xref: /linux/kernel/audit.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61 #include <linux/pid.h>
62 #include <linux/slab.h>
63 
64 #include <linux/audit.h>
65 
66 #include <net/sock.h>
67 #include <net/netlink.h>
68 #include <linux/skbuff.h>
69 #ifdef CONFIG_SECURITY
70 #include <linux/security.h>
71 #endif
72 #include <linux/freezer.h>
73 #include <linux/pid_namespace.h>
74 #include <net/netns/generic.h>
75 
76 #include "audit.h"
77 
78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
79  * (Initialization happens after skb_init is called.) */
80 #define AUDIT_DISABLED		-1
81 #define AUDIT_UNINITIALIZED	0
82 #define AUDIT_INITIALIZED	1
83 static int	audit_initialized;
84 
85 #define AUDIT_OFF	0
86 #define AUDIT_ON	1
87 #define AUDIT_LOCKED	2
88 u32		audit_enabled;
89 u32		audit_ever_enabled;
90 
91 EXPORT_SYMBOL_GPL(audit_enabled);
92 
93 /* Default state when kernel boots without any parameters. */
94 static u32	audit_default;
95 
96 /* If auditing cannot proceed, audit_failure selects what happens. */
97 static u32	audit_failure = AUDIT_FAIL_PRINTK;
98 
99 /* private audit network namespace index */
100 static unsigned int audit_net_id;
101 
102 /**
103  * struct audit_net - audit private network namespace data
104  * @sk: communication socket
105  */
106 struct audit_net {
107 	struct sock *sk;
108 };
109 
110 /**
111  * struct auditd_connection - kernel/auditd connection state
112  * @pid: auditd PID
113  * @portid: netlink portid
114  * @net: the associated network namespace
115  * @rcu: RCU head
116  *
117  * Description:
118  * This struct is RCU protected; you must either hold the RCU lock for reading
119  * or the associated spinlock for writing.
120  */
121 static struct auditd_connection {
122 	struct pid *pid;
123 	u32 portid;
124 	struct net *net;
125 	struct rcu_head rcu;
126 } *auditd_conn = NULL;
127 static DEFINE_SPINLOCK(auditd_conn_lock);
128 
129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
130  * to that number per second.  This prevents DoS attacks, but results in
131  * audit records being dropped. */
132 static u32	audit_rate_limit;
133 
134 /* Number of outstanding audit_buffers allowed.
135  * When set to zero, this means unlimited. */
136 static u32	audit_backlog_limit = 64;
137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
138 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
139 
140 /* The identity of the user shutting down the audit system. */
141 kuid_t		audit_sig_uid = INVALID_UID;
142 pid_t		audit_sig_pid = -1;
143 u32		audit_sig_sid = 0;
144 
145 /* Records can be lost in several ways:
146    0) [suppressed in audit_alloc]
147    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
148    2) out of memory in audit_log_move [alloc_skb]
149    3) suppressed due to audit_rate_limit
150    4) suppressed due to audit_backlog_limit
151 */
152 static atomic_t	audit_lost = ATOMIC_INIT(0);
153 
154 /* Hash for inode-based rules */
155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
156 
157 static struct kmem_cache *audit_buffer_cache;
158 
159 /* queue msgs to send via kauditd_task */
160 static struct sk_buff_head audit_queue;
161 /* queue msgs due to temporary unicast send problems */
162 static struct sk_buff_head audit_retry_queue;
163 /* queue msgs waiting for new auditd connection */
164 static struct sk_buff_head audit_hold_queue;
165 
166 /* queue servicing thread */
167 static struct task_struct *kauditd_task;
168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
169 
170 /* waitqueue for callers who are blocked on the audit backlog */
171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
172 
173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
174 				   .mask = -1,
175 				   .features = 0,
176 				   .lock = 0,};
177 
178 static char *audit_feature_names[2] = {
179 	"only_unset_loginuid",
180 	"loginuid_immutable",
181 };
182 
183 
184 /* Serialize requests from userspace. */
185 DEFINE_MUTEX(audit_cmd_mutex);
186 
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188  * audit records.  Since printk uses a 1024 byte buffer, this buffer
189  * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191 
192 /* The audit_buffer is used when formatting an audit record.  The caller
193  * locks briefly to get the record off the freelist or to allocate the
194  * buffer, and locks briefly to send the buffer to the netlink layer or
195  * to place it on a transmit queue.  Multiple audit_buffers can be in
196  * use simultaneously. */
197 struct audit_buffer {
198 	struct sk_buff       *skb;	/* formatted skb ready to send */
199 	struct audit_context *ctx;	/* NULL or associated context */
200 	gfp_t		     gfp_mask;
201 };
202 
203 struct audit_reply {
204 	__u32 portid;
205 	struct net *net;
206 	struct sk_buff *skb;
207 };
208 
209 /**
210  * auditd_test_task - Check to see if a given task is an audit daemon
211  * @task: the task to check
212  *
213  * Description:
214  * Return 1 if the task is a registered audit daemon, 0 otherwise.
215  */
216 int auditd_test_task(struct task_struct *task)
217 {
218 	int rc;
219 	struct auditd_connection *ac;
220 
221 	rcu_read_lock();
222 	ac = rcu_dereference(auditd_conn);
223 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 	rcu_read_unlock();
225 
226 	return rc;
227 }
228 
229 /**
230  * auditd_pid_vnr - Return the auditd PID relative to the namespace
231  *
232  * Description:
233  * Returns the PID in relation to the namespace, 0 on failure.
234  */
235 static pid_t auditd_pid_vnr(void)
236 {
237 	pid_t pid;
238 	const struct auditd_connection *ac;
239 
240 	rcu_read_lock();
241 	ac = rcu_dereference(auditd_conn);
242 	if (!ac || !ac->pid)
243 		pid = 0;
244 	else
245 		pid = pid_vnr(ac->pid);
246 	rcu_read_unlock();
247 
248 	return pid;
249 }
250 
251 /**
252  * audit_get_sk - Return the audit socket for the given network namespace
253  * @net: the destination network namespace
254  *
255  * Description:
256  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
257  * that a reference is held for the network namespace while the sock is in use.
258  */
259 static struct sock *audit_get_sk(const struct net *net)
260 {
261 	struct audit_net *aunet;
262 
263 	if (!net)
264 		return NULL;
265 
266 	aunet = net_generic(net, audit_net_id);
267 	return aunet->sk;
268 }
269 
270 void audit_panic(const char *message)
271 {
272 	switch (audit_failure) {
273 	case AUDIT_FAIL_SILENT:
274 		break;
275 	case AUDIT_FAIL_PRINTK:
276 		if (printk_ratelimit())
277 			pr_err("%s\n", message);
278 		break;
279 	case AUDIT_FAIL_PANIC:
280 		panic("audit: %s\n", message);
281 		break;
282 	}
283 }
284 
285 static inline int audit_rate_check(void)
286 {
287 	static unsigned long	last_check = 0;
288 	static int		messages   = 0;
289 	static DEFINE_SPINLOCK(lock);
290 	unsigned long		flags;
291 	unsigned long		now;
292 	unsigned long		elapsed;
293 	int			retval	   = 0;
294 
295 	if (!audit_rate_limit) return 1;
296 
297 	spin_lock_irqsave(&lock, flags);
298 	if (++messages < audit_rate_limit) {
299 		retval = 1;
300 	} else {
301 		now     = jiffies;
302 		elapsed = now - last_check;
303 		if (elapsed > HZ) {
304 			last_check = now;
305 			messages   = 0;
306 			retval     = 1;
307 		}
308 	}
309 	spin_unlock_irqrestore(&lock, flags);
310 
311 	return retval;
312 }
313 
314 /**
315  * audit_log_lost - conditionally log lost audit message event
316  * @message: the message stating reason for lost audit message
317  *
318  * Emit at least 1 message per second, even if audit_rate_check is
319  * throttling.
320  * Always increment the lost messages counter.
321 */
322 void audit_log_lost(const char *message)
323 {
324 	static unsigned long	last_msg = 0;
325 	static DEFINE_SPINLOCK(lock);
326 	unsigned long		flags;
327 	unsigned long		now;
328 	int			print;
329 
330 	atomic_inc(&audit_lost);
331 
332 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
333 
334 	if (!print) {
335 		spin_lock_irqsave(&lock, flags);
336 		now = jiffies;
337 		if (now - last_msg > HZ) {
338 			print = 1;
339 			last_msg = now;
340 		}
341 		spin_unlock_irqrestore(&lock, flags);
342 	}
343 
344 	if (print) {
345 		if (printk_ratelimit())
346 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
347 				atomic_read(&audit_lost),
348 				audit_rate_limit,
349 				audit_backlog_limit);
350 		audit_panic(message);
351 	}
352 }
353 
354 static int audit_log_config_change(char *function_name, u32 new, u32 old,
355 				   int allow_changes)
356 {
357 	struct audit_buffer *ab;
358 	int rc = 0;
359 
360 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
361 	if (unlikely(!ab))
362 		return rc;
363 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
364 	audit_log_session_info(ab);
365 	rc = audit_log_task_context(ab);
366 	if (rc)
367 		allow_changes = 0; /* Something weird, deny request */
368 	audit_log_format(ab, " res=%d", allow_changes);
369 	audit_log_end(ab);
370 	return rc;
371 }
372 
373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
374 {
375 	int allow_changes, rc = 0;
376 	u32 old = *to_change;
377 
378 	/* check if we are locked */
379 	if (audit_enabled == AUDIT_LOCKED)
380 		allow_changes = 0;
381 	else
382 		allow_changes = 1;
383 
384 	if (audit_enabled != AUDIT_OFF) {
385 		rc = audit_log_config_change(function_name, new, old, allow_changes);
386 		if (rc)
387 			allow_changes = 0;
388 	}
389 
390 	/* If we are allowed, make the change */
391 	if (allow_changes == 1)
392 		*to_change = new;
393 	/* Not allowed, update reason */
394 	else if (rc == 0)
395 		rc = -EPERM;
396 	return rc;
397 }
398 
399 static int audit_set_rate_limit(u32 limit)
400 {
401 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
402 }
403 
404 static int audit_set_backlog_limit(u32 limit)
405 {
406 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
407 }
408 
409 static int audit_set_backlog_wait_time(u32 timeout)
410 {
411 	return audit_do_config_change("audit_backlog_wait_time",
412 				      &audit_backlog_wait_time, timeout);
413 }
414 
415 static int audit_set_enabled(u32 state)
416 {
417 	int rc;
418 	if (state > AUDIT_LOCKED)
419 		return -EINVAL;
420 
421 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
422 	if (!rc)
423 		audit_ever_enabled |= !!state;
424 
425 	return rc;
426 }
427 
428 static int audit_set_failure(u32 state)
429 {
430 	if (state != AUDIT_FAIL_SILENT
431 	    && state != AUDIT_FAIL_PRINTK
432 	    && state != AUDIT_FAIL_PANIC)
433 		return -EINVAL;
434 
435 	return audit_do_config_change("audit_failure", &audit_failure, state);
436 }
437 
438 /**
439  * auditd_conn_free - RCU helper to release an auditd connection struct
440  * @rcu: RCU head
441  *
442  * Description:
443  * Drop any references inside the auditd connection tracking struct and free
444  * the memory.
445  */
446  static void auditd_conn_free(struct rcu_head *rcu)
447  {
448 	struct auditd_connection *ac;
449 
450 	ac = container_of(rcu, struct auditd_connection, rcu);
451 	put_pid(ac->pid);
452 	put_net(ac->net);
453 	kfree(ac);
454  }
455 
456 /**
457  * auditd_set - Set/Reset the auditd connection state
458  * @pid: auditd PID
459  * @portid: auditd netlink portid
460  * @net: auditd network namespace pointer
461  *
462  * Description:
463  * This function will obtain and drop network namespace references as
464  * necessary.  Returns zero on success, negative values on failure.
465  */
466 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
467 {
468 	unsigned long flags;
469 	struct auditd_connection *ac_old, *ac_new;
470 
471 	if (!pid || !net)
472 		return -EINVAL;
473 
474 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
475 	if (!ac_new)
476 		return -ENOMEM;
477 	ac_new->pid = get_pid(pid);
478 	ac_new->portid = portid;
479 	ac_new->net = get_net(net);
480 
481 	spin_lock_irqsave(&auditd_conn_lock, flags);
482 	ac_old = rcu_dereference_protected(auditd_conn,
483 					   lockdep_is_held(&auditd_conn_lock));
484 	rcu_assign_pointer(auditd_conn, ac_new);
485 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
486 
487 	if (ac_old)
488 		call_rcu(&ac_old->rcu, auditd_conn_free);
489 
490 	return 0;
491 }
492 
493 /**
494  * kauditd_print_skb - Print the audit record to the ring buffer
495  * @skb: audit record
496  *
497  * Whatever the reason, this packet may not make it to the auditd connection
498  * so write it via printk so the information isn't completely lost.
499  */
500 static void kauditd_printk_skb(struct sk_buff *skb)
501 {
502 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
503 	char *data = nlmsg_data(nlh);
504 
505 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
506 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
507 }
508 
509 /**
510  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
511  * @skb: audit record
512  *
513  * Description:
514  * This should only be used by the kauditd_thread when it fails to flush the
515  * hold queue.
516  */
517 static void kauditd_rehold_skb(struct sk_buff *skb)
518 {
519 	/* put the record back in the queue at the same place */
520 	skb_queue_head(&audit_hold_queue, skb);
521 }
522 
523 /**
524  * kauditd_hold_skb - Queue an audit record, waiting for auditd
525  * @skb: audit record
526  *
527  * Description:
528  * Queue the audit record, waiting for an instance of auditd.  When this
529  * function is called we haven't given up yet on sending the record, but things
530  * are not looking good.  The first thing we want to do is try to write the
531  * record via printk and then see if we want to try and hold on to the record
532  * and queue it, if we have room.  If we want to hold on to the record, but we
533  * don't have room, record a record lost message.
534  */
535 static void kauditd_hold_skb(struct sk_buff *skb)
536 {
537 	/* at this point it is uncertain if we will ever send this to auditd so
538 	 * try to send the message via printk before we go any further */
539 	kauditd_printk_skb(skb);
540 
541 	/* can we just silently drop the message? */
542 	if (!audit_default) {
543 		kfree_skb(skb);
544 		return;
545 	}
546 
547 	/* if we have room, queue the message */
548 	if (!audit_backlog_limit ||
549 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
550 		skb_queue_tail(&audit_hold_queue, skb);
551 		return;
552 	}
553 
554 	/* we have no other options - drop the message */
555 	audit_log_lost("kauditd hold queue overflow");
556 	kfree_skb(skb);
557 }
558 
559 /**
560  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
561  * @skb: audit record
562  *
563  * Description:
564  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
565  * but for some reason we are having problems sending it audit records so
566  * queue the given record and attempt to resend.
567  */
568 static void kauditd_retry_skb(struct sk_buff *skb)
569 {
570 	/* NOTE: because records should only live in the retry queue for a
571 	 * short period of time, before either being sent or moved to the hold
572 	 * queue, we don't currently enforce a limit on this queue */
573 	skb_queue_tail(&audit_retry_queue, skb);
574 }
575 
576 /**
577  * auditd_reset - Disconnect the auditd connection
578  *
579  * Description:
580  * Break the auditd/kauditd connection and move all the queued records into the
581  * hold queue in case auditd reconnects.
582  */
583 static void auditd_reset(void)
584 {
585 	unsigned long flags;
586 	struct sk_buff *skb;
587 	struct auditd_connection *ac_old;
588 
589 	/* if it isn't already broken, break the connection */
590 	spin_lock_irqsave(&auditd_conn_lock, flags);
591 	ac_old = rcu_dereference_protected(auditd_conn,
592 					   lockdep_is_held(&auditd_conn_lock));
593 	rcu_assign_pointer(auditd_conn, NULL);
594 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
595 
596 	if (ac_old)
597 		call_rcu(&ac_old->rcu, auditd_conn_free);
598 
599 	/* flush all of the main and retry queues to the hold queue */
600 	while ((skb = skb_dequeue(&audit_retry_queue)))
601 		kauditd_hold_skb(skb);
602 	while ((skb = skb_dequeue(&audit_queue)))
603 		kauditd_hold_skb(skb);
604 }
605 
606 /**
607  * auditd_send_unicast_skb - Send a record via unicast to auditd
608  * @skb: audit record
609  *
610  * Description:
611  * Send a skb to the audit daemon, returns positive/zero values on success and
612  * negative values on failure; in all cases the skb will be consumed by this
613  * function.  If the send results in -ECONNREFUSED the connection with auditd
614  * will be reset.  This function may sleep so callers should not hold any locks
615  * where this would cause a problem.
616  */
617 static int auditd_send_unicast_skb(struct sk_buff *skb)
618 {
619 	int rc;
620 	u32 portid;
621 	struct net *net;
622 	struct sock *sk;
623 	struct auditd_connection *ac;
624 
625 	/* NOTE: we can't call netlink_unicast while in the RCU section so
626 	 *       take a reference to the network namespace and grab local
627 	 *       copies of the namespace, the sock, and the portid; the
628 	 *       namespace and sock aren't going to go away while we hold a
629 	 *       reference and if the portid does become invalid after the RCU
630 	 *       section netlink_unicast() should safely return an error */
631 
632 	rcu_read_lock();
633 	ac = rcu_dereference(auditd_conn);
634 	if (!ac) {
635 		rcu_read_unlock();
636 		rc = -ECONNREFUSED;
637 		goto err;
638 	}
639 	net = get_net(ac->net);
640 	sk = audit_get_sk(net);
641 	portid = ac->portid;
642 	rcu_read_unlock();
643 
644 	rc = netlink_unicast(sk, skb, portid, 0);
645 	put_net(net);
646 	if (rc < 0)
647 		goto err;
648 
649 	return rc;
650 
651 err:
652 	if (rc == -ECONNREFUSED)
653 		auditd_reset();
654 	return rc;
655 }
656 
657 /**
658  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
659  * @sk: the sending sock
660  * @portid: the netlink destination
661  * @queue: the skb queue to process
662  * @retry_limit: limit on number of netlink unicast failures
663  * @skb_hook: per-skb hook for additional processing
664  * @err_hook: hook called if the skb fails the netlink unicast send
665  *
666  * Description:
667  * Run through the given queue and attempt to send the audit records to auditd,
668  * returns zero on success, negative values on failure.  It is up to the caller
669  * to ensure that the @sk is valid for the duration of this function.
670  *
671  */
672 static int kauditd_send_queue(struct sock *sk, u32 portid,
673 			      struct sk_buff_head *queue,
674 			      unsigned int retry_limit,
675 			      void (*skb_hook)(struct sk_buff *skb),
676 			      void (*err_hook)(struct sk_buff *skb))
677 {
678 	int rc = 0;
679 	struct sk_buff *skb;
680 	static unsigned int failed = 0;
681 
682 	/* NOTE: kauditd_thread takes care of all our locking, we just use
683 	 *       the netlink info passed to us (e.g. sk and portid) */
684 
685 	while ((skb = skb_dequeue(queue))) {
686 		/* call the skb_hook for each skb we touch */
687 		if (skb_hook)
688 			(*skb_hook)(skb);
689 
690 		/* can we send to anyone via unicast? */
691 		if (!sk) {
692 			if (err_hook)
693 				(*err_hook)(skb);
694 			continue;
695 		}
696 
697 		/* grab an extra skb reference in case of error */
698 		skb_get(skb);
699 		rc = netlink_unicast(sk, skb, portid, 0);
700 		if (rc < 0) {
701 			/* fatal failure for our queue flush attempt? */
702 			if (++failed >= retry_limit ||
703 			    rc == -ECONNREFUSED || rc == -EPERM) {
704 				/* yes - error processing for the queue */
705 				sk = NULL;
706 				if (err_hook)
707 					(*err_hook)(skb);
708 				if (!skb_hook)
709 					goto out;
710 				/* keep processing with the skb_hook */
711 				continue;
712 			} else
713 				/* no - requeue to preserve ordering */
714 				skb_queue_head(queue, skb);
715 		} else {
716 			/* it worked - drop the extra reference and continue */
717 			consume_skb(skb);
718 			failed = 0;
719 		}
720 	}
721 
722 out:
723 	return (rc >= 0 ? 0 : rc);
724 }
725 
726 /*
727  * kauditd_send_multicast_skb - Send a record to any multicast listeners
728  * @skb: audit record
729  *
730  * Description:
731  * Write a multicast message to anyone listening in the initial network
732  * namespace.  This function doesn't consume an skb as might be expected since
733  * it has to copy it anyways.
734  */
735 static void kauditd_send_multicast_skb(struct sk_buff *skb)
736 {
737 	struct sk_buff *copy;
738 	struct sock *sock = audit_get_sk(&init_net);
739 	struct nlmsghdr *nlh;
740 
741 	/* NOTE: we are not taking an additional reference for init_net since
742 	 *       we don't have to worry about it going away */
743 
744 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
745 		return;
746 
747 	/*
748 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
749 	 * using skb_get() is necessary because non-standard mods are made to
750 	 * the skb by the original kaudit unicast socket send routine.  The
751 	 * existing auditd daemon assumes this breakage.  Fixing this would
752 	 * require co-ordinating a change in the established protocol between
753 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
754 	 * no reason for new multicast clients to continue with this
755 	 * non-compliance.
756 	 */
757 	copy = skb_copy(skb, GFP_KERNEL);
758 	if (!copy)
759 		return;
760 	nlh = nlmsg_hdr(copy);
761 	nlh->nlmsg_len = skb->len;
762 
763 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
764 }
765 
766 /**
767  * kauditd_thread - Worker thread to send audit records to userspace
768  * @dummy: unused
769  */
770 static int kauditd_thread(void *dummy)
771 {
772 	int rc;
773 	u32 portid = 0;
774 	struct net *net = NULL;
775 	struct sock *sk = NULL;
776 	struct auditd_connection *ac;
777 
778 #define UNICAST_RETRIES 5
779 
780 	set_freezable();
781 	while (!kthread_should_stop()) {
782 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
783 		rcu_read_lock();
784 		ac = rcu_dereference(auditd_conn);
785 		if (!ac) {
786 			rcu_read_unlock();
787 			goto main_queue;
788 		}
789 		net = get_net(ac->net);
790 		sk = audit_get_sk(net);
791 		portid = ac->portid;
792 		rcu_read_unlock();
793 
794 		/* attempt to flush the hold queue */
795 		rc = kauditd_send_queue(sk, portid,
796 					&audit_hold_queue, UNICAST_RETRIES,
797 					NULL, kauditd_rehold_skb);
798 		if (rc < 0) {
799 			sk = NULL;
800 			auditd_reset();
801 			goto main_queue;
802 		}
803 
804 		/* attempt to flush the retry queue */
805 		rc = kauditd_send_queue(sk, portid,
806 					&audit_retry_queue, UNICAST_RETRIES,
807 					NULL, kauditd_hold_skb);
808 		if (rc < 0) {
809 			sk = NULL;
810 			auditd_reset();
811 			goto main_queue;
812 		}
813 
814 main_queue:
815 		/* process the main queue - do the multicast send and attempt
816 		 * unicast, dump failed record sends to the retry queue; if
817 		 * sk == NULL due to previous failures we will just do the
818 		 * multicast send and move the record to the retry queue */
819 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
820 					kauditd_send_multicast_skb,
821 					kauditd_retry_skb);
822 		if (sk == NULL || rc < 0)
823 			auditd_reset();
824 		sk = NULL;
825 
826 		/* drop our netns reference, no auditd sends past this line */
827 		if (net) {
828 			put_net(net);
829 			net = NULL;
830 		}
831 
832 		/* we have processed all the queues so wake everyone */
833 		wake_up(&audit_backlog_wait);
834 
835 		/* NOTE: we want to wake up if there is anything on the queue,
836 		 *       regardless of if an auditd is connected, as we need to
837 		 *       do the multicast send and rotate records from the
838 		 *       main queue to the retry/hold queues */
839 		wait_event_freezable(kauditd_wait,
840 				     (skb_queue_len(&audit_queue) ? 1 : 0));
841 	}
842 
843 	return 0;
844 }
845 
846 int audit_send_list(void *_dest)
847 {
848 	struct audit_netlink_list *dest = _dest;
849 	struct sk_buff *skb;
850 	struct sock *sk = audit_get_sk(dest->net);
851 
852 	/* wait for parent to finish and send an ACK */
853 	mutex_lock(&audit_cmd_mutex);
854 	mutex_unlock(&audit_cmd_mutex);
855 
856 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
857 		netlink_unicast(sk, skb, dest->portid, 0);
858 
859 	put_net(dest->net);
860 	kfree(dest);
861 
862 	return 0;
863 }
864 
865 struct sk_buff *audit_make_reply(int seq, int type, int done,
866 				 int multi, const void *payload, int size)
867 {
868 	struct sk_buff	*skb;
869 	struct nlmsghdr	*nlh;
870 	void		*data;
871 	int		flags = multi ? NLM_F_MULTI : 0;
872 	int		t     = done  ? NLMSG_DONE  : type;
873 
874 	skb = nlmsg_new(size, GFP_KERNEL);
875 	if (!skb)
876 		return NULL;
877 
878 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
879 	if (!nlh)
880 		goto out_kfree_skb;
881 	data = nlmsg_data(nlh);
882 	memcpy(data, payload, size);
883 	return skb;
884 
885 out_kfree_skb:
886 	kfree_skb(skb);
887 	return NULL;
888 }
889 
890 static int audit_send_reply_thread(void *arg)
891 {
892 	struct audit_reply *reply = (struct audit_reply *)arg;
893 	struct sock *sk = audit_get_sk(reply->net);
894 
895 	mutex_lock(&audit_cmd_mutex);
896 	mutex_unlock(&audit_cmd_mutex);
897 
898 	/* Ignore failure. It'll only happen if the sender goes away,
899 	   because our timeout is set to infinite. */
900 	netlink_unicast(sk, reply->skb, reply->portid, 0);
901 	put_net(reply->net);
902 	kfree(reply);
903 	return 0;
904 }
905 
906 /**
907  * audit_send_reply - send an audit reply message via netlink
908  * @request_skb: skb of request we are replying to (used to target the reply)
909  * @seq: sequence number
910  * @type: audit message type
911  * @done: done (last) flag
912  * @multi: multi-part message flag
913  * @payload: payload data
914  * @size: payload size
915  *
916  * Allocates an skb, builds the netlink message, and sends it to the port id.
917  * No failure notifications.
918  */
919 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
920 			     int multi, const void *payload, int size)
921 {
922 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
923 	struct sk_buff *skb;
924 	struct task_struct *tsk;
925 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
926 					    GFP_KERNEL);
927 
928 	if (!reply)
929 		return;
930 
931 	skb = audit_make_reply(seq, type, done, multi, payload, size);
932 	if (!skb)
933 		goto out;
934 
935 	reply->net = get_net(net);
936 	reply->portid = NETLINK_CB(request_skb).portid;
937 	reply->skb = skb;
938 
939 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
940 	if (!IS_ERR(tsk))
941 		return;
942 	kfree_skb(skb);
943 out:
944 	kfree(reply);
945 }
946 
947 /*
948  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
949  * control messages.
950  */
951 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
952 {
953 	int err = 0;
954 
955 	/* Only support initial user namespace for now. */
956 	/*
957 	 * We return ECONNREFUSED because it tricks userspace into thinking
958 	 * that audit was not configured into the kernel.  Lots of users
959 	 * configure their PAM stack (because that's what the distro does)
960 	 * to reject login if unable to send messages to audit.  If we return
961 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
962 	 * configured in and will let login proceed.  If we return EPERM
963 	 * userspace will reject all logins.  This should be removed when we
964 	 * support non init namespaces!!
965 	 */
966 	if (current_user_ns() != &init_user_ns)
967 		return -ECONNREFUSED;
968 
969 	switch (msg_type) {
970 	case AUDIT_LIST:
971 	case AUDIT_ADD:
972 	case AUDIT_DEL:
973 		return -EOPNOTSUPP;
974 	case AUDIT_GET:
975 	case AUDIT_SET:
976 	case AUDIT_GET_FEATURE:
977 	case AUDIT_SET_FEATURE:
978 	case AUDIT_LIST_RULES:
979 	case AUDIT_ADD_RULE:
980 	case AUDIT_DEL_RULE:
981 	case AUDIT_SIGNAL_INFO:
982 	case AUDIT_TTY_GET:
983 	case AUDIT_TTY_SET:
984 	case AUDIT_TRIM:
985 	case AUDIT_MAKE_EQUIV:
986 		/* Only support auditd and auditctl in initial pid namespace
987 		 * for now. */
988 		if (task_active_pid_ns(current) != &init_pid_ns)
989 			return -EPERM;
990 
991 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
992 			err = -EPERM;
993 		break;
994 	case AUDIT_USER:
995 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
996 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
997 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
998 			err = -EPERM;
999 		break;
1000 	default:  /* bad msg */
1001 		err = -EINVAL;
1002 	}
1003 
1004 	return err;
1005 }
1006 
1007 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1008 {
1009 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1010 	pid_t pid = task_tgid_nr(current);
1011 
1012 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1013 		*ab = NULL;
1014 		return;
1015 	}
1016 
1017 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1018 	if (unlikely(!*ab))
1019 		return;
1020 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1021 	audit_log_session_info(*ab);
1022 	audit_log_task_context(*ab);
1023 }
1024 
1025 int is_audit_feature_set(int i)
1026 {
1027 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1028 }
1029 
1030 
1031 static int audit_get_feature(struct sk_buff *skb)
1032 {
1033 	u32 seq;
1034 
1035 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1036 
1037 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1038 
1039 	return 0;
1040 }
1041 
1042 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1043 				     u32 old_lock, u32 new_lock, int res)
1044 {
1045 	struct audit_buffer *ab;
1046 
1047 	if (audit_enabled == AUDIT_OFF)
1048 		return;
1049 
1050 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1051 	audit_log_task_info(ab, current);
1052 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1053 			 audit_feature_names[which], !!old_feature, !!new_feature,
1054 			 !!old_lock, !!new_lock, res);
1055 	audit_log_end(ab);
1056 }
1057 
1058 static int audit_set_feature(struct sk_buff *skb)
1059 {
1060 	struct audit_features *uaf;
1061 	int i;
1062 
1063 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1064 	uaf = nlmsg_data(nlmsg_hdr(skb));
1065 
1066 	/* if there is ever a version 2 we should handle that here */
1067 
1068 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1069 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1070 		u32 old_feature, new_feature, old_lock, new_lock;
1071 
1072 		/* if we are not changing this feature, move along */
1073 		if (!(feature & uaf->mask))
1074 			continue;
1075 
1076 		old_feature = af.features & feature;
1077 		new_feature = uaf->features & feature;
1078 		new_lock = (uaf->lock | af.lock) & feature;
1079 		old_lock = af.lock & feature;
1080 
1081 		/* are we changing a locked feature? */
1082 		if (old_lock && (new_feature != old_feature)) {
1083 			audit_log_feature_change(i, old_feature, new_feature,
1084 						 old_lock, new_lock, 0);
1085 			return -EPERM;
1086 		}
1087 	}
1088 	/* nothing invalid, do the changes */
1089 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1090 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1091 		u32 old_feature, new_feature, old_lock, new_lock;
1092 
1093 		/* if we are not changing this feature, move along */
1094 		if (!(feature & uaf->mask))
1095 			continue;
1096 
1097 		old_feature = af.features & feature;
1098 		new_feature = uaf->features & feature;
1099 		old_lock = af.lock & feature;
1100 		new_lock = (uaf->lock | af.lock) & feature;
1101 
1102 		if (new_feature != old_feature)
1103 			audit_log_feature_change(i, old_feature, new_feature,
1104 						 old_lock, new_lock, 1);
1105 
1106 		if (new_feature)
1107 			af.features |= feature;
1108 		else
1109 			af.features &= ~feature;
1110 		af.lock |= new_lock;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 static int audit_replace(struct pid *pid)
1117 {
1118 	pid_t pvnr;
1119 	struct sk_buff *skb;
1120 
1121 	pvnr = pid_vnr(pid);
1122 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1123 	if (!skb)
1124 		return -ENOMEM;
1125 	return auditd_send_unicast_skb(skb);
1126 }
1127 
1128 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1129 {
1130 	u32			seq;
1131 	void			*data;
1132 	int			err;
1133 	struct audit_buffer	*ab;
1134 	u16			msg_type = nlh->nlmsg_type;
1135 	struct audit_sig_info   *sig_data;
1136 	char			*ctx = NULL;
1137 	u32			len;
1138 
1139 	err = audit_netlink_ok(skb, msg_type);
1140 	if (err)
1141 		return err;
1142 
1143 	seq  = nlh->nlmsg_seq;
1144 	data = nlmsg_data(nlh);
1145 
1146 	switch (msg_type) {
1147 	case AUDIT_GET: {
1148 		struct audit_status	s;
1149 		memset(&s, 0, sizeof(s));
1150 		s.enabled		= audit_enabled;
1151 		s.failure		= audit_failure;
1152 		/* NOTE: use pid_vnr() so the PID is relative to the current
1153 		 *       namespace */
1154 		s.pid			= auditd_pid_vnr();
1155 		s.rate_limit		= audit_rate_limit;
1156 		s.backlog_limit		= audit_backlog_limit;
1157 		s.lost			= atomic_read(&audit_lost);
1158 		s.backlog		= skb_queue_len(&audit_queue);
1159 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1160 		s.backlog_wait_time	= audit_backlog_wait_time;
1161 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1162 		break;
1163 	}
1164 	case AUDIT_SET: {
1165 		struct audit_status	s;
1166 		memset(&s, 0, sizeof(s));
1167 		/* guard against past and future API changes */
1168 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1169 		if (s.mask & AUDIT_STATUS_ENABLED) {
1170 			err = audit_set_enabled(s.enabled);
1171 			if (err < 0)
1172 				return err;
1173 		}
1174 		if (s.mask & AUDIT_STATUS_FAILURE) {
1175 			err = audit_set_failure(s.failure);
1176 			if (err < 0)
1177 				return err;
1178 		}
1179 		if (s.mask & AUDIT_STATUS_PID) {
1180 			/* NOTE: we are using the vnr PID functions below
1181 			 *       because the s.pid value is relative to the
1182 			 *       namespace of the caller; at present this
1183 			 *       doesn't matter much since you can really only
1184 			 *       run auditd from the initial pid namespace, but
1185 			 *       something to keep in mind if this changes */
1186 			pid_t new_pid = s.pid;
1187 			pid_t auditd_pid;
1188 			struct pid *req_pid = task_tgid(current);
1189 
1190 			/* sanity check - PID values must match */
1191 			if (new_pid != pid_vnr(req_pid))
1192 				return -EINVAL;
1193 
1194 			/* test the auditd connection */
1195 			audit_replace(req_pid);
1196 
1197 			auditd_pid = auditd_pid_vnr();
1198 			/* only the current auditd can unregister itself */
1199 			if ((!new_pid) && (new_pid != auditd_pid)) {
1200 				audit_log_config_change("audit_pid", new_pid,
1201 							auditd_pid, 0);
1202 				return -EACCES;
1203 			}
1204 			/* replacing a healthy auditd is not allowed */
1205 			if (auditd_pid && new_pid) {
1206 				audit_log_config_change("audit_pid", new_pid,
1207 							auditd_pid, 0);
1208 				return -EEXIST;
1209 			}
1210 
1211 			if (new_pid) {
1212 				/* register a new auditd connection */
1213 				err = auditd_set(req_pid,
1214 						 NETLINK_CB(skb).portid,
1215 						 sock_net(NETLINK_CB(skb).sk));
1216 				if (audit_enabled != AUDIT_OFF)
1217 					audit_log_config_change("audit_pid",
1218 								new_pid,
1219 								auditd_pid,
1220 								err ? 0 : 1);
1221 				if (err)
1222 					return err;
1223 
1224 				/* try to process any backlog */
1225 				wake_up_interruptible(&kauditd_wait);
1226 			} else {
1227 				if (audit_enabled != AUDIT_OFF)
1228 					audit_log_config_change("audit_pid",
1229 								new_pid,
1230 								auditd_pid, 1);
1231 
1232 				/* unregister the auditd connection */
1233 				auditd_reset();
1234 			}
1235 		}
1236 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1237 			err = audit_set_rate_limit(s.rate_limit);
1238 			if (err < 0)
1239 				return err;
1240 		}
1241 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1242 			err = audit_set_backlog_limit(s.backlog_limit);
1243 			if (err < 0)
1244 				return err;
1245 		}
1246 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1247 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1248 				return -EINVAL;
1249 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1250 				return -EINVAL;
1251 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1252 			if (err < 0)
1253 				return err;
1254 		}
1255 		if (s.mask == AUDIT_STATUS_LOST) {
1256 			u32 lost = atomic_xchg(&audit_lost, 0);
1257 
1258 			audit_log_config_change("lost", 0, lost, 1);
1259 			return lost;
1260 		}
1261 		break;
1262 	}
1263 	case AUDIT_GET_FEATURE:
1264 		err = audit_get_feature(skb);
1265 		if (err)
1266 			return err;
1267 		break;
1268 	case AUDIT_SET_FEATURE:
1269 		err = audit_set_feature(skb);
1270 		if (err)
1271 			return err;
1272 		break;
1273 	case AUDIT_USER:
1274 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1275 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1276 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1277 			return 0;
1278 
1279 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1280 		if (err == 1) { /* match or error */
1281 			err = 0;
1282 			if (msg_type == AUDIT_USER_TTY) {
1283 				err = tty_audit_push();
1284 				if (err)
1285 					break;
1286 			}
1287 			audit_log_common_recv_msg(&ab, msg_type);
1288 			if (msg_type != AUDIT_USER_TTY)
1289 				audit_log_format(ab, " msg='%.*s'",
1290 						 AUDIT_MESSAGE_TEXT_MAX,
1291 						 (char *)data);
1292 			else {
1293 				int size;
1294 
1295 				audit_log_format(ab, " data=");
1296 				size = nlmsg_len(nlh);
1297 				if (size > 0 &&
1298 				    ((unsigned char *)data)[size - 1] == '\0')
1299 					size--;
1300 				audit_log_n_untrustedstring(ab, data, size);
1301 			}
1302 			audit_log_end(ab);
1303 		}
1304 		break;
1305 	case AUDIT_ADD_RULE:
1306 	case AUDIT_DEL_RULE:
1307 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1308 			return -EINVAL;
1309 		if (audit_enabled == AUDIT_LOCKED) {
1310 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1311 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1312 			audit_log_end(ab);
1313 			return -EPERM;
1314 		}
1315 		err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1316 		break;
1317 	case AUDIT_LIST_RULES:
1318 		err = audit_list_rules_send(skb, seq);
1319 		break;
1320 	case AUDIT_TRIM:
1321 		audit_trim_trees();
1322 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1323 		audit_log_format(ab, " op=trim res=1");
1324 		audit_log_end(ab);
1325 		break;
1326 	case AUDIT_MAKE_EQUIV: {
1327 		void *bufp = data;
1328 		u32 sizes[2];
1329 		size_t msglen = nlmsg_len(nlh);
1330 		char *old, *new;
1331 
1332 		err = -EINVAL;
1333 		if (msglen < 2 * sizeof(u32))
1334 			break;
1335 		memcpy(sizes, bufp, 2 * sizeof(u32));
1336 		bufp += 2 * sizeof(u32);
1337 		msglen -= 2 * sizeof(u32);
1338 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1339 		if (IS_ERR(old)) {
1340 			err = PTR_ERR(old);
1341 			break;
1342 		}
1343 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1344 		if (IS_ERR(new)) {
1345 			err = PTR_ERR(new);
1346 			kfree(old);
1347 			break;
1348 		}
1349 		/* OK, here comes... */
1350 		err = audit_tag_tree(old, new);
1351 
1352 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1353 
1354 		audit_log_format(ab, " op=make_equiv old=");
1355 		audit_log_untrustedstring(ab, old);
1356 		audit_log_format(ab, " new=");
1357 		audit_log_untrustedstring(ab, new);
1358 		audit_log_format(ab, " res=%d", !err);
1359 		audit_log_end(ab);
1360 		kfree(old);
1361 		kfree(new);
1362 		break;
1363 	}
1364 	case AUDIT_SIGNAL_INFO:
1365 		len = 0;
1366 		if (audit_sig_sid) {
1367 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1368 			if (err)
1369 				return err;
1370 		}
1371 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1372 		if (!sig_data) {
1373 			if (audit_sig_sid)
1374 				security_release_secctx(ctx, len);
1375 			return -ENOMEM;
1376 		}
1377 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1378 		sig_data->pid = audit_sig_pid;
1379 		if (audit_sig_sid) {
1380 			memcpy(sig_data->ctx, ctx, len);
1381 			security_release_secctx(ctx, len);
1382 		}
1383 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1384 				 sig_data, sizeof(*sig_data) + len);
1385 		kfree(sig_data);
1386 		break;
1387 	case AUDIT_TTY_GET: {
1388 		struct audit_tty_status s;
1389 		unsigned int t;
1390 
1391 		t = READ_ONCE(current->signal->audit_tty);
1392 		s.enabled = t & AUDIT_TTY_ENABLE;
1393 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1394 
1395 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1396 		break;
1397 	}
1398 	case AUDIT_TTY_SET: {
1399 		struct audit_tty_status s, old;
1400 		struct audit_buffer	*ab;
1401 		unsigned int t;
1402 
1403 		memset(&s, 0, sizeof(s));
1404 		/* guard against past and future API changes */
1405 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1406 		/* check if new data is valid */
1407 		if ((s.enabled != 0 && s.enabled != 1) ||
1408 		    (s.log_passwd != 0 && s.log_passwd != 1))
1409 			err = -EINVAL;
1410 
1411 		if (err)
1412 			t = READ_ONCE(current->signal->audit_tty);
1413 		else {
1414 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1415 			t = xchg(&current->signal->audit_tty, t);
1416 		}
1417 		old.enabled = t & AUDIT_TTY_ENABLE;
1418 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1419 
1420 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1421 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1422 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1423 				 old.enabled, s.enabled, old.log_passwd,
1424 				 s.log_passwd, !err);
1425 		audit_log_end(ab);
1426 		break;
1427 	}
1428 	default:
1429 		err = -EINVAL;
1430 		break;
1431 	}
1432 
1433 	return err < 0 ? err : 0;
1434 }
1435 
1436 /**
1437  * audit_receive - receive messages from a netlink control socket
1438  * @skb: the message buffer
1439  *
1440  * Parse the provided skb and deal with any messages that may be present,
1441  * malformed skbs are discarded.
1442  */
1443 static void audit_receive(struct sk_buff  *skb)
1444 {
1445 	struct nlmsghdr *nlh;
1446 	/*
1447 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1448 	 * if the nlmsg_len was not aligned
1449 	 */
1450 	int len;
1451 	int err;
1452 
1453 	nlh = nlmsg_hdr(skb);
1454 	len = skb->len;
1455 
1456 	mutex_lock(&audit_cmd_mutex);
1457 	while (nlmsg_ok(nlh, len)) {
1458 		err = audit_receive_msg(skb, nlh);
1459 		/* if err or if this message says it wants a response */
1460 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1461 			netlink_ack(skb, nlh, err, NULL);
1462 
1463 		nlh = nlmsg_next(nlh, &len);
1464 	}
1465 	mutex_unlock(&audit_cmd_mutex);
1466 }
1467 
1468 /* Run custom bind function on netlink socket group connect or bind requests. */
1469 static int audit_bind(struct net *net, int group)
1470 {
1471 	if (!capable(CAP_AUDIT_READ))
1472 		return -EPERM;
1473 
1474 	return 0;
1475 }
1476 
1477 static int __net_init audit_net_init(struct net *net)
1478 {
1479 	struct netlink_kernel_cfg cfg = {
1480 		.input	= audit_receive,
1481 		.bind	= audit_bind,
1482 		.flags	= NL_CFG_F_NONROOT_RECV,
1483 		.groups	= AUDIT_NLGRP_MAX,
1484 	};
1485 
1486 	struct audit_net *aunet = net_generic(net, audit_net_id);
1487 
1488 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1489 	if (aunet->sk == NULL) {
1490 		audit_panic("cannot initialize netlink socket in namespace");
1491 		return -ENOMEM;
1492 	}
1493 	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1494 
1495 	return 0;
1496 }
1497 
1498 static void __net_exit audit_net_exit(struct net *net)
1499 {
1500 	struct audit_net *aunet = net_generic(net, audit_net_id);
1501 
1502 	/* NOTE: you would think that we would want to check the auditd
1503 	 * connection and potentially reset it here if it lives in this
1504 	 * namespace, but since the auditd connection tracking struct holds a
1505 	 * reference to this namespace (see auditd_set()) we are only ever
1506 	 * going to get here after that connection has been released */
1507 
1508 	netlink_kernel_release(aunet->sk);
1509 }
1510 
1511 static struct pernet_operations audit_net_ops __net_initdata = {
1512 	.init = audit_net_init,
1513 	.exit = audit_net_exit,
1514 	.id = &audit_net_id,
1515 	.size = sizeof(struct audit_net),
1516 };
1517 
1518 /* Initialize audit support at boot time. */
1519 static int __init audit_init(void)
1520 {
1521 	int i;
1522 
1523 	if (audit_initialized == AUDIT_DISABLED)
1524 		return 0;
1525 
1526 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1527 					       sizeof(struct audit_buffer),
1528 					       0, SLAB_PANIC, NULL);
1529 
1530 	skb_queue_head_init(&audit_queue);
1531 	skb_queue_head_init(&audit_retry_queue);
1532 	skb_queue_head_init(&audit_hold_queue);
1533 
1534 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1535 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1536 
1537 	pr_info("initializing netlink subsys (%s)\n",
1538 		audit_default ? "enabled" : "disabled");
1539 	register_pernet_subsys(&audit_net_ops);
1540 
1541 	audit_initialized = AUDIT_INITIALIZED;
1542 	audit_enabled = audit_default;
1543 	audit_ever_enabled |= !!audit_default;
1544 
1545 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1546 	if (IS_ERR(kauditd_task)) {
1547 		int err = PTR_ERR(kauditd_task);
1548 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1549 	}
1550 
1551 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1552 		"state=initialized audit_enabled=%u res=1",
1553 		 audit_enabled);
1554 
1555 	return 0;
1556 }
1557 __initcall(audit_init);
1558 
1559 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1560 static int __init audit_enable(char *str)
1561 {
1562 	audit_default = !!simple_strtol(str, NULL, 0);
1563 	if (!audit_default)
1564 		audit_initialized = AUDIT_DISABLED;
1565 
1566 	pr_info("%s\n", audit_default ?
1567 		"enabled (after initialization)" : "disabled (until reboot)");
1568 
1569 	return 1;
1570 }
1571 __setup("audit=", audit_enable);
1572 
1573 /* Process kernel command-line parameter at boot time.
1574  * audit_backlog_limit=<n> */
1575 static int __init audit_backlog_limit_set(char *str)
1576 {
1577 	u32 audit_backlog_limit_arg;
1578 
1579 	pr_info("audit_backlog_limit: ");
1580 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1581 		pr_cont("using default of %u, unable to parse %s\n",
1582 			audit_backlog_limit, str);
1583 		return 1;
1584 	}
1585 
1586 	audit_backlog_limit = audit_backlog_limit_arg;
1587 	pr_cont("%d\n", audit_backlog_limit);
1588 
1589 	return 1;
1590 }
1591 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1592 
1593 static void audit_buffer_free(struct audit_buffer *ab)
1594 {
1595 	if (!ab)
1596 		return;
1597 
1598 	kfree_skb(ab->skb);
1599 	kmem_cache_free(audit_buffer_cache, ab);
1600 }
1601 
1602 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1603 					       gfp_t gfp_mask, int type)
1604 {
1605 	struct audit_buffer *ab;
1606 
1607 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1608 	if (!ab)
1609 		return NULL;
1610 
1611 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1612 	if (!ab->skb)
1613 		goto err;
1614 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1615 		goto err;
1616 
1617 	ab->ctx = ctx;
1618 	ab->gfp_mask = gfp_mask;
1619 
1620 	return ab;
1621 
1622 err:
1623 	audit_buffer_free(ab);
1624 	return NULL;
1625 }
1626 
1627 /**
1628  * audit_serial - compute a serial number for the audit record
1629  *
1630  * Compute a serial number for the audit record.  Audit records are
1631  * written to user-space as soon as they are generated, so a complete
1632  * audit record may be written in several pieces.  The timestamp of the
1633  * record and this serial number are used by the user-space tools to
1634  * determine which pieces belong to the same audit record.  The
1635  * (timestamp,serial) tuple is unique for each syscall and is live from
1636  * syscall entry to syscall exit.
1637  *
1638  * NOTE: Another possibility is to store the formatted records off the
1639  * audit context (for those records that have a context), and emit them
1640  * all at syscall exit.  However, this could delay the reporting of
1641  * significant errors until syscall exit (or never, if the system
1642  * halts).
1643  */
1644 unsigned int audit_serial(void)
1645 {
1646 	static atomic_t serial = ATOMIC_INIT(0);
1647 
1648 	return atomic_add_return(1, &serial);
1649 }
1650 
1651 static inline void audit_get_stamp(struct audit_context *ctx,
1652 				   struct timespec64 *t, unsigned int *serial)
1653 {
1654 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1655 		ktime_get_real_ts64(t);
1656 		*serial = audit_serial();
1657 	}
1658 }
1659 
1660 /**
1661  * audit_log_start - obtain an audit buffer
1662  * @ctx: audit_context (may be NULL)
1663  * @gfp_mask: type of allocation
1664  * @type: audit message type
1665  *
1666  * Returns audit_buffer pointer on success or NULL on error.
1667  *
1668  * Obtain an audit buffer.  This routine does locking to obtain the
1669  * audit buffer, but then no locking is required for calls to
1670  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1671  * syscall, then the syscall is marked as auditable and an audit record
1672  * will be written at syscall exit.  If there is no associated task, then
1673  * task context (ctx) should be NULL.
1674  */
1675 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1676 				     int type)
1677 {
1678 	struct audit_buffer *ab;
1679 	struct timespec64 t;
1680 	unsigned int uninitialized_var(serial);
1681 
1682 	if (audit_initialized != AUDIT_INITIALIZED)
1683 		return NULL;
1684 
1685 	if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1686 		return NULL;
1687 
1688 	/* NOTE: don't ever fail/sleep on these two conditions:
1689 	 * 1. auditd generated record - since we need auditd to drain the
1690 	 *    queue; also, when we are checking for auditd, compare PIDs using
1691 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1692 	 *    using a PID anchored in the caller's namespace
1693 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1694 	 *    while holding the mutex */
1695 	if (!(auditd_test_task(current) ||
1696 	      (current == __mutex_owner(&audit_cmd_mutex)))) {
1697 		long stime = audit_backlog_wait_time;
1698 
1699 		while (audit_backlog_limit &&
1700 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1701 			/* wake kauditd to try and flush the queue */
1702 			wake_up_interruptible(&kauditd_wait);
1703 
1704 			/* sleep if we are allowed and we haven't exhausted our
1705 			 * backlog wait limit */
1706 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1707 				DECLARE_WAITQUEUE(wait, current);
1708 
1709 				add_wait_queue_exclusive(&audit_backlog_wait,
1710 							 &wait);
1711 				set_current_state(TASK_UNINTERRUPTIBLE);
1712 				stime = schedule_timeout(stime);
1713 				remove_wait_queue(&audit_backlog_wait, &wait);
1714 			} else {
1715 				if (audit_rate_check() && printk_ratelimit())
1716 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1717 						skb_queue_len(&audit_queue),
1718 						audit_backlog_limit);
1719 				audit_log_lost("backlog limit exceeded");
1720 				return NULL;
1721 			}
1722 		}
1723 	}
1724 
1725 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1726 	if (!ab) {
1727 		audit_log_lost("out of memory in audit_log_start");
1728 		return NULL;
1729 	}
1730 
1731 	audit_get_stamp(ab->ctx, &t, &serial);
1732 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1733 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1734 
1735 	return ab;
1736 }
1737 
1738 /**
1739  * audit_expand - expand skb in the audit buffer
1740  * @ab: audit_buffer
1741  * @extra: space to add at tail of the skb
1742  *
1743  * Returns 0 (no space) on failed expansion, or available space if
1744  * successful.
1745  */
1746 static inline int audit_expand(struct audit_buffer *ab, int extra)
1747 {
1748 	struct sk_buff *skb = ab->skb;
1749 	int oldtail = skb_tailroom(skb);
1750 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1751 	int newtail = skb_tailroom(skb);
1752 
1753 	if (ret < 0) {
1754 		audit_log_lost("out of memory in audit_expand");
1755 		return 0;
1756 	}
1757 
1758 	skb->truesize += newtail - oldtail;
1759 	return newtail;
1760 }
1761 
1762 /*
1763  * Format an audit message into the audit buffer.  If there isn't enough
1764  * room in the audit buffer, more room will be allocated and vsnprint
1765  * will be called a second time.  Currently, we assume that a printk
1766  * can't format message larger than 1024 bytes, so we don't either.
1767  */
1768 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1769 			      va_list args)
1770 {
1771 	int len, avail;
1772 	struct sk_buff *skb;
1773 	va_list args2;
1774 
1775 	if (!ab)
1776 		return;
1777 
1778 	BUG_ON(!ab->skb);
1779 	skb = ab->skb;
1780 	avail = skb_tailroom(skb);
1781 	if (avail == 0) {
1782 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1783 		if (!avail)
1784 			goto out;
1785 	}
1786 	va_copy(args2, args);
1787 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1788 	if (len >= avail) {
1789 		/* The printk buffer is 1024 bytes long, so if we get
1790 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1791 		 * log everything that printk could have logged. */
1792 		avail = audit_expand(ab,
1793 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1794 		if (!avail)
1795 			goto out_va_end;
1796 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1797 	}
1798 	if (len > 0)
1799 		skb_put(skb, len);
1800 out_va_end:
1801 	va_end(args2);
1802 out:
1803 	return;
1804 }
1805 
1806 /**
1807  * audit_log_format - format a message into the audit buffer.
1808  * @ab: audit_buffer
1809  * @fmt: format string
1810  * @...: optional parameters matching @fmt string
1811  *
1812  * All the work is done in audit_log_vformat.
1813  */
1814 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1815 {
1816 	va_list args;
1817 
1818 	if (!ab)
1819 		return;
1820 	va_start(args, fmt);
1821 	audit_log_vformat(ab, fmt, args);
1822 	va_end(args);
1823 }
1824 
1825 /**
1826  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1827  * @ab: the audit_buffer
1828  * @buf: buffer to convert to hex
1829  * @len: length of @buf to be converted
1830  *
1831  * No return value; failure to expand is silently ignored.
1832  *
1833  * This function will take the passed buf and convert it into a string of
1834  * ascii hex digits. The new string is placed onto the skb.
1835  */
1836 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1837 		size_t len)
1838 {
1839 	int i, avail, new_len;
1840 	unsigned char *ptr;
1841 	struct sk_buff *skb;
1842 
1843 	if (!ab)
1844 		return;
1845 
1846 	BUG_ON(!ab->skb);
1847 	skb = ab->skb;
1848 	avail = skb_tailroom(skb);
1849 	new_len = len<<1;
1850 	if (new_len >= avail) {
1851 		/* Round the buffer request up to the next multiple */
1852 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1853 		avail = audit_expand(ab, new_len);
1854 		if (!avail)
1855 			return;
1856 	}
1857 
1858 	ptr = skb_tail_pointer(skb);
1859 	for (i = 0; i < len; i++)
1860 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1861 	*ptr = 0;
1862 	skb_put(skb, len << 1); /* new string is twice the old string */
1863 }
1864 
1865 /*
1866  * Format a string of no more than slen characters into the audit buffer,
1867  * enclosed in quote marks.
1868  */
1869 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1870 			size_t slen)
1871 {
1872 	int avail, new_len;
1873 	unsigned char *ptr;
1874 	struct sk_buff *skb;
1875 
1876 	if (!ab)
1877 		return;
1878 
1879 	BUG_ON(!ab->skb);
1880 	skb = ab->skb;
1881 	avail = skb_tailroom(skb);
1882 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1883 	if (new_len > avail) {
1884 		avail = audit_expand(ab, new_len);
1885 		if (!avail)
1886 			return;
1887 	}
1888 	ptr = skb_tail_pointer(skb);
1889 	*ptr++ = '"';
1890 	memcpy(ptr, string, slen);
1891 	ptr += slen;
1892 	*ptr++ = '"';
1893 	*ptr = 0;
1894 	skb_put(skb, slen + 2);	/* don't include null terminator */
1895 }
1896 
1897 /**
1898  * audit_string_contains_control - does a string need to be logged in hex
1899  * @string: string to be checked
1900  * @len: max length of the string to check
1901  */
1902 bool audit_string_contains_control(const char *string, size_t len)
1903 {
1904 	const unsigned char *p;
1905 	for (p = string; p < (const unsigned char *)string + len; p++) {
1906 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1907 			return true;
1908 	}
1909 	return false;
1910 }
1911 
1912 /**
1913  * audit_log_n_untrustedstring - log a string that may contain random characters
1914  * @ab: audit_buffer
1915  * @len: length of string (not including trailing null)
1916  * @string: string to be logged
1917  *
1918  * This code will escape a string that is passed to it if the string
1919  * contains a control character, unprintable character, double quote mark,
1920  * or a space. Unescaped strings will start and end with a double quote mark.
1921  * Strings that are escaped are printed in hex (2 digits per char).
1922  *
1923  * The caller specifies the number of characters in the string to log, which may
1924  * or may not be the entire string.
1925  */
1926 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1927 				 size_t len)
1928 {
1929 	if (audit_string_contains_control(string, len))
1930 		audit_log_n_hex(ab, string, len);
1931 	else
1932 		audit_log_n_string(ab, string, len);
1933 }
1934 
1935 /**
1936  * audit_log_untrustedstring - log a string that may contain random characters
1937  * @ab: audit_buffer
1938  * @string: string to be logged
1939  *
1940  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1941  * determine string length.
1942  */
1943 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1944 {
1945 	audit_log_n_untrustedstring(ab, string, strlen(string));
1946 }
1947 
1948 /* This is a helper-function to print the escaped d_path */
1949 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1950 		      const struct path *path)
1951 {
1952 	char *p, *pathname;
1953 
1954 	if (prefix)
1955 		audit_log_format(ab, "%s", prefix);
1956 
1957 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1958 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1959 	if (!pathname) {
1960 		audit_log_string(ab, "<no_memory>");
1961 		return;
1962 	}
1963 	p = d_path(path, pathname, PATH_MAX+11);
1964 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1965 		/* FIXME: can we save some information here? */
1966 		audit_log_string(ab, "<too_long>");
1967 	} else
1968 		audit_log_untrustedstring(ab, p);
1969 	kfree(pathname);
1970 }
1971 
1972 void audit_log_session_info(struct audit_buffer *ab)
1973 {
1974 	unsigned int sessionid = audit_get_sessionid(current);
1975 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1976 
1977 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1978 }
1979 
1980 void audit_log_key(struct audit_buffer *ab, char *key)
1981 {
1982 	audit_log_format(ab, " key=");
1983 	if (key)
1984 		audit_log_untrustedstring(ab, key);
1985 	else
1986 		audit_log_format(ab, "(null)");
1987 }
1988 
1989 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1990 {
1991 	int i;
1992 
1993 	audit_log_format(ab, " %s=", prefix);
1994 	CAP_FOR_EACH_U32(i) {
1995 		audit_log_format(ab, "%08x",
1996 				 cap->cap[CAP_LAST_U32 - i]);
1997 	}
1998 }
1999 
2000 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2001 {
2002 	kernel_cap_t *perm = &name->fcap.permitted;
2003 	kernel_cap_t *inh = &name->fcap.inheritable;
2004 	int log = 0;
2005 
2006 	if (!cap_isclear(*perm)) {
2007 		audit_log_cap(ab, "cap_fp", perm);
2008 		log = 1;
2009 	}
2010 	if (!cap_isclear(*inh)) {
2011 		audit_log_cap(ab, "cap_fi", inh);
2012 		log = 1;
2013 	}
2014 
2015 	if (log)
2016 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2017 				 name->fcap.fE, name->fcap_ver);
2018 }
2019 
2020 static inline int audit_copy_fcaps(struct audit_names *name,
2021 				   const struct dentry *dentry)
2022 {
2023 	struct cpu_vfs_cap_data caps;
2024 	int rc;
2025 
2026 	if (!dentry)
2027 		return 0;
2028 
2029 	rc = get_vfs_caps_from_disk(dentry, &caps);
2030 	if (rc)
2031 		return rc;
2032 
2033 	name->fcap.permitted = caps.permitted;
2034 	name->fcap.inheritable = caps.inheritable;
2035 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2036 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2037 				VFS_CAP_REVISION_SHIFT;
2038 
2039 	return 0;
2040 }
2041 
2042 /* Copy inode data into an audit_names. */
2043 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2044 		      struct inode *inode)
2045 {
2046 	name->ino   = inode->i_ino;
2047 	name->dev   = inode->i_sb->s_dev;
2048 	name->mode  = inode->i_mode;
2049 	name->uid   = inode->i_uid;
2050 	name->gid   = inode->i_gid;
2051 	name->rdev  = inode->i_rdev;
2052 	security_inode_getsecid(inode, &name->osid);
2053 	audit_copy_fcaps(name, dentry);
2054 }
2055 
2056 /**
2057  * audit_log_name - produce AUDIT_PATH record from struct audit_names
2058  * @context: audit_context for the task
2059  * @n: audit_names structure with reportable details
2060  * @path: optional path to report instead of audit_names->name
2061  * @record_num: record number to report when handling a list of names
2062  * @call_panic: optional pointer to int that will be updated if secid fails
2063  */
2064 void audit_log_name(struct audit_context *context, struct audit_names *n,
2065 		    const struct path *path, int record_num, int *call_panic)
2066 {
2067 	struct audit_buffer *ab;
2068 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2069 	if (!ab)
2070 		return;
2071 
2072 	audit_log_format(ab, "item=%d", record_num);
2073 
2074 	if (path)
2075 		audit_log_d_path(ab, " name=", path);
2076 	else if (n->name) {
2077 		switch (n->name_len) {
2078 		case AUDIT_NAME_FULL:
2079 			/* log the full path */
2080 			audit_log_format(ab, " name=");
2081 			audit_log_untrustedstring(ab, n->name->name);
2082 			break;
2083 		case 0:
2084 			/* name was specified as a relative path and the
2085 			 * directory component is the cwd */
2086 			audit_log_d_path(ab, " name=", &context->pwd);
2087 			break;
2088 		default:
2089 			/* log the name's directory component */
2090 			audit_log_format(ab, " name=");
2091 			audit_log_n_untrustedstring(ab, n->name->name,
2092 						    n->name_len);
2093 		}
2094 	} else
2095 		audit_log_format(ab, " name=(null)");
2096 
2097 	if (n->ino != AUDIT_INO_UNSET)
2098 		audit_log_format(ab, " inode=%lu"
2099 				 " dev=%02x:%02x mode=%#ho"
2100 				 " ouid=%u ogid=%u rdev=%02x:%02x",
2101 				 n->ino,
2102 				 MAJOR(n->dev),
2103 				 MINOR(n->dev),
2104 				 n->mode,
2105 				 from_kuid(&init_user_ns, n->uid),
2106 				 from_kgid(&init_user_ns, n->gid),
2107 				 MAJOR(n->rdev),
2108 				 MINOR(n->rdev));
2109 	if (n->osid != 0) {
2110 		char *ctx = NULL;
2111 		u32 len;
2112 		if (security_secid_to_secctx(
2113 			n->osid, &ctx, &len)) {
2114 			audit_log_format(ab, " osid=%u", n->osid);
2115 			if (call_panic)
2116 				*call_panic = 2;
2117 		} else {
2118 			audit_log_format(ab, " obj=%s", ctx);
2119 			security_release_secctx(ctx, len);
2120 		}
2121 	}
2122 
2123 	/* log the audit_names record type */
2124 	audit_log_format(ab, " nametype=");
2125 	switch(n->type) {
2126 	case AUDIT_TYPE_NORMAL:
2127 		audit_log_format(ab, "NORMAL");
2128 		break;
2129 	case AUDIT_TYPE_PARENT:
2130 		audit_log_format(ab, "PARENT");
2131 		break;
2132 	case AUDIT_TYPE_CHILD_DELETE:
2133 		audit_log_format(ab, "DELETE");
2134 		break;
2135 	case AUDIT_TYPE_CHILD_CREATE:
2136 		audit_log_format(ab, "CREATE");
2137 		break;
2138 	default:
2139 		audit_log_format(ab, "UNKNOWN");
2140 		break;
2141 	}
2142 
2143 	audit_log_fcaps(ab, n);
2144 	audit_log_end(ab);
2145 }
2146 
2147 int audit_log_task_context(struct audit_buffer *ab)
2148 {
2149 	char *ctx = NULL;
2150 	unsigned len;
2151 	int error;
2152 	u32 sid;
2153 
2154 	security_task_getsecid(current, &sid);
2155 	if (!sid)
2156 		return 0;
2157 
2158 	error = security_secid_to_secctx(sid, &ctx, &len);
2159 	if (error) {
2160 		if (error != -EINVAL)
2161 			goto error_path;
2162 		return 0;
2163 	}
2164 
2165 	audit_log_format(ab, " subj=%s", ctx);
2166 	security_release_secctx(ctx, len);
2167 	return 0;
2168 
2169 error_path:
2170 	audit_panic("error in audit_log_task_context");
2171 	return error;
2172 }
2173 EXPORT_SYMBOL(audit_log_task_context);
2174 
2175 void audit_log_d_path_exe(struct audit_buffer *ab,
2176 			  struct mm_struct *mm)
2177 {
2178 	struct file *exe_file;
2179 
2180 	if (!mm)
2181 		goto out_null;
2182 
2183 	exe_file = get_mm_exe_file(mm);
2184 	if (!exe_file)
2185 		goto out_null;
2186 
2187 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2188 	fput(exe_file);
2189 	return;
2190 out_null:
2191 	audit_log_format(ab, " exe=(null)");
2192 }
2193 
2194 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2195 {
2196 	struct tty_struct *tty = NULL;
2197 	unsigned long flags;
2198 
2199 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2200 	if (tsk->signal)
2201 		tty = tty_kref_get(tsk->signal->tty);
2202 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2203 	return tty;
2204 }
2205 
2206 void audit_put_tty(struct tty_struct *tty)
2207 {
2208 	tty_kref_put(tty);
2209 }
2210 
2211 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2212 {
2213 	const struct cred *cred;
2214 	char comm[sizeof(tsk->comm)];
2215 	struct tty_struct *tty;
2216 
2217 	if (!ab)
2218 		return;
2219 
2220 	/* tsk == current */
2221 	cred = current_cred();
2222 	tty = audit_get_tty(tsk);
2223 	audit_log_format(ab,
2224 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2225 			 " euid=%u suid=%u fsuid=%u"
2226 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2227 			 task_ppid_nr(tsk),
2228 			 task_tgid_nr(tsk),
2229 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2230 			 from_kuid(&init_user_ns, cred->uid),
2231 			 from_kgid(&init_user_ns, cred->gid),
2232 			 from_kuid(&init_user_ns, cred->euid),
2233 			 from_kuid(&init_user_ns, cred->suid),
2234 			 from_kuid(&init_user_ns, cred->fsuid),
2235 			 from_kgid(&init_user_ns, cred->egid),
2236 			 from_kgid(&init_user_ns, cred->sgid),
2237 			 from_kgid(&init_user_ns, cred->fsgid),
2238 			 tty ? tty_name(tty) : "(none)",
2239 			 audit_get_sessionid(tsk));
2240 	audit_put_tty(tty);
2241 	audit_log_format(ab, " comm=");
2242 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2243 	audit_log_d_path_exe(ab, tsk->mm);
2244 	audit_log_task_context(ab);
2245 }
2246 EXPORT_SYMBOL(audit_log_task_info);
2247 
2248 /**
2249  * audit_log_link_denied - report a link restriction denial
2250  * @operation: specific link operation
2251  * @link: the path that triggered the restriction
2252  */
2253 void audit_log_link_denied(const char *operation, const struct path *link)
2254 {
2255 	struct audit_buffer *ab;
2256 	struct audit_names *name;
2257 
2258 	name = kzalloc(sizeof(*name), GFP_NOFS);
2259 	if (!name)
2260 		return;
2261 
2262 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2263 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
2264 			     AUDIT_ANOM_LINK);
2265 	if (!ab)
2266 		goto out;
2267 	audit_log_format(ab, "op=%s", operation);
2268 	audit_log_task_info(ab, current);
2269 	audit_log_format(ab, " res=0");
2270 	audit_log_end(ab);
2271 
2272 	/* Generate AUDIT_PATH record with object. */
2273 	name->type = AUDIT_TYPE_NORMAL;
2274 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2275 	audit_log_name(current->audit_context, name, link, 0, NULL);
2276 out:
2277 	kfree(name);
2278 }
2279 
2280 /**
2281  * audit_log_end - end one audit record
2282  * @ab: the audit_buffer
2283  *
2284  * We can not do a netlink send inside an irq context because it blocks (last
2285  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2286  * queue and a tasklet is scheduled to remove them from the queue outside the
2287  * irq context.  May be called in any context.
2288  */
2289 void audit_log_end(struct audit_buffer *ab)
2290 {
2291 	struct sk_buff *skb;
2292 	struct nlmsghdr *nlh;
2293 
2294 	if (!ab)
2295 		return;
2296 
2297 	if (audit_rate_check()) {
2298 		skb = ab->skb;
2299 		ab->skb = NULL;
2300 
2301 		/* setup the netlink header, see the comments in
2302 		 * kauditd_send_multicast_skb() for length quirks */
2303 		nlh = nlmsg_hdr(skb);
2304 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2305 
2306 		/* queue the netlink packet and poke the kauditd thread */
2307 		skb_queue_tail(&audit_queue, skb);
2308 		wake_up_interruptible(&kauditd_wait);
2309 	} else
2310 		audit_log_lost("rate limit exceeded");
2311 
2312 	audit_buffer_free(ab);
2313 }
2314 
2315 /**
2316  * audit_log - Log an audit record
2317  * @ctx: audit context
2318  * @gfp_mask: type of allocation
2319  * @type: audit message type
2320  * @fmt: format string to use
2321  * @...: variable parameters matching the format string
2322  *
2323  * This is a convenience function that calls audit_log_start,
2324  * audit_log_vformat, and audit_log_end.  It may be called
2325  * in any context.
2326  */
2327 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2328 	       const char *fmt, ...)
2329 {
2330 	struct audit_buffer *ab;
2331 	va_list args;
2332 
2333 	ab = audit_log_start(ctx, gfp_mask, type);
2334 	if (ab) {
2335 		va_start(args, fmt);
2336 		audit_log_vformat(ab, fmt, args);
2337 		va_end(args);
2338 		audit_log_end(ab);
2339 	}
2340 }
2341 
2342 #ifdef CONFIG_SECURITY
2343 /**
2344  * audit_log_secctx - Converts and logs SELinux context
2345  * @ab: audit_buffer
2346  * @secid: security number
2347  *
2348  * This is a helper function that calls security_secid_to_secctx to convert
2349  * secid to secctx and then adds the (converted) SELinux context to the audit
2350  * log by calling audit_log_format, thus also preventing leak of internal secid
2351  * to userspace. If secid cannot be converted audit_panic is called.
2352  */
2353 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2354 {
2355 	u32 len;
2356 	char *secctx;
2357 
2358 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2359 		audit_panic("Cannot convert secid to context");
2360 	} else {
2361 		audit_log_format(ab, " obj=%s", secctx);
2362 		security_release_secctx(secctx, len);
2363 	}
2364 }
2365 EXPORT_SYMBOL(audit_log_secctx);
2366 #endif
2367 
2368 EXPORT_SYMBOL(audit_log_start);
2369 EXPORT_SYMBOL(audit_log_end);
2370 EXPORT_SYMBOL(audit_log_format);
2371 EXPORT_SYMBOL(audit_log);
2372