xref: /linux/kernel/audit.c (revision d27bb0246e5356dbef4d923e72c680bf893885a8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #include <linux/security.h>
57 #include <linux/freezer.h>
58 #include <linux/pid_namespace.h>
59 #include <net/netns/generic.h>
60 
61 #include "audit.h"
62 
63 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64  * (Initialization happens after skb_init is called.) */
65 #define AUDIT_DISABLED		-1
66 #define AUDIT_UNINITIALIZED	0
67 #define AUDIT_INITIALIZED	1
68 static int	audit_initialized = AUDIT_UNINITIALIZED;
69 
70 u32		audit_enabled = AUDIT_OFF;
71 bool		audit_ever_enabled = !!AUDIT_OFF;
72 
73 EXPORT_SYMBOL_GPL(audit_enabled);
74 
75 /* Default state when kernel boots without any parameters. */
76 static u32	audit_default = AUDIT_OFF;
77 
78 /* If auditing cannot proceed, audit_failure selects what happens. */
79 static u32	audit_failure = AUDIT_FAIL_PRINTK;
80 
81 /* private audit network namespace index */
82 static unsigned int audit_net_id;
83 
84 /**
85  * struct audit_net - audit private network namespace data
86  * @sk: communication socket
87  */
88 struct audit_net {
89 	struct sock *sk;
90 };
91 
92 /**
93  * struct auditd_connection - kernel/auditd connection state
94  * @pid: auditd PID
95  * @portid: netlink portid
96  * @net: the associated network namespace
97  * @rcu: RCU head
98  *
99  * Description:
100  * This struct is RCU protected; you must either hold the RCU lock for reading
101  * or the associated spinlock for writing.
102  */
103 struct auditd_connection {
104 	struct pid *pid;
105 	u32 portid;
106 	struct net *net;
107 	struct rcu_head rcu;
108 };
109 static struct auditd_connection __rcu *auditd_conn;
110 static DEFINE_SPINLOCK(auditd_conn_lock);
111 
112 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
113  * to that number per second.  This prevents DoS attacks, but results in
114  * audit records being dropped. */
115 static u32	audit_rate_limit;
116 
117 /* Number of outstanding audit_buffers allowed.
118  * When set to zero, this means unlimited. */
119 static u32	audit_backlog_limit = 64;
120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122 
123 /* The identity of the user shutting down the audit system. */
124 static kuid_t		audit_sig_uid = INVALID_UID;
125 static pid_t		audit_sig_pid = -1;
126 static u32		audit_sig_sid;
127 
128 /* Records can be lost in several ways:
129    0) [suppressed in audit_alloc]
130    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131    2) out of memory in audit_log_move [alloc_skb]
132    3) suppressed due to audit_rate_limit
133    4) suppressed due to audit_backlog_limit
134 */
135 static atomic_t	audit_lost = ATOMIC_INIT(0);
136 
137 /* Monotonically increasing sum of time the kernel has spent
138  * waiting while the backlog limit is exceeded.
139  */
140 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141 
142 /* Hash for inode-based rules */
143 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144 
145 static struct kmem_cache *audit_buffer_cache;
146 
147 /* queue msgs to send via kauditd_task */
148 static struct sk_buff_head audit_queue;
149 /* queue msgs due to temporary unicast send problems */
150 static struct sk_buff_head audit_retry_queue;
151 /* queue msgs waiting for new auditd connection */
152 static struct sk_buff_head audit_hold_queue;
153 
154 /* queue servicing thread */
155 static struct task_struct *kauditd_task;
156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157 
158 /* waitqueue for callers who are blocked on the audit backlog */
159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160 
161 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162 				   .mask = -1,
163 				   .features = 0,
164 				   .lock = 0,};
165 
166 static char *audit_feature_names[2] = {
167 	"only_unset_loginuid",
168 	"loginuid_immutable",
169 };
170 
171 /**
172  * struct audit_ctl_mutex - serialize requests from userspace
173  * @lock: the mutex used for locking
174  * @owner: the task which owns the lock
175  *
176  * Description:
177  * This is the lock struct used to ensure we only process userspace requests
178  * in an orderly fashion.  We can't simply use a mutex/lock here because we
179  * need to track lock ownership so we don't end up blocking the lock owner in
180  * audit_log_start() or similar.
181  */
182 static struct audit_ctl_mutex {
183 	struct mutex lock;
184 	void *owner;
185 } audit_cmd_mutex;
186 
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188  * audit records.  Since printk uses a 1024 byte buffer, this buffer
189  * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191 
192 /* The audit_buffer is used when formatting an audit record.  The caller
193  * locks briefly to get the record off the freelist or to allocate the
194  * buffer, and locks briefly to send the buffer to the netlink layer or
195  * to place it on a transmit queue.  Multiple audit_buffers can be in
196  * use simultaneously. */
197 struct audit_buffer {
198 	struct sk_buff       *skb;	/* formatted skb ready to send */
199 	struct audit_context *ctx;	/* NULL or associated context */
200 	gfp_t		     gfp_mask;
201 };
202 
203 struct audit_reply {
204 	__u32 portid;
205 	struct net *net;
206 	struct sk_buff *skb;
207 };
208 
209 /**
210  * auditd_test_task - Check to see if a given task is an audit daemon
211  * @task: the task to check
212  *
213  * Description:
214  * Return 1 if the task is a registered audit daemon, 0 otherwise.
215  */
216 int auditd_test_task(struct task_struct *task)
217 {
218 	int rc;
219 	struct auditd_connection *ac;
220 
221 	rcu_read_lock();
222 	ac = rcu_dereference(auditd_conn);
223 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 	rcu_read_unlock();
225 
226 	return rc;
227 }
228 
229 /**
230  * audit_ctl_lock - Take the audit control lock
231  */
232 void audit_ctl_lock(void)
233 {
234 	mutex_lock(&audit_cmd_mutex.lock);
235 	audit_cmd_mutex.owner = current;
236 }
237 
238 /**
239  * audit_ctl_unlock - Drop the audit control lock
240  */
241 void audit_ctl_unlock(void)
242 {
243 	audit_cmd_mutex.owner = NULL;
244 	mutex_unlock(&audit_cmd_mutex.lock);
245 }
246 
247 /**
248  * audit_ctl_owner_current - Test to see if the current task owns the lock
249  *
250  * Description:
251  * Return true if the current task owns the audit control lock, false if it
252  * doesn't own the lock.
253  */
254 static bool audit_ctl_owner_current(void)
255 {
256 	return (current == audit_cmd_mutex.owner);
257 }
258 
259 /**
260  * auditd_pid_vnr - Return the auditd PID relative to the namespace
261  *
262  * Description:
263  * Returns the PID in relation to the namespace, 0 on failure.
264  */
265 static pid_t auditd_pid_vnr(void)
266 {
267 	pid_t pid;
268 	const struct auditd_connection *ac;
269 
270 	rcu_read_lock();
271 	ac = rcu_dereference(auditd_conn);
272 	if (!ac || !ac->pid)
273 		pid = 0;
274 	else
275 		pid = pid_vnr(ac->pid);
276 	rcu_read_unlock();
277 
278 	return pid;
279 }
280 
281 /**
282  * audit_get_sk - Return the audit socket for the given network namespace
283  * @net: the destination network namespace
284  *
285  * Description:
286  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
287  * that a reference is held for the network namespace while the sock is in use.
288  */
289 static struct sock *audit_get_sk(const struct net *net)
290 {
291 	struct audit_net *aunet;
292 
293 	if (!net)
294 		return NULL;
295 
296 	aunet = net_generic(net, audit_net_id);
297 	return aunet->sk;
298 }
299 
300 void audit_panic(const char *message)
301 {
302 	switch (audit_failure) {
303 	case AUDIT_FAIL_SILENT:
304 		break;
305 	case AUDIT_FAIL_PRINTK:
306 		if (printk_ratelimit())
307 			pr_err("%s\n", message);
308 		break;
309 	case AUDIT_FAIL_PANIC:
310 		panic("audit: %s\n", message);
311 		break;
312 	}
313 }
314 
315 static inline int audit_rate_check(void)
316 {
317 	static unsigned long	last_check = 0;
318 	static int		messages   = 0;
319 	static DEFINE_SPINLOCK(lock);
320 	unsigned long		flags;
321 	unsigned long		now;
322 	int			retval	   = 0;
323 
324 	if (!audit_rate_limit)
325 		return 1;
326 
327 	spin_lock_irqsave(&lock, flags);
328 	if (++messages < audit_rate_limit) {
329 		retval = 1;
330 	} else {
331 		now = jiffies;
332 		if (time_after(now, last_check + HZ)) {
333 			last_check = now;
334 			messages   = 0;
335 			retval     = 1;
336 		}
337 	}
338 	spin_unlock_irqrestore(&lock, flags);
339 
340 	return retval;
341 }
342 
343 /**
344  * audit_log_lost - conditionally log lost audit message event
345  * @message: the message stating reason for lost audit message
346  *
347  * Emit at least 1 message per second, even if audit_rate_check is
348  * throttling.
349  * Always increment the lost messages counter.
350 */
351 void audit_log_lost(const char *message)
352 {
353 	static unsigned long	last_msg = 0;
354 	static DEFINE_SPINLOCK(lock);
355 	unsigned long		flags;
356 	unsigned long		now;
357 	int			print;
358 
359 	atomic_inc(&audit_lost);
360 
361 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362 
363 	if (!print) {
364 		spin_lock_irqsave(&lock, flags);
365 		now = jiffies;
366 		if (time_after(now, last_msg + HZ)) {
367 			print = 1;
368 			last_msg = now;
369 		}
370 		spin_unlock_irqrestore(&lock, flags);
371 	}
372 
373 	if (print) {
374 		if (printk_ratelimit())
375 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376 				atomic_read(&audit_lost),
377 				audit_rate_limit,
378 				audit_backlog_limit);
379 		audit_panic(message);
380 	}
381 }
382 
383 static int audit_log_config_change(char *function_name, u32 new, u32 old,
384 				   int allow_changes)
385 {
386 	struct audit_buffer *ab;
387 	int rc = 0;
388 
389 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390 	if (unlikely(!ab))
391 		return rc;
392 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393 	audit_log_session_info(ab);
394 	rc = audit_log_task_context(ab);
395 	if (rc)
396 		allow_changes = 0; /* Something weird, deny request */
397 	audit_log_format(ab, " res=%d", allow_changes);
398 	audit_log_end(ab);
399 	return rc;
400 }
401 
402 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403 {
404 	int allow_changes, rc = 0;
405 	u32 old = *to_change;
406 
407 	/* check if we are locked */
408 	if (audit_enabled == AUDIT_LOCKED)
409 		allow_changes = 0;
410 	else
411 		allow_changes = 1;
412 
413 	if (audit_enabled != AUDIT_OFF) {
414 		rc = audit_log_config_change(function_name, new, old, allow_changes);
415 		if (rc)
416 			allow_changes = 0;
417 	}
418 
419 	/* If we are allowed, make the change */
420 	if (allow_changes == 1)
421 		*to_change = new;
422 	/* Not allowed, update reason */
423 	else if (rc == 0)
424 		rc = -EPERM;
425 	return rc;
426 }
427 
428 static int audit_set_rate_limit(u32 limit)
429 {
430 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431 }
432 
433 static int audit_set_backlog_limit(u32 limit)
434 {
435 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436 }
437 
438 static int audit_set_backlog_wait_time(u32 timeout)
439 {
440 	return audit_do_config_change("audit_backlog_wait_time",
441 				      &audit_backlog_wait_time, timeout);
442 }
443 
444 static int audit_set_enabled(u32 state)
445 {
446 	int rc;
447 	if (state > AUDIT_LOCKED)
448 		return -EINVAL;
449 
450 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
451 	if (!rc)
452 		audit_ever_enabled |= !!state;
453 
454 	return rc;
455 }
456 
457 static int audit_set_failure(u32 state)
458 {
459 	if (state != AUDIT_FAIL_SILENT
460 	    && state != AUDIT_FAIL_PRINTK
461 	    && state != AUDIT_FAIL_PANIC)
462 		return -EINVAL;
463 
464 	return audit_do_config_change("audit_failure", &audit_failure, state);
465 }
466 
467 /**
468  * auditd_conn_free - RCU helper to release an auditd connection struct
469  * @rcu: RCU head
470  *
471  * Description:
472  * Drop any references inside the auditd connection tracking struct and free
473  * the memory.
474  */
475 static void auditd_conn_free(struct rcu_head *rcu)
476 {
477 	struct auditd_connection *ac;
478 
479 	ac = container_of(rcu, struct auditd_connection, rcu);
480 	put_pid(ac->pid);
481 	put_net(ac->net);
482 	kfree(ac);
483 }
484 
485 /**
486  * auditd_set - Set/Reset the auditd connection state
487  * @pid: auditd PID
488  * @portid: auditd netlink portid
489  * @net: auditd network namespace pointer
490  *
491  * Description:
492  * This function will obtain and drop network namespace references as
493  * necessary.  Returns zero on success, negative values on failure.
494  */
495 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
496 {
497 	unsigned long flags;
498 	struct auditd_connection *ac_old, *ac_new;
499 
500 	if (!pid || !net)
501 		return -EINVAL;
502 
503 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
504 	if (!ac_new)
505 		return -ENOMEM;
506 	ac_new->pid = get_pid(pid);
507 	ac_new->portid = portid;
508 	ac_new->net = get_net(net);
509 
510 	spin_lock_irqsave(&auditd_conn_lock, flags);
511 	ac_old = rcu_dereference_protected(auditd_conn,
512 					   lockdep_is_held(&auditd_conn_lock));
513 	rcu_assign_pointer(auditd_conn, ac_new);
514 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
515 
516 	if (ac_old)
517 		call_rcu(&ac_old->rcu, auditd_conn_free);
518 
519 	return 0;
520 }
521 
522 /**
523  * kauditd_printk_skb - Print the audit record to the ring buffer
524  * @skb: audit record
525  *
526  * Whatever the reason, this packet may not make it to the auditd connection
527  * so write it via printk so the information isn't completely lost.
528  */
529 static void kauditd_printk_skb(struct sk_buff *skb)
530 {
531 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
532 	char *data = nlmsg_data(nlh);
533 
534 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
535 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
536 }
537 
538 /**
539  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
540  * @skb: audit record
541  * @error: error code (unused)
542  *
543  * Description:
544  * This should only be used by the kauditd_thread when it fails to flush the
545  * hold queue.
546  */
547 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
548 {
549 	/* put the record back in the queue */
550 	skb_queue_tail(&audit_hold_queue, skb);
551 }
552 
553 /**
554  * kauditd_hold_skb - Queue an audit record, waiting for auditd
555  * @skb: audit record
556  * @error: error code
557  *
558  * Description:
559  * Queue the audit record, waiting for an instance of auditd.  When this
560  * function is called we haven't given up yet on sending the record, but things
561  * are not looking good.  The first thing we want to do is try to write the
562  * record via printk and then see if we want to try and hold on to the record
563  * and queue it, if we have room.  If we want to hold on to the record, but we
564  * don't have room, record a record lost message.
565  */
566 static void kauditd_hold_skb(struct sk_buff *skb, int error)
567 {
568 	/* at this point it is uncertain if we will ever send this to auditd so
569 	 * try to send the message via printk before we go any further */
570 	kauditd_printk_skb(skb);
571 
572 	/* can we just silently drop the message? */
573 	if (!audit_default)
574 		goto drop;
575 
576 	/* the hold queue is only for when the daemon goes away completely,
577 	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
578 	 * record on the retry queue unless it's full, in which case drop it
579 	 */
580 	if (error == -EAGAIN) {
581 		if (!audit_backlog_limit ||
582 		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
583 			skb_queue_tail(&audit_retry_queue, skb);
584 			return;
585 		}
586 		audit_log_lost("kauditd retry queue overflow");
587 		goto drop;
588 	}
589 
590 	/* if we have room in the hold queue, queue the message */
591 	if (!audit_backlog_limit ||
592 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
593 		skb_queue_tail(&audit_hold_queue, skb);
594 		return;
595 	}
596 
597 	/* we have no other options - drop the message */
598 	audit_log_lost("kauditd hold queue overflow");
599 drop:
600 	kfree_skb(skb);
601 }
602 
603 /**
604  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
605  * @skb: audit record
606  * @error: error code (unused)
607  *
608  * Description:
609  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
610  * but for some reason we are having problems sending it audit records so
611  * queue the given record and attempt to resend.
612  */
613 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
614 {
615 	if (!audit_backlog_limit ||
616 	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
617 		skb_queue_tail(&audit_retry_queue, skb);
618 		return;
619 	}
620 
621 	/* we have to drop the record, send it via printk as a last effort */
622 	kauditd_printk_skb(skb);
623 	audit_log_lost("kauditd retry queue overflow");
624 	kfree_skb(skb);
625 }
626 
627 /**
628  * auditd_reset - Disconnect the auditd connection
629  * @ac: auditd connection state
630  *
631  * Description:
632  * Break the auditd/kauditd connection and move all the queued records into the
633  * hold queue in case auditd reconnects.  It is important to note that the @ac
634  * pointer should never be dereferenced inside this function as it may be NULL
635  * or invalid, you can only compare the memory address!  If @ac is NULL then
636  * the connection will always be reset.
637  */
638 static void auditd_reset(const struct auditd_connection *ac)
639 {
640 	unsigned long flags;
641 	struct sk_buff *skb;
642 	struct auditd_connection *ac_old;
643 
644 	/* if it isn't already broken, break the connection */
645 	spin_lock_irqsave(&auditd_conn_lock, flags);
646 	ac_old = rcu_dereference_protected(auditd_conn,
647 					   lockdep_is_held(&auditd_conn_lock));
648 	if (ac && ac != ac_old) {
649 		/* someone already registered a new auditd connection */
650 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
651 		return;
652 	}
653 	rcu_assign_pointer(auditd_conn, NULL);
654 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
655 
656 	if (ac_old)
657 		call_rcu(&ac_old->rcu, auditd_conn_free);
658 
659 	/* flush the retry queue to the hold queue, but don't touch the main
660 	 * queue since we need to process that normally for multicast */
661 	while ((skb = skb_dequeue(&audit_retry_queue)))
662 		kauditd_hold_skb(skb, -ECONNREFUSED);
663 }
664 
665 /**
666  * auditd_send_unicast_skb - Send a record via unicast to auditd
667  * @skb: audit record
668  *
669  * Description:
670  * Send a skb to the audit daemon, returns positive/zero values on success and
671  * negative values on failure; in all cases the skb will be consumed by this
672  * function.  If the send results in -ECONNREFUSED the connection with auditd
673  * will be reset.  This function may sleep so callers should not hold any locks
674  * where this would cause a problem.
675  */
676 static int auditd_send_unicast_skb(struct sk_buff *skb)
677 {
678 	int rc;
679 	u32 portid;
680 	struct net *net;
681 	struct sock *sk;
682 	struct auditd_connection *ac;
683 
684 	/* NOTE: we can't call netlink_unicast while in the RCU section so
685 	 *       take a reference to the network namespace and grab local
686 	 *       copies of the namespace, the sock, and the portid; the
687 	 *       namespace and sock aren't going to go away while we hold a
688 	 *       reference and if the portid does become invalid after the RCU
689 	 *       section netlink_unicast() should safely return an error */
690 
691 	rcu_read_lock();
692 	ac = rcu_dereference(auditd_conn);
693 	if (!ac) {
694 		rcu_read_unlock();
695 		kfree_skb(skb);
696 		rc = -ECONNREFUSED;
697 		goto err;
698 	}
699 	net = get_net(ac->net);
700 	sk = audit_get_sk(net);
701 	portid = ac->portid;
702 	rcu_read_unlock();
703 
704 	rc = netlink_unicast(sk, skb, portid, 0);
705 	put_net(net);
706 	if (rc < 0)
707 		goto err;
708 
709 	return rc;
710 
711 err:
712 	if (ac && rc == -ECONNREFUSED)
713 		auditd_reset(ac);
714 	return rc;
715 }
716 
717 /**
718  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
719  * @sk: the sending sock
720  * @portid: the netlink destination
721  * @queue: the skb queue to process
722  * @retry_limit: limit on number of netlink unicast failures
723  * @skb_hook: per-skb hook for additional processing
724  * @err_hook: hook called if the skb fails the netlink unicast send
725  *
726  * Description:
727  * Run through the given queue and attempt to send the audit records to auditd,
728  * returns zero on success, negative values on failure.  It is up to the caller
729  * to ensure that the @sk is valid for the duration of this function.
730  *
731  */
732 static int kauditd_send_queue(struct sock *sk, u32 portid,
733 			      struct sk_buff_head *queue,
734 			      unsigned int retry_limit,
735 			      void (*skb_hook)(struct sk_buff *skb),
736 			      void (*err_hook)(struct sk_buff *skb, int error))
737 {
738 	int rc = 0;
739 	struct sk_buff *skb = NULL;
740 	struct sk_buff *skb_tail;
741 	unsigned int failed = 0;
742 
743 	/* NOTE: kauditd_thread takes care of all our locking, we just use
744 	 *       the netlink info passed to us (e.g. sk and portid) */
745 
746 	skb_tail = skb_peek_tail(queue);
747 	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
748 		/* call the skb_hook for each skb we touch */
749 		if (skb_hook)
750 			(*skb_hook)(skb);
751 
752 		/* can we send to anyone via unicast? */
753 		if (!sk) {
754 			if (err_hook)
755 				(*err_hook)(skb, -ECONNREFUSED);
756 			continue;
757 		}
758 
759 retry:
760 		/* grab an extra skb reference in case of error */
761 		skb_get(skb);
762 		rc = netlink_unicast(sk, skb, portid, 0);
763 		if (rc < 0) {
764 			/* send failed - try a few times unless fatal error */
765 			if (++failed >= retry_limit ||
766 			    rc == -ECONNREFUSED || rc == -EPERM) {
767 				sk = NULL;
768 				if (err_hook)
769 					(*err_hook)(skb, rc);
770 				if (rc == -EAGAIN)
771 					rc = 0;
772 				/* continue to drain the queue */
773 				continue;
774 			} else
775 				goto retry;
776 		} else {
777 			/* skb sent - drop the extra reference and continue */
778 			consume_skb(skb);
779 			failed = 0;
780 		}
781 	}
782 
783 	return (rc >= 0 ? 0 : rc);
784 }
785 
786 /*
787  * kauditd_send_multicast_skb - Send a record to any multicast listeners
788  * @skb: audit record
789  *
790  * Description:
791  * Write a multicast message to anyone listening in the initial network
792  * namespace.  This function doesn't consume an skb as might be expected since
793  * it has to copy it anyways.
794  */
795 static void kauditd_send_multicast_skb(struct sk_buff *skb)
796 {
797 	struct sk_buff *copy;
798 	struct sock *sock = audit_get_sk(&init_net);
799 	struct nlmsghdr *nlh;
800 
801 	/* NOTE: we are not taking an additional reference for init_net since
802 	 *       we don't have to worry about it going away */
803 
804 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
805 		return;
806 
807 	/*
808 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
809 	 * using skb_get() is necessary because non-standard mods are made to
810 	 * the skb by the original kaudit unicast socket send routine.  The
811 	 * existing auditd daemon assumes this breakage.  Fixing this would
812 	 * require co-ordinating a change in the established protocol between
813 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
814 	 * no reason for new multicast clients to continue with this
815 	 * non-compliance.
816 	 */
817 	copy = skb_copy(skb, GFP_KERNEL);
818 	if (!copy)
819 		return;
820 	nlh = nlmsg_hdr(copy);
821 	nlh->nlmsg_len = skb->len;
822 
823 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
824 }
825 
826 /**
827  * kauditd_thread - Worker thread to send audit records to userspace
828  * @dummy: unused
829  */
830 static int kauditd_thread(void *dummy)
831 {
832 	int rc;
833 	u32 portid = 0;
834 	struct net *net = NULL;
835 	struct sock *sk = NULL;
836 	struct auditd_connection *ac;
837 
838 #define UNICAST_RETRIES 5
839 
840 	set_freezable();
841 	while (!kthread_should_stop()) {
842 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
843 		rcu_read_lock();
844 		ac = rcu_dereference(auditd_conn);
845 		if (!ac) {
846 			rcu_read_unlock();
847 			goto main_queue;
848 		}
849 		net = get_net(ac->net);
850 		sk = audit_get_sk(net);
851 		portid = ac->portid;
852 		rcu_read_unlock();
853 
854 		/* attempt to flush the hold queue */
855 		rc = kauditd_send_queue(sk, portid,
856 					&audit_hold_queue, UNICAST_RETRIES,
857 					NULL, kauditd_rehold_skb);
858 		if (rc < 0) {
859 			sk = NULL;
860 			auditd_reset(ac);
861 			goto main_queue;
862 		}
863 
864 		/* attempt to flush the retry queue */
865 		rc = kauditd_send_queue(sk, portid,
866 					&audit_retry_queue, UNICAST_RETRIES,
867 					NULL, kauditd_hold_skb);
868 		if (rc < 0) {
869 			sk = NULL;
870 			auditd_reset(ac);
871 			goto main_queue;
872 		}
873 
874 main_queue:
875 		/* process the main queue - do the multicast send and attempt
876 		 * unicast, dump failed record sends to the retry queue; if
877 		 * sk == NULL due to previous failures we will just do the
878 		 * multicast send and move the record to the hold queue */
879 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
880 					kauditd_send_multicast_skb,
881 					(sk ?
882 					 kauditd_retry_skb : kauditd_hold_skb));
883 		if (ac && rc < 0)
884 			auditd_reset(ac);
885 		sk = NULL;
886 
887 		/* drop our netns reference, no auditd sends past this line */
888 		if (net) {
889 			put_net(net);
890 			net = NULL;
891 		}
892 
893 		/* we have processed all the queues so wake everyone */
894 		wake_up(&audit_backlog_wait);
895 
896 		/* NOTE: we want to wake up if there is anything on the queue,
897 		 *       regardless of if an auditd is connected, as we need to
898 		 *       do the multicast send and rotate records from the
899 		 *       main queue to the retry/hold queues */
900 		wait_event_freezable(kauditd_wait,
901 				     (skb_queue_len(&audit_queue) ? 1 : 0));
902 	}
903 
904 	return 0;
905 }
906 
907 int audit_send_list_thread(void *_dest)
908 {
909 	struct audit_netlink_list *dest = _dest;
910 	struct sk_buff *skb;
911 	struct sock *sk = audit_get_sk(dest->net);
912 
913 	/* wait for parent to finish and send an ACK */
914 	audit_ctl_lock();
915 	audit_ctl_unlock();
916 
917 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
918 		netlink_unicast(sk, skb, dest->portid, 0);
919 
920 	put_net(dest->net);
921 	kfree(dest);
922 
923 	return 0;
924 }
925 
926 struct sk_buff *audit_make_reply(int seq, int type, int done,
927 				 int multi, const void *payload, int size)
928 {
929 	struct sk_buff	*skb;
930 	struct nlmsghdr	*nlh;
931 	void		*data;
932 	int		flags = multi ? NLM_F_MULTI : 0;
933 	int		t     = done  ? NLMSG_DONE  : type;
934 
935 	skb = nlmsg_new(size, GFP_KERNEL);
936 	if (!skb)
937 		return NULL;
938 
939 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
940 	if (!nlh)
941 		goto out_kfree_skb;
942 	data = nlmsg_data(nlh);
943 	memcpy(data, payload, size);
944 	return skb;
945 
946 out_kfree_skb:
947 	kfree_skb(skb);
948 	return NULL;
949 }
950 
951 static void audit_free_reply(struct audit_reply *reply)
952 {
953 	if (!reply)
954 		return;
955 
956 	kfree_skb(reply->skb);
957 	if (reply->net)
958 		put_net(reply->net);
959 	kfree(reply);
960 }
961 
962 static int audit_send_reply_thread(void *arg)
963 {
964 	struct audit_reply *reply = (struct audit_reply *)arg;
965 
966 	audit_ctl_lock();
967 	audit_ctl_unlock();
968 
969 	/* Ignore failure. It'll only happen if the sender goes away,
970 	   because our timeout is set to infinite. */
971 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
972 	reply->skb = NULL;
973 	audit_free_reply(reply);
974 	return 0;
975 }
976 
977 /**
978  * audit_send_reply - send an audit reply message via netlink
979  * @request_skb: skb of request we are replying to (used to target the reply)
980  * @seq: sequence number
981  * @type: audit message type
982  * @done: done (last) flag
983  * @multi: multi-part message flag
984  * @payload: payload data
985  * @size: payload size
986  *
987  * Allocates a skb, builds the netlink message, and sends it to the port id.
988  */
989 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
990 			     int multi, const void *payload, int size)
991 {
992 	struct task_struct *tsk;
993 	struct audit_reply *reply;
994 
995 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
996 	if (!reply)
997 		return;
998 
999 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1000 	if (!reply->skb)
1001 		goto err;
1002 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1003 	reply->portid = NETLINK_CB(request_skb).portid;
1004 
1005 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1006 	if (IS_ERR(tsk))
1007 		goto err;
1008 
1009 	return;
1010 
1011 err:
1012 	audit_free_reply(reply);
1013 }
1014 
1015 /*
1016  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1017  * control messages.
1018  */
1019 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1020 {
1021 	int err = 0;
1022 
1023 	/* Only support initial user namespace for now. */
1024 	/*
1025 	 * We return ECONNREFUSED because it tricks userspace into thinking
1026 	 * that audit was not configured into the kernel.  Lots of users
1027 	 * configure their PAM stack (because that's what the distro does)
1028 	 * to reject login if unable to send messages to audit.  If we return
1029 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1030 	 * configured in and will let login proceed.  If we return EPERM
1031 	 * userspace will reject all logins.  This should be removed when we
1032 	 * support non init namespaces!!
1033 	 */
1034 	if (current_user_ns() != &init_user_ns)
1035 		return -ECONNREFUSED;
1036 
1037 	switch (msg_type) {
1038 	case AUDIT_LIST:
1039 	case AUDIT_ADD:
1040 	case AUDIT_DEL:
1041 		return -EOPNOTSUPP;
1042 	case AUDIT_GET:
1043 	case AUDIT_SET:
1044 	case AUDIT_GET_FEATURE:
1045 	case AUDIT_SET_FEATURE:
1046 	case AUDIT_LIST_RULES:
1047 	case AUDIT_ADD_RULE:
1048 	case AUDIT_DEL_RULE:
1049 	case AUDIT_SIGNAL_INFO:
1050 	case AUDIT_TTY_GET:
1051 	case AUDIT_TTY_SET:
1052 	case AUDIT_TRIM:
1053 	case AUDIT_MAKE_EQUIV:
1054 		/* Only support auditd and auditctl in initial pid namespace
1055 		 * for now. */
1056 		if (task_active_pid_ns(current) != &init_pid_ns)
1057 			return -EPERM;
1058 
1059 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1060 			err = -EPERM;
1061 		break;
1062 	case AUDIT_USER:
1063 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1064 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1065 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1066 			err = -EPERM;
1067 		break;
1068 	default:  /* bad msg */
1069 		err = -EINVAL;
1070 	}
1071 
1072 	return err;
1073 }
1074 
1075 static void audit_log_common_recv_msg(struct audit_context *context,
1076 					struct audit_buffer **ab, u16 msg_type)
1077 {
1078 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1079 	pid_t pid = task_tgid_nr(current);
1080 
1081 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1082 		*ab = NULL;
1083 		return;
1084 	}
1085 
1086 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1087 	if (unlikely(!*ab))
1088 		return;
1089 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1090 	audit_log_session_info(*ab);
1091 	audit_log_task_context(*ab);
1092 }
1093 
1094 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1095 					   u16 msg_type)
1096 {
1097 	audit_log_common_recv_msg(NULL, ab, msg_type);
1098 }
1099 
1100 static int is_audit_feature_set(int i)
1101 {
1102 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1103 }
1104 
1105 
1106 static int audit_get_feature(struct sk_buff *skb)
1107 {
1108 	u32 seq;
1109 
1110 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1111 
1112 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1113 
1114 	return 0;
1115 }
1116 
1117 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1118 				     u32 old_lock, u32 new_lock, int res)
1119 {
1120 	struct audit_buffer *ab;
1121 
1122 	if (audit_enabled == AUDIT_OFF)
1123 		return;
1124 
1125 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1126 	if (!ab)
1127 		return;
1128 	audit_log_task_info(ab);
1129 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1130 			 audit_feature_names[which], !!old_feature, !!new_feature,
1131 			 !!old_lock, !!new_lock, res);
1132 	audit_log_end(ab);
1133 }
1134 
1135 static int audit_set_feature(struct audit_features *uaf)
1136 {
1137 	int i;
1138 
1139 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1140 
1141 	/* if there is ever a version 2 we should handle that here */
1142 
1143 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1144 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1145 		u32 old_feature, new_feature, old_lock, new_lock;
1146 
1147 		/* if we are not changing this feature, move along */
1148 		if (!(feature & uaf->mask))
1149 			continue;
1150 
1151 		old_feature = af.features & feature;
1152 		new_feature = uaf->features & feature;
1153 		new_lock = (uaf->lock | af.lock) & feature;
1154 		old_lock = af.lock & feature;
1155 
1156 		/* are we changing a locked feature? */
1157 		if (old_lock && (new_feature != old_feature)) {
1158 			audit_log_feature_change(i, old_feature, new_feature,
1159 						 old_lock, new_lock, 0);
1160 			return -EPERM;
1161 		}
1162 	}
1163 	/* nothing invalid, do the changes */
1164 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1165 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1166 		u32 old_feature, new_feature, old_lock, new_lock;
1167 
1168 		/* if we are not changing this feature, move along */
1169 		if (!(feature & uaf->mask))
1170 			continue;
1171 
1172 		old_feature = af.features & feature;
1173 		new_feature = uaf->features & feature;
1174 		old_lock = af.lock & feature;
1175 		new_lock = (uaf->lock | af.lock) & feature;
1176 
1177 		if (new_feature != old_feature)
1178 			audit_log_feature_change(i, old_feature, new_feature,
1179 						 old_lock, new_lock, 1);
1180 
1181 		if (new_feature)
1182 			af.features |= feature;
1183 		else
1184 			af.features &= ~feature;
1185 		af.lock |= new_lock;
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static int audit_replace(struct pid *pid)
1192 {
1193 	pid_t pvnr;
1194 	struct sk_buff *skb;
1195 
1196 	pvnr = pid_vnr(pid);
1197 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1198 	if (!skb)
1199 		return -ENOMEM;
1200 	return auditd_send_unicast_skb(skb);
1201 }
1202 
1203 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1204 {
1205 	u32			seq;
1206 	void			*data;
1207 	int			data_len;
1208 	int			err;
1209 	struct audit_buffer	*ab;
1210 	u16			msg_type = nlh->nlmsg_type;
1211 	struct audit_sig_info   *sig_data;
1212 	char			*ctx = NULL;
1213 	u32			len;
1214 
1215 	err = audit_netlink_ok(skb, msg_type);
1216 	if (err)
1217 		return err;
1218 
1219 	seq  = nlh->nlmsg_seq;
1220 	data = nlmsg_data(nlh);
1221 	data_len = nlmsg_len(nlh);
1222 
1223 	switch (msg_type) {
1224 	case AUDIT_GET: {
1225 		struct audit_status	s;
1226 		memset(&s, 0, sizeof(s));
1227 		s.enabled		   = audit_enabled;
1228 		s.failure		   = audit_failure;
1229 		/* NOTE: use pid_vnr() so the PID is relative to the current
1230 		 *       namespace */
1231 		s.pid			   = auditd_pid_vnr();
1232 		s.rate_limit		   = audit_rate_limit;
1233 		s.backlog_limit		   = audit_backlog_limit;
1234 		s.lost			   = atomic_read(&audit_lost);
1235 		s.backlog		   = skb_queue_len(&audit_queue);
1236 		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1237 		s.backlog_wait_time	   = audit_backlog_wait_time;
1238 		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1239 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1240 		break;
1241 	}
1242 	case AUDIT_SET: {
1243 		struct audit_status	s;
1244 		memset(&s, 0, sizeof(s));
1245 		/* guard against past and future API changes */
1246 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1247 		if (s.mask & AUDIT_STATUS_ENABLED) {
1248 			err = audit_set_enabled(s.enabled);
1249 			if (err < 0)
1250 				return err;
1251 		}
1252 		if (s.mask & AUDIT_STATUS_FAILURE) {
1253 			err = audit_set_failure(s.failure);
1254 			if (err < 0)
1255 				return err;
1256 		}
1257 		if (s.mask & AUDIT_STATUS_PID) {
1258 			/* NOTE: we are using the vnr PID functions below
1259 			 *       because the s.pid value is relative to the
1260 			 *       namespace of the caller; at present this
1261 			 *       doesn't matter much since you can really only
1262 			 *       run auditd from the initial pid namespace, but
1263 			 *       something to keep in mind if this changes */
1264 			pid_t new_pid = s.pid;
1265 			pid_t auditd_pid;
1266 			struct pid *req_pid = task_tgid(current);
1267 
1268 			/* Sanity check - PID values must match. Setting
1269 			 * pid to 0 is how auditd ends auditing. */
1270 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1271 				return -EINVAL;
1272 
1273 			/* test the auditd connection */
1274 			audit_replace(req_pid);
1275 
1276 			auditd_pid = auditd_pid_vnr();
1277 			if (auditd_pid) {
1278 				/* replacing a healthy auditd is not allowed */
1279 				if (new_pid) {
1280 					audit_log_config_change("audit_pid",
1281 							new_pid, auditd_pid, 0);
1282 					return -EEXIST;
1283 				}
1284 				/* only current auditd can unregister itself */
1285 				if (pid_vnr(req_pid) != auditd_pid) {
1286 					audit_log_config_change("audit_pid",
1287 							new_pid, auditd_pid, 0);
1288 					return -EACCES;
1289 				}
1290 			}
1291 
1292 			if (new_pid) {
1293 				/* register a new auditd connection */
1294 				err = auditd_set(req_pid,
1295 						 NETLINK_CB(skb).portid,
1296 						 sock_net(NETLINK_CB(skb).sk));
1297 				if (audit_enabled != AUDIT_OFF)
1298 					audit_log_config_change("audit_pid",
1299 								new_pid,
1300 								auditd_pid,
1301 								err ? 0 : 1);
1302 				if (err)
1303 					return err;
1304 
1305 				/* try to process any backlog */
1306 				wake_up_interruptible(&kauditd_wait);
1307 			} else {
1308 				if (audit_enabled != AUDIT_OFF)
1309 					audit_log_config_change("audit_pid",
1310 								new_pid,
1311 								auditd_pid, 1);
1312 
1313 				/* unregister the auditd connection */
1314 				auditd_reset(NULL);
1315 			}
1316 		}
1317 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1318 			err = audit_set_rate_limit(s.rate_limit);
1319 			if (err < 0)
1320 				return err;
1321 		}
1322 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1323 			err = audit_set_backlog_limit(s.backlog_limit);
1324 			if (err < 0)
1325 				return err;
1326 		}
1327 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1328 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1329 				return -EINVAL;
1330 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1331 				return -EINVAL;
1332 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1333 			if (err < 0)
1334 				return err;
1335 		}
1336 		if (s.mask == AUDIT_STATUS_LOST) {
1337 			u32 lost = atomic_xchg(&audit_lost, 0);
1338 
1339 			audit_log_config_change("lost", 0, lost, 1);
1340 			return lost;
1341 		}
1342 		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1343 			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1344 
1345 			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1346 			return actual;
1347 		}
1348 		break;
1349 	}
1350 	case AUDIT_GET_FEATURE:
1351 		err = audit_get_feature(skb);
1352 		if (err)
1353 			return err;
1354 		break;
1355 	case AUDIT_SET_FEATURE:
1356 		if (data_len < sizeof(struct audit_features))
1357 			return -EINVAL;
1358 		err = audit_set_feature(data);
1359 		if (err)
1360 			return err;
1361 		break;
1362 	case AUDIT_USER:
1363 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1364 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1365 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1366 			return 0;
1367 		/* exit early if there isn't at least one character to print */
1368 		if (data_len < 2)
1369 			return -EINVAL;
1370 
1371 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1372 		if (err == 1) { /* match or error */
1373 			char *str = data;
1374 
1375 			err = 0;
1376 			if (msg_type == AUDIT_USER_TTY) {
1377 				err = tty_audit_push();
1378 				if (err)
1379 					break;
1380 			}
1381 			audit_log_user_recv_msg(&ab, msg_type);
1382 			if (msg_type != AUDIT_USER_TTY) {
1383 				/* ensure NULL termination */
1384 				str[data_len - 1] = '\0';
1385 				audit_log_format(ab, " msg='%.*s'",
1386 						 AUDIT_MESSAGE_TEXT_MAX,
1387 						 str);
1388 			} else {
1389 				audit_log_format(ab, " data=");
1390 				if (str[data_len - 1] == '\0')
1391 					data_len--;
1392 				audit_log_n_untrustedstring(ab, str, data_len);
1393 			}
1394 			audit_log_end(ab);
1395 		}
1396 		break;
1397 	case AUDIT_ADD_RULE:
1398 	case AUDIT_DEL_RULE:
1399 		if (data_len < sizeof(struct audit_rule_data))
1400 			return -EINVAL;
1401 		if (audit_enabled == AUDIT_LOCKED) {
1402 			audit_log_common_recv_msg(audit_context(), &ab,
1403 						  AUDIT_CONFIG_CHANGE);
1404 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1405 					 msg_type == AUDIT_ADD_RULE ?
1406 						"add_rule" : "remove_rule",
1407 					 audit_enabled);
1408 			audit_log_end(ab);
1409 			return -EPERM;
1410 		}
1411 		err = audit_rule_change(msg_type, seq, data, data_len);
1412 		break;
1413 	case AUDIT_LIST_RULES:
1414 		err = audit_list_rules_send(skb, seq);
1415 		break;
1416 	case AUDIT_TRIM:
1417 		audit_trim_trees();
1418 		audit_log_common_recv_msg(audit_context(), &ab,
1419 					  AUDIT_CONFIG_CHANGE);
1420 		audit_log_format(ab, " op=trim res=1");
1421 		audit_log_end(ab);
1422 		break;
1423 	case AUDIT_MAKE_EQUIV: {
1424 		void *bufp = data;
1425 		u32 sizes[2];
1426 		size_t msglen = data_len;
1427 		char *old, *new;
1428 
1429 		err = -EINVAL;
1430 		if (msglen < 2 * sizeof(u32))
1431 			break;
1432 		memcpy(sizes, bufp, 2 * sizeof(u32));
1433 		bufp += 2 * sizeof(u32);
1434 		msglen -= 2 * sizeof(u32);
1435 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1436 		if (IS_ERR(old)) {
1437 			err = PTR_ERR(old);
1438 			break;
1439 		}
1440 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1441 		if (IS_ERR(new)) {
1442 			err = PTR_ERR(new);
1443 			kfree(old);
1444 			break;
1445 		}
1446 		/* OK, here comes... */
1447 		err = audit_tag_tree(old, new);
1448 
1449 		audit_log_common_recv_msg(audit_context(), &ab,
1450 					  AUDIT_CONFIG_CHANGE);
1451 		audit_log_format(ab, " op=make_equiv old=");
1452 		audit_log_untrustedstring(ab, old);
1453 		audit_log_format(ab, " new=");
1454 		audit_log_untrustedstring(ab, new);
1455 		audit_log_format(ab, " res=%d", !err);
1456 		audit_log_end(ab);
1457 		kfree(old);
1458 		kfree(new);
1459 		break;
1460 	}
1461 	case AUDIT_SIGNAL_INFO:
1462 		len = 0;
1463 		if (audit_sig_sid) {
1464 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1465 			if (err)
1466 				return err;
1467 		}
1468 		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1469 		if (!sig_data) {
1470 			if (audit_sig_sid)
1471 				security_release_secctx(ctx, len);
1472 			return -ENOMEM;
1473 		}
1474 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1475 		sig_data->pid = audit_sig_pid;
1476 		if (audit_sig_sid) {
1477 			memcpy(sig_data->ctx, ctx, len);
1478 			security_release_secctx(ctx, len);
1479 		}
1480 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1481 				 sig_data, struct_size(sig_data, ctx, len));
1482 		kfree(sig_data);
1483 		break;
1484 	case AUDIT_TTY_GET: {
1485 		struct audit_tty_status s;
1486 		unsigned int t;
1487 
1488 		t = READ_ONCE(current->signal->audit_tty);
1489 		s.enabled = t & AUDIT_TTY_ENABLE;
1490 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1491 
1492 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1493 		break;
1494 	}
1495 	case AUDIT_TTY_SET: {
1496 		struct audit_tty_status s, old;
1497 		struct audit_buffer	*ab;
1498 		unsigned int t;
1499 
1500 		memset(&s, 0, sizeof(s));
1501 		/* guard against past and future API changes */
1502 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1503 		/* check if new data is valid */
1504 		if ((s.enabled != 0 && s.enabled != 1) ||
1505 		    (s.log_passwd != 0 && s.log_passwd != 1))
1506 			err = -EINVAL;
1507 
1508 		if (err)
1509 			t = READ_ONCE(current->signal->audit_tty);
1510 		else {
1511 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1512 			t = xchg(&current->signal->audit_tty, t);
1513 		}
1514 		old.enabled = t & AUDIT_TTY_ENABLE;
1515 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1516 
1517 		audit_log_common_recv_msg(audit_context(), &ab,
1518 					  AUDIT_CONFIG_CHANGE);
1519 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1520 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1521 				 old.enabled, s.enabled, old.log_passwd,
1522 				 s.log_passwd, !err);
1523 		audit_log_end(ab);
1524 		break;
1525 	}
1526 	default:
1527 		err = -EINVAL;
1528 		break;
1529 	}
1530 
1531 	return err < 0 ? err : 0;
1532 }
1533 
1534 /**
1535  * audit_receive - receive messages from a netlink control socket
1536  * @skb: the message buffer
1537  *
1538  * Parse the provided skb and deal with any messages that may be present,
1539  * malformed skbs are discarded.
1540  */
1541 static void audit_receive(struct sk_buff  *skb)
1542 {
1543 	struct nlmsghdr *nlh;
1544 	/*
1545 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1546 	 * if the nlmsg_len was not aligned
1547 	 */
1548 	int len;
1549 	int err;
1550 
1551 	nlh = nlmsg_hdr(skb);
1552 	len = skb->len;
1553 
1554 	audit_ctl_lock();
1555 	while (nlmsg_ok(nlh, len)) {
1556 		err = audit_receive_msg(skb, nlh);
1557 		/* if err or if this message says it wants a response */
1558 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1559 			netlink_ack(skb, nlh, err, NULL);
1560 
1561 		nlh = nlmsg_next(nlh, &len);
1562 	}
1563 	audit_ctl_unlock();
1564 
1565 	/* can't block with the ctrl lock, so penalize the sender now */
1566 	if (audit_backlog_limit &&
1567 	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1568 		DECLARE_WAITQUEUE(wait, current);
1569 
1570 		/* wake kauditd to try and flush the queue */
1571 		wake_up_interruptible(&kauditd_wait);
1572 
1573 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1574 		set_current_state(TASK_UNINTERRUPTIBLE);
1575 		schedule_timeout(audit_backlog_wait_time);
1576 		remove_wait_queue(&audit_backlog_wait, &wait);
1577 	}
1578 }
1579 
1580 /* Log information about who is connecting to the audit multicast socket */
1581 static void audit_log_multicast(int group, const char *op, int err)
1582 {
1583 	const struct cred *cred;
1584 	struct tty_struct *tty;
1585 	char comm[sizeof(current->comm)];
1586 	struct audit_buffer *ab;
1587 
1588 	if (!audit_enabled)
1589 		return;
1590 
1591 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1592 	if (!ab)
1593 		return;
1594 
1595 	cred = current_cred();
1596 	tty = audit_get_tty();
1597 	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1598 			 task_pid_nr(current),
1599 			 from_kuid(&init_user_ns, cred->uid),
1600 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1601 			 tty ? tty_name(tty) : "(none)",
1602 			 audit_get_sessionid(current));
1603 	audit_put_tty(tty);
1604 	audit_log_task_context(ab); /* subj= */
1605 	audit_log_format(ab, " comm=");
1606 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1607 	audit_log_d_path_exe(ab, current->mm); /* exe= */
1608 	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1609 	audit_log_end(ab);
1610 }
1611 
1612 /* Run custom bind function on netlink socket group connect or bind requests. */
1613 static int audit_multicast_bind(struct net *net, int group)
1614 {
1615 	int err = 0;
1616 
1617 	if (!capable(CAP_AUDIT_READ))
1618 		err = -EPERM;
1619 	audit_log_multicast(group, "connect", err);
1620 	return err;
1621 }
1622 
1623 static void audit_multicast_unbind(struct net *net, int group)
1624 {
1625 	audit_log_multicast(group, "disconnect", 0);
1626 }
1627 
1628 static int __net_init audit_net_init(struct net *net)
1629 {
1630 	struct netlink_kernel_cfg cfg = {
1631 		.input	= audit_receive,
1632 		.bind	= audit_multicast_bind,
1633 		.unbind	= audit_multicast_unbind,
1634 		.flags	= NL_CFG_F_NONROOT_RECV,
1635 		.groups	= AUDIT_NLGRP_MAX,
1636 	};
1637 
1638 	struct audit_net *aunet = net_generic(net, audit_net_id);
1639 
1640 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1641 	if (aunet->sk == NULL) {
1642 		audit_panic("cannot initialize netlink socket in namespace");
1643 		return -ENOMEM;
1644 	}
1645 	/* limit the timeout in case auditd is blocked/stopped */
1646 	aunet->sk->sk_sndtimeo = HZ / 10;
1647 
1648 	return 0;
1649 }
1650 
1651 static void __net_exit audit_net_exit(struct net *net)
1652 {
1653 	struct audit_net *aunet = net_generic(net, audit_net_id);
1654 
1655 	/* NOTE: you would think that we would want to check the auditd
1656 	 * connection and potentially reset it here if it lives in this
1657 	 * namespace, but since the auditd connection tracking struct holds a
1658 	 * reference to this namespace (see auditd_set()) we are only ever
1659 	 * going to get here after that connection has been released */
1660 
1661 	netlink_kernel_release(aunet->sk);
1662 }
1663 
1664 static struct pernet_operations audit_net_ops __net_initdata = {
1665 	.init = audit_net_init,
1666 	.exit = audit_net_exit,
1667 	.id = &audit_net_id,
1668 	.size = sizeof(struct audit_net),
1669 };
1670 
1671 /* Initialize audit support at boot time. */
1672 static int __init audit_init(void)
1673 {
1674 	int i;
1675 
1676 	if (audit_initialized == AUDIT_DISABLED)
1677 		return 0;
1678 
1679 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1680 					       sizeof(struct audit_buffer),
1681 					       0, SLAB_PANIC, NULL);
1682 
1683 	skb_queue_head_init(&audit_queue);
1684 	skb_queue_head_init(&audit_retry_queue);
1685 	skb_queue_head_init(&audit_hold_queue);
1686 
1687 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1688 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1689 
1690 	mutex_init(&audit_cmd_mutex.lock);
1691 	audit_cmd_mutex.owner = NULL;
1692 
1693 	pr_info("initializing netlink subsys (%s)\n",
1694 		audit_default ? "enabled" : "disabled");
1695 	register_pernet_subsys(&audit_net_ops);
1696 
1697 	audit_initialized = AUDIT_INITIALIZED;
1698 
1699 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1700 	if (IS_ERR(kauditd_task)) {
1701 		int err = PTR_ERR(kauditd_task);
1702 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1703 	}
1704 
1705 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1706 		"state=initialized audit_enabled=%u res=1",
1707 		 audit_enabled);
1708 
1709 	return 0;
1710 }
1711 postcore_initcall(audit_init);
1712 
1713 /*
1714  * Process kernel command-line parameter at boot time.
1715  * audit={0|off} or audit={1|on}.
1716  */
1717 static int __init audit_enable(char *str)
1718 {
1719 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1720 		audit_default = AUDIT_OFF;
1721 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1722 		audit_default = AUDIT_ON;
1723 	else {
1724 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1725 		audit_default = AUDIT_ON;
1726 	}
1727 
1728 	if (audit_default == AUDIT_OFF)
1729 		audit_initialized = AUDIT_DISABLED;
1730 	if (audit_set_enabled(audit_default))
1731 		pr_err("audit: error setting audit state (%d)\n",
1732 		       audit_default);
1733 
1734 	pr_info("%s\n", audit_default ?
1735 		"enabled (after initialization)" : "disabled (until reboot)");
1736 
1737 	return 1;
1738 }
1739 __setup("audit=", audit_enable);
1740 
1741 /* Process kernel command-line parameter at boot time.
1742  * audit_backlog_limit=<n> */
1743 static int __init audit_backlog_limit_set(char *str)
1744 {
1745 	u32 audit_backlog_limit_arg;
1746 
1747 	pr_info("audit_backlog_limit: ");
1748 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1749 		pr_cont("using default of %u, unable to parse %s\n",
1750 			audit_backlog_limit, str);
1751 		return 1;
1752 	}
1753 
1754 	audit_backlog_limit = audit_backlog_limit_arg;
1755 	pr_cont("%d\n", audit_backlog_limit);
1756 
1757 	return 1;
1758 }
1759 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1760 
1761 static void audit_buffer_free(struct audit_buffer *ab)
1762 {
1763 	if (!ab)
1764 		return;
1765 
1766 	kfree_skb(ab->skb);
1767 	kmem_cache_free(audit_buffer_cache, ab);
1768 }
1769 
1770 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1771 					       gfp_t gfp_mask, int type)
1772 {
1773 	struct audit_buffer *ab;
1774 
1775 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1776 	if (!ab)
1777 		return NULL;
1778 
1779 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1780 	if (!ab->skb)
1781 		goto err;
1782 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1783 		goto err;
1784 
1785 	ab->ctx = ctx;
1786 	ab->gfp_mask = gfp_mask;
1787 
1788 	return ab;
1789 
1790 err:
1791 	audit_buffer_free(ab);
1792 	return NULL;
1793 }
1794 
1795 /**
1796  * audit_serial - compute a serial number for the audit record
1797  *
1798  * Compute a serial number for the audit record.  Audit records are
1799  * written to user-space as soon as they are generated, so a complete
1800  * audit record may be written in several pieces.  The timestamp of the
1801  * record and this serial number are used by the user-space tools to
1802  * determine which pieces belong to the same audit record.  The
1803  * (timestamp,serial) tuple is unique for each syscall and is live from
1804  * syscall entry to syscall exit.
1805  *
1806  * NOTE: Another possibility is to store the formatted records off the
1807  * audit context (for those records that have a context), and emit them
1808  * all at syscall exit.  However, this could delay the reporting of
1809  * significant errors until syscall exit (or never, if the system
1810  * halts).
1811  */
1812 unsigned int audit_serial(void)
1813 {
1814 	static atomic_t serial = ATOMIC_INIT(0);
1815 
1816 	return atomic_inc_return(&serial);
1817 }
1818 
1819 static inline void audit_get_stamp(struct audit_context *ctx,
1820 				   struct timespec64 *t, unsigned int *serial)
1821 {
1822 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1823 		ktime_get_coarse_real_ts64(t);
1824 		*serial = audit_serial();
1825 	}
1826 }
1827 
1828 /**
1829  * audit_log_start - obtain an audit buffer
1830  * @ctx: audit_context (may be NULL)
1831  * @gfp_mask: type of allocation
1832  * @type: audit message type
1833  *
1834  * Returns audit_buffer pointer on success or NULL on error.
1835  *
1836  * Obtain an audit buffer.  This routine does locking to obtain the
1837  * audit buffer, but then no locking is required for calls to
1838  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1839  * syscall, then the syscall is marked as auditable and an audit record
1840  * will be written at syscall exit.  If there is no associated task, then
1841  * task context (ctx) should be NULL.
1842  */
1843 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1844 				     int type)
1845 {
1846 	struct audit_buffer *ab;
1847 	struct timespec64 t;
1848 	unsigned int serial;
1849 
1850 	if (audit_initialized != AUDIT_INITIALIZED)
1851 		return NULL;
1852 
1853 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1854 		return NULL;
1855 
1856 	/* NOTE: don't ever fail/sleep on these two conditions:
1857 	 * 1. auditd generated record - since we need auditd to drain the
1858 	 *    queue; also, when we are checking for auditd, compare PIDs using
1859 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1860 	 *    using a PID anchored in the caller's namespace
1861 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1862 	 *    while holding the mutex, although we do penalize the sender
1863 	 *    later in audit_receive() when it is safe to block
1864 	 */
1865 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1866 		long stime = audit_backlog_wait_time;
1867 
1868 		while (audit_backlog_limit &&
1869 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1870 			/* wake kauditd to try and flush the queue */
1871 			wake_up_interruptible(&kauditd_wait);
1872 
1873 			/* sleep if we are allowed and we haven't exhausted our
1874 			 * backlog wait limit */
1875 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1876 				long rtime = stime;
1877 
1878 				DECLARE_WAITQUEUE(wait, current);
1879 
1880 				add_wait_queue_exclusive(&audit_backlog_wait,
1881 							 &wait);
1882 				set_current_state(TASK_UNINTERRUPTIBLE);
1883 				stime = schedule_timeout(rtime);
1884 				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1885 				remove_wait_queue(&audit_backlog_wait, &wait);
1886 			} else {
1887 				if (audit_rate_check() && printk_ratelimit())
1888 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1889 						skb_queue_len(&audit_queue),
1890 						audit_backlog_limit);
1891 				audit_log_lost("backlog limit exceeded");
1892 				return NULL;
1893 			}
1894 		}
1895 	}
1896 
1897 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1898 	if (!ab) {
1899 		audit_log_lost("out of memory in audit_log_start");
1900 		return NULL;
1901 	}
1902 
1903 	audit_get_stamp(ab->ctx, &t, &serial);
1904 	/* cancel dummy context to enable supporting records */
1905 	if (ctx)
1906 		ctx->dummy = 0;
1907 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1908 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1909 
1910 	return ab;
1911 }
1912 
1913 /**
1914  * audit_expand - expand skb in the audit buffer
1915  * @ab: audit_buffer
1916  * @extra: space to add at tail of the skb
1917  *
1918  * Returns 0 (no space) on failed expansion, or available space if
1919  * successful.
1920  */
1921 static inline int audit_expand(struct audit_buffer *ab, int extra)
1922 {
1923 	struct sk_buff *skb = ab->skb;
1924 	int oldtail = skb_tailroom(skb);
1925 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1926 	int newtail = skb_tailroom(skb);
1927 
1928 	if (ret < 0) {
1929 		audit_log_lost("out of memory in audit_expand");
1930 		return 0;
1931 	}
1932 
1933 	skb->truesize += newtail - oldtail;
1934 	return newtail;
1935 }
1936 
1937 /*
1938  * Format an audit message into the audit buffer.  If there isn't enough
1939  * room in the audit buffer, more room will be allocated and vsnprint
1940  * will be called a second time.  Currently, we assume that a printk
1941  * can't format message larger than 1024 bytes, so we don't either.
1942  */
1943 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1944 			      va_list args)
1945 {
1946 	int len, avail;
1947 	struct sk_buff *skb;
1948 	va_list args2;
1949 
1950 	if (!ab)
1951 		return;
1952 
1953 	BUG_ON(!ab->skb);
1954 	skb = ab->skb;
1955 	avail = skb_tailroom(skb);
1956 	if (avail == 0) {
1957 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1958 		if (!avail)
1959 			goto out;
1960 	}
1961 	va_copy(args2, args);
1962 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1963 	if (len >= avail) {
1964 		/* The printk buffer is 1024 bytes long, so if we get
1965 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1966 		 * log everything that printk could have logged. */
1967 		avail = audit_expand(ab,
1968 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1969 		if (!avail)
1970 			goto out_va_end;
1971 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1972 	}
1973 	if (len > 0)
1974 		skb_put(skb, len);
1975 out_va_end:
1976 	va_end(args2);
1977 out:
1978 	return;
1979 }
1980 
1981 /**
1982  * audit_log_format - format a message into the audit buffer.
1983  * @ab: audit_buffer
1984  * @fmt: format string
1985  * @...: optional parameters matching @fmt string
1986  *
1987  * All the work is done in audit_log_vformat.
1988  */
1989 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1990 {
1991 	va_list args;
1992 
1993 	if (!ab)
1994 		return;
1995 	va_start(args, fmt);
1996 	audit_log_vformat(ab, fmt, args);
1997 	va_end(args);
1998 }
1999 
2000 /**
2001  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2002  * @ab: the audit_buffer
2003  * @buf: buffer to convert to hex
2004  * @len: length of @buf to be converted
2005  *
2006  * No return value; failure to expand is silently ignored.
2007  *
2008  * This function will take the passed buf and convert it into a string of
2009  * ascii hex digits. The new string is placed onto the skb.
2010  */
2011 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2012 		size_t len)
2013 {
2014 	int i, avail, new_len;
2015 	unsigned char *ptr;
2016 	struct sk_buff *skb;
2017 
2018 	if (!ab)
2019 		return;
2020 
2021 	BUG_ON(!ab->skb);
2022 	skb = ab->skb;
2023 	avail = skb_tailroom(skb);
2024 	new_len = len<<1;
2025 	if (new_len >= avail) {
2026 		/* Round the buffer request up to the next multiple */
2027 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2028 		avail = audit_expand(ab, new_len);
2029 		if (!avail)
2030 			return;
2031 	}
2032 
2033 	ptr = skb_tail_pointer(skb);
2034 	for (i = 0; i < len; i++)
2035 		ptr = hex_byte_pack_upper(ptr, buf[i]);
2036 	*ptr = 0;
2037 	skb_put(skb, len << 1); /* new string is twice the old string */
2038 }
2039 
2040 /*
2041  * Format a string of no more than slen characters into the audit buffer,
2042  * enclosed in quote marks.
2043  */
2044 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2045 			size_t slen)
2046 {
2047 	int avail, new_len;
2048 	unsigned char *ptr;
2049 	struct sk_buff *skb;
2050 
2051 	if (!ab)
2052 		return;
2053 
2054 	BUG_ON(!ab->skb);
2055 	skb = ab->skb;
2056 	avail = skb_tailroom(skb);
2057 	new_len = slen + 3;	/* enclosing quotes + null terminator */
2058 	if (new_len > avail) {
2059 		avail = audit_expand(ab, new_len);
2060 		if (!avail)
2061 			return;
2062 	}
2063 	ptr = skb_tail_pointer(skb);
2064 	*ptr++ = '"';
2065 	memcpy(ptr, string, slen);
2066 	ptr += slen;
2067 	*ptr++ = '"';
2068 	*ptr = 0;
2069 	skb_put(skb, slen + 2);	/* don't include null terminator */
2070 }
2071 
2072 /**
2073  * audit_string_contains_control - does a string need to be logged in hex
2074  * @string: string to be checked
2075  * @len: max length of the string to check
2076  */
2077 bool audit_string_contains_control(const char *string, size_t len)
2078 {
2079 	const unsigned char *p;
2080 	for (p = string; p < (const unsigned char *)string + len; p++) {
2081 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2082 			return true;
2083 	}
2084 	return false;
2085 }
2086 
2087 /**
2088  * audit_log_n_untrustedstring - log a string that may contain random characters
2089  * @ab: audit_buffer
2090  * @len: length of string (not including trailing null)
2091  * @string: string to be logged
2092  *
2093  * This code will escape a string that is passed to it if the string
2094  * contains a control character, unprintable character, double quote mark,
2095  * or a space. Unescaped strings will start and end with a double quote mark.
2096  * Strings that are escaped are printed in hex (2 digits per char).
2097  *
2098  * The caller specifies the number of characters in the string to log, which may
2099  * or may not be the entire string.
2100  */
2101 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2102 				 size_t len)
2103 {
2104 	if (audit_string_contains_control(string, len))
2105 		audit_log_n_hex(ab, string, len);
2106 	else
2107 		audit_log_n_string(ab, string, len);
2108 }
2109 
2110 /**
2111  * audit_log_untrustedstring - log a string that may contain random characters
2112  * @ab: audit_buffer
2113  * @string: string to be logged
2114  *
2115  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2116  * determine string length.
2117  */
2118 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2119 {
2120 	audit_log_n_untrustedstring(ab, string, strlen(string));
2121 }
2122 
2123 /* This is a helper-function to print the escaped d_path */
2124 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2125 		      const struct path *path)
2126 {
2127 	char *p, *pathname;
2128 
2129 	if (prefix)
2130 		audit_log_format(ab, "%s", prefix);
2131 
2132 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2133 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2134 	if (!pathname) {
2135 		audit_log_format(ab, "\"<no_memory>\"");
2136 		return;
2137 	}
2138 	p = d_path(path, pathname, PATH_MAX+11);
2139 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2140 		/* FIXME: can we save some information here? */
2141 		audit_log_format(ab, "\"<too_long>\"");
2142 	} else
2143 		audit_log_untrustedstring(ab, p);
2144 	kfree(pathname);
2145 }
2146 
2147 void audit_log_session_info(struct audit_buffer *ab)
2148 {
2149 	unsigned int sessionid = audit_get_sessionid(current);
2150 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2151 
2152 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2153 }
2154 
2155 void audit_log_key(struct audit_buffer *ab, char *key)
2156 {
2157 	audit_log_format(ab, " key=");
2158 	if (key)
2159 		audit_log_untrustedstring(ab, key);
2160 	else
2161 		audit_log_format(ab, "(null)");
2162 }
2163 
2164 int audit_log_task_context(struct audit_buffer *ab)
2165 {
2166 	char *ctx = NULL;
2167 	unsigned len;
2168 	int error;
2169 	u32 sid;
2170 
2171 	security_current_getsecid_subj(&sid);
2172 	if (!sid)
2173 		return 0;
2174 
2175 	error = security_secid_to_secctx(sid, &ctx, &len);
2176 	if (error) {
2177 		if (error != -EINVAL)
2178 			goto error_path;
2179 		return 0;
2180 	}
2181 
2182 	audit_log_format(ab, " subj=%s", ctx);
2183 	security_release_secctx(ctx, len);
2184 	return 0;
2185 
2186 error_path:
2187 	audit_panic("error in audit_log_task_context");
2188 	return error;
2189 }
2190 EXPORT_SYMBOL(audit_log_task_context);
2191 
2192 void audit_log_d_path_exe(struct audit_buffer *ab,
2193 			  struct mm_struct *mm)
2194 {
2195 	struct file *exe_file;
2196 
2197 	if (!mm)
2198 		goto out_null;
2199 
2200 	exe_file = get_mm_exe_file(mm);
2201 	if (!exe_file)
2202 		goto out_null;
2203 
2204 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2205 	fput(exe_file);
2206 	return;
2207 out_null:
2208 	audit_log_format(ab, " exe=(null)");
2209 }
2210 
2211 struct tty_struct *audit_get_tty(void)
2212 {
2213 	struct tty_struct *tty = NULL;
2214 	unsigned long flags;
2215 
2216 	spin_lock_irqsave(&current->sighand->siglock, flags);
2217 	if (current->signal)
2218 		tty = tty_kref_get(current->signal->tty);
2219 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2220 	return tty;
2221 }
2222 
2223 void audit_put_tty(struct tty_struct *tty)
2224 {
2225 	tty_kref_put(tty);
2226 }
2227 
2228 void audit_log_task_info(struct audit_buffer *ab)
2229 {
2230 	const struct cred *cred;
2231 	char comm[sizeof(current->comm)];
2232 	struct tty_struct *tty;
2233 
2234 	if (!ab)
2235 		return;
2236 
2237 	cred = current_cred();
2238 	tty = audit_get_tty();
2239 	audit_log_format(ab,
2240 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2241 			 " euid=%u suid=%u fsuid=%u"
2242 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2243 			 task_ppid_nr(current),
2244 			 task_tgid_nr(current),
2245 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2246 			 from_kuid(&init_user_ns, cred->uid),
2247 			 from_kgid(&init_user_ns, cred->gid),
2248 			 from_kuid(&init_user_ns, cred->euid),
2249 			 from_kuid(&init_user_ns, cred->suid),
2250 			 from_kuid(&init_user_ns, cred->fsuid),
2251 			 from_kgid(&init_user_ns, cred->egid),
2252 			 from_kgid(&init_user_ns, cred->sgid),
2253 			 from_kgid(&init_user_ns, cred->fsgid),
2254 			 tty ? tty_name(tty) : "(none)",
2255 			 audit_get_sessionid(current));
2256 	audit_put_tty(tty);
2257 	audit_log_format(ab, " comm=");
2258 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2259 	audit_log_d_path_exe(ab, current->mm);
2260 	audit_log_task_context(ab);
2261 }
2262 EXPORT_SYMBOL(audit_log_task_info);
2263 
2264 /**
2265  * audit_log_path_denied - report a path restriction denial
2266  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2267  * @operation: specific operation name
2268  */
2269 void audit_log_path_denied(int type, const char *operation)
2270 {
2271 	struct audit_buffer *ab;
2272 
2273 	if (!audit_enabled || audit_dummy_context())
2274 		return;
2275 
2276 	/* Generate log with subject, operation, outcome. */
2277 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2278 	if (!ab)
2279 		return;
2280 	audit_log_format(ab, "op=%s", operation);
2281 	audit_log_task_info(ab);
2282 	audit_log_format(ab, " res=0");
2283 	audit_log_end(ab);
2284 }
2285 
2286 /* global counter which is incremented every time something logs in */
2287 static atomic_t session_id = ATOMIC_INIT(0);
2288 
2289 static int audit_set_loginuid_perm(kuid_t loginuid)
2290 {
2291 	/* if we are unset, we don't need privs */
2292 	if (!audit_loginuid_set(current))
2293 		return 0;
2294 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2295 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2296 		return -EPERM;
2297 	/* it is set, you need permission */
2298 	if (!capable(CAP_AUDIT_CONTROL))
2299 		return -EPERM;
2300 	/* reject if this is not an unset and we don't allow that */
2301 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2302 				 && uid_valid(loginuid))
2303 		return -EPERM;
2304 	return 0;
2305 }
2306 
2307 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2308 				   unsigned int oldsessionid,
2309 				   unsigned int sessionid, int rc)
2310 {
2311 	struct audit_buffer *ab;
2312 	uid_t uid, oldloginuid, loginuid;
2313 	struct tty_struct *tty;
2314 
2315 	if (!audit_enabled)
2316 		return;
2317 
2318 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2319 	if (!ab)
2320 		return;
2321 
2322 	uid = from_kuid(&init_user_ns, task_uid(current));
2323 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2324 	loginuid = from_kuid(&init_user_ns, kloginuid);
2325 	tty = audit_get_tty();
2326 
2327 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2328 	audit_log_task_context(ab);
2329 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2330 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2331 			 oldsessionid, sessionid, !rc);
2332 	audit_put_tty(tty);
2333 	audit_log_end(ab);
2334 }
2335 
2336 /**
2337  * audit_set_loginuid - set current task's loginuid
2338  * @loginuid: loginuid value
2339  *
2340  * Returns 0.
2341  *
2342  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2343  */
2344 int audit_set_loginuid(kuid_t loginuid)
2345 {
2346 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2347 	kuid_t oldloginuid;
2348 	int rc;
2349 
2350 	oldloginuid = audit_get_loginuid(current);
2351 	oldsessionid = audit_get_sessionid(current);
2352 
2353 	rc = audit_set_loginuid_perm(loginuid);
2354 	if (rc)
2355 		goto out;
2356 
2357 	/* are we setting or clearing? */
2358 	if (uid_valid(loginuid)) {
2359 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2360 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2361 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2362 	}
2363 
2364 	current->sessionid = sessionid;
2365 	current->loginuid = loginuid;
2366 out:
2367 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2368 	return rc;
2369 }
2370 
2371 /**
2372  * audit_signal_info - record signal info for shutting down audit subsystem
2373  * @sig: signal value
2374  * @t: task being signaled
2375  *
2376  * If the audit subsystem is being terminated, record the task (pid)
2377  * and uid that is doing that.
2378  */
2379 int audit_signal_info(int sig, struct task_struct *t)
2380 {
2381 	kuid_t uid = current_uid(), auid;
2382 
2383 	if (auditd_test_task(t) &&
2384 	    (sig == SIGTERM || sig == SIGHUP ||
2385 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2386 		audit_sig_pid = task_tgid_nr(current);
2387 		auid = audit_get_loginuid(current);
2388 		if (uid_valid(auid))
2389 			audit_sig_uid = auid;
2390 		else
2391 			audit_sig_uid = uid;
2392 		security_current_getsecid_subj(&audit_sig_sid);
2393 	}
2394 
2395 	return audit_signal_info_syscall(t);
2396 }
2397 
2398 /**
2399  * audit_log_end - end one audit record
2400  * @ab: the audit_buffer
2401  *
2402  * We can not do a netlink send inside an irq context because it blocks (last
2403  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2404  * queue and a kthread is scheduled to remove them from the queue outside the
2405  * irq context.  May be called in any context.
2406  */
2407 void audit_log_end(struct audit_buffer *ab)
2408 {
2409 	struct sk_buff *skb;
2410 	struct nlmsghdr *nlh;
2411 
2412 	if (!ab)
2413 		return;
2414 
2415 	if (audit_rate_check()) {
2416 		skb = ab->skb;
2417 		ab->skb = NULL;
2418 
2419 		/* setup the netlink header, see the comments in
2420 		 * kauditd_send_multicast_skb() for length quirks */
2421 		nlh = nlmsg_hdr(skb);
2422 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2423 
2424 		/* queue the netlink packet and poke the kauditd thread */
2425 		skb_queue_tail(&audit_queue, skb);
2426 		wake_up_interruptible(&kauditd_wait);
2427 	} else
2428 		audit_log_lost("rate limit exceeded");
2429 
2430 	audit_buffer_free(ab);
2431 }
2432 
2433 /**
2434  * audit_log - Log an audit record
2435  * @ctx: audit context
2436  * @gfp_mask: type of allocation
2437  * @type: audit message type
2438  * @fmt: format string to use
2439  * @...: variable parameters matching the format string
2440  *
2441  * This is a convenience function that calls audit_log_start,
2442  * audit_log_vformat, and audit_log_end.  It may be called
2443  * in any context.
2444  */
2445 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2446 	       const char *fmt, ...)
2447 {
2448 	struct audit_buffer *ab;
2449 	va_list args;
2450 
2451 	ab = audit_log_start(ctx, gfp_mask, type);
2452 	if (ab) {
2453 		va_start(args, fmt);
2454 		audit_log_vformat(ab, fmt, args);
2455 		va_end(args);
2456 		audit_log_end(ab);
2457 	}
2458 }
2459 
2460 EXPORT_SYMBOL(audit_log_start);
2461 EXPORT_SYMBOL(audit_log_end);
2462 EXPORT_SYMBOL(audit_log_format);
2463 EXPORT_SYMBOL(audit_log);
2464