1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #ifdef CONFIG_SECURITY 57 #include <linux/security.h> 58 #endif 59 #include <linux/freezer.h> 60 #include <linux/pid_namespace.h> 61 #include <net/netns/generic.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 66 * (Initialization happens after skb_init is called.) */ 67 #define AUDIT_DISABLED -1 68 #define AUDIT_UNINITIALIZED 0 69 #define AUDIT_INITIALIZED 1 70 static int audit_initialized; 71 72 u32 audit_enabled = AUDIT_OFF; 73 bool audit_ever_enabled = !!AUDIT_OFF; 74 75 EXPORT_SYMBOL_GPL(audit_enabled); 76 77 /* Default state when kernel boots without any parameters. */ 78 static u32 audit_default = AUDIT_OFF; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static u32 audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* private audit network namespace index */ 84 static unsigned int audit_net_id; 85 86 /** 87 * struct audit_net - audit private network namespace data 88 * @sk: communication socket 89 */ 90 struct audit_net { 91 struct sock *sk; 92 }; 93 94 /** 95 * struct auditd_connection - kernel/auditd connection state 96 * @pid: auditd PID 97 * @portid: netlink portid 98 * @net: the associated network namespace 99 * @rcu: RCU head 100 * 101 * Description: 102 * This struct is RCU protected; you must either hold the RCU lock for reading 103 * or the associated spinlock for writing. 104 */ 105 struct auditd_connection { 106 struct pid *pid; 107 u32 portid; 108 struct net *net; 109 struct rcu_head rcu; 110 }; 111 static struct auditd_connection __rcu *auditd_conn; 112 static DEFINE_SPINLOCK(auditd_conn_lock); 113 114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 115 * to that number per second. This prevents DoS attacks, but results in 116 * audit records being dropped. */ 117 static u32 audit_rate_limit; 118 119 /* Number of outstanding audit_buffers allowed. 120 * When set to zero, this means unlimited. */ 121 static u32 audit_backlog_limit = 64; 122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 124 125 /* The identity of the user shutting down the audit system. */ 126 kuid_t audit_sig_uid = INVALID_UID; 127 pid_t audit_sig_pid = -1; 128 u32 audit_sig_sid = 0; 129 130 /* Records can be lost in several ways: 131 0) [suppressed in audit_alloc] 132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 133 2) out of memory in audit_log_move [alloc_skb] 134 3) suppressed due to audit_rate_limit 135 4) suppressed due to audit_backlog_limit 136 */ 137 static atomic_t audit_lost = ATOMIC_INIT(0); 138 139 /* Monotonically increasing sum of time the kernel has spent 140 * waiting while the backlog limit is exceeded. 141 */ 142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 143 144 /* Hash for inode-based rules */ 145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 146 147 static struct kmem_cache *audit_buffer_cache; 148 149 /* queue msgs to send via kauditd_task */ 150 static struct sk_buff_head audit_queue; 151 /* queue msgs due to temporary unicast send problems */ 152 static struct sk_buff_head audit_retry_queue; 153 /* queue msgs waiting for new auditd connection */ 154 static struct sk_buff_head audit_hold_queue; 155 156 /* queue servicing thread */ 157 static struct task_struct *kauditd_task; 158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 159 160 /* waitqueue for callers who are blocked on the audit backlog */ 161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 162 163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 164 .mask = -1, 165 .features = 0, 166 .lock = 0,}; 167 168 static char *audit_feature_names[2] = { 169 "only_unset_loginuid", 170 "loginuid_immutable", 171 }; 172 173 /** 174 * struct audit_ctl_mutex - serialize requests from userspace 175 * @lock: the mutex used for locking 176 * @owner: the task which owns the lock 177 * 178 * Description: 179 * This is the lock struct used to ensure we only process userspace requests 180 * in an orderly fashion. We can't simply use a mutex/lock here because we 181 * need to track lock ownership so we don't end up blocking the lock owner in 182 * audit_log_start() or similar. 183 */ 184 static struct audit_ctl_mutex { 185 struct mutex lock; 186 void *owner; 187 } audit_cmd_mutex; 188 189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 190 * audit records. Since printk uses a 1024 byte buffer, this buffer 191 * should be at least that large. */ 192 #define AUDIT_BUFSIZ 1024 193 194 /* The audit_buffer is used when formatting an audit record. The caller 195 * locks briefly to get the record off the freelist or to allocate the 196 * buffer, and locks briefly to send the buffer to the netlink layer or 197 * to place it on a transmit queue. Multiple audit_buffers can be in 198 * use simultaneously. */ 199 struct audit_buffer { 200 struct sk_buff *skb; /* formatted skb ready to send */ 201 struct audit_context *ctx; /* NULL or associated context */ 202 gfp_t gfp_mask; 203 }; 204 205 struct audit_reply { 206 __u32 portid; 207 struct net *net; 208 struct sk_buff *skb; 209 }; 210 211 /** 212 * auditd_test_task - Check to see if a given task is an audit daemon 213 * @task: the task to check 214 * 215 * Description: 216 * Return 1 if the task is a registered audit daemon, 0 otherwise. 217 */ 218 int auditd_test_task(struct task_struct *task) 219 { 220 int rc; 221 struct auditd_connection *ac; 222 223 rcu_read_lock(); 224 ac = rcu_dereference(auditd_conn); 225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 226 rcu_read_unlock(); 227 228 return rc; 229 } 230 231 /** 232 * audit_ctl_lock - Take the audit control lock 233 */ 234 void audit_ctl_lock(void) 235 { 236 mutex_lock(&audit_cmd_mutex.lock); 237 audit_cmd_mutex.owner = current; 238 } 239 240 /** 241 * audit_ctl_unlock - Drop the audit control lock 242 */ 243 void audit_ctl_unlock(void) 244 { 245 audit_cmd_mutex.owner = NULL; 246 mutex_unlock(&audit_cmd_mutex.lock); 247 } 248 249 /** 250 * audit_ctl_owner_current - Test to see if the current task owns the lock 251 * 252 * Description: 253 * Return true if the current task owns the audit control lock, false if it 254 * doesn't own the lock. 255 */ 256 static bool audit_ctl_owner_current(void) 257 { 258 return (current == audit_cmd_mutex.owner); 259 } 260 261 /** 262 * auditd_pid_vnr - Return the auditd PID relative to the namespace 263 * 264 * Description: 265 * Returns the PID in relation to the namespace, 0 on failure. 266 */ 267 static pid_t auditd_pid_vnr(void) 268 { 269 pid_t pid; 270 const struct auditd_connection *ac; 271 272 rcu_read_lock(); 273 ac = rcu_dereference(auditd_conn); 274 if (!ac || !ac->pid) 275 pid = 0; 276 else 277 pid = pid_vnr(ac->pid); 278 rcu_read_unlock(); 279 280 return pid; 281 } 282 283 /** 284 * audit_get_sk - Return the audit socket for the given network namespace 285 * @net: the destination network namespace 286 * 287 * Description: 288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 289 * that a reference is held for the network namespace while the sock is in use. 290 */ 291 static struct sock *audit_get_sk(const struct net *net) 292 { 293 struct audit_net *aunet; 294 295 if (!net) 296 return NULL; 297 298 aunet = net_generic(net, audit_net_id); 299 return aunet->sk; 300 } 301 302 void audit_panic(const char *message) 303 { 304 switch (audit_failure) { 305 case AUDIT_FAIL_SILENT: 306 break; 307 case AUDIT_FAIL_PRINTK: 308 if (printk_ratelimit()) 309 pr_err("%s\n", message); 310 break; 311 case AUDIT_FAIL_PANIC: 312 panic("audit: %s\n", message); 313 break; 314 } 315 } 316 317 static inline int audit_rate_check(void) 318 { 319 static unsigned long last_check = 0; 320 static int messages = 0; 321 static DEFINE_SPINLOCK(lock); 322 unsigned long flags; 323 unsigned long now; 324 unsigned long elapsed; 325 int retval = 0; 326 327 if (!audit_rate_limit) return 1; 328 329 spin_lock_irqsave(&lock, flags); 330 if (++messages < audit_rate_limit) { 331 retval = 1; 332 } else { 333 now = jiffies; 334 elapsed = now - last_check; 335 if (elapsed > HZ) { 336 last_check = now; 337 messages = 0; 338 retval = 1; 339 } 340 } 341 spin_unlock_irqrestore(&lock, flags); 342 343 return retval; 344 } 345 346 /** 347 * audit_log_lost - conditionally log lost audit message event 348 * @message: the message stating reason for lost audit message 349 * 350 * Emit at least 1 message per second, even if audit_rate_check is 351 * throttling. 352 * Always increment the lost messages counter. 353 */ 354 void audit_log_lost(const char *message) 355 { 356 static unsigned long last_msg = 0; 357 static DEFINE_SPINLOCK(lock); 358 unsigned long flags; 359 unsigned long now; 360 int print; 361 362 atomic_inc(&audit_lost); 363 364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 365 366 if (!print) { 367 spin_lock_irqsave(&lock, flags); 368 now = jiffies; 369 if (now - last_msg > HZ) { 370 print = 1; 371 last_msg = now; 372 } 373 spin_unlock_irqrestore(&lock, flags); 374 } 375 376 if (print) { 377 if (printk_ratelimit()) 378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 379 atomic_read(&audit_lost), 380 audit_rate_limit, 381 audit_backlog_limit); 382 audit_panic(message); 383 } 384 } 385 386 static int audit_log_config_change(char *function_name, u32 new, u32 old, 387 int allow_changes) 388 { 389 struct audit_buffer *ab; 390 int rc = 0; 391 392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 393 if (unlikely(!ab)) 394 return rc; 395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 396 audit_log_session_info(ab); 397 rc = audit_log_task_context(ab); 398 if (rc) 399 allow_changes = 0; /* Something weird, deny request */ 400 audit_log_format(ab, " res=%d", allow_changes); 401 audit_log_end(ab); 402 return rc; 403 } 404 405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 406 { 407 int allow_changes, rc = 0; 408 u32 old = *to_change; 409 410 /* check if we are locked */ 411 if (audit_enabled == AUDIT_LOCKED) 412 allow_changes = 0; 413 else 414 allow_changes = 1; 415 416 if (audit_enabled != AUDIT_OFF) { 417 rc = audit_log_config_change(function_name, new, old, allow_changes); 418 if (rc) 419 allow_changes = 0; 420 } 421 422 /* If we are allowed, make the change */ 423 if (allow_changes == 1) 424 *to_change = new; 425 /* Not allowed, update reason */ 426 else if (rc == 0) 427 rc = -EPERM; 428 return rc; 429 } 430 431 static int audit_set_rate_limit(u32 limit) 432 { 433 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 434 } 435 436 static int audit_set_backlog_limit(u32 limit) 437 { 438 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 439 } 440 441 static int audit_set_backlog_wait_time(u32 timeout) 442 { 443 return audit_do_config_change("audit_backlog_wait_time", 444 &audit_backlog_wait_time, timeout); 445 } 446 447 static int audit_set_enabled(u32 state) 448 { 449 int rc; 450 if (state > AUDIT_LOCKED) 451 return -EINVAL; 452 453 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 454 if (!rc) 455 audit_ever_enabled |= !!state; 456 457 return rc; 458 } 459 460 static int audit_set_failure(u32 state) 461 { 462 if (state != AUDIT_FAIL_SILENT 463 && state != AUDIT_FAIL_PRINTK 464 && state != AUDIT_FAIL_PANIC) 465 return -EINVAL; 466 467 return audit_do_config_change("audit_failure", &audit_failure, state); 468 } 469 470 /** 471 * auditd_conn_free - RCU helper to release an auditd connection struct 472 * @rcu: RCU head 473 * 474 * Description: 475 * Drop any references inside the auditd connection tracking struct and free 476 * the memory. 477 */ 478 static void auditd_conn_free(struct rcu_head *rcu) 479 { 480 struct auditd_connection *ac; 481 482 ac = container_of(rcu, struct auditd_connection, rcu); 483 put_pid(ac->pid); 484 put_net(ac->net); 485 kfree(ac); 486 } 487 488 /** 489 * auditd_set - Set/Reset the auditd connection state 490 * @pid: auditd PID 491 * @portid: auditd netlink portid 492 * @net: auditd network namespace pointer 493 * 494 * Description: 495 * This function will obtain and drop network namespace references as 496 * necessary. Returns zero on success, negative values on failure. 497 */ 498 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 499 { 500 unsigned long flags; 501 struct auditd_connection *ac_old, *ac_new; 502 503 if (!pid || !net) 504 return -EINVAL; 505 506 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 507 if (!ac_new) 508 return -ENOMEM; 509 ac_new->pid = get_pid(pid); 510 ac_new->portid = portid; 511 ac_new->net = get_net(net); 512 513 spin_lock_irqsave(&auditd_conn_lock, flags); 514 ac_old = rcu_dereference_protected(auditd_conn, 515 lockdep_is_held(&auditd_conn_lock)); 516 rcu_assign_pointer(auditd_conn, ac_new); 517 spin_unlock_irqrestore(&auditd_conn_lock, flags); 518 519 if (ac_old) 520 call_rcu(&ac_old->rcu, auditd_conn_free); 521 522 return 0; 523 } 524 525 /** 526 * kauditd_print_skb - Print the audit record to the ring buffer 527 * @skb: audit record 528 * 529 * Whatever the reason, this packet may not make it to the auditd connection 530 * so write it via printk so the information isn't completely lost. 531 */ 532 static void kauditd_printk_skb(struct sk_buff *skb) 533 { 534 struct nlmsghdr *nlh = nlmsg_hdr(skb); 535 char *data = nlmsg_data(nlh); 536 537 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 538 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 539 } 540 541 /** 542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 543 * @skb: audit record 544 * 545 * Description: 546 * This should only be used by the kauditd_thread when it fails to flush the 547 * hold queue. 548 */ 549 static void kauditd_rehold_skb(struct sk_buff *skb) 550 { 551 /* put the record back in the queue at the same place */ 552 skb_queue_head(&audit_hold_queue, skb); 553 } 554 555 /** 556 * kauditd_hold_skb - Queue an audit record, waiting for auditd 557 * @skb: audit record 558 * 559 * Description: 560 * Queue the audit record, waiting for an instance of auditd. When this 561 * function is called we haven't given up yet on sending the record, but things 562 * are not looking good. The first thing we want to do is try to write the 563 * record via printk and then see if we want to try and hold on to the record 564 * and queue it, if we have room. If we want to hold on to the record, but we 565 * don't have room, record a record lost message. 566 */ 567 static void kauditd_hold_skb(struct sk_buff *skb) 568 { 569 /* at this point it is uncertain if we will ever send this to auditd so 570 * try to send the message via printk before we go any further */ 571 kauditd_printk_skb(skb); 572 573 /* can we just silently drop the message? */ 574 if (!audit_default) { 575 kfree_skb(skb); 576 return; 577 } 578 579 /* if we have room, queue the message */ 580 if (!audit_backlog_limit || 581 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 582 skb_queue_tail(&audit_hold_queue, skb); 583 return; 584 } 585 586 /* we have no other options - drop the message */ 587 audit_log_lost("kauditd hold queue overflow"); 588 kfree_skb(skb); 589 } 590 591 /** 592 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 593 * @skb: audit record 594 * 595 * Description: 596 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 597 * but for some reason we are having problems sending it audit records so 598 * queue the given record and attempt to resend. 599 */ 600 static void kauditd_retry_skb(struct sk_buff *skb) 601 { 602 /* NOTE: because records should only live in the retry queue for a 603 * short period of time, before either being sent or moved to the hold 604 * queue, we don't currently enforce a limit on this queue */ 605 skb_queue_tail(&audit_retry_queue, skb); 606 } 607 608 /** 609 * auditd_reset - Disconnect the auditd connection 610 * @ac: auditd connection state 611 * 612 * Description: 613 * Break the auditd/kauditd connection and move all the queued records into the 614 * hold queue in case auditd reconnects. It is important to note that the @ac 615 * pointer should never be dereferenced inside this function as it may be NULL 616 * or invalid, you can only compare the memory address! If @ac is NULL then 617 * the connection will always be reset. 618 */ 619 static void auditd_reset(const struct auditd_connection *ac) 620 { 621 unsigned long flags; 622 struct sk_buff *skb; 623 struct auditd_connection *ac_old; 624 625 /* if it isn't already broken, break the connection */ 626 spin_lock_irqsave(&auditd_conn_lock, flags); 627 ac_old = rcu_dereference_protected(auditd_conn, 628 lockdep_is_held(&auditd_conn_lock)); 629 if (ac && ac != ac_old) { 630 /* someone already registered a new auditd connection */ 631 spin_unlock_irqrestore(&auditd_conn_lock, flags); 632 return; 633 } 634 rcu_assign_pointer(auditd_conn, NULL); 635 spin_unlock_irqrestore(&auditd_conn_lock, flags); 636 637 if (ac_old) 638 call_rcu(&ac_old->rcu, auditd_conn_free); 639 640 /* flush the retry queue to the hold queue, but don't touch the main 641 * queue since we need to process that normally for multicast */ 642 while ((skb = skb_dequeue(&audit_retry_queue))) 643 kauditd_hold_skb(skb); 644 } 645 646 /** 647 * auditd_send_unicast_skb - Send a record via unicast to auditd 648 * @skb: audit record 649 * 650 * Description: 651 * Send a skb to the audit daemon, returns positive/zero values on success and 652 * negative values on failure; in all cases the skb will be consumed by this 653 * function. If the send results in -ECONNREFUSED the connection with auditd 654 * will be reset. This function may sleep so callers should not hold any locks 655 * where this would cause a problem. 656 */ 657 static int auditd_send_unicast_skb(struct sk_buff *skb) 658 { 659 int rc; 660 u32 portid; 661 struct net *net; 662 struct sock *sk; 663 struct auditd_connection *ac; 664 665 /* NOTE: we can't call netlink_unicast while in the RCU section so 666 * take a reference to the network namespace and grab local 667 * copies of the namespace, the sock, and the portid; the 668 * namespace and sock aren't going to go away while we hold a 669 * reference and if the portid does become invalid after the RCU 670 * section netlink_unicast() should safely return an error */ 671 672 rcu_read_lock(); 673 ac = rcu_dereference(auditd_conn); 674 if (!ac) { 675 rcu_read_unlock(); 676 kfree_skb(skb); 677 rc = -ECONNREFUSED; 678 goto err; 679 } 680 net = get_net(ac->net); 681 sk = audit_get_sk(net); 682 portid = ac->portid; 683 rcu_read_unlock(); 684 685 rc = netlink_unicast(sk, skb, portid, 0); 686 put_net(net); 687 if (rc < 0) 688 goto err; 689 690 return rc; 691 692 err: 693 if (ac && rc == -ECONNREFUSED) 694 auditd_reset(ac); 695 return rc; 696 } 697 698 /** 699 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 700 * @sk: the sending sock 701 * @portid: the netlink destination 702 * @queue: the skb queue to process 703 * @retry_limit: limit on number of netlink unicast failures 704 * @skb_hook: per-skb hook for additional processing 705 * @err_hook: hook called if the skb fails the netlink unicast send 706 * 707 * Description: 708 * Run through the given queue and attempt to send the audit records to auditd, 709 * returns zero on success, negative values on failure. It is up to the caller 710 * to ensure that the @sk is valid for the duration of this function. 711 * 712 */ 713 static int kauditd_send_queue(struct sock *sk, u32 portid, 714 struct sk_buff_head *queue, 715 unsigned int retry_limit, 716 void (*skb_hook)(struct sk_buff *skb), 717 void (*err_hook)(struct sk_buff *skb)) 718 { 719 int rc = 0; 720 struct sk_buff *skb; 721 static unsigned int failed = 0; 722 723 /* NOTE: kauditd_thread takes care of all our locking, we just use 724 * the netlink info passed to us (e.g. sk and portid) */ 725 726 while ((skb = skb_dequeue(queue))) { 727 /* call the skb_hook for each skb we touch */ 728 if (skb_hook) 729 (*skb_hook)(skb); 730 731 /* can we send to anyone via unicast? */ 732 if (!sk) { 733 if (err_hook) 734 (*err_hook)(skb); 735 continue; 736 } 737 738 /* grab an extra skb reference in case of error */ 739 skb_get(skb); 740 rc = netlink_unicast(sk, skb, portid, 0); 741 if (rc < 0) { 742 /* fatal failure for our queue flush attempt? */ 743 if (++failed >= retry_limit || 744 rc == -ECONNREFUSED || rc == -EPERM) { 745 /* yes - error processing for the queue */ 746 sk = NULL; 747 if (err_hook) 748 (*err_hook)(skb); 749 if (!skb_hook) 750 goto out; 751 /* keep processing with the skb_hook */ 752 continue; 753 } else 754 /* no - requeue to preserve ordering */ 755 skb_queue_head(queue, skb); 756 } else { 757 /* it worked - drop the extra reference and continue */ 758 consume_skb(skb); 759 failed = 0; 760 } 761 } 762 763 out: 764 return (rc >= 0 ? 0 : rc); 765 } 766 767 /* 768 * kauditd_send_multicast_skb - Send a record to any multicast listeners 769 * @skb: audit record 770 * 771 * Description: 772 * Write a multicast message to anyone listening in the initial network 773 * namespace. This function doesn't consume an skb as might be expected since 774 * it has to copy it anyways. 775 */ 776 static void kauditd_send_multicast_skb(struct sk_buff *skb) 777 { 778 struct sk_buff *copy; 779 struct sock *sock = audit_get_sk(&init_net); 780 struct nlmsghdr *nlh; 781 782 /* NOTE: we are not taking an additional reference for init_net since 783 * we don't have to worry about it going away */ 784 785 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 786 return; 787 788 /* 789 * The seemingly wasteful skb_copy() rather than bumping the refcount 790 * using skb_get() is necessary because non-standard mods are made to 791 * the skb by the original kaudit unicast socket send routine. The 792 * existing auditd daemon assumes this breakage. Fixing this would 793 * require co-ordinating a change in the established protocol between 794 * the kaudit kernel subsystem and the auditd userspace code. There is 795 * no reason for new multicast clients to continue with this 796 * non-compliance. 797 */ 798 copy = skb_copy(skb, GFP_KERNEL); 799 if (!copy) 800 return; 801 nlh = nlmsg_hdr(copy); 802 nlh->nlmsg_len = skb->len; 803 804 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 805 } 806 807 /** 808 * kauditd_thread - Worker thread to send audit records to userspace 809 * @dummy: unused 810 */ 811 static int kauditd_thread(void *dummy) 812 { 813 int rc; 814 u32 portid = 0; 815 struct net *net = NULL; 816 struct sock *sk = NULL; 817 struct auditd_connection *ac; 818 819 #define UNICAST_RETRIES 5 820 821 set_freezable(); 822 while (!kthread_should_stop()) { 823 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 824 rcu_read_lock(); 825 ac = rcu_dereference(auditd_conn); 826 if (!ac) { 827 rcu_read_unlock(); 828 goto main_queue; 829 } 830 net = get_net(ac->net); 831 sk = audit_get_sk(net); 832 portid = ac->portid; 833 rcu_read_unlock(); 834 835 /* attempt to flush the hold queue */ 836 rc = kauditd_send_queue(sk, portid, 837 &audit_hold_queue, UNICAST_RETRIES, 838 NULL, kauditd_rehold_skb); 839 if (rc < 0) { 840 sk = NULL; 841 auditd_reset(ac); 842 goto main_queue; 843 } 844 845 /* attempt to flush the retry queue */ 846 rc = kauditd_send_queue(sk, portid, 847 &audit_retry_queue, UNICAST_RETRIES, 848 NULL, kauditd_hold_skb); 849 if (rc < 0) { 850 sk = NULL; 851 auditd_reset(ac); 852 goto main_queue; 853 } 854 855 main_queue: 856 /* process the main queue - do the multicast send and attempt 857 * unicast, dump failed record sends to the retry queue; if 858 * sk == NULL due to previous failures we will just do the 859 * multicast send and move the record to the hold queue */ 860 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 861 kauditd_send_multicast_skb, 862 (sk ? 863 kauditd_retry_skb : kauditd_hold_skb)); 864 if (ac && rc < 0) 865 auditd_reset(ac); 866 sk = NULL; 867 868 /* drop our netns reference, no auditd sends past this line */ 869 if (net) { 870 put_net(net); 871 net = NULL; 872 } 873 874 /* we have processed all the queues so wake everyone */ 875 wake_up(&audit_backlog_wait); 876 877 /* NOTE: we want to wake up if there is anything on the queue, 878 * regardless of if an auditd is connected, as we need to 879 * do the multicast send and rotate records from the 880 * main queue to the retry/hold queues */ 881 wait_event_freezable(kauditd_wait, 882 (skb_queue_len(&audit_queue) ? 1 : 0)); 883 } 884 885 return 0; 886 } 887 888 int audit_send_list_thread(void *_dest) 889 { 890 struct audit_netlink_list *dest = _dest; 891 struct sk_buff *skb; 892 struct sock *sk = audit_get_sk(dest->net); 893 894 /* wait for parent to finish and send an ACK */ 895 audit_ctl_lock(); 896 audit_ctl_unlock(); 897 898 while ((skb = __skb_dequeue(&dest->q)) != NULL) 899 netlink_unicast(sk, skb, dest->portid, 0); 900 901 put_net(dest->net); 902 kfree(dest); 903 904 return 0; 905 } 906 907 struct sk_buff *audit_make_reply(int seq, int type, int done, 908 int multi, const void *payload, int size) 909 { 910 struct sk_buff *skb; 911 struct nlmsghdr *nlh; 912 void *data; 913 int flags = multi ? NLM_F_MULTI : 0; 914 int t = done ? NLMSG_DONE : type; 915 916 skb = nlmsg_new(size, GFP_KERNEL); 917 if (!skb) 918 return NULL; 919 920 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 921 if (!nlh) 922 goto out_kfree_skb; 923 data = nlmsg_data(nlh); 924 memcpy(data, payload, size); 925 return skb; 926 927 out_kfree_skb: 928 kfree_skb(skb); 929 return NULL; 930 } 931 932 static void audit_free_reply(struct audit_reply *reply) 933 { 934 if (!reply) 935 return; 936 937 if (reply->skb) 938 kfree_skb(reply->skb); 939 if (reply->net) 940 put_net(reply->net); 941 kfree(reply); 942 } 943 944 static int audit_send_reply_thread(void *arg) 945 { 946 struct audit_reply *reply = (struct audit_reply *)arg; 947 948 audit_ctl_lock(); 949 audit_ctl_unlock(); 950 951 /* Ignore failure. It'll only happen if the sender goes away, 952 because our timeout is set to infinite. */ 953 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 954 reply->skb = NULL; 955 audit_free_reply(reply); 956 return 0; 957 } 958 959 /** 960 * audit_send_reply - send an audit reply message via netlink 961 * @request_skb: skb of request we are replying to (used to target the reply) 962 * @seq: sequence number 963 * @type: audit message type 964 * @done: done (last) flag 965 * @multi: multi-part message flag 966 * @payload: payload data 967 * @size: payload size 968 * 969 * Allocates a skb, builds the netlink message, and sends it to the port id. 970 */ 971 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 972 int multi, const void *payload, int size) 973 { 974 struct task_struct *tsk; 975 struct audit_reply *reply; 976 977 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 978 if (!reply) 979 return; 980 981 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 982 if (!reply->skb) 983 goto err; 984 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 985 reply->portid = NETLINK_CB(request_skb).portid; 986 987 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 988 if (IS_ERR(tsk)) 989 goto err; 990 991 return; 992 993 err: 994 audit_free_reply(reply); 995 } 996 997 /* 998 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 999 * control messages. 1000 */ 1001 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1002 { 1003 int err = 0; 1004 1005 /* Only support initial user namespace for now. */ 1006 /* 1007 * We return ECONNREFUSED because it tricks userspace into thinking 1008 * that audit was not configured into the kernel. Lots of users 1009 * configure their PAM stack (because that's what the distro does) 1010 * to reject login if unable to send messages to audit. If we return 1011 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1012 * configured in and will let login proceed. If we return EPERM 1013 * userspace will reject all logins. This should be removed when we 1014 * support non init namespaces!! 1015 */ 1016 if (current_user_ns() != &init_user_ns) 1017 return -ECONNREFUSED; 1018 1019 switch (msg_type) { 1020 case AUDIT_LIST: 1021 case AUDIT_ADD: 1022 case AUDIT_DEL: 1023 return -EOPNOTSUPP; 1024 case AUDIT_GET: 1025 case AUDIT_SET: 1026 case AUDIT_GET_FEATURE: 1027 case AUDIT_SET_FEATURE: 1028 case AUDIT_LIST_RULES: 1029 case AUDIT_ADD_RULE: 1030 case AUDIT_DEL_RULE: 1031 case AUDIT_SIGNAL_INFO: 1032 case AUDIT_TTY_GET: 1033 case AUDIT_TTY_SET: 1034 case AUDIT_TRIM: 1035 case AUDIT_MAKE_EQUIV: 1036 /* Only support auditd and auditctl in initial pid namespace 1037 * for now. */ 1038 if (task_active_pid_ns(current) != &init_pid_ns) 1039 return -EPERM; 1040 1041 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1042 err = -EPERM; 1043 break; 1044 case AUDIT_USER: 1045 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1046 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1047 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1048 err = -EPERM; 1049 break; 1050 default: /* bad msg */ 1051 err = -EINVAL; 1052 } 1053 1054 return err; 1055 } 1056 1057 static void audit_log_common_recv_msg(struct audit_context *context, 1058 struct audit_buffer **ab, u16 msg_type) 1059 { 1060 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1061 pid_t pid = task_tgid_nr(current); 1062 1063 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1064 *ab = NULL; 1065 return; 1066 } 1067 1068 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1069 if (unlikely(!*ab)) 1070 return; 1071 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1072 audit_log_session_info(*ab); 1073 audit_log_task_context(*ab); 1074 } 1075 1076 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1077 u16 msg_type) 1078 { 1079 audit_log_common_recv_msg(NULL, ab, msg_type); 1080 } 1081 1082 int is_audit_feature_set(int i) 1083 { 1084 return af.features & AUDIT_FEATURE_TO_MASK(i); 1085 } 1086 1087 1088 static int audit_get_feature(struct sk_buff *skb) 1089 { 1090 u32 seq; 1091 1092 seq = nlmsg_hdr(skb)->nlmsg_seq; 1093 1094 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1095 1096 return 0; 1097 } 1098 1099 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1100 u32 old_lock, u32 new_lock, int res) 1101 { 1102 struct audit_buffer *ab; 1103 1104 if (audit_enabled == AUDIT_OFF) 1105 return; 1106 1107 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1108 if (!ab) 1109 return; 1110 audit_log_task_info(ab); 1111 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1112 audit_feature_names[which], !!old_feature, !!new_feature, 1113 !!old_lock, !!new_lock, res); 1114 audit_log_end(ab); 1115 } 1116 1117 static int audit_set_feature(struct audit_features *uaf) 1118 { 1119 int i; 1120 1121 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1122 1123 /* if there is ever a version 2 we should handle that here */ 1124 1125 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1126 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1127 u32 old_feature, new_feature, old_lock, new_lock; 1128 1129 /* if we are not changing this feature, move along */ 1130 if (!(feature & uaf->mask)) 1131 continue; 1132 1133 old_feature = af.features & feature; 1134 new_feature = uaf->features & feature; 1135 new_lock = (uaf->lock | af.lock) & feature; 1136 old_lock = af.lock & feature; 1137 1138 /* are we changing a locked feature? */ 1139 if (old_lock && (new_feature != old_feature)) { 1140 audit_log_feature_change(i, old_feature, new_feature, 1141 old_lock, new_lock, 0); 1142 return -EPERM; 1143 } 1144 } 1145 /* nothing invalid, do the changes */ 1146 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1147 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1148 u32 old_feature, new_feature, old_lock, new_lock; 1149 1150 /* if we are not changing this feature, move along */ 1151 if (!(feature & uaf->mask)) 1152 continue; 1153 1154 old_feature = af.features & feature; 1155 new_feature = uaf->features & feature; 1156 old_lock = af.lock & feature; 1157 new_lock = (uaf->lock | af.lock) & feature; 1158 1159 if (new_feature != old_feature) 1160 audit_log_feature_change(i, old_feature, new_feature, 1161 old_lock, new_lock, 1); 1162 1163 if (new_feature) 1164 af.features |= feature; 1165 else 1166 af.features &= ~feature; 1167 af.lock |= new_lock; 1168 } 1169 1170 return 0; 1171 } 1172 1173 static int audit_replace(struct pid *pid) 1174 { 1175 pid_t pvnr; 1176 struct sk_buff *skb; 1177 1178 pvnr = pid_vnr(pid); 1179 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1180 if (!skb) 1181 return -ENOMEM; 1182 return auditd_send_unicast_skb(skb); 1183 } 1184 1185 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1186 { 1187 u32 seq; 1188 void *data; 1189 int data_len; 1190 int err; 1191 struct audit_buffer *ab; 1192 u16 msg_type = nlh->nlmsg_type; 1193 struct audit_sig_info *sig_data; 1194 char *ctx = NULL; 1195 u32 len; 1196 1197 err = audit_netlink_ok(skb, msg_type); 1198 if (err) 1199 return err; 1200 1201 seq = nlh->nlmsg_seq; 1202 data = nlmsg_data(nlh); 1203 data_len = nlmsg_len(nlh); 1204 1205 switch (msg_type) { 1206 case AUDIT_GET: { 1207 struct audit_status s; 1208 memset(&s, 0, sizeof(s)); 1209 s.enabled = audit_enabled; 1210 s.failure = audit_failure; 1211 /* NOTE: use pid_vnr() so the PID is relative to the current 1212 * namespace */ 1213 s.pid = auditd_pid_vnr(); 1214 s.rate_limit = audit_rate_limit; 1215 s.backlog_limit = audit_backlog_limit; 1216 s.lost = atomic_read(&audit_lost); 1217 s.backlog = skb_queue_len(&audit_queue); 1218 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1219 s.backlog_wait_time = audit_backlog_wait_time; 1220 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1221 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1222 break; 1223 } 1224 case AUDIT_SET: { 1225 struct audit_status s; 1226 memset(&s, 0, sizeof(s)); 1227 /* guard against past and future API changes */ 1228 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1229 if (s.mask & AUDIT_STATUS_ENABLED) { 1230 err = audit_set_enabled(s.enabled); 1231 if (err < 0) 1232 return err; 1233 } 1234 if (s.mask & AUDIT_STATUS_FAILURE) { 1235 err = audit_set_failure(s.failure); 1236 if (err < 0) 1237 return err; 1238 } 1239 if (s.mask & AUDIT_STATUS_PID) { 1240 /* NOTE: we are using the vnr PID functions below 1241 * because the s.pid value is relative to the 1242 * namespace of the caller; at present this 1243 * doesn't matter much since you can really only 1244 * run auditd from the initial pid namespace, but 1245 * something to keep in mind if this changes */ 1246 pid_t new_pid = s.pid; 1247 pid_t auditd_pid; 1248 struct pid *req_pid = task_tgid(current); 1249 1250 /* Sanity check - PID values must match. Setting 1251 * pid to 0 is how auditd ends auditing. */ 1252 if (new_pid && (new_pid != pid_vnr(req_pid))) 1253 return -EINVAL; 1254 1255 /* test the auditd connection */ 1256 audit_replace(req_pid); 1257 1258 auditd_pid = auditd_pid_vnr(); 1259 if (auditd_pid) { 1260 /* replacing a healthy auditd is not allowed */ 1261 if (new_pid) { 1262 audit_log_config_change("audit_pid", 1263 new_pid, auditd_pid, 0); 1264 return -EEXIST; 1265 } 1266 /* only current auditd can unregister itself */ 1267 if (pid_vnr(req_pid) != auditd_pid) { 1268 audit_log_config_change("audit_pid", 1269 new_pid, auditd_pid, 0); 1270 return -EACCES; 1271 } 1272 } 1273 1274 if (new_pid) { 1275 /* register a new auditd connection */ 1276 err = auditd_set(req_pid, 1277 NETLINK_CB(skb).portid, 1278 sock_net(NETLINK_CB(skb).sk)); 1279 if (audit_enabled != AUDIT_OFF) 1280 audit_log_config_change("audit_pid", 1281 new_pid, 1282 auditd_pid, 1283 err ? 0 : 1); 1284 if (err) 1285 return err; 1286 1287 /* try to process any backlog */ 1288 wake_up_interruptible(&kauditd_wait); 1289 } else { 1290 if (audit_enabled != AUDIT_OFF) 1291 audit_log_config_change("audit_pid", 1292 new_pid, 1293 auditd_pid, 1); 1294 1295 /* unregister the auditd connection */ 1296 auditd_reset(NULL); 1297 } 1298 } 1299 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1300 err = audit_set_rate_limit(s.rate_limit); 1301 if (err < 0) 1302 return err; 1303 } 1304 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1305 err = audit_set_backlog_limit(s.backlog_limit); 1306 if (err < 0) 1307 return err; 1308 } 1309 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1310 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1311 return -EINVAL; 1312 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1313 return -EINVAL; 1314 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1315 if (err < 0) 1316 return err; 1317 } 1318 if (s.mask == AUDIT_STATUS_LOST) { 1319 u32 lost = atomic_xchg(&audit_lost, 0); 1320 1321 audit_log_config_change("lost", 0, lost, 1); 1322 return lost; 1323 } 1324 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1325 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1326 1327 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1328 return actual; 1329 } 1330 break; 1331 } 1332 case AUDIT_GET_FEATURE: 1333 err = audit_get_feature(skb); 1334 if (err) 1335 return err; 1336 break; 1337 case AUDIT_SET_FEATURE: 1338 if (data_len < sizeof(struct audit_features)) 1339 return -EINVAL; 1340 err = audit_set_feature(data); 1341 if (err) 1342 return err; 1343 break; 1344 case AUDIT_USER: 1345 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1346 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1347 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1348 return 0; 1349 /* exit early if there isn't at least one character to print */ 1350 if (data_len < 2) 1351 return -EINVAL; 1352 1353 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1354 if (err == 1) { /* match or error */ 1355 char *str = data; 1356 1357 err = 0; 1358 if (msg_type == AUDIT_USER_TTY) { 1359 err = tty_audit_push(); 1360 if (err) 1361 break; 1362 } 1363 audit_log_user_recv_msg(&ab, msg_type); 1364 if (msg_type != AUDIT_USER_TTY) { 1365 /* ensure NULL termination */ 1366 str[data_len - 1] = '\0'; 1367 audit_log_format(ab, " msg='%.*s'", 1368 AUDIT_MESSAGE_TEXT_MAX, 1369 str); 1370 } else { 1371 audit_log_format(ab, " data="); 1372 if (data_len > 0 && str[data_len - 1] == '\0') 1373 data_len--; 1374 audit_log_n_untrustedstring(ab, str, data_len); 1375 } 1376 audit_log_end(ab); 1377 } 1378 break; 1379 case AUDIT_ADD_RULE: 1380 case AUDIT_DEL_RULE: 1381 if (data_len < sizeof(struct audit_rule_data)) 1382 return -EINVAL; 1383 if (audit_enabled == AUDIT_LOCKED) { 1384 audit_log_common_recv_msg(audit_context(), &ab, 1385 AUDIT_CONFIG_CHANGE); 1386 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1387 msg_type == AUDIT_ADD_RULE ? 1388 "add_rule" : "remove_rule", 1389 audit_enabled); 1390 audit_log_end(ab); 1391 return -EPERM; 1392 } 1393 err = audit_rule_change(msg_type, seq, data, data_len); 1394 break; 1395 case AUDIT_LIST_RULES: 1396 err = audit_list_rules_send(skb, seq); 1397 break; 1398 case AUDIT_TRIM: 1399 audit_trim_trees(); 1400 audit_log_common_recv_msg(audit_context(), &ab, 1401 AUDIT_CONFIG_CHANGE); 1402 audit_log_format(ab, " op=trim res=1"); 1403 audit_log_end(ab); 1404 break; 1405 case AUDIT_MAKE_EQUIV: { 1406 void *bufp = data; 1407 u32 sizes[2]; 1408 size_t msglen = data_len; 1409 char *old, *new; 1410 1411 err = -EINVAL; 1412 if (msglen < 2 * sizeof(u32)) 1413 break; 1414 memcpy(sizes, bufp, 2 * sizeof(u32)); 1415 bufp += 2 * sizeof(u32); 1416 msglen -= 2 * sizeof(u32); 1417 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1418 if (IS_ERR(old)) { 1419 err = PTR_ERR(old); 1420 break; 1421 } 1422 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1423 if (IS_ERR(new)) { 1424 err = PTR_ERR(new); 1425 kfree(old); 1426 break; 1427 } 1428 /* OK, here comes... */ 1429 err = audit_tag_tree(old, new); 1430 1431 audit_log_common_recv_msg(audit_context(), &ab, 1432 AUDIT_CONFIG_CHANGE); 1433 audit_log_format(ab, " op=make_equiv old="); 1434 audit_log_untrustedstring(ab, old); 1435 audit_log_format(ab, " new="); 1436 audit_log_untrustedstring(ab, new); 1437 audit_log_format(ab, " res=%d", !err); 1438 audit_log_end(ab); 1439 kfree(old); 1440 kfree(new); 1441 break; 1442 } 1443 case AUDIT_SIGNAL_INFO: 1444 len = 0; 1445 if (audit_sig_sid) { 1446 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1447 if (err) 1448 return err; 1449 } 1450 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1451 if (!sig_data) { 1452 if (audit_sig_sid) 1453 security_release_secctx(ctx, len); 1454 return -ENOMEM; 1455 } 1456 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1457 sig_data->pid = audit_sig_pid; 1458 if (audit_sig_sid) { 1459 memcpy(sig_data->ctx, ctx, len); 1460 security_release_secctx(ctx, len); 1461 } 1462 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1463 sig_data, sizeof(*sig_data) + len); 1464 kfree(sig_data); 1465 break; 1466 case AUDIT_TTY_GET: { 1467 struct audit_tty_status s; 1468 unsigned int t; 1469 1470 t = READ_ONCE(current->signal->audit_tty); 1471 s.enabled = t & AUDIT_TTY_ENABLE; 1472 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1473 1474 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1475 break; 1476 } 1477 case AUDIT_TTY_SET: { 1478 struct audit_tty_status s, old; 1479 struct audit_buffer *ab; 1480 unsigned int t; 1481 1482 memset(&s, 0, sizeof(s)); 1483 /* guard against past and future API changes */ 1484 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1485 /* check if new data is valid */ 1486 if ((s.enabled != 0 && s.enabled != 1) || 1487 (s.log_passwd != 0 && s.log_passwd != 1)) 1488 err = -EINVAL; 1489 1490 if (err) 1491 t = READ_ONCE(current->signal->audit_tty); 1492 else { 1493 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1494 t = xchg(¤t->signal->audit_tty, t); 1495 } 1496 old.enabled = t & AUDIT_TTY_ENABLE; 1497 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1498 1499 audit_log_common_recv_msg(audit_context(), &ab, 1500 AUDIT_CONFIG_CHANGE); 1501 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1502 " old-log_passwd=%d new-log_passwd=%d res=%d", 1503 old.enabled, s.enabled, old.log_passwd, 1504 s.log_passwd, !err); 1505 audit_log_end(ab); 1506 break; 1507 } 1508 default: 1509 err = -EINVAL; 1510 break; 1511 } 1512 1513 return err < 0 ? err : 0; 1514 } 1515 1516 /** 1517 * audit_receive - receive messages from a netlink control socket 1518 * @skb: the message buffer 1519 * 1520 * Parse the provided skb and deal with any messages that may be present, 1521 * malformed skbs are discarded. 1522 */ 1523 static void audit_receive(struct sk_buff *skb) 1524 { 1525 struct nlmsghdr *nlh; 1526 /* 1527 * len MUST be signed for nlmsg_next to be able to dec it below 0 1528 * if the nlmsg_len was not aligned 1529 */ 1530 int len; 1531 int err; 1532 1533 nlh = nlmsg_hdr(skb); 1534 len = skb->len; 1535 1536 audit_ctl_lock(); 1537 while (nlmsg_ok(nlh, len)) { 1538 err = audit_receive_msg(skb, nlh); 1539 /* if err or if this message says it wants a response */ 1540 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1541 netlink_ack(skb, nlh, err, NULL); 1542 1543 nlh = nlmsg_next(nlh, &len); 1544 } 1545 audit_ctl_unlock(); 1546 } 1547 1548 /* Log information about who is connecting to the audit multicast socket */ 1549 static void audit_log_multicast(int group, const char *op, int err) 1550 { 1551 const struct cred *cred; 1552 struct tty_struct *tty; 1553 char comm[sizeof(current->comm)]; 1554 struct audit_buffer *ab; 1555 1556 if (!audit_enabled) 1557 return; 1558 1559 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1560 if (!ab) 1561 return; 1562 1563 cred = current_cred(); 1564 tty = audit_get_tty(); 1565 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1566 task_pid_nr(current), 1567 from_kuid(&init_user_ns, cred->uid), 1568 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1569 tty ? tty_name(tty) : "(none)", 1570 audit_get_sessionid(current)); 1571 audit_put_tty(tty); 1572 audit_log_task_context(ab); /* subj= */ 1573 audit_log_format(ab, " comm="); 1574 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1575 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1576 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1577 audit_log_end(ab); 1578 } 1579 1580 /* Run custom bind function on netlink socket group connect or bind requests. */ 1581 static int audit_multicast_bind(struct net *net, int group) 1582 { 1583 int err = 0; 1584 1585 if (!capable(CAP_AUDIT_READ)) 1586 err = -EPERM; 1587 audit_log_multicast(group, "connect", err); 1588 return err; 1589 } 1590 1591 static void audit_multicast_unbind(struct net *net, int group) 1592 { 1593 audit_log_multicast(group, "disconnect", 0); 1594 } 1595 1596 static int __net_init audit_net_init(struct net *net) 1597 { 1598 struct netlink_kernel_cfg cfg = { 1599 .input = audit_receive, 1600 .bind = audit_multicast_bind, 1601 .unbind = audit_multicast_unbind, 1602 .flags = NL_CFG_F_NONROOT_RECV, 1603 .groups = AUDIT_NLGRP_MAX, 1604 }; 1605 1606 struct audit_net *aunet = net_generic(net, audit_net_id); 1607 1608 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1609 if (aunet->sk == NULL) { 1610 audit_panic("cannot initialize netlink socket in namespace"); 1611 return -ENOMEM; 1612 } 1613 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1614 1615 return 0; 1616 } 1617 1618 static void __net_exit audit_net_exit(struct net *net) 1619 { 1620 struct audit_net *aunet = net_generic(net, audit_net_id); 1621 1622 /* NOTE: you would think that we would want to check the auditd 1623 * connection and potentially reset it here if it lives in this 1624 * namespace, but since the auditd connection tracking struct holds a 1625 * reference to this namespace (see auditd_set()) we are only ever 1626 * going to get here after that connection has been released */ 1627 1628 netlink_kernel_release(aunet->sk); 1629 } 1630 1631 static struct pernet_operations audit_net_ops __net_initdata = { 1632 .init = audit_net_init, 1633 .exit = audit_net_exit, 1634 .id = &audit_net_id, 1635 .size = sizeof(struct audit_net), 1636 }; 1637 1638 /* Initialize audit support at boot time. */ 1639 static int __init audit_init(void) 1640 { 1641 int i; 1642 1643 if (audit_initialized == AUDIT_DISABLED) 1644 return 0; 1645 1646 audit_buffer_cache = kmem_cache_create("audit_buffer", 1647 sizeof(struct audit_buffer), 1648 0, SLAB_PANIC, NULL); 1649 1650 skb_queue_head_init(&audit_queue); 1651 skb_queue_head_init(&audit_retry_queue); 1652 skb_queue_head_init(&audit_hold_queue); 1653 1654 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1655 INIT_LIST_HEAD(&audit_inode_hash[i]); 1656 1657 mutex_init(&audit_cmd_mutex.lock); 1658 audit_cmd_mutex.owner = NULL; 1659 1660 pr_info("initializing netlink subsys (%s)\n", 1661 audit_default ? "enabled" : "disabled"); 1662 register_pernet_subsys(&audit_net_ops); 1663 1664 audit_initialized = AUDIT_INITIALIZED; 1665 1666 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1667 if (IS_ERR(kauditd_task)) { 1668 int err = PTR_ERR(kauditd_task); 1669 panic("audit: failed to start the kauditd thread (%d)\n", err); 1670 } 1671 1672 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1673 "state=initialized audit_enabled=%u res=1", 1674 audit_enabled); 1675 1676 return 0; 1677 } 1678 postcore_initcall(audit_init); 1679 1680 /* 1681 * Process kernel command-line parameter at boot time. 1682 * audit={0|off} or audit={1|on}. 1683 */ 1684 static int __init audit_enable(char *str) 1685 { 1686 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1687 audit_default = AUDIT_OFF; 1688 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1689 audit_default = AUDIT_ON; 1690 else { 1691 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1692 audit_default = AUDIT_ON; 1693 } 1694 1695 if (audit_default == AUDIT_OFF) 1696 audit_initialized = AUDIT_DISABLED; 1697 if (audit_set_enabled(audit_default)) 1698 pr_err("audit: error setting audit state (%d)\n", 1699 audit_default); 1700 1701 pr_info("%s\n", audit_default ? 1702 "enabled (after initialization)" : "disabled (until reboot)"); 1703 1704 return 1; 1705 } 1706 __setup("audit=", audit_enable); 1707 1708 /* Process kernel command-line parameter at boot time. 1709 * audit_backlog_limit=<n> */ 1710 static int __init audit_backlog_limit_set(char *str) 1711 { 1712 u32 audit_backlog_limit_arg; 1713 1714 pr_info("audit_backlog_limit: "); 1715 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1716 pr_cont("using default of %u, unable to parse %s\n", 1717 audit_backlog_limit, str); 1718 return 1; 1719 } 1720 1721 audit_backlog_limit = audit_backlog_limit_arg; 1722 pr_cont("%d\n", audit_backlog_limit); 1723 1724 return 1; 1725 } 1726 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1727 1728 static void audit_buffer_free(struct audit_buffer *ab) 1729 { 1730 if (!ab) 1731 return; 1732 1733 kfree_skb(ab->skb); 1734 kmem_cache_free(audit_buffer_cache, ab); 1735 } 1736 1737 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1738 gfp_t gfp_mask, int type) 1739 { 1740 struct audit_buffer *ab; 1741 1742 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1743 if (!ab) 1744 return NULL; 1745 1746 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1747 if (!ab->skb) 1748 goto err; 1749 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1750 goto err; 1751 1752 ab->ctx = ctx; 1753 ab->gfp_mask = gfp_mask; 1754 1755 return ab; 1756 1757 err: 1758 audit_buffer_free(ab); 1759 return NULL; 1760 } 1761 1762 /** 1763 * audit_serial - compute a serial number for the audit record 1764 * 1765 * Compute a serial number for the audit record. Audit records are 1766 * written to user-space as soon as they are generated, so a complete 1767 * audit record may be written in several pieces. The timestamp of the 1768 * record and this serial number are used by the user-space tools to 1769 * determine which pieces belong to the same audit record. The 1770 * (timestamp,serial) tuple is unique for each syscall and is live from 1771 * syscall entry to syscall exit. 1772 * 1773 * NOTE: Another possibility is to store the formatted records off the 1774 * audit context (for those records that have a context), and emit them 1775 * all at syscall exit. However, this could delay the reporting of 1776 * significant errors until syscall exit (or never, if the system 1777 * halts). 1778 */ 1779 unsigned int audit_serial(void) 1780 { 1781 static atomic_t serial = ATOMIC_INIT(0); 1782 1783 return atomic_add_return(1, &serial); 1784 } 1785 1786 static inline void audit_get_stamp(struct audit_context *ctx, 1787 struct timespec64 *t, unsigned int *serial) 1788 { 1789 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1790 ktime_get_coarse_real_ts64(t); 1791 *serial = audit_serial(); 1792 } 1793 } 1794 1795 /** 1796 * audit_log_start - obtain an audit buffer 1797 * @ctx: audit_context (may be NULL) 1798 * @gfp_mask: type of allocation 1799 * @type: audit message type 1800 * 1801 * Returns audit_buffer pointer on success or NULL on error. 1802 * 1803 * Obtain an audit buffer. This routine does locking to obtain the 1804 * audit buffer, but then no locking is required for calls to 1805 * audit_log_*format. If the task (ctx) is a task that is currently in a 1806 * syscall, then the syscall is marked as auditable and an audit record 1807 * will be written at syscall exit. If there is no associated task, then 1808 * task context (ctx) should be NULL. 1809 */ 1810 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1811 int type) 1812 { 1813 struct audit_buffer *ab; 1814 struct timespec64 t; 1815 unsigned int serial; 1816 1817 if (audit_initialized != AUDIT_INITIALIZED) 1818 return NULL; 1819 1820 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1821 return NULL; 1822 1823 /* NOTE: don't ever fail/sleep on these two conditions: 1824 * 1. auditd generated record - since we need auditd to drain the 1825 * queue; also, when we are checking for auditd, compare PIDs using 1826 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1827 * using a PID anchored in the caller's namespace 1828 * 2. generator holding the audit_cmd_mutex - we don't want to block 1829 * while holding the mutex */ 1830 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1831 long stime = audit_backlog_wait_time; 1832 1833 while (audit_backlog_limit && 1834 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1835 /* wake kauditd to try and flush the queue */ 1836 wake_up_interruptible(&kauditd_wait); 1837 1838 /* sleep if we are allowed and we haven't exhausted our 1839 * backlog wait limit */ 1840 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1841 long rtime = stime; 1842 1843 DECLARE_WAITQUEUE(wait, current); 1844 1845 add_wait_queue_exclusive(&audit_backlog_wait, 1846 &wait); 1847 set_current_state(TASK_UNINTERRUPTIBLE); 1848 stime = schedule_timeout(rtime); 1849 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1850 remove_wait_queue(&audit_backlog_wait, &wait); 1851 } else { 1852 if (audit_rate_check() && printk_ratelimit()) 1853 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1854 skb_queue_len(&audit_queue), 1855 audit_backlog_limit); 1856 audit_log_lost("backlog limit exceeded"); 1857 return NULL; 1858 } 1859 } 1860 } 1861 1862 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1863 if (!ab) { 1864 audit_log_lost("out of memory in audit_log_start"); 1865 return NULL; 1866 } 1867 1868 audit_get_stamp(ab->ctx, &t, &serial); 1869 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1870 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1871 1872 return ab; 1873 } 1874 1875 /** 1876 * audit_expand - expand skb in the audit buffer 1877 * @ab: audit_buffer 1878 * @extra: space to add at tail of the skb 1879 * 1880 * Returns 0 (no space) on failed expansion, or available space if 1881 * successful. 1882 */ 1883 static inline int audit_expand(struct audit_buffer *ab, int extra) 1884 { 1885 struct sk_buff *skb = ab->skb; 1886 int oldtail = skb_tailroom(skb); 1887 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1888 int newtail = skb_tailroom(skb); 1889 1890 if (ret < 0) { 1891 audit_log_lost("out of memory in audit_expand"); 1892 return 0; 1893 } 1894 1895 skb->truesize += newtail - oldtail; 1896 return newtail; 1897 } 1898 1899 /* 1900 * Format an audit message into the audit buffer. If there isn't enough 1901 * room in the audit buffer, more room will be allocated and vsnprint 1902 * will be called a second time. Currently, we assume that a printk 1903 * can't format message larger than 1024 bytes, so we don't either. 1904 */ 1905 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1906 va_list args) 1907 { 1908 int len, avail; 1909 struct sk_buff *skb; 1910 va_list args2; 1911 1912 if (!ab) 1913 return; 1914 1915 BUG_ON(!ab->skb); 1916 skb = ab->skb; 1917 avail = skb_tailroom(skb); 1918 if (avail == 0) { 1919 avail = audit_expand(ab, AUDIT_BUFSIZ); 1920 if (!avail) 1921 goto out; 1922 } 1923 va_copy(args2, args); 1924 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1925 if (len >= avail) { 1926 /* The printk buffer is 1024 bytes long, so if we get 1927 * here and AUDIT_BUFSIZ is at least 1024, then we can 1928 * log everything that printk could have logged. */ 1929 avail = audit_expand(ab, 1930 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1931 if (!avail) 1932 goto out_va_end; 1933 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1934 } 1935 if (len > 0) 1936 skb_put(skb, len); 1937 out_va_end: 1938 va_end(args2); 1939 out: 1940 return; 1941 } 1942 1943 /** 1944 * audit_log_format - format a message into the audit buffer. 1945 * @ab: audit_buffer 1946 * @fmt: format string 1947 * @...: optional parameters matching @fmt string 1948 * 1949 * All the work is done in audit_log_vformat. 1950 */ 1951 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1952 { 1953 va_list args; 1954 1955 if (!ab) 1956 return; 1957 va_start(args, fmt); 1958 audit_log_vformat(ab, fmt, args); 1959 va_end(args); 1960 } 1961 1962 /** 1963 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 1964 * @ab: the audit_buffer 1965 * @buf: buffer to convert to hex 1966 * @len: length of @buf to be converted 1967 * 1968 * No return value; failure to expand is silently ignored. 1969 * 1970 * This function will take the passed buf and convert it into a string of 1971 * ascii hex digits. The new string is placed onto the skb. 1972 */ 1973 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1974 size_t len) 1975 { 1976 int i, avail, new_len; 1977 unsigned char *ptr; 1978 struct sk_buff *skb; 1979 1980 if (!ab) 1981 return; 1982 1983 BUG_ON(!ab->skb); 1984 skb = ab->skb; 1985 avail = skb_tailroom(skb); 1986 new_len = len<<1; 1987 if (new_len >= avail) { 1988 /* Round the buffer request up to the next multiple */ 1989 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1990 avail = audit_expand(ab, new_len); 1991 if (!avail) 1992 return; 1993 } 1994 1995 ptr = skb_tail_pointer(skb); 1996 for (i = 0; i < len; i++) 1997 ptr = hex_byte_pack_upper(ptr, buf[i]); 1998 *ptr = 0; 1999 skb_put(skb, len << 1); /* new string is twice the old string */ 2000 } 2001 2002 /* 2003 * Format a string of no more than slen characters into the audit buffer, 2004 * enclosed in quote marks. 2005 */ 2006 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2007 size_t slen) 2008 { 2009 int avail, new_len; 2010 unsigned char *ptr; 2011 struct sk_buff *skb; 2012 2013 if (!ab) 2014 return; 2015 2016 BUG_ON(!ab->skb); 2017 skb = ab->skb; 2018 avail = skb_tailroom(skb); 2019 new_len = slen + 3; /* enclosing quotes + null terminator */ 2020 if (new_len > avail) { 2021 avail = audit_expand(ab, new_len); 2022 if (!avail) 2023 return; 2024 } 2025 ptr = skb_tail_pointer(skb); 2026 *ptr++ = '"'; 2027 memcpy(ptr, string, slen); 2028 ptr += slen; 2029 *ptr++ = '"'; 2030 *ptr = 0; 2031 skb_put(skb, slen + 2); /* don't include null terminator */ 2032 } 2033 2034 /** 2035 * audit_string_contains_control - does a string need to be logged in hex 2036 * @string: string to be checked 2037 * @len: max length of the string to check 2038 */ 2039 bool audit_string_contains_control(const char *string, size_t len) 2040 { 2041 const unsigned char *p; 2042 for (p = string; p < (const unsigned char *)string + len; p++) { 2043 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2044 return true; 2045 } 2046 return false; 2047 } 2048 2049 /** 2050 * audit_log_n_untrustedstring - log a string that may contain random characters 2051 * @ab: audit_buffer 2052 * @len: length of string (not including trailing null) 2053 * @string: string to be logged 2054 * 2055 * This code will escape a string that is passed to it if the string 2056 * contains a control character, unprintable character, double quote mark, 2057 * or a space. Unescaped strings will start and end with a double quote mark. 2058 * Strings that are escaped are printed in hex (2 digits per char). 2059 * 2060 * The caller specifies the number of characters in the string to log, which may 2061 * or may not be the entire string. 2062 */ 2063 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2064 size_t len) 2065 { 2066 if (audit_string_contains_control(string, len)) 2067 audit_log_n_hex(ab, string, len); 2068 else 2069 audit_log_n_string(ab, string, len); 2070 } 2071 2072 /** 2073 * audit_log_untrustedstring - log a string that may contain random characters 2074 * @ab: audit_buffer 2075 * @string: string to be logged 2076 * 2077 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2078 * determine string length. 2079 */ 2080 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2081 { 2082 audit_log_n_untrustedstring(ab, string, strlen(string)); 2083 } 2084 2085 /* This is a helper-function to print the escaped d_path */ 2086 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2087 const struct path *path) 2088 { 2089 char *p, *pathname; 2090 2091 if (prefix) 2092 audit_log_format(ab, "%s", prefix); 2093 2094 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2095 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2096 if (!pathname) { 2097 audit_log_format(ab, "\"<no_memory>\""); 2098 return; 2099 } 2100 p = d_path(path, pathname, PATH_MAX+11); 2101 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2102 /* FIXME: can we save some information here? */ 2103 audit_log_format(ab, "\"<too_long>\""); 2104 } else 2105 audit_log_untrustedstring(ab, p); 2106 kfree(pathname); 2107 } 2108 2109 void audit_log_session_info(struct audit_buffer *ab) 2110 { 2111 unsigned int sessionid = audit_get_sessionid(current); 2112 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2113 2114 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2115 } 2116 2117 void audit_log_key(struct audit_buffer *ab, char *key) 2118 { 2119 audit_log_format(ab, " key="); 2120 if (key) 2121 audit_log_untrustedstring(ab, key); 2122 else 2123 audit_log_format(ab, "(null)"); 2124 } 2125 2126 int audit_log_task_context(struct audit_buffer *ab) 2127 { 2128 char *ctx = NULL; 2129 unsigned len; 2130 int error; 2131 u32 sid; 2132 2133 security_task_getsecid(current, &sid); 2134 if (!sid) 2135 return 0; 2136 2137 error = security_secid_to_secctx(sid, &ctx, &len); 2138 if (error) { 2139 if (error != -EINVAL) 2140 goto error_path; 2141 return 0; 2142 } 2143 2144 audit_log_format(ab, " subj=%s", ctx); 2145 security_release_secctx(ctx, len); 2146 return 0; 2147 2148 error_path: 2149 audit_panic("error in audit_log_task_context"); 2150 return error; 2151 } 2152 EXPORT_SYMBOL(audit_log_task_context); 2153 2154 void audit_log_d_path_exe(struct audit_buffer *ab, 2155 struct mm_struct *mm) 2156 { 2157 struct file *exe_file; 2158 2159 if (!mm) 2160 goto out_null; 2161 2162 exe_file = get_mm_exe_file(mm); 2163 if (!exe_file) 2164 goto out_null; 2165 2166 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2167 fput(exe_file); 2168 return; 2169 out_null: 2170 audit_log_format(ab, " exe=(null)"); 2171 } 2172 2173 struct tty_struct *audit_get_tty(void) 2174 { 2175 struct tty_struct *tty = NULL; 2176 unsigned long flags; 2177 2178 spin_lock_irqsave(¤t->sighand->siglock, flags); 2179 if (current->signal) 2180 tty = tty_kref_get(current->signal->tty); 2181 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2182 return tty; 2183 } 2184 2185 void audit_put_tty(struct tty_struct *tty) 2186 { 2187 tty_kref_put(tty); 2188 } 2189 2190 void audit_log_task_info(struct audit_buffer *ab) 2191 { 2192 const struct cred *cred; 2193 char comm[sizeof(current->comm)]; 2194 struct tty_struct *tty; 2195 2196 if (!ab) 2197 return; 2198 2199 cred = current_cred(); 2200 tty = audit_get_tty(); 2201 audit_log_format(ab, 2202 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2203 " euid=%u suid=%u fsuid=%u" 2204 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2205 task_ppid_nr(current), 2206 task_tgid_nr(current), 2207 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2208 from_kuid(&init_user_ns, cred->uid), 2209 from_kgid(&init_user_ns, cred->gid), 2210 from_kuid(&init_user_ns, cred->euid), 2211 from_kuid(&init_user_ns, cred->suid), 2212 from_kuid(&init_user_ns, cred->fsuid), 2213 from_kgid(&init_user_ns, cred->egid), 2214 from_kgid(&init_user_ns, cred->sgid), 2215 from_kgid(&init_user_ns, cred->fsgid), 2216 tty ? tty_name(tty) : "(none)", 2217 audit_get_sessionid(current)); 2218 audit_put_tty(tty); 2219 audit_log_format(ab, " comm="); 2220 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2221 audit_log_d_path_exe(ab, current->mm); 2222 audit_log_task_context(ab); 2223 } 2224 EXPORT_SYMBOL(audit_log_task_info); 2225 2226 /** 2227 * audit_log_path_denied - report a path restriction denial 2228 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2229 * @operation: specific operation name 2230 */ 2231 void audit_log_path_denied(int type, const char *operation) 2232 { 2233 struct audit_buffer *ab; 2234 2235 if (!audit_enabled || audit_dummy_context()) 2236 return; 2237 2238 /* Generate log with subject, operation, outcome. */ 2239 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2240 if (!ab) 2241 return; 2242 audit_log_format(ab, "op=%s", operation); 2243 audit_log_task_info(ab); 2244 audit_log_format(ab, " res=0"); 2245 audit_log_end(ab); 2246 } 2247 2248 /* global counter which is incremented every time something logs in */ 2249 static atomic_t session_id = ATOMIC_INIT(0); 2250 2251 static int audit_set_loginuid_perm(kuid_t loginuid) 2252 { 2253 /* if we are unset, we don't need privs */ 2254 if (!audit_loginuid_set(current)) 2255 return 0; 2256 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2257 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2258 return -EPERM; 2259 /* it is set, you need permission */ 2260 if (!capable(CAP_AUDIT_CONTROL)) 2261 return -EPERM; 2262 /* reject if this is not an unset and we don't allow that */ 2263 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2264 && uid_valid(loginuid)) 2265 return -EPERM; 2266 return 0; 2267 } 2268 2269 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2270 unsigned int oldsessionid, 2271 unsigned int sessionid, int rc) 2272 { 2273 struct audit_buffer *ab; 2274 uid_t uid, oldloginuid, loginuid; 2275 struct tty_struct *tty; 2276 2277 if (!audit_enabled) 2278 return; 2279 2280 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2281 if (!ab) 2282 return; 2283 2284 uid = from_kuid(&init_user_ns, task_uid(current)); 2285 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2286 loginuid = from_kuid(&init_user_ns, kloginuid), 2287 tty = audit_get_tty(); 2288 2289 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2290 audit_log_task_context(ab); 2291 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2292 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2293 oldsessionid, sessionid, !rc); 2294 audit_put_tty(tty); 2295 audit_log_end(ab); 2296 } 2297 2298 /** 2299 * audit_set_loginuid - set current task's loginuid 2300 * @loginuid: loginuid value 2301 * 2302 * Returns 0. 2303 * 2304 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2305 */ 2306 int audit_set_loginuid(kuid_t loginuid) 2307 { 2308 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2309 kuid_t oldloginuid; 2310 int rc; 2311 2312 oldloginuid = audit_get_loginuid(current); 2313 oldsessionid = audit_get_sessionid(current); 2314 2315 rc = audit_set_loginuid_perm(loginuid); 2316 if (rc) 2317 goto out; 2318 2319 /* are we setting or clearing? */ 2320 if (uid_valid(loginuid)) { 2321 sessionid = (unsigned int)atomic_inc_return(&session_id); 2322 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2323 sessionid = (unsigned int)atomic_inc_return(&session_id); 2324 } 2325 2326 current->sessionid = sessionid; 2327 current->loginuid = loginuid; 2328 out: 2329 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2330 return rc; 2331 } 2332 2333 /** 2334 * audit_signal_info - record signal info for shutting down audit subsystem 2335 * @sig: signal value 2336 * @t: task being signaled 2337 * 2338 * If the audit subsystem is being terminated, record the task (pid) 2339 * and uid that is doing that. 2340 */ 2341 int audit_signal_info(int sig, struct task_struct *t) 2342 { 2343 kuid_t uid = current_uid(), auid; 2344 2345 if (auditd_test_task(t) && 2346 (sig == SIGTERM || sig == SIGHUP || 2347 sig == SIGUSR1 || sig == SIGUSR2)) { 2348 audit_sig_pid = task_tgid_nr(current); 2349 auid = audit_get_loginuid(current); 2350 if (uid_valid(auid)) 2351 audit_sig_uid = auid; 2352 else 2353 audit_sig_uid = uid; 2354 security_task_getsecid(current, &audit_sig_sid); 2355 } 2356 2357 return audit_signal_info_syscall(t); 2358 } 2359 2360 /** 2361 * audit_log_end - end one audit record 2362 * @ab: the audit_buffer 2363 * 2364 * We can not do a netlink send inside an irq context because it blocks (last 2365 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2366 * queue and a tasklet is scheduled to remove them from the queue outside the 2367 * irq context. May be called in any context. 2368 */ 2369 void audit_log_end(struct audit_buffer *ab) 2370 { 2371 struct sk_buff *skb; 2372 struct nlmsghdr *nlh; 2373 2374 if (!ab) 2375 return; 2376 2377 if (audit_rate_check()) { 2378 skb = ab->skb; 2379 ab->skb = NULL; 2380 2381 /* setup the netlink header, see the comments in 2382 * kauditd_send_multicast_skb() for length quirks */ 2383 nlh = nlmsg_hdr(skb); 2384 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2385 2386 /* queue the netlink packet and poke the kauditd thread */ 2387 skb_queue_tail(&audit_queue, skb); 2388 wake_up_interruptible(&kauditd_wait); 2389 } else 2390 audit_log_lost("rate limit exceeded"); 2391 2392 audit_buffer_free(ab); 2393 } 2394 2395 /** 2396 * audit_log - Log an audit record 2397 * @ctx: audit context 2398 * @gfp_mask: type of allocation 2399 * @type: audit message type 2400 * @fmt: format string to use 2401 * @...: variable parameters matching the format string 2402 * 2403 * This is a convenience function that calls audit_log_start, 2404 * audit_log_vformat, and audit_log_end. It may be called 2405 * in any context. 2406 */ 2407 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2408 const char *fmt, ...) 2409 { 2410 struct audit_buffer *ab; 2411 va_list args; 2412 2413 ab = audit_log_start(ctx, gfp_mask, type); 2414 if (ab) { 2415 va_start(args, fmt); 2416 audit_log_vformat(ab, fmt, args); 2417 va_end(args); 2418 audit_log_end(ab); 2419 } 2420 } 2421 2422 EXPORT_SYMBOL(audit_log_start); 2423 EXPORT_SYMBOL(audit_log_end); 2424 EXPORT_SYMBOL(audit_log_format); 2425 EXPORT_SYMBOL(audit_log); 2426