1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #include <linux/security.h> 57 #include <linux/freezer.h> 58 #include <linux/pid_namespace.h> 59 #include <net/netns/generic.h> 60 61 #include "audit.h" 62 63 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 64 * (Initialization happens after skb_init is called.) */ 65 #define AUDIT_DISABLED -1 66 #define AUDIT_UNINITIALIZED 0 67 #define AUDIT_INITIALIZED 1 68 static int audit_initialized = AUDIT_UNINITIALIZED; 69 70 u32 audit_enabled = AUDIT_OFF; 71 bool audit_ever_enabled = !!AUDIT_OFF; 72 73 EXPORT_SYMBOL_GPL(audit_enabled); 74 75 /* Default state when kernel boots without any parameters. */ 76 static u32 audit_default = AUDIT_OFF; 77 78 /* If auditing cannot proceed, audit_failure selects what happens. */ 79 static u32 audit_failure = AUDIT_FAIL_PRINTK; 80 81 /* private audit network namespace index */ 82 static unsigned int audit_net_id; 83 84 /** 85 * struct audit_net - audit private network namespace data 86 * @sk: communication socket 87 */ 88 struct audit_net { 89 struct sock *sk; 90 }; 91 92 /** 93 * struct auditd_connection - kernel/auditd connection state 94 * @pid: auditd PID 95 * @portid: netlink portid 96 * @net: the associated network namespace 97 * @rcu: RCU head 98 * 99 * Description: 100 * This struct is RCU protected; you must either hold the RCU lock for reading 101 * or the associated spinlock for writing. 102 */ 103 struct auditd_connection { 104 struct pid *pid; 105 u32 portid; 106 struct net *net; 107 struct rcu_head rcu; 108 }; 109 static struct auditd_connection __rcu *auditd_conn; 110 static DEFINE_SPINLOCK(auditd_conn_lock); 111 112 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 113 * to that number per second. This prevents DoS attacks, but results in 114 * audit records being dropped. */ 115 static u32 audit_rate_limit; 116 117 /* Number of outstanding audit_buffers allowed. 118 * When set to zero, this means unlimited. */ 119 static u32 audit_backlog_limit = 64; 120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 121 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 122 123 /* The identity of the user shutting down the audit system. */ 124 static kuid_t audit_sig_uid = INVALID_UID; 125 static pid_t audit_sig_pid = -1; 126 static u32 audit_sig_sid; 127 128 /* Records can be lost in several ways: 129 0) [suppressed in audit_alloc] 130 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 131 2) out of memory in audit_log_move [alloc_skb] 132 3) suppressed due to audit_rate_limit 133 4) suppressed due to audit_backlog_limit 134 */ 135 static atomic_t audit_lost = ATOMIC_INIT(0); 136 137 /* Monotonically increasing sum of time the kernel has spent 138 * waiting while the backlog limit is exceeded. 139 */ 140 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 141 142 /* Hash for inode-based rules */ 143 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 144 145 static struct kmem_cache *audit_buffer_cache; 146 147 /* queue msgs to send via kauditd_task */ 148 static struct sk_buff_head audit_queue; 149 /* queue msgs due to temporary unicast send problems */ 150 static struct sk_buff_head audit_retry_queue; 151 /* queue msgs waiting for new auditd connection */ 152 static struct sk_buff_head audit_hold_queue; 153 154 /* queue servicing thread */ 155 static struct task_struct *kauditd_task; 156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 157 158 /* waitqueue for callers who are blocked on the audit backlog */ 159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 160 161 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 162 .mask = -1, 163 .features = 0, 164 .lock = 0,}; 165 166 static char *audit_feature_names[2] = { 167 "only_unset_loginuid", 168 "loginuid_immutable", 169 }; 170 171 /** 172 * struct audit_ctl_mutex - serialize requests from userspace 173 * @lock: the mutex used for locking 174 * @owner: the task which owns the lock 175 * 176 * Description: 177 * This is the lock struct used to ensure we only process userspace requests 178 * in an orderly fashion. We can't simply use a mutex/lock here because we 179 * need to track lock ownership so we don't end up blocking the lock owner in 180 * audit_log_start() or similar. 181 */ 182 static struct audit_ctl_mutex { 183 struct mutex lock; 184 void *owner; 185 } audit_cmd_mutex; 186 187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 188 * audit records. Since printk uses a 1024 byte buffer, this buffer 189 * should be at least that large. */ 190 #define AUDIT_BUFSIZ 1024 191 192 /* The audit_buffer is used when formatting an audit record. The caller 193 * locks briefly to get the record off the freelist or to allocate the 194 * buffer, and locks briefly to send the buffer to the netlink layer or 195 * to place it on a transmit queue. Multiple audit_buffers can be in 196 * use simultaneously. */ 197 struct audit_buffer { 198 struct sk_buff *skb; /* formatted skb ready to send */ 199 struct audit_context *ctx; /* NULL or associated context */ 200 gfp_t gfp_mask; 201 }; 202 203 struct audit_reply { 204 __u32 portid; 205 struct net *net; 206 struct sk_buff *skb; 207 }; 208 209 /** 210 * auditd_test_task - Check to see if a given task is an audit daemon 211 * @task: the task to check 212 * 213 * Description: 214 * Return 1 if the task is a registered audit daemon, 0 otherwise. 215 */ 216 int auditd_test_task(struct task_struct *task) 217 { 218 int rc; 219 struct auditd_connection *ac; 220 221 rcu_read_lock(); 222 ac = rcu_dereference(auditd_conn); 223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 224 rcu_read_unlock(); 225 226 return rc; 227 } 228 229 /** 230 * audit_ctl_lock - Take the audit control lock 231 */ 232 void audit_ctl_lock(void) 233 { 234 mutex_lock(&audit_cmd_mutex.lock); 235 audit_cmd_mutex.owner = current; 236 } 237 238 /** 239 * audit_ctl_unlock - Drop the audit control lock 240 */ 241 void audit_ctl_unlock(void) 242 { 243 audit_cmd_mutex.owner = NULL; 244 mutex_unlock(&audit_cmd_mutex.lock); 245 } 246 247 /** 248 * audit_ctl_owner_current - Test to see if the current task owns the lock 249 * 250 * Description: 251 * Return true if the current task owns the audit control lock, false if it 252 * doesn't own the lock. 253 */ 254 static bool audit_ctl_owner_current(void) 255 { 256 return (current == audit_cmd_mutex.owner); 257 } 258 259 /** 260 * auditd_pid_vnr - Return the auditd PID relative to the namespace 261 * 262 * Description: 263 * Returns the PID in relation to the namespace, 0 on failure. 264 */ 265 static pid_t auditd_pid_vnr(void) 266 { 267 pid_t pid; 268 const struct auditd_connection *ac; 269 270 rcu_read_lock(); 271 ac = rcu_dereference(auditd_conn); 272 if (!ac || !ac->pid) 273 pid = 0; 274 else 275 pid = pid_vnr(ac->pid); 276 rcu_read_unlock(); 277 278 return pid; 279 } 280 281 /** 282 * audit_get_sk - Return the audit socket for the given network namespace 283 * @net: the destination network namespace 284 * 285 * Description: 286 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 287 * that a reference is held for the network namespace while the sock is in use. 288 */ 289 static struct sock *audit_get_sk(const struct net *net) 290 { 291 struct audit_net *aunet; 292 293 if (!net) 294 return NULL; 295 296 aunet = net_generic(net, audit_net_id); 297 return aunet->sk; 298 } 299 300 void audit_panic(const char *message) 301 { 302 switch (audit_failure) { 303 case AUDIT_FAIL_SILENT: 304 break; 305 case AUDIT_FAIL_PRINTK: 306 if (printk_ratelimit()) 307 pr_err("%s\n", message); 308 break; 309 case AUDIT_FAIL_PANIC: 310 panic("audit: %s\n", message); 311 break; 312 } 313 } 314 315 static inline int audit_rate_check(void) 316 { 317 static unsigned long last_check = 0; 318 static int messages = 0; 319 static DEFINE_SPINLOCK(lock); 320 unsigned long flags; 321 unsigned long now; 322 int retval = 0; 323 324 if (!audit_rate_limit) 325 return 1; 326 327 spin_lock_irqsave(&lock, flags); 328 if (++messages < audit_rate_limit) { 329 retval = 1; 330 } else { 331 now = jiffies; 332 if (time_after(now, last_check + HZ)) { 333 last_check = now; 334 messages = 0; 335 retval = 1; 336 } 337 } 338 spin_unlock_irqrestore(&lock, flags); 339 340 return retval; 341 } 342 343 /** 344 * audit_log_lost - conditionally log lost audit message event 345 * @message: the message stating reason for lost audit message 346 * 347 * Emit at least 1 message per second, even if audit_rate_check is 348 * throttling. 349 * Always increment the lost messages counter. 350 */ 351 void audit_log_lost(const char *message) 352 { 353 static unsigned long last_msg = 0; 354 static DEFINE_SPINLOCK(lock); 355 unsigned long flags; 356 unsigned long now; 357 int print; 358 359 atomic_inc(&audit_lost); 360 361 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 362 363 if (!print) { 364 spin_lock_irqsave(&lock, flags); 365 now = jiffies; 366 if (time_after(now, last_msg + HZ)) { 367 print = 1; 368 last_msg = now; 369 } 370 spin_unlock_irqrestore(&lock, flags); 371 } 372 373 if (print) { 374 if (printk_ratelimit()) 375 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 376 atomic_read(&audit_lost), 377 audit_rate_limit, 378 audit_backlog_limit); 379 audit_panic(message); 380 } 381 } 382 383 static int audit_log_config_change(char *function_name, u32 new, u32 old, 384 int allow_changes) 385 { 386 struct audit_buffer *ab; 387 int rc = 0; 388 389 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 390 if (unlikely(!ab)) 391 return rc; 392 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 393 audit_log_session_info(ab); 394 rc = audit_log_task_context(ab); 395 if (rc) 396 allow_changes = 0; /* Something weird, deny request */ 397 audit_log_format(ab, " res=%d", allow_changes); 398 audit_log_end(ab); 399 return rc; 400 } 401 402 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 403 { 404 int allow_changes, rc = 0; 405 u32 old = *to_change; 406 407 /* check if we are locked */ 408 if (audit_enabled == AUDIT_LOCKED) 409 allow_changes = 0; 410 else 411 allow_changes = 1; 412 413 if (audit_enabled != AUDIT_OFF) { 414 rc = audit_log_config_change(function_name, new, old, allow_changes); 415 if (rc) 416 allow_changes = 0; 417 } 418 419 /* If we are allowed, make the change */ 420 if (allow_changes == 1) 421 *to_change = new; 422 /* Not allowed, update reason */ 423 else if (rc == 0) 424 rc = -EPERM; 425 return rc; 426 } 427 428 static int audit_set_rate_limit(u32 limit) 429 { 430 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 431 } 432 433 static int audit_set_backlog_limit(u32 limit) 434 { 435 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 436 } 437 438 static int audit_set_backlog_wait_time(u32 timeout) 439 { 440 return audit_do_config_change("audit_backlog_wait_time", 441 &audit_backlog_wait_time, timeout); 442 } 443 444 static int audit_set_enabled(u32 state) 445 { 446 int rc; 447 if (state > AUDIT_LOCKED) 448 return -EINVAL; 449 450 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 451 if (!rc) 452 audit_ever_enabled |= !!state; 453 454 return rc; 455 } 456 457 static int audit_set_failure(u32 state) 458 { 459 if (state != AUDIT_FAIL_SILENT 460 && state != AUDIT_FAIL_PRINTK 461 && state != AUDIT_FAIL_PANIC) 462 return -EINVAL; 463 464 return audit_do_config_change("audit_failure", &audit_failure, state); 465 } 466 467 /** 468 * auditd_conn_free - RCU helper to release an auditd connection struct 469 * @rcu: RCU head 470 * 471 * Description: 472 * Drop any references inside the auditd connection tracking struct and free 473 * the memory. 474 */ 475 static void auditd_conn_free(struct rcu_head *rcu) 476 { 477 struct auditd_connection *ac; 478 479 ac = container_of(rcu, struct auditd_connection, rcu); 480 put_pid(ac->pid); 481 put_net(ac->net); 482 kfree(ac); 483 } 484 485 /** 486 * auditd_set - Set/Reset the auditd connection state 487 * @pid: auditd PID 488 * @portid: auditd netlink portid 489 * @net: auditd network namespace pointer 490 * 491 * Description: 492 * This function will obtain and drop network namespace references as 493 * necessary. Returns zero on success, negative values on failure. 494 */ 495 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 496 { 497 unsigned long flags; 498 struct auditd_connection *ac_old, *ac_new; 499 500 if (!pid || !net) 501 return -EINVAL; 502 503 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 504 if (!ac_new) 505 return -ENOMEM; 506 ac_new->pid = get_pid(pid); 507 ac_new->portid = portid; 508 ac_new->net = get_net(net); 509 510 spin_lock_irqsave(&auditd_conn_lock, flags); 511 ac_old = rcu_dereference_protected(auditd_conn, 512 lockdep_is_held(&auditd_conn_lock)); 513 rcu_assign_pointer(auditd_conn, ac_new); 514 spin_unlock_irqrestore(&auditd_conn_lock, flags); 515 516 if (ac_old) 517 call_rcu(&ac_old->rcu, auditd_conn_free); 518 519 return 0; 520 } 521 522 /** 523 * kauditd_printk_skb - Print the audit record to the ring buffer 524 * @skb: audit record 525 * 526 * Whatever the reason, this packet may not make it to the auditd connection 527 * so write it via printk so the information isn't completely lost. 528 */ 529 static void kauditd_printk_skb(struct sk_buff *skb) 530 { 531 struct nlmsghdr *nlh = nlmsg_hdr(skb); 532 char *data = nlmsg_data(nlh); 533 534 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 535 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 536 } 537 538 /** 539 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 540 * @skb: audit record 541 * @error: error code (unused) 542 * 543 * Description: 544 * This should only be used by the kauditd_thread when it fails to flush the 545 * hold queue. 546 */ 547 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) 548 { 549 /* put the record back in the queue */ 550 skb_queue_tail(&audit_hold_queue, skb); 551 } 552 553 /** 554 * kauditd_hold_skb - Queue an audit record, waiting for auditd 555 * @skb: audit record 556 * @error: error code 557 * 558 * Description: 559 * Queue the audit record, waiting for an instance of auditd. When this 560 * function is called we haven't given up yet on sending the record, but things 561 * are not looking good. The first thing we want to do is try to write the 562 * record via printk and then see if we want to try and hold on to the record 563 * and queue it, if we have room. If we want to hold on to the record, but we 564 * don't have room, record a record lost message. 565 */ 566 static void kauditd_hold_skb(struct sk_buff *skb, int error) 567 { 568 /* at this point it is uncertain if we will ever send this to auditd so 569 * try to send the message via printk before we go any further */ 570 kauditd_printk_skb(skb); 571 572 /* can we just silently drop the message? */ 573 if (!audit_default) 574 goto drop; 575 576 /* the hold queue is only for when the daemon goes away completely, 577 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the 578 * record on the retry queue unless it's full, in which case drop it 579 */ 580 if (error == -EAGAIN) { 581 if (!audit_backlog_limit || 582 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 583 skb_queue_tail(&audit_retry_queue, skb); 584 return; 585 } 586 audit_log_lost("kauditd retry queue overflow"); 587 goto drop; 588 } 589 590 /* if we have room in the hold queue, queue the message */ 591 if (!audit_backlog_limit || 592 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 593 skb_queue_tail(&audit_hold_queue, skb); 594 return; 595 } 596 597 /* we have no other options - drop the message */ 598 audit_log_lost("kauditd hold queue overflow"); 599 drop: 600 kfree_skb(skb); 601 } 602 603 /** 604 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 605 * @skb: audit record 606 * @error: error code (unused) 607 * 608 * Description: 609 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 610 * but for some reason we are having problems sending it audit records so 611 * queue the given record and attempt to resend. 612 */ 613 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) 614 { 615 if (!audit_backlog_limit || 616 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 617 skb_queue_tail(&audit_retry_queue, skb); 618 return; 619 } 620 621 /* we have to drop the record, send it via printk as a last effort */ 622 kauditd_printk_skb(skb); 623 audit_log_lost("kauditd retry queue overflow"); 624 kfree_skb(skb); 625 } 626 627 /** 628 * auditd_reset - Disconnect the auditd connection 629 * @ac: auditd connection state 630 * 631 * Description: 632 * Break the auditd/kauditd connection and move all the queued records into the 633 * hold queue in case auditd reconnects. It is important to note that the @ac 634 * pointer should never be dereferenced inside this function as it may be NULL 635 * or invalid, you can only compare the memory address! If @ac is NULL then 636 * the connection will always be reset. 637 */ 638 static void auditd_reset(const struct auditd_connection *ac) 639 { 640 unsigned long flags; 641 struct sk_buff *skb; 642 struct auditd_connection *ac_old; 643 644 /* if it isn't already broken, break the connection */ 645 spin_lock_irqsave(&auditd_conn_lock, flags); 646 ac_old = rcu_dereference_protected(auditd_conn, 647 lockdep_is_held(&auditd_conn_lock)); 648 if (ac && ac != ac_old) { 649 /* someone already registered a new auditd connection */ 650 spin_unlock_irqrestore(&auditd_conn_lock, flags); 651 return; 652 } 653 rcu_assign_pointer(auditd_conn, NULL); 654 spin_unlock_irqrestore(&auditd_conn_lock, flags); 655 656 if (ac_old) 657 call_rcu(&ac_old->rcu, auditd_conn_free); 658 659 /* flush the retry queue to the hold queue, but don't touch the main 660 * queue since we need to process that normally for multicast */ 661 while ((skb = skb_dequeue(&audit_retry_queue))) 662 kauditd_hold_skb(skb, -ECONNREFUSED); 663 } 664 665 /** 666 * auditd_send_unicast_skb - Send a record via unicast to auditd 667 * @skb: audit record 668 * 669 * Description: 670 * Send a skb to the audit daemon, returns positive/zero values on success and 671 * negative values on failure; in all cases the skb will be consumed by this 672 * function. If the send results in -ECONNREFUSED the connection with auditd 673 * will be reset. This function may sleep so callers should not hold any locks 674 * where this would cause a problem. 675 */ 676 static int auditd_send_unicast_skb(struct sk_buff *skb) 677 { 678 int rc; 679 u32 portid; 680 struct net *net; 681 struct sock *sk; 682 struct auditd_connection *ac; 683 684 /* NOTE: we can't call netlink_unicast while in the RCU section so 685 * take a reference to the network namespace and grab local 686 * copies of the namespace, the sock, and the portid; the 687 * namespace and sock aren't going to go away while we hold a 688 * reference and if the portid does become invalid after the RCU 689 * section netlink_unicast() should safely return an error */ 690 691 rcu_read_lock(); 692 ac = rcu_dereference(auditd_conn); 693 if (!ac) { 694 rcu_read_unlock(); 695 kfree_skb(skb); 696 rc = -ECONNREFUSED; 697 goto err; 698 } 699 net = get_net(ac->net); 700 sk = audit_get_sk(net); 701 portid = ac->portid; 702 rcu_read_unlock(); 703 704 rc = netlink_unicast(sk, skb, portid, 0); 705 put_net(net); 706 if (rc < 0) 707 goto err; 708 709 return rc; 710 711 err: 712 if (ac && rc == -ECONNREFUSED) 713 auditd_reset(ac); 714 return rc; 715 } 716 717 /** 718 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 719 * @sk: the sending sock 720 * @portid: the netlink destination 721 * @queue: the skb queue to process 722 * @retry_limit: limit on number of netlink unicast failures 723 * @skb_hook: per-skb hook for additional processing 724 * @err_hook: hook called if the skb fails the netlink unicast send 725 * 726 * Description: 727 * Run through the given queue and attempt to send the audit records to auditd, 728 * returns zero on success, negative values on failure. It is up to the caller 729 * to ensure that the @sk is valid for the duration of this function. 730 * 731 */ 732 static int kauditd_send_queue(struct sock *sk, u32 portid, 733 struct sk_buff_head *queue, 734 unsigned int retry_limit, 735 void (*skb_hook)(struct sk_buff *skb), 736 void (*err_hook)(struct sk_buff *skb, int error)) 737 { 738 int rc = 0; 739 struct sk_buff *skb = NULL; 740 struct sk_buff *skb_tail; 741 unsigned int failed = 0; 742 743 /* NOTE: kauditd_thread takes care of all our locking, we just use 744 * the netlink info passed to us (e.g. sk and portid) */ 745 746 skb_tail = skb_peek_tail(queue); 747 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) { 748 /* call the skb_hook for each skb we touch */ 749 if (skb_hook) 750 (*skb_hook)(skb); 751 752 /* can we send to anyone via unicast? */ 753 if (!sk) { 754 if (err_hook) 755 (*err_hook)(skb, -ECONNREFUSED); 756 continue; 757 } 758 759 retry: 760 /* grab an extra skb reference in case of error */ 761 skb_get(skb); 762 rc = netlink_unicast(sk, skb, portid, 0); 763 if (rc < 0) { 764 /* send failed - try a few times unless fatal error */ 765 if (++failed >= retry_limit || 766 rc == -ECONNREFUSED || rc == -EPERM) { 767 sk = NULL; 768 if (err_hook) 769 (*err_hook)(skb, rc); 770 if (rc == -EAGAIN) 771 rc = 0; 772 /* continue to drain the queue */ 773 continue; 774 } else 775 goto retry; 776 } else { 777 /* skb sent - drop the extra reference and continue */ 778 consume_skb(skb); 779 failed = 0; 780 } 781 } 782 783 return (rc >= 0 ? 0 : rc); 784 } 785 786 /* 787 * kauditd_send_multicast_skb - Send a record to any multicast listeners 788 * @skb: audit record 789 * 790 * Description: 791 * Write a multicast message to anyone listening in the initial network 792 * namespace. This function doesn't consume an skb as might be expected since 793 * it has to copy it anyways. 794 */ 795 static void kauditd_send_multicast_skb(struct sk_buff *skb) 796 { 797 struct sk_buff *copy; 798 struct sock *sock = audit_get_sk(&init_net); 799 struct nlmsghdr *nlh; 800 801 /* NOTE: we are not taking an additional reference for init_net since 802 * we don't have to worry about it going away */ 803 804 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 805 return; 806 807 /* 808 * The seemingly wasteful skb_copy() rather than bumping the refcount 809 * using skb_get() is necessary because non-standard mods are made to 810 * the skb by the original kaudit unicast socket send routine. The 811 * existing auditd daemon assumes this breakage. Fixing this would 812 * require co-ordinating a change in the established protocol between 813 * the kaudit kernel subsystem and the auditd userspace code. There is 814 * no reason for new multicast clients to continue with this 815 * non-compliance. 816 */ 817 copy = skb_copy(skb, GFP_KERNEL); 818 if (!copy) 819 return; 820 nlh = nlmsg_hdr(copy); 821 nlh->nlmsg_len = skb->len; 822 823 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 824 } 825 826 /** 827 * kauditd_thread - Worker thread to send audit records to userspace 828 * @dummy: unused 829 */ 830 static int kauditd_thread(void *dummy) 831 { 832 int rc; 833 u32 portid = 0; 834 struct net *net = NULL; 835 struct sock *sk = NULL; 836 struct auditd_connection *ac; 837 838 #define UNICAST_RETRIES 5 839 840 set_freezable(); 841 while (!kthread_should_stop()) { 842 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 843 rcu_read_lock(); 844 ac = rcu_dereference(auditd_conn); 845 if (!ac) { 846 rcu_read_unlock(); 847 goto main_queue; 848 } 849 net = get_net(ac->net); 850 sk = audit_get_sk(net); 851 portid = ac->portid; 852 rcu_read_unlock(); 853 854 /* attempt to flush the hold queue */ 855 rc = kauditd_send_queue(sk, portid, 856 &audit_hold_queue, UNICAST_RETRIES, 857 NULL, kauditd_rehold_skb); 858 if (rc < 0) { 859 sk = NULL; 860 auditd_reset(ac); 861 goto main_queue; 862 } 863 864 /* attempt to flush the retry queue */ 865 rc = kauditd_send_queue(sk, portid, 866 &audit_retry_queue, UNICAST_RETRIES, 867 NULL, kauditd_hold_skb); 868 if (rc < 0) { 869 sk = NULL; 870 auditd_reset(ac); 871 goto main_queue; 872 } 873 874 main_queue: 875 /* process the main queue - do the multicast send and attempt 876 * unicast, dump failed record sends to the retry queue; if 877 * sk == NULL due to previous failures we will just do the 878 * multicast send and move the record to the hold queue */ 879 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 880 kauditd_send_multicast_skb, 881 (sk ? 882 kauditd_retry_skb : kauditd_hold_skb)); 883 if (ac && rc < 0) 884 auditd_reset(ac); 885 sk = NULL; 886 887 /* drop our netns reference, no auditd sends past this line */ 888 if (net) { 889 put_net(net); 890 net = NULL; 891 } 892 893 /* we have processed all the queues so wake everyone */ 894 wake_up(&audit_backlog_wait); 895 896 /* NOTE: we want to wake up if there is anything on the queue, 897 * regardless of if an auditd is connected, as we need to 898 * do the multicast send and rotate records from the 899 * main queue to the retry/hold queues */ 900 wait_event_freezable(kauditd_wait, 901 (skb_queue_len(&audit_queue) ? 1 : 0)); 902 } 903 904 return 0; 905 } 906 907 int audit_send_list_thread(void *_dest) 908 { 909 struct audit_netlink_list *dest = _dest; 910 struct sk_buff *skb; 911 struct sock *sk = audit_get_sk(dest->net); 912 913 /* wait for parent to finish and send an ACK */ 914 audit_ctl_lock(); 915 audit_ctl_unlock(); 916 917 while ((skb = __skb_dequeue(&dest->q)) != NULL) 918 netlink_unicast(sk, skb, dest->portid, 0); 919 920 put_net(dest->net); 921 kfree(dest); 922 923 return 0; 924 } 925 926 struct sk_buff *audit_make_reply(int seq, int type, int done, 927 int multi, const void *payload, int size) 928 { 929 struct sk_buff *skb; 930 struct nlmsghdr *nlh; 931 void *data; 932 int flags = multi ? NLM_F_MULTI : 0; 933 int t = done ? NLMSG_DONE : type; 934 935 skb = nlmsg_new(size, GFP_KERNEL); 936 if (!skb) 937 return NULL; 938 939 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 940 if (!nlh) 941 goto out_kfree_skb; 942 data = nlmsg_data(nlh); 943 memcpy(data, payload, size); 944 return skb; 945 946 out_kfree_skb: 947 kfree_skb(skb); 948 return NULL; 949 } 950 951 static void audit_free_reply(struct audit_reply *reply) 952 { 953 if (!reply) 954 return; 955 956 kfree_skb(reply->skb); 957 if (reply->net) 958 put_net(reply->net); 959 kfree(reply); 960 } 961 962 static int audit_send_reply_thread(void *arg) 963 { 964 struct audit_reply *reply = (struct audit_reply *)arg; 965 966 audit_ctl_lock(); 967 audit_ctl_unlock(); 968 969 /* Ignore failure. It'll only happen if the sender goes away, 970 because our timeout is set to infinite. */ 971 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 972 reply->skb = NULL; 973 audit_free_reply(reply); 974 return 0; 975 } 976 977 /** 978 * audit_send_reply - send an audit reply message via netlink 979 * @request_skb: skb of request we are replying to (used to target the reply) 980 * @seq: sequence number 981 * @type: audit message type 982 * @done: done (last) flag 983 * @multi: multi-part message flag 984 * @payload: payload data 985 * @size: payload size 986 * 987 * Allocates a skb, builds the netlink message, and sends it to the port id. 988 */ 989 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 990 int multi, const void *payload, int size) 991 { 992 struct task_struct *tsk; 993 struct audit_reply *reply; 994 995 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 996 if (!reply) 997 return; 998 999 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 1000 if (!reply->skb) 1001 goto err; 1002 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 1003 reply->portid = NETLINK_CB(request_skb).portid; 1004 1005 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 1006 if (IS_ERR(tsk)) 1007 goto err; 1008 1009 return; 1010 1011 err: 1012 audit_free_reply(reply); 1013 } 1014 1015 /* 1016 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1017 * control messages. 1018 */ 1019 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1020 { 1021 int err = 0; 1022 1023 /* Only support initial user namespace for now. */ 1024 /* 1025 * We return ECONNREFUSED because it tricks userspace into thinking 1026 * that audit was not configured into the kernel. Lots of users 1027 * configure their PAM stack (because that's what the distro does) 1028 * to reject login if unable to send messages to audit. If we return 1029 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1030 * configured in and will let login proceed. If we return EPERM 1031 * userspace will reject all logins. This should be removed when we 1032 * support non init namespaces!! 1033 */ 1034 if (current_user_ns() != &init_user_ns) 1035 return -ECONNREFUSED; 1036 1037 switch (msg_type) { 1038 case AUDIT_LIST: 1039 case AUDIT_ADD: 1040 case AUDIT_DEL: 1041 return -EOPNOTSUPP; 1042 case AUDIT_GET: 1043 case AUDIT_SET: 1044 case AUDIT_GET_FEATURE: 1045 case AUDIT_SET_FEATURE: 1046 case AUDIT_LIST_RULES: 1047 case AUDIT_ADD_RULE: 1048 case AUDIT_DEL_RULE: 1049 case AUDIT_SIGNAL_INFO: 1050 case AUDIT_TTY_GET: 1051 case AUDIT_TTY_SET: 1052 case AUDIT_TRIM: 1053 case AUDIT_MAKE_EQUIV: 1054 /* Only support auditd and auditctl in initial pid namespace 1055 * for now. */ 1056 if (task_active_pid_ns(current) != &init_pid_ns) 1057 return -EPERM; 1058 1059 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1060 err = -EPERM; 1061 break; 1062 case AUDIT_USER: 1063 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1064 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1065 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1066 err = -EPERM; 1067 break; 1068 default: /* bad msg */ 1069 err = -EINVAL; 1070 } 1071 1072 return err; 1073 } 1074 1075 static void audit_log_common_recv_msg(struct audit_context *context, 1076 struct audit_buffer **ab, u16 msg_type) 1077 { 1078 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1079 pid_t pid = task_tgid_nr(current); 1080 1081 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1082 *ab = NULL; 1083 return; 1084 } 1085 1086 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1087 if (unlikely(!*ab)) 1088 return; 1089 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1090 audit_log_session_info(*ab); 1091 audit_log_task_context(*ab); 1092 } 1093 1094 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1095 u16 msg_type) 1096 { 1097 audit_log_common_recv_msg(NULL, ab, msg_type); 1098 } 1099 1100 static int is_audit_feature_set(int i) 1101 { 1102 return af.features & AUDIT_FEATURE_TO_MASK(i); 1103 } 1104 1105 1106 static int audit_get_feature(struct sk_buff *skb) 1107 { 1108 u32 seq; 1109 1110 seq = nlmsg_hdr(skb)->nlmsg_seq; 1111 1112 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1113 1114 return 0; 1115 } 1116 1117 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1118 u32 old_lock, u32 new_lock, int res) 1119 { 1120 struct audit_buffer *ab; 1121 1122 if (audit_enabled == AUDIT_OFF) 1123 return; 1124 1125 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1126 if (!ab) 1127 return; 1128 audit_log_task_info(ab); 1129 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1130 audit_feature_names[which], !!old_feature, !!new_feature, 1131 !!old_lock, !!new_lock, res); 1132 audit_log_end(ab); 1133 } 1134 1135 static int audit_set_feature(struct audit_features *uaf) 1136 { 1137 int i; 1138 1139 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1140 1141 /* if there is ever a version 2 we should handle that here */ 1142 1143 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1144 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1145 u32 old_feature, new_feature, old_lock, new_lock; 1146 1147 /* if we are not changing this feature, move along */ 1148 if (!(feature & uaf->mask)) 1149 continue; 1150 1151 old_feature = af.features & feature; 1152 new_feature = uaf->features & feature; 1153 new_lock = (uaf->lock | af.lock) & feature; 1154 old_lock = af.lock & feature; 1155 1156 /* are we changing a locked feature? */ 1157 if (old_lock && (new_feature != old_feature)) { 1158 audit_log_feature_change(i, old_feature, new_feature, 1159 old_lock, new_lock, 0); 1160 return -EPERM; 1161 } 1162 } 1163 /* nothing invalid, do the changes */ 1164 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1165 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1166 u32 old_feature, new_feature, old_lock, new_lock; 1167 1168 /* if we are not changing this feature, move along */ 1169 if (!(feature & uaf->mask)) 1170 continue; 1171 1172 old_feature = af.features & feature; 1173 new_feature = uaf->features & feature; 1174 old_lock = af.lock & feature; 1175 new_lock = (uaf->lock | af.lock) & feature; 1176 1177 if (new_feature != old_feature) 1178 audit_log_feature_change(i, old_feature, new_feature, 1179 old_lock, new_lock, 1); 1180 1181 if (new_feature) 1182 af.features |= feature; 1183 else 1184 af.features &= ~feature; 1185 af.lock |= new_lock; 1186 } 1187 1188 return 0; 1189 } 1190 1191 static int audit_replace(struct pid *pid) 1192 { 1193 pid_t pvnr; 1194 struct sk_buff *skb; 1195 1196 pvnr = pid_vnr(pid); 1197 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1198 if (!skb) 1199 return -ENOMEM; 1200 return auditd_send_unicast_skb(skb); 1201 } 1202 1203 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1204 { 1205 u32 seq; 1206 void *data; 1207 int data_len; 1208 int err; 1209 struct audit_buffer *ab; 1210 u16 msg_type = nlh->nlmsg_type; 1211 struct audit_sig_info *sig_data; 1212 char *ctx = NULL; 1213 u32 len; 1214 1215 err = audit_netlink_ok(skb, msg_type); 1216 if (err) 1217 return err; 1218 1219 seq = nlh->nlmsg_seq; 1220 data = nlmsg_data(nlh); 1221 data_len = nlmsg_len(nlh); 1222 1223 switch (msg_type) { 1224 case AUDIT_GET: { 1225 struct audit_status s; 1226 memset(&s, 0, sizeof(s)); 1227 s.enabled = audit_enabled; 1228 s.failure = audit_failure; 1229 /* NOTE: use pid_vnr() so the PID is relative to the current 1230 * namespace */ 1231 s.pid = auditd_pid_vnr(); 1232 s.rate_limit = audit_rate_limit; 1233 s.backlog_limit = audit_backlog_limit; 1234 s.lost = atomic_read(&audit_lost); 1235 s.backlog = skb_queue_len(&audit_queue); 1236 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1237 s.backlog_wait_time = audit_backlog_wait_time; 1238 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1239 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1240 break; 1241 } 1242 case AUDIT_SET: { 1243 struct audit_status s; 1244 memset(&s, 0, sizeof(s)); 1245 /* guard against past and future API changes */ 1246 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1247 if (s.mask & AUDIT_STATUS_ENABLED) { 1248 err = audit_set_enabled(s.enabled); 1249 if (err < 0) 1250 return err; 1251 } 1252 if (s.mask & AUDIT_STATUS_FAILURE) { 1253 err = audit_set_failure(s.failure); 1254 if (err < 0) 1255 return err; 1256 } 1257 if (s.mask & AUDIT_STATUS_PID) { 1258 /* NOTE: we are using the vnr PID functions below 1259 * because the s.pid value is relative to the 1260 * namespace of the caller; at present this 1261 * doesn't matter much since you can really only 1262 * run auditd from the initial pid namespace, but 1263 * something to keep in mind if this changes */ 1264 pid_t new_pid = s.pid; 1265 pid_t auditd_pid; 1266 struct pid *req_pid = task_tgid(current); 1267 1268 /* Sanity check - PID values must match. Setting 1269 * pid to 0 is how auditd ends auditing. */ 1270 if (new_pid && (new_pid != pid_vnr(req_pid))) 1271 return -EINVAL; 1272 1273 /* test the auditd connection */ 1274 audit_replace(req_pid); 1275 1276 auditd_pid = auditd_pid_vnr(); 1277 if (auditd_pid) { 1278 /* replacing a healthy auditd is not allowed */ 1279 if (new_pid) { 1280 audit_log_config_change("audit_pid", 1281 new_pid, auditd_pid, 0); 1282 return -EEXIST; 1283 } 1284 /* only current auditd can unregister itself */ 1285 if (pid_vnr(req_pid) != auditd_pid) { 1286 audit_log_config_change("audit_pid", 1287 new_pid, auditd_pid, 0); 1288 return -EACCES; 1289 } 1290 } 1291 1292 if (new_pid) { 1293 /* register a new auditd connection */ 1294 err = auditd_set(req_pid, 1295 NETLINK_CB(skb).portid, 1296 sock_net(NETLINK_CB(skb).sk)); 1297 if (audit_enabled != AUDIT_OFF) 1298 audit_log_config_change("audit_pid", 1299 new_pid, 1300 auditd_pid, 1301 err ? 0 : 1); 1302 if (err) 1303 return err; 1304 1305 /* try to process any backlog */ 1306 wake_up_interruptible(&kauditd_wait); 1307 } else { 1308 if (audit_enabled != AUDIT_OFF) 1309 audit_log_config_change("audit_pid", 1310 new_pid, 1311 auditd_pid, 1); 1312 1313 /* unregister the auditd connection */ 1314 auditd_reset(NULL); 1315 } 1316 } 1317 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1318 err = audit_set_rate_limit(s.rate_limit); 1319 if (err < 0) 1320 return err; 1321 } 1322 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1323 err = audit_set_backlog_limit(s.backlog_limit); 1324 if (err < 0) 1325 return err; 1326 } 1327 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1328 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1329 return -EINVAL; 1330 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1331 return -EINVAL; 1332 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1333 if (err < 0) 1334 return err; 1335 } 1336 if (s.mask == AUDIT_STATUS_LOST) { 1337 u32 lost = atomic_xchg(&audit_lost, 0); 1338 1339 audit_log_config_change("lost", 0, lost, 1); 1340 return lost; 1341 } 1342 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1343 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1344 1345 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1346 return actual; 1347 } 1348 break; 1349 } 1350 case AUDIT_GET_FEATURE: 1351 err = audit_get_feature(skb); 1352 if (err) 1353 return err; 1354 break; 1355 case AUDIT_SET_FEATURE: 1356 if (data_len < sizeof(struct audit_features)) 1357 return -EINVAL; 1358 err = audit_set_feature(data); 1359 if (err) 1360 return err; 1361 break; 1362 case AUDIT_USER: 1363 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1364 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1365 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1366 return 0; 1367 /* exit early if there isn't at least one character to print */ 1368 if (data_len < 2) 1369 return -EINVAL; 1370 1371 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1372 if (err == 1) { /* match or error */ 1373 char *str = data; 1374 1375 err = 0; 1376 if (msg_type == AUDIT_USER_TTY) { 1377 err = tty_audit_push(); 1378 if (err) 1379 break; 1380 } 1381 audit_log_user_recv_msg(&ab, msg_type); 1382 if (msg_type != AUDIT_USER_TTY) { 1383 /* ensure NULL termination */ 1384 str[data_len - 1] = '\0'; 1385 audit_log_format(ab, " msg='%.*s'", 1386 AUDIT_MESSAGE_TEXT_MAX, 1387 str); 1388 } else { 1389 audit_log_format(ab, " data="); 1390 if (str[data_len - 1] == '\0') 1391 data_len--; 1392 audit_log_n_untrustedstring(ab, str, data_len); 1393 } 1394 audit_log_end(ab); 1395 } 1396 break; 1397 case AUDIT_ADD_RULE: 1398 case AUDIT_DEL_RULE: 1399 if (data_len < sizeof(struct audit_rule_data)) 1400 return -EINVAL; 1401 if (audit_enabled == AUDIT_LOCKED) { 1402 audit_log_common_recv_msg(audit_context(), &ab, 1403 AUDIT_CONFIG_CHANGE); 1404 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1405 msg_type == AUDIT_ADD_RULE ? 1406 "add_rule" : "remove_rule", 1407 audit_enabled); 1408 audit_log_end(ab); 1409 return -EPERM; 1410 } 1411 err = audit_rule_change(msg_type, seq, data, data_len); 1412 break; 1413 case AUDIT_LIST_RULES: 1414 err = audit_list_rules_send(skb, seq); 1415 break; 1416 case AUDIT_TRIM: 1417 audit_trim_trees(); 1418 audit_log_common_recv_msg(audit_context(), &ab, 1419 AUDIT_CONFIG_CHANGE); 1420 audit_log_format(ab, " op=trim res=1"); 1421 audit_log_end(ab); 1422 break; 1423 case AUDIT_MAKE_EQUIV: { 1424 void *bufp = data; 1425 u32 sizes[2]; 1426 size_t msglen = data_len; 1427 char *old, *new; 1428 1429 err = -EINVAL; 1430 if (msglen < 2 * sizeof(u32)) 1431 break; 1432 memcpy(sizes, bufp, 2 * sizeof(u32)); 1433 bufp += 2 * sizeof(u32); 1434 msglen -= 2 * sizeof(u32); 1435 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1436 if (IS_ERR(old)) { 1437 err = PTR_ERR(old); 1438 break; 1439 } 1440 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1441 if (IS_ERR(new)) { 1442 err = PTR_ERR(new); 1443 kfree(old); 1444 break; 1445 } 1446 /* OK, here comes... */ 1447 err = audit_tag_tree(old, new); 1448 1449 audit_log_common_recv_msg(audit_context(), &ab, 1450 AUDIT_CONFIG_CHANGE); 1451 audit_log_format(ab, " op=make_equiv old="); 1452 audit_log_untrustedstring(ab, old); 1453 audit_log_format(ab, " new="); 1454 audit_log_untrustedstring(ab, new); 1455 audit_log_format(ab, " res=%d", !err); 1456 audit_log_end(ab); 1457 kfree(old); 1458 kfree(new); 1459 break; 1460 } 1461 case AUDIT_SIGNAL_INFO: 1462 len = 0; 1463 if (audit_sig_sid) { 1464 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1465 if (err) 1466 return err; 1467 } 1468 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL); 1469 if (!sig_data) { 1470 if (audit_sig_sid) 1471 security_release_secctx(ctx, len); 1472 return -ENOMEM; 1473 } 1474 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1475 sig_data->pid = audit_sig_pid; 1476 if (audit_sig_sid) { 1477 memcpy(sig_data->ctx, ctx, len); 1478 security_release_secctx(ctx, len); 1479 } 1480 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1481 sig_data, struct_size(sig_data, ctx, len)); 1482 kfree(sig_data); 1483 break; 1484 case AUDIT_TTY_GET: { 1485 struct audit_tty_status s; 1486 unsigned int t; 1487 1488 t = READ_ONCE(current->signal->audit_tty); 1489 s.enabled = t & AUDIT_TTY_ENABLE; 1490 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1491 1492 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1493 break; 1494 } 1495 case AUDIT_TTY_SET: { 1496 struct audit_tty_status s, old; 1497 struct audit_buffer *ab; 1498 unsigned int t; 1499 1500 memset(&s, 0, sizeof(s)); 1501 /* guard against past and future API changes */ 1502 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1503 /* check if new data is valid */ 1504 if ((s.enabled != 0 && s.enabled != 1) || 1505 (s.log_passwd != 0 && s.log_passwd != 1)) 1506 err = -EINVAL; 1507 1508 if (err) 1509 t = READ_ONCE(current->signal->audit_tty); 1510 else { 1511 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1512 t = xchg(¤t->signal->audit_tty, t); 1513 } 1514 old.enabled = t & AUDIT_TTY_ENABLE; 1515 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1516 1517 audit_log_common_recv_msg(audit_context(), &ab, 1518 AUDIT_CONFIG_CHANGE); 1519 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1520 " old-log_passwd=%d new-log_passwd=%d res=%d", 1521 old.enabled, s.enabled, old.log_passwd, 1522 s.log_passwd, !err); 1523 audit_log_end(ab); 1524 break; 1525 } 1526 default: 1527 err = -EINVAL; 1528 break; 1529 } 1530 1531 return err < 0 ? err : 0; 1532 } 1533 1534 /** 1535 * audit_receive - receive messages from a netlink control socket 1536 * @skb: the message buffer 1537 * 1538 * Parse the provided skb and deal with any messages that may be present, 1539 * malformed skbs are discarded. 1540 */ 1541 static void audit_receive(struct sk_buff *skb) 1542 { 1543 struct nlmsghdr *nlh; 1544 /* 1545 * len MUST be signed for nlmsg_next to be able to dec it below 0 1546 * if the nlmsg_len was not aligned 1547 */ 1548 int len; 1549 int err; 1550 1551 nlh = nlmsg_hdr(skb); 1552 len = skb->len; 1553 1554 audit_ctl_lock(); 1555 while (nlmsg_ok(nlh, len)) { 1556 err = audit_receive_msg(skb, nlh); 1557 /* if err or if this message says it wants a response */ 1558 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1559 netlink_ack(skb, nlh, err, NULL); 1560 1561 nlh = nlmsg_next(nlh, &len); 1562 } 1563 audit_ctl_unlock(); 1564 1565 /* can't block with the ctrl lock, so penalize the sender now */ 1566 if (audit_backlog_limit && 1567 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1568 DECLARE_WAITQUEUE(wait, current); 1569 1570 /* wake kauditd to try and flush the queue */ 1571 wake_up_interruptible(&kauditd_wait); 1572 1573 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1574 set_current_state(TASK_UNINTERRUPTIBLE); 1575 schedule_timeout(audit_backlog_wait_time); 1576 remove_wait_queue(&audit_backlog_wait, &wait); 1577 } 1578 } 1579 1580 /* Log information about who is connecting to the audit multicast socket */ 1581 static void audit_log_multicast(int group, const char *op, int err) 1582 { 1583 const struct cred *cred; 1584 struct tty_struct *tty; 1585 char comm[sizeof(current->comm)]; 1586 struct audit_buffer *ab; 1587 1588 if (!audit_enabled) 1589 return; 1590 1591 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1592 if (!ab) 1593 return; 1594 1595 cred = current_cred(); 1596 tty = audit_get_tty(); 1597 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1598 task_pid_nr(current), 1599 from_kuid(&init_user_ns, cred->uid), 1600 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1601 tty ? tty_name(tty) : "(none)", 1602 audit_get_sessionid(current)); 1603 audit_put_tty(tty); 1604 audit_log_task_context(ab); /* subj= */ 1605 audit_log_format(ab, " comm="); 1606 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1607 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1608 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1609 audit_log_end(ab); 1610 } 1611 1612 /* Run custom bind function on netlink socket group connect or bind requests. */ 1613 static int audit_multicast_bind(struct net *net, int group) 1614 { 1615 int err = 0; 1616 1617 if (!capable(CAP_AUDIT_READ)) 1618 err = -EPERM; 1619 audit_log_multicast(group, "connect", err); 1620 return err; 1621 } 1622 1623 static void audit_multicast_unbind(struct net *net, int group) 1624 { 1625 audit_log_multicast(group, "disconnect", 0); 1626 } 1627 1628 static int __net_init audit_net_init(struct net *net) 1629 { 1630 struct netlink_kernel_cfg cfg = { 1631 .input = audit_receive, 1632 .bind = audit_multicast_bind, 1633 .unbind = audit_multicast_unbind, 1634 .flags = NL_CFG_F_NONROOT_RECV, 1635 .groups = AUDIT_NLGRP_MAX, 1636 }; 1637 1638 struct audit_net *aunet = net_generic(net, audit_net_id); 1639 1640 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1641 if (aunet->sk == NULL) { 1642 audit_panic("cannot initialize netlink socket in namespace"); 1643 return -ENOMEM; 1644 } 1645 /* limit the timeout in case auditd is blocked/stopped */ 1646 aunet->sk->sk_sndtimeo = HZ / 10; 1647 1648 return 0; 1649 } 1650 1651 static void __net_exit audit_net_exit(struct net *net) 1652 { 1653 struct audit_net *aunet = net_generic(net, audit_net_id); 1654 1655 /* NOTE: you would think that we would want to check the auditd 1656 * connection and potentially reset it here if it lives in this 1657 * namespace, but since the auditd connection tracking struct holds a 1658 * reference to this namespace (see auditd_set()) we are only ever 1659 * going to get here after that connection has been released */ 1660 1661 netlink_kernel_release(aunet->sk); 1662 } 1663 1664 static struct pernet_operations audit_net_ops __net_initdata = { 1665 .init = audit_net_init, 1666 .exit = audit_net_exit, 1667 .id = &audit_net_id, 1668 .size = sizeof(struct audit_net), 1669 }; 1670 1671 /* Initialize audit support at boot time. */ 1672 static int __init audit_init(void) 1673 { 1674 int i; 1675 1676 if (audit_initialized == AUDIT_DISABLED) 1677 return 0; 1678 1679 audit_buffer_cache = kmem_cache_create("audit_buffer", 1680 sizeof(struct audit_buffer), 1681 0, SLAB_PANIC, NULL); 1682 1683 skb_queue_head_init(&audit_queue); 1684 skb_queue_head_init(&audit_retry_queue); 1685 skb_queue_head_init(&audit_hold_queue); 1686 1687 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1688 INIT_LIST_HEAD(&audit_inode_hash[i]); 1689 1690 mutex_init(&audit_cmd_mutex.lock); 1691 audit_cmd_mutex.owner = NULL; 1692 1693 pr_info("initializing netlink subsys (%s)\n", 1694 audit_default ? "enabled" : "disabled"); 1695 register_pernet_subsys(&audit_net_ops); 1696 1697 audit_initialized = AUDIT_INITIALIZED; 1698 1699 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1700 if (IS_ERR(kauditd_task)) { 1701 int err = PTR_ERR(kauditd_task); 1702 panic("audit: failed to start the kauditd thread (%d)\n", err); 1703 } 1704 1705 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1706 "state=initialized audit_enabled=%u res=1", 1707 audit_enabled); 1708 1709 return 0; 1710 } 1711 postcore_initcall(audit_init); 1712 1713 /* 1714 * Process kernel command-line parameter at boot time. 1715 * audit={0|off} or audit={1|on}. 1716 */ 1717 static int __init audit_enable(char *str) 1718 { 1719 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1720 audit_default = AUDIT_OFF; 1721 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1722 audit_default = AUDIT_ON; 1723 else { 1724 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1725 audit_default = AUDIT_ON; 1726 } 1727 1728 if (audit_default == AUDIT_OFF) 1729 audit_initialized = AUDIT_DISABLED; 1730 if (audit_set_enabled(audit_default)) 1731 pr_err("audit: error setting audit state (%d)\n", 1732 audit_default); 1733 1734 pr_info("%s\n", audit_default ? 1735 "enabled (after initialization)" : "disabled (until reboot)"); 1736 1737 return 1; 1738 } 1739 __setup("audit=", audit_enable); 1740 1741 /* Process kernel command-line parameter at boot time. 1742 * audit_backlog_limit=<n> */ 1743 static int __init audit_backlog_limit_set(char *str) 1744 { 1745 u32 audit_backlog_limit_arg; 1746 1747 pr_info("audit_backlog_limit: "); 1748 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1749 pr_cont("using default of %u, unable to parse %s\n", 1750 audit_backlog_limit, str); 1751 return 1; 1752 } 1753 1754 audit_backlog_limit = audit_backlog_limit_arg; 1755 pr_cont("%d\n", audit_backlog_limit); 1756 1757 return 1; 1758 } 1759 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1760 1761 static void audit_buffer_free(struct audit_buffer *ab) 1762 { 1763 if (!ab) 1764 return; 1765 1766 kfree_skb(ab->skb); 1767 kmem_cache_free(audit_buffer_cache, ab); 1768 } 1769 1770 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1771 gfp_t gfp_mask, int type) 1772 { 1773 struct audit_buffer *ab; 1774 1775 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1776 if (!ab) 1777 return NULL; 1778 1779 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1780 if (!ab->skb) 1781 goto err; 1782 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1783 goto err; 1784 1785 ab->ctx = ctx; 1786 ab->gfp_mask = gfp_mask; 1787 1788 return ab; 1789 1790 err: 1791 audit_buffer_free(ab); 1792 return NULL; 1793 } 1794 1795 /** 1796 * audit_serial - compute a serial number for the audit record 1797 * 1798 * Compute a serial number for the audit record. Audit records are 1799 * written to user-space as soon as they are generated, so a complete 1800 * audit record may be written in several pieces. The timestamp of the 1801 * record and this serial number are used by the user-space tools to 1802 * determine which pieces belong to the same audit record. The 1803 * (timestamp,serial) tuple is unique for each syscall and is live from 1804 * syscall entry to syscall exit. 1805 * 1806 * NOTE: Another possibility is to store the formatted records off the 1807 * audit context (for those records that have a context), and emit them 1808 * all at syscall exit. However, this could delay the reporting of 1809 * significant errors until syscall exit (or never, if the system 1810 * halts). 1811 */ 1812 unsigned int audit_serial(void) 1813 { 1814 static atomic_t serial = ATOMIC_INIT(0); 1815 1816 return atomic_inc_return(&serial); 1817 } 1818 1819 static inline void audit_get_stamp(struct audit_context *ctx, 1820 struct timespec64 *t, unsigned int *serial) 1821 { 1822 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1823 ktime_get_coarse_real_ts64(t); 1824 *serial = audit_serial(); 1825 } 1826 } 1827 1828 /** 1829 * audit_log_start - obtain an audit buffer 1830 * @ctx: audit_context (may be NULL) 1831 * @gfp_mask: type of allocation 1832 * @type: audit message type 1833 * 1834 * Returns audit_buffer pointer on success or NULL on error. 1835 * 1836 * Obtain an audit buffer. This routine does locking to obtain the 1837 * audit buffer, but then no locking is required for calls to 1838 * audit_log_*format. If the task (ctx) is a task that is currently in a 1839 * syscall, then the syscall is marked as auditable and an audit record 1840 * will be written at syscall exit. If there is no associated task, then 1841 * task context (ctx) should be NULL. 1842 */ 1843 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1844 int type) 1845 { 1846 struct audit_buffer *ab; 1847 struct timespec64 t; 1848 unsigned int serial; 1849 1850 if (audit_initialized != AUDIT_INITIALIZED) 1851 return NULL; 1852 1853 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1854 return NULL; 1855 1856 /* NOTE: don't ever fail/sleep on these two conditions: 1857 * 1. auditd generated record - since we need auditd to drain the 1858 * queue; also, when we are checking for auditd, compare PIDs using 1859 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1860 * using a PID anchored in the caller's namespace 1861 * 2. generator holding the audit_cmd_mutex - we don't want to block 1862 * while holding the mutex, although we do penalize the sender 1863 * later in audit_receive() when it is safe to block 1864 */ 1865 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1866 long stime = audit_backlog_wait_time; 1867 1868 while (audit_backlog_limit && 1869 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1870 /* wake kauditd to try and flush the queue */ 1871 wake_up_interruptible(&kauditd_wait); 1872 1873 /* sleep if we are allowed and we haven't exhausted our 1874 * backlog wait limit */ 1875 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1876 long rtime = stime; 1877 1878 DECLARE_WAITQUEUE(wait, current); 1879 1880 add_wait_queue_exclusive(&audit_backlog_wait, 1881 &wait); 1882 set_current_state(TASK_UNINTERRUPTIBLE); 1883 stime = schedule_timeout(rtime); 1884 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1885 remove_wait_queue(&audit_backlog_wait, &wait); 1886 } else { 1887 if (audit_rate_check() && printk_ratelimit()) 1888 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1889 skb_queue_len(&audit_queue), 1890 audit_backlog_limit); 1891 audit_log_lost("backlog limit exceeded"); 1892 return NULL; 1893 } 1894 } 1895 } 1896 1897 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1898 if (!ab) { 1899 audit_log_lost("out of memory in audit_log_start"); 1900 return NULL; 1901 } 1902 1903 audit_get_stamp(ab->ctx, &t, &serial); 1904 /* cancel dummy context to enable supporting records */ 1905 if (ctx) 1906 ctx->dummy = 0; 1907 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1908 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1909 1910 return ab; 1911 } 1912 1913 /** 1914 * audit_expand - expand skb in the audit buffer 1915 * @ab: audit_buffer 1916 * @extra: space to add at tail of the skb 1917 * 1918 * Returns 0 (no space) on failed expansion, or available space if 1919 * successful. 1920 */ 1921 static inline int audit_expand(struct audit_buffer *ab, int extra) 1922 { 1923 struct sk_buff *skb = ab->skb; 1924 int oldtail = skb_tailroom(skb); 1925 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1926 int newtail = skb_tailroom(skb); 1927 1928 if (ret < 0) { 1929 audit_log_lost("out of memory in audit_expand"); 1930 return 0; 1931 } 1932 1933 skb->truesize += newtail - oldtail; 1934 return newtail; 1935 } 1936 1937 /* 1938 * Format an audit message into the audit buffer. If there isn't enough 1939 * room in the audit buffer, more room will be allocated and vsnprint 1940 * will be called a second time. Currently, we assume that a printk 1941 * can't format message larger than 1024 bytes, so we don't either. 1942 */ 1943 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1944 va_list args) 1945 { 1946 int len, avail; 1947 struct sk_buff *skb; 1948 va_list args2; 1949 1950 if (!ab) 1951 return; 1952 1953 BUG_ON(!ab->skb); 1954 skb = ab->skb; 1955 avail = skb_tailroom(skb); 1956 if (avail == 0) { 1957 avail = audit_expand(ab, AUDIT_BUFSIZ); 1958 if (!avail) 1959 goto out; 1960 } 1961 va_copy(args2, args); 1962 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1963 if (len >= avail) { 1964 /* The printk buffer is 1024 bytes long, so if we get 1965 * here and AUDIT_BUFSIZ is at least 1024, then we can 1966 * log everything that printk could have logged. */ 1967 avail = audit_expand(ab, 1968 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1969 if (!avail) 1970 goto out_va_end; 1971 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1972 } 1973 if (len > 0) 1974 skb_put(skb, len); 1975 out_va_end: 1976 va_end(args2); 1977 out: 1978 return; 1979 } 1980 1981 /** 1982 * audit_log_format - format a message into the audit buffer. 1983 * @ab: audit_buffer 1984 * @fmt: format string 1985 * @...: optional parameters matching @fmt string 1986 * 1987 * All the work is done in audit_log_vformat. 1988 */ 1989 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1990 { 1991 va_list args; 1992 1993 if (!ab) 1994 return; 1995 va_start(args, fmt); 1996 audit_log_vformat(ab, fmt, args); 1997 va_end(args); 1998 } 1999 2000 /** 2001 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 2002 * @ab: the audit_buffer 2003 * @buf: buffer to convert to hex 2004 * @len: length of @buf to be converted 2005 * 2006 * No return value; failure to expand is silently ignored. 2007 * 2008 * This function will take the passed buf and convert it into a string of 2009 * ascii hex digits. The new string is placed onto the skb. 2010 */ 2011 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 2012 size_t len) 2013 { 2014 int i, avail, new_len; 2015 unsigned char *ptr; 2016 struct sk_buff *skb; 2017 2018 if (!ab) 2019 return; 2020 2021 BUG_ON(!ab->skb); 2022 skb = ab->skb; 2023 avail = skb_tailroom(skb); 2024 new_len = len<<1; 2025 if (new_len >= avail) { 2026 /* Round the buffer request up to the next multiple */ 2027 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 2028 avail = audit_expand(ab, new_len); 2029 if (!avail) 2030 return; 2031 } 2032 2033 ptr = skb_tail_pointer(skb); 2034 for (i = 0; i < len; i++) 2035 ptr = hex_byte_pack_upper(ptr, buf[i]); 2036 *ptr = 0; 2037 skb_put(skb, len << 1); /* new string is twice the old string */ 2038 } 2039 2040 /* 2041 * Format a string of no more than slen characters into the audit buffer, 2042 * enclosed in quote marks. 2043 */ 2044 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2045 size_t slen) 2046 { 2047 int avail, new_len; 2048 unsigned char *ptr; 2049 struct sk_buff *skb; 2050 2051 if (!ab) 2052 return; 2053 2054 BUG_ON(!ab->skb); 2055 skb = ab->skb; 2056 avail = skb_tailroom(skb); 2057 new_len = slen + 3; /* enclosing quotes + null terminator */ 2058 if (new_len > avail) { 2059 avail = audit_expand(ab, new_len); 2060 if (!avail) 2061 return; 2062 } 2063 ptr = skb_tail_pointer(skb); 2064 *ptr++ = '"'; 2065 memcpy(ptr, string, slen); 2066 ptr += slen; 2067 *ptr++ = '"'; 2068 *ptr = 0; 2069 skb_put(skb, slen + 2); /* don't include null terminator */ 2070 } 2071 2072 /** 2073 * audit_string_contains_control - does a string need to be logged in hex 2074 * @string: string to be checked 2075 * @len: max length of the string to check 2076 */ 2077 bool audit_string_contains_control(const char *string, size_t len) 2078 { 2079 const unsigned char *p; 2080 for (p = string; p < (const unsigned char *)string + len; p++) { 2081 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2082 return true; 2083 } 2084 return false; 2085 } 2086 2087 /** 2088 * audit_log_n_untrustedstring - log a string that may contain random characters 2089 * @ab: audit_buffer 2090 * @len: length of string (not including trailing null) 2091 * @string: string to be logged 2092 * 2093 * This code will escape a string that is passed to it if the string 2094 * contains a control character, unprintable character, double quote mark, 2095 * or a space. Unescaped strings will start and end with a double quote mark. 2096 * Strings that are escaped are printed in hex (2 digits per char). 2097 * 2098 * The caller specifies the number of characters in the string to log, which may 2099 * or may not be the entire string. 2100 */ 2101 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2102 size_t len) 2103 { 2104 if (audit_string_contains_control(string, len)) 2105 audit_log_n_hex(ab, string, len); 2106 else 2107 audit_log_n_string(ab, string, len); 2108 } 2109 2110 /** 2111 * audit_log_untrustedstring - log a string that may contain random characters 2112 * @ab: audit_buffer 2113 * @string: string to be logged 2114 * 2115 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2116 * determine string length. 2117 */ 2118 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2119 { 2120 audit_log_n_untrustedstring(ab, string, strlen(string)); 2121 } 2122 2123 /* This is a helper-function to print the escaped d_path */ 2124 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2125 const struct path *path) 2126 { 2127 char *p, *pathname; 2128 2129 if (prefix) 2130 audit_log_format(ab, "%s", prefix); 2131 2132 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2133 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2134 if (!pathname) { 2135 audit_log_format(ab, "\"<no_memory>\""); 2136 return; 2137 } 2138 p = d_path(path, pathname, PATH_MAX+11); 2139 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2140 /* FIXME: can we save some information here? */ 2141 audit_log_format(ab, "\"<too_long>\""); 2142 } else 2143 audit_log_untrustedstring(ab, p); 2144 kfree(pathname); 2145 } 2146 2147 void audit_log_session_info(struct audit_buffer *ab) 2148 { 2149 unsigned int sessionid = audit_get_sessionid(current); 2150 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2151 2152 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2153 } 2154 2155 void audit_log_key(struct audit_buffer *ab, char *key) 2156 { 2157 audit_log_format(ab, " key="); 2158 if (key) 2159 audit_log_untrustedstring(ab, key); 2160 else 2161 audit_log_format(ab, "(null)"); 2162 } 2163 2164 int audit_log_task_context(struct audit_buffer *ab) 2165 { 2166 char *ctx = NULL; 2167 unsigned len; 2168 int error; 2169 u32 sid; 2170 2171 security_current_getsecid_subj(&sid); 2172 if (!sid) 2173 return 0; 2174 2175 error = security_secid_to_secctx(sid, &ctx, &len); 2176 if (error) { 2177 if (error != -EINVAL) 2178 goto error_path; 2179 return 0; 2180 } 2181 2182 audit_log_format(ab, " subj=%s", ctx); 2183 security_release_secctx(ctx, len); 2184 return 0; 2185 2186 error_path: 2187 audit_panic("error in audit_log_task_context"); 2188 return error; 2189 } 2190 EXPORT_SYMBOL(audit_log_task_context); 2191 2192 void audit_log_d_path_exe(struct audit_buffer *ab, 2193 struct mm_struct *mm) 2194 { 2195 struct file *exe_file; 2196 2197 if (!mm) 2198 goto out_null; 2199 2200 exe_file = get_mm_exe_file(mm); 2201 if (!exe_file) 2202 goto out_null; 2203 2204 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2205 fput(exe_file); 2206 return; 2207 out_null: 2208 audit_log_format(ab, " exe=(null)"); 2209 } 2210 2211 struct tty_struct *audit_get_tty(void) 2212 { 2213 struct tty_struct *tty = NULL; 2214 unsigned long flags; 2215 2216 spin_lock_irqsave(¤t->sighand->siglock, flags); 2217 if (current->signal) 2218 tty = tty_kref_get(current->signal->tty); 2219 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2220 return tty; 2221 } 2222 2223 void audit_put_tty(struct tty_struct *tty) 2224 { 2225 tty_kref_put(tty); 2226 } 2227 2228 void audit_log_task_info(struct audit_buffer *ab) 2229 { 2230 const struct cred *cred; 2231 char comm[sizeof(current->comm)]; 2232 struct tty_struct *tty; 2233 2234 if (!ab) 2235 return; 2236 2237 cred = current_cred(); 2238 tty = audit_get_tty(); 2239 audit_log_format(ab, 2240 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2241 " euid=%u suid=%u fsuid=%u" 2242 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2243 task_ppid_nr(current), 2244 task_tgid_nr(current), 2245 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2246 from_kuid(&init_user_ns, cred->uid), 2247 from_kgid(&init_user_ns, cred->gid), 2248 from_kuid(&init_user_ns, cred->euid), 2249 from_kuid(&init_user_ns, cred->suid), 2250 from_kuid(&init_user_ns, cred->fsuid), 2251 from_kgid(&init_user_ns, cred->egid), 2252 from_kgid(&init_user_ns, cred->sgid), 2253 from_kgid(&init_user_ns, cred->fsgid), 2254 tty ? tty_name(tty) : "(none)", 2255 audit_get_sessionid(current)); 2256 audit_put_tty(tty); 2257 audit_log_format(ab, " comm="); 2258 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2259 audit_log_d_path_exe(ab, current->mm); 2260 audit_log_task_context(ab); 2261 } 2262 EXPORT_SYMBOL(audit_log_task_info); 2263 2264 /** 2265 * audit_log_path_denied - report a path restriction denial 2266 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2267 * @operation: specific operation name 2268 */ 2269 void audit_log_path_denied(int type, const char *operation) 2270 { 2271 struct audit_buffer *ab; 2272 2273 if (!audit_enabled || audit_dummy_context()) 2274 return; 2275 2276 /* Generate log with subject, operation, outcome. */ 2277 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2278 if (!ab) 2279 return; 2280 audit_log_format(ab, "op=%s", operation); 2281 audit_log_task_info(ab); 2282 audit_log_format(ab, " res=0"); 2283 audit_log_end(ab); 2284 } 2285 2286 /* global counter which is incremented every time something logs in */ 2287 static atomic_t session_id = ATOMIC_INIT(0); 2288 2289 static int audit_set_loginuid_perm(kuid_t loginuid) 2290 { 2291 /* if we are unset, we don't need privs */ 2292 if (!audit_loginuid_set(current)) 2293 return 0; 2294 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2295 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2296 return -EPERM; 2297 /* it is set, you need permission */ 2298 if (!capable(CAP_AUDIT_CONTROL)) 2299 return -EPERM; 2300 /* reject if this is not an unset and we don't allow that */ 2301 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2302 && uid_valid(loginuid)) 2303 return -EPERM; 2304 return 0; 2305 } 2306 2307 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2308 unsigned int oldsessionid, 2309 unsigned int sessionid, int rc) 2310 { 2311 struct audit_buffer *ab; 2312 uid_t uid, oldloginuid, loginuid; 2313 struct tty_struct *tty; 2314 2315 if (!audit_enabled) 2316 return; 2317 2318 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2319 if (!ab) 2320 return; 2321 2322 uid = from_kuid(&init_user_ns, task_uid(current)); 2323 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2324 loginuid = from_kuid(&init_user_ns, kloginuid); 2325 tty = audit_get_tty(); 2326 2327 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2328 audit_log_task_context(ab); 2329 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2330 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2331 oldsessionid, sessionid, !rc); 2332 audit_put_tty(tty); 2333 audit_log_end(ab); 2334 } 2335 2336 /** 2337 * audit_set_loginuid - set current task's loginuid 2338 * @loginuid: loginuid value 2339 * 2340 * Returns 0. 2341 * 2342 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2343 */ 2344 int audit_set_loginuid(kuid_t loginuid) 2345 { 2346 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2347 kuid_t oldloginuid; 2348 int rc; 2349 2350 oldloginuid = audit_get_loginuid(current); 2351 oldsessionid = audit_get_sessionid(current); 2352 2353 rc = audit_set_loginuid_perm(loginuid); 2354 if (rc) 2355 goto out; 2356 2357 /* are we setting or clearing? */ 2358 if (uid_valid(loginuid)) { 2359 sessionid = (unsigned int)atomic_inc_return(&session_id); 2360 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2361 sessionid = (unsigned int)atomic_inc_return(&session_id); 2362 } 2363 2364 current->sessionid = sessionid; 2365 current->loginuid = loginuid; 2366 out: 2367 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2368 return rc; 2369 } 2370 2371 /** 2372 * audit_signal_info - record signal info for shutting down audit subsystem 2373 * @sig: signal value 2374 * @t: task being signaled 2375 * 2376 * If the audit subsystem is being terminated, record the task (pid) 2377 * and uid that is doing that. 2378 */ 2379 int audit_signal_info(int sig, struct task_struct *t) 2380 { 2381 kuid_t uid = current_uid(), auid; 2382 2383 if (auditd_test_task(t) && 2384 (sig == SIGTERM || sig == SIGHUP || 2385 sig == SIGUSR1 || sig == SIGUSR2)) { 2386 audit_sig_pid = task_tgid_nr(current); 2387 auid = audit_get_loginuid(current); 2388 if (uid_valid(auid)) 2389 audit_sig_uid = auid; 2390 else 2391 audit_sig_uid = uid; 2392 security_current_getsecid_subj(&audit_sig_sid); 2393 } 2394 2395 return audit_signal_info_syscall(t); 2396 } 2397 2398 /** 2399 * audit_log_end - end one audit record 2400 * @ab: the audit_buffer 2401 * 2402 * We can not do a netlink send inside an irq context because it blocks (last 2403 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2404 * queue and a kthread is scheduled to remove them from the queue outside the 2405 * irq context. May be called in any context. 2406 */ 2407 void audit_log_end(struct audit_buffer *ab) 2408 { 2409 struct sk_buff *skb; 2410 struct nlmsghdr *nlh; 2411 2412 if (!ab) 2413 return; 2414 2415 if (audit_rate_check()) { 2416 skb = ab->skb; 2417 ab->skb = NULL; 2418 2419 /* setup the netlink header, see the comments in 2420 * kauditd_send_multicast_skb() for length quirks */ 2421 nlh = nlmsg_hdr(skb); 2422 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2423 2424 /* queue the netlink packet and poke the kauditd thread */ 2425 skb_queue_tail(&audit_queue, skb); 2426 wake_up_interruptible(&kauditd_wait); 2427 } else 2428 audit_log_lost("rate limit exceeded"); 2429 2430 audit_buffer_free(ab); 2431 } 2432 2433 /** 2434 * audit_log - Log an audit record 2435 * @ctx: audit context 2436 * @gfp_mask: type of allocation 2437 * @type: audit message type 2438 * @fmt: format string to use 2439 * @...: variable parameters matching the format string 2440 * 2441 * This is a convenience function that calls audit_log_start, 2442 * audit_log_vformat, and audit_log_end. It may be called 2443 * in any context. 2444 */ 2445 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2446 const char *fmt, ...) 2447 { 2448 struct audit_buffer *ab; 2449 va_list args; 2450 2451 ab = audit_log_start(ctx, gfp_mask, type); 2452 if (ab) { 2453 va_start(args, fmt); 2454 audit_log_vformat(ab, fmt, args); 2455 va_end(args); 2456 audit_log_end(ab); 2457 } 2458 } 2459 2460 EXPORT_SYMBOL(audit_log_start); 2461 EXPORT_SYMBOL(audit_log_end); 2462 EXPORT_SYMBOL(audit_log_format); 2463 EXPORT_SYMBOL(audit_log); 2464