skb; 1029 static const unsigned char *hex = "0123456789ABCDEF"; 1030 1031 if (!ab) 1032 return; 1033 1034 BUG_ON(!ab->skb); 1035 skb = ab->skb; 1036 avail = skb_tailroom(skb); 1037 new_len = len<<1; 1038 if (new_len >= avail) { 1039 /* Round the buffer request up to the next multiple */ 1040 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1041 avail = audit_expand(ab, new_len); 1042 if (!avail) 1043 return; 1044 } 1045 1046 ptr = skb->tail; 1047 for (i=0; i<len; i++) { 1048 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1049 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1050 } 1051 *ptr = 0; 1052 skb_put(skb, len << 1); /* new string is twice the old string */ 1053 } 1054 1055 /* 1056 * Format a string of no more than slen characters into the audit buffer, 1057 * enclosed in quote marks. 1058 */ 1059 static void audit_log_n_string(struct audit_buffer *ab, size_t slen, 1060 const char *string) 1061 { 1062 int avail, new_len; 1063 unsigned char *ptr; 1064 struct sk_buff *skb; 1065 1066 if (!ab) 1067 return; 1068 1069 BUG_ON(!ab->skb); 1070 skb = ab->skb; 1071 avail = skb_tailroom(skb); 1072 new_len = slen + 3; /* enclosing quotes + null terminator */ 1073 if (new_len > avail) { 1074 avail = audit_expand(ab, new_len); 1075 if (!avail) 1076 return; 1077 } 1078 ptr = skb->tail; 1079 *ptr++ = '"'; 1080 memcpy(ptr, string, slen); 1081 ptr += slen; 1082 *ptr++ = '"'; 1083 *ptr = 0; 1084 skb_put(skb, slen + 2); /* don't include null terminator */ 1085 } 1086 1087 /** 1088 * audit_log_n_unstrustedstring - log a string that may contain random characters 1089 * @ab: audit_buffer 1090 * @len: lenth of string (not including trailing null) 1091 * @string: string to be logged 1092 * 1093 * This code will escape a string that is passed to it if the string 1094 * contains a control character, unprintable character, double quote mark, 1095 * or a space. Unescaped strings will start and end with a double quote mark. 1096 * Strings that are escaped are printed in hex (2 digits per char). 1097 * 1098 * The caller specifies the number of characters in the string to log, which may 1099 * or may not be the entire string. 1100 */ 1101 const char *audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len, 1102 const char *string) 1103 { 1104 const unsigned char *p = string; 1105 1106 while (*p) { 1107 if (*p == '"' || *p < 0x21 || *p > 0x7f) { 1108 audit_log_hex(ab, string, len); 1109 return string + len + 1; 1110 } 1111 p++; 1112 } 1113 audit_log_n_string(ab, len, string); 1114 return p + 1; 1115 } 1116 1117 /** 1118 * audit_log_unstrustedstring - log a string that may contain random characters 1119 * @ab: audit_buffer 1120 * @string: string to be logged 1121 * 1122 * Same as audit_log_n_unstrustedstring(), except that strlen is used to 1123 * determine string length. 1124 */ 1125 const char *audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1126 { 1127 return audit_log_n_untrustedstring(ab, strlen(string), string); 1128 } 1129 1130 /* This is a helper-function to print the escaped d_path */ 1131 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1132 struct dentry *dentry, struct vfsmount *vfsmnt) 1133 { 1134 char *p, *path; 1135 1136 if (prefix) 1137 audit_log_format(ab, " %s", prefix); 1138 1139 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1140 path = kmalloc(PATH_MAX+11, ab->gfp_mask); 1141 if (!path) { 1142 audit_log_format(ab, "<no memory>"); 1143 return; 1144 } 1145 p = d_path(dentry, vfsmnt, path, PATH_MAX+11); 1146 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1147 /* FIXME: can we save some information here? */ 1148 audit_log_format(ab, "<too long>"); 1149 } else 1150 audit_log_untrustedstring(ab, p); 1151 kfree(path); 1152 } 1153 1154 /** 1155 * audit_log_end - end one audit record 1156 * @ab: the audit_buffer 1157 * 1158 * The netlink_* functions cannot be called inside an irq context, so 1159 * the audit buffer is placed on a queue and a tasklet is scheduled to 1160 * remove them from the queue outside the irq context. May be called in 1161 * any context. 1162 */ 1163 void audit_log_end(struct audit_buffer *ab) 1164 { 1165 if (!ab) 1166 return; 1167 if (!audit_rate_check()) { 1168 audit_log_lost("rate limit exceeded"); 1169 } else { 1170 if (audit_pid) { 1171 struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data; 1172 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1173 skb_queue_tail(&audit_skb_queue, ab->skb); 1174 ab->skb = NULL; 1175 wake_up_interruptible(&kauditd_wait); 1176 } else { 1177 printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0)); 1178 } 1179 } 1180 audit_buffer_free(ab); 1181 } 1182 1183 /** 1184 * audit_log - Log an audit record 1185 * @ctx: audit context 1186 * @gfp_mask: type of allocation 1187 * @type: audit message type 1188 * @fmt: format string to use 1189 * @...: variable parameters matching the format string 1190 * 1191 * This is a convenience function that calls audit_log_start, 1192 * audit_log_vformat, and audit_log_end. It may be called 1193 * in any context. 1194 */ 1195 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1196 const char *fmt, ...) 1197 { 1198 struct audit_buffer *ab; 1199 va_list args; 1200 1201 ab = audit_log_start(ctx, gfp_mask, type); 1202 if (ab) { 1203 va_start(args, fmt); 1204 audit_log_vformat(ab, fmt, args); 1205 va_end(args); 1206 audit_log_end(ab); 1207 } 1208 } 1209 1210 EXPORT_SYMBOL(audit_log_start); 1211 EXPORT_SYMBOL(audit_log_end); 1212 EXPORT_SYMBOL(audit_log_format); 1213 EXPORT_SYMBOL(audit_log); 1214