1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 58 #include <linux/audit.h> 59 60 #include <net/sock.h> 61 #include <net/netlink.h> 62 #include <linux/skbuff.h> 63 #ifdef CONFIG_SECURITY 64 #include <linux/security.h> 65 #endif 66 #include <linux/freezer.h> 67 #include <linux/tty.h> 68 #include <linux/pid_namespace.h> 69 #include <net/netns/generic.h> 70 71 #include "audit.h" 72 73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 74 * (Initialization happens after skb_init is called.) */ 75 #define AUDIT_DISABLED -1 76 #define AUDIT_UNINITIALIZED 0 77 #define AUDIT_INITIALIZED 1 78 static int audit_initialized; 79 80 #define AUDIT_OFF 0 81 #define AUDIT_ON 1 82 #define AUDIT_LOCKED 2 83 u32 audit_enabled; 84 u32 audit_ever_enabled; 85 86 EXPORT_SYMBOL_GPL(audit_enabled); 87 88 /* Default state when kernel boots without any parameters. */ 89 static u32 audit_default; 90 91 /* If auditing cannot proceed, audit_failure selects what happens. */ 92 static u32 audit_failure = AUDIT_FAIL_PRINTK; 93 94 /* 95 * If audit records are to be written to the netlink socket, audit_pid 96 * contains the pid of the auditd process and audit_nlk_portid contains 97 * the portid to use to send netlink messages to that process. 98 */ 99 int audit_pid; 100 static __u32 audit_nlk_portid; 101 102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 103 * to that number per second. This prevents DoS attacks, but results in 104 * audit records being dropped. */ 105 static u32 audit_rate_limit; 106 107 /* Number of outstanding audit_buffers allowed. 108 * When set to zero, this means unlimited. */ 109 static u32 audit_backlog_limit = 64; 110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME; 112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 113 114 /* The identity of the user shutting down the audit system. */ 115 kuid_t audit_sig_uid = INVALID_UID; 116 pid_t audit_sig_pid = -1; 117 u32 audit_sig_sid = 0; 118 119 /* Records can be lost in several ways: 120 0) [suppressed in audit_alloc] 121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 122 2) out of memory in audit_log_move [alloc_skb] 123 3) suppressed due to audit_rate_limit 124 4) suppressed due to audit_backlog_limit 125 */ 126 static atomic_t audit_lost = ATOMIC_INIT(0); 127 128 /* The netlink socket. */ 129 static struct sock *audit_sock; 130 static int audit_net_id; 131 132 /* Hash for inode-based rules */ 133 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 134 135 /* The audit_freelist is a list of pre-allocated audit buffers (if more 136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 137 * being placed on the freelist). */ 138 static DEFINE_SPINLOCK(audit_freelist_lock); 139 static int audit_freelist_count; 140 static LIST_HEAD(audit_freelist); 141 142 static struct sk_buff_head audit_skb_queue; 143 /* queue of skbs to send to auditd when/if it comes back */ 144 static struct sk_buff_head audit_skb_hold_queue; 145 static struct task_struct *kauditd_task; 146 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 147 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 148 149 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 150 .mask = -1, 151 .features = 0, 152 .lock = 0,}; 153 154 static char *audit_feature_names[2] = { 155 "only_unset_loginuid", 156 "loginuid_immutable", 157 }; 158 159 160 /* Serialize requests from userspace. */ 161 DEFINE_MUTEX(audit_cmd_mutex); 162 163 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 164 * audit records. Since printk uses a 1024 byte buffer, this buffer 165 * should be at least that large. */ 166 #define AUDIT_BUFSIZ 1024 167 168 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 170 #define AUDIT_MAXFREE (2*NR_CPUS) 171 172 /* The audit_buffer is used when formatting an audit record. The caller 173 * locks briefly to get the record off the freelist or to allocate the 174 * buffer, and locks briefly to send the buffer to the netlink layer or 175 * to place it on a transmit queue. Multiple audit_buffers can be in 176 * use simultaneously. */ 177 struct audit_buffer { 178 struct list_head list; 179 struct sk_buff *skb; /* formatted skb ready to send */ 180 struct audit_context *ctx; /* NULL or associated context */ 181 gfp_t gfp_mask; 182 }; 183 184 struct audit_reply { 185 __u32 portid; 186 struct net *net; 187 struct sk_buff *skb; 188 }; 189 190 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 191 { 192 if (ab) { 193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 194 nlh->nlmsg_pid = portid; 195 } 196 } 197 198 void audit_panic(const char *message) 199 { 200 switch (audit_failure) { 201 case AUDIT_FAIL_SILENT: 202 break; 203 case AUDIT_FAIL_PRINTK: 204 if (printk_ratelimit()) 205 pr_err("%s\n", message); 206 break; 207 case AUDIT_FAIL_PANIC: 208 /* test audit_pid since printk is always losey, why bother? */ 209 if (audit_pid) 210 panic("audit: %s\n", message); 211 break; 212 } 213 } 214 215 static inline int audit_rate_check(void) 216 { 217 static unsigned long last_check = 0; 218 static int messages = 0; 219 static DEFINE_SPINLOCK(lock); 220 unsigned long flags; 221 unsigned long now; 222 unsigned long elapsed; 223 int retval = 0; 224 225 if (!audit_rate_limit) return 1; 226 227 spin_lock_irqsave(&lock, flags); 228 if (++messages < audit_rate_limit) { 229 retval = 1; 230 } else { 231 now = jiffies; 232 elapsed = now - last_check; 233 if (elapsed > HZ) { 234 last_check = now; 235 messages = 0; 236 retval = 1; 237 } 238 } 239 spin_unlock_irqrestore(&lock, flags); 240 241 return retval; 242 } 243 244 /** 245 * audit_log_lost - conditionally log lost audit message event 246 * @message: the message stating reason for lost audit message 247 * 248 * Emit at least 1 message per second, even if audit_rate_check is 249 * throttling. 250 * Always increment the lost messages counter. 251 */ 252 void audit_log_lost(const char *message) 253 { 254 static unsigned long last_msg = 0; 255 static DEFINE_SPINLOCK(lock); 256 unsigned long flags; 257 unsigned long now; 258 int print; 259 260 atomic_inc(&audit_lost); 261 262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 263 264 if (!print) { 265 spin_lock_irqsave(&lock, flags); 266 now = jiffies; 267 if (now - last_msg > HZ) { 268 print = 1; 269 last_msg = now; 270 } 271 spin_unlock_irqrestore(&lock, flags); 272 } 273 274 if (print) { 275 if (printk_ratelimit()) 276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 277 atomic_read(&audit_lost), 278 audit_rate_limit, 279 audit_backlog_limit); 280 audit_panic(message); 281 } 282 } 283 284 static int audit_log_config_change(char *function_name, u32 new, u32 old, 285 int allow_changes) 286 { 287 struct audit_buffer *ab; 288 int rc = 0; 289 290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 291 if (unlikely(!ab)) 292 return rc; 293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 294 audit_log_session_info(ab); 295 rc = audit_log_task_context(ab); 296 if (rc) 297 allow_changes = 0; /* Something weird, deny request */ 298 audit_log_format(ab, " res=%d", allow_changes); 299 audit_log_end(ab); 300 return rc; 301 } 302 303 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 304 { 305 int allow_changes, rc = 0; 306 u32 old = *to_change; 307 308 /* check if we are locked */ 309 if (audit_enabled == AUDIT_LOCKED) 310 allow_changes = 0; 311 else 312 allow_changes = 1; 313 314 if (audit_enabled != AUDIT_OFF) { 315 rc = audit_log_config_change(function_name, new, old, allow_changes); 316 if (rc) 317 allow_changes = 0; 318 } 319 320 /* If we are allowed, make the change */ 321 if (allow_changes == 1) 322 *to_change = new; 323 /* Not allowed, update reason */ 324 else if (rc == 0) 325 rc = -EPERM; 326 return rc; 327 } 328 329 static int audit_set_rate_limit(u32 limit) 330 { 331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 332 } 333 334 static int audit_set_backlog_limit(u32 limit) 335 { 336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 337 } 338 339 static int audit_set_backlog_wait_time(u32 timeout) 340 { 341 return audit_do_config_change("audit_backlog_wait_time", 342 &audit_backlog_wait_time_master, timeout); 343 } 344 345 static int audit_set_enabled(u32 state) 346 { 347 int rc; 348 if (state > AUDIT_LOCKED) 349 return -EINVAL; 350 351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 352 if (!rc) 353 audit_ever_enabled |= !!state; 354 355 return rc; 356 } 357 358 static int audit_set_failure(u32 state) 359 { 360 if (state != AUDIT_FAIL_SILENT 361 && state != AUDIT_FAIL_PRINTK 362 && state != AUDIT_FAIL_PANIC) 363 return -EINVAL; 364 365 return audit_do_config_change("audit_failure", &audit_failure, state); 366 } 367 368 /* 369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 370 * already have been sent via prink/syslog and so if these messages are dropped 371 * it is not a huge concern since we already passed the audit_log_lost() 372 * notification and stuff. This is just nice to get audit messages during 373 * boot before auditd is running or messages generated while auditd is stopped. 374 * This only holds messages is audit_default is set, aka booting with audit=1 375 * or building your kernel that way. 376 */ 377 static void audit_hold_skb(struct sk_buff *skb) 378 { 379 if (audit_default && 380 (!audit_backlog_limit || 381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 382 skb_queue_tail(&audit_skb_hold_queue, skb); 383 else 384 kfree_skb(skb); 385 } 386 387 /* 388 * For one reason or another this nlh isn't getting delivered to the userspace 389 * audit daemon, just send it to printk. 390 */ 391 static void audit_printk_skb(struct sk_buff *skb) 392 { 393 struct nlmsghdr *nlh = nlmsg_hdr(skb); 394 char *data = nlmsg_data(nlh); 395 396 if (nlh->nlmsg_type != AUDIT_EOE) { 397 if (printk_ratelimit()) 398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 399 else 400 audit_log_lost("printk limit exceeded"); 401 } 402 403 audit_hold_skb(skb); 404 } 405 406 static void kauditd_send_skb(struct sk_buff *skb) 407 { 408 int err; 409 int attempts = 0; 410 #define AUDITD_RETRIES 5 411 412 restart: 413 /* take a reference in case we can't send it and we want to hold it */ 414 skb_get(skb); 415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 416 if (err < 0) { 417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n", 418 audit_pid, err); 419 if (audit_pid) { 420 if (err == -ECONNREFUSED || err == -EPERM 421 || ++attempts >= AUDITD_RETRIES) { 422 char s[32]; 423 424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid); 425 audit_log_lost(s); 426 audit_pid = 0; 427 audit_sock = NULL; 428 } else { 429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n", 430 attempts, audit_pid); 431 set_current_state(TASK_INTERRUPTIBLE); 432 schedule(); 433 __set_current_state(TASK_RUNNING); 434 goto restart; 435 } 436 } 437 /* we might get lucky and get this in the next auditd */ 438 audit_hold_skb(skb); 439 } else 440 /* drop the extra reference if sent ok */ 441 consume_skb(skb); 442 } 443 444 /* 445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners 446 * 447 * This function doesn't consume an skb as might be expected since it has to 448 * copy it anyways. 449 */ 450 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask) 451 { 452 struct sk_buff *copy; 453 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 454 struct sock *sock = aunet->nlsk; 455 456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 457 return; 458 459 /* 460 * The seemingly wasteful skb_copy() rather than bumping the refcount 461 * using skb_get() is necessary because non-standard mods are made to 462 * the skb by the original kaudit unicast socket send routine. The 463 * existing auditd daemon assumes this breakage. Fixing this would 464 * require co-ordinating a change in the established protocol between 465 * the kaudit kernel subsystem and the auditd userspace code. There is 466 * no reason for new multicast clients to continue with this 467 * non-compliance. 468 */ 469 copy = skb_copy(skb, gfp_mask); 470 if (!copy) 471 return; 472 473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask); 474 } 475 476 /* 477 * flush_hold_queue - empty the hold queue if auditd appears 478 * 479 * If auditd just started, drain the queue of messages already 480 * sent to syslog/printk. Remember loss here is ok. We already 481 * called audit_log_lost() if it didn't go out normally. so the 482 * race between the skb_dequeue and the next check for audit_pid 483 * doesn't matter. 484 * 485 * If you ever find kauditd to be too slow we can get a perf win 486 * by doing our own locking and keeping better track if there 487 * are messages in this queue. I don't see the need now, but 488 * in 5 years when I want to play with this again I'll see this 489 * note and still have no friggin idea what i'm thinking today. 490 */ 491 static void flush_hold_queue(void) 492 { 493 struct sk_buff *skb; 494 495 if (!audit_default || !audit_pid) 496 return; 497 498 skb = skb_dequeue(&audit_skb_hold_queue); 499 if (likely(!skb)) 500 return; 501 502 while (skb && audit_pid) { 503 kauditd_send_skb(skb); 504 skb = skb_dequeue(&audit_skb_hold_queue); 505 } 506 507 /* 508 * if auditd just disappeared but we 509 * dequeued an skb we need to drop ref 510 */ 511 consume_skb(skb); 512 } 513 514 static int kauditd_thread(void *dummy) 515 { 516 set_freezable(); 517 while (!kthread_should_stop()) { 518 struct sk_buff *skb; 519 520 flush_hold_queue(); 521 522 skb = skb_dequeue(&audit_skb_queue); 523 524 if (skb) { 525 if (!audit_backlog_limit || 526 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)) 527 wake_up(&audit_backlog_wait); 528 if (audit_pid) 529 kauditd_send_skb(skb); 530 else 531 audit_printk_skb(skb); 532 continue; 533 } 534 535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue)); 536 } 537 return 0; 538 } 539 540 int audit_send_list(void *_dest) 541 { 542 struct audit_netlink_list *dest = _dest; 543 struct sk_buff *skb; 544 struct net *net = dest->net; 545 struct audit_net *aunet = net_generic(net, audit_net_id); 546 547 /* wait for parent to finish and send an ACK */ 548 mutex_lock(&audit_cmd_mutex); 549 mutex_unlock(&audit_cmd_mutex); 550 551 while ((skb = __skb_dequeue(&dest->q)) != NULL) 552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 553 554 put_net(net); 555 kfree(dest); 556 557 return 0; 558 } 559 560 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 561 int multi, const void *payload, int size) 562 { 563 struct sk_buff *skb; 564 struct nlmsghdr *nlh; 565 void *data; 566 int flags = multi ? NLM_F_MULTI : 0; 567 int t = done ? NLMSG_DONE : type; 568 569 skb = nlmsg_new(size, GFP_KERNEL); 570 if (!skb) 571 return NULL; 572 573 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 574 if (!nlh) 575 goto out_kfree_skb; 576 data = nlmsg_data(nlh); 577 memcpy(data, payload, size); 578 return skb; 579 580 out_kfree_skb: 581 kfree_skb(skb); 582 return NULL; 583 } 584 585 static int audit_send_reply_thread(void *arg) 586 { 587 struct audit_reply *reply = (struct audit_reply *)arg; 588 struct net *net = reply->net; 589 struct audit_net *aunet = net_generic(net, audit_net_id); 590 591 mutex_lock(&audit_cmd_mutex); 592 mutex_unlock(&audit_cmd_mutex); 593 594 /* Ignore failure. It'll only happen if the sender goes away, 595 because our timeout is set to infinite. */ 596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 597 put_net(net); 598 kfree(reply); 599 return 0; 600 } 601 /** 602 * audit_send_reply - send an audit reply message via netlink 603 * @request_skb: skb of request we are replying to (used to target the reply) 604 * @seq: sequence number 605 * @type: audit message type 606 * @done: done (last) flag 607 * @multi: multi-part message flag 608 * @payload: payload data 609 * @size: payload size 610 * 611 * Allocates an skb, builds the netlink message, and sends it to the port id. 612 * No failure notifications. 613 */ 614 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 615 int multi, const void *payload, int size) 616 { 617 u32 portid = NETLINK_CB(request_skb).portid; 618 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 619 struct sk_buff *skb; 620 struct task_struct *tsk; 621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 622 GFP_KERNEL); 623 624 if (!reply) 625 return; 626 627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 628 if (!skb) 629 goto out; 630 631 reply->net = get_net(net); 632 reply->portid = portid; 633 reply->skb = skb; 634 635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 636 if (!IS_ERR(tsk)) 637 return; 638 kfree_skb(skb); 639 out: 640 kfree(reply); 641 } 642 643 /* 644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 645 * control messages. 646 */ 647 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 648 { 649 int err = 0; 650 651 /* Only support initial user namespace for now. */ 652 /* 653 * We return ECONNREFUSED because it tricks userspace into thinking 654 * that audit was not configured into the kernel. Lots of users 655 * configure their PAM stack (because that's what the distro does) 656 * to reject login if unable to send messages to audit. If we return 657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 658 * configured in and will let login proceed. If we return EPERM 659 * userspace will reject all logins. This should be removed when we 660 * support non init namespaces!! 661 */ 662 if (current_user_ns() != &init_user_ns) 663 return -ECONNREFUSED; 664 665 switch (msg_type) { 666 case AUDIT_LIST: 667 case AUDIT_ADD: 668 case AUDIT_DEL: 669 return -EOPNOTSUPP; 670 case AUDIT_GET: 671 case AUDIT_SET: 672 case AUDIT_GET_FEATURE: 673 case AUDIT_SET_FEATURE: 674 case AUDIT_LIST_RULES: 675 case AUDIT_ADD_RULE: 676 case AUDIT_DEL_RULE: 677 case AUDIT_SIGNAL_INFO: 678 case AUDIT_TTY_GET: 679 case AUDIT_TTY_SET: 680 case AUDIT_TRIM: 681 case AUDIT_MAKE_EQUIV: 682 /* Only support auditd and auditctl in initial pid namespace 683 * for now. */ 684 if (task_active_pid_ns(current) != &init_pid_ns) 685 return -EPERM; 686 687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 688 err = -EPERM; 689 break; 690 case AUDIT_USER: 691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 693 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 694 err = -EPERM; 695 break; 696 default: /* bad msg */ 697 err = -EINVAL; 698 } 699 700 return err; 701 } 702 703 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 704 { 705 uid_t uid = from_kuid(&init_user_ns, current_uid()); 706 pid_t pid = task_tgid_nr(current); 707 708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 709 *ab = NULL; 710 return; 711 } 712 713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 714 if (unlikely(!*ab)) 715 return; 716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 717 audit_log_session_info(*ab); 718 audit_log_task_context(*ab); 719 } 720 721 int is_audit_feature_set(int i) 722 { 723 return af.features & AUDIT_FEATURE_TO_MASK(i); 724 } 725 726 727 static int audit_get_feature(struct sk_buff *skb) 728 { 729 u32 seq; 730 731 seq = nlmsg_hdr(skb)->nlmsg_seq; 732 733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 734 735 return 0; 736 } 737 738 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 739 u32 old_lock, u32 new_lock, int res) 740 { 741 struct audit_buffer *ab; 742 743 if (audit_enabled == AUDIT_OFF) 744 return; 745 746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 747 audit_log_task_info(ab, current); 748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 749 audit_feature_names[which], !!old_feature, !!new_feature, 750 !!old_lock, !!new_lock, res); 751 audit_log_end(ab); 752 } 753 754 static int audit_set_feature(struct sk_buff *skb) 755 { 756 struct audit_features *uaf; 757 int i; 758 759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 760 uaf = nlmsg_data(nlmsg_hdr(skb)); 761 762 /* if there is ever a version 2 we should handle that here */ 763 764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 765 u32 feature = AUDIT_FEATURE_TO_MASK(i); 766 u32 old_feature, new_feature, old_lock, new_lock; 767 768 /* if we are not changing this feature, move along */ 769 if (!(feature & uaf->mask)) 770 continue; 771 772 old_feature = af.features & feature; 773 new_feature = uaf->features & feature; 774 new_lock = (uaf->lock | af.lock) & feature; 775 old_lock = af.lock & feature; 776 777 /* are we changing a locked feature? */ 778 if (old_lock && (new_feature != old_feature)) { 779 audit_log_feature_change(i, old_feature, new_feature, 780 old_lock, new_lock, 0); 781 return -EPERM; 782 } 783 } 784 /* nothing invalid, do the changes */ 785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 786 u32 feature = AUDIT_FEATURE_TO_MASK(i); 787 u32 old_feature, new_feature, old_lock, new_lock; 788 789 /* if we are not changing this feature, move along */ 790 if (!(feature & uaf->mask)) 791 continue; 792 793 old_feature = af.features & feature; 794 new_feature = uaf->features & feature; 795 old_lock = af.lock & feature; 796 new_lock = (uaf->lock | af.lock) & feature; 797 798 if (new_feature != old_feature) 799 audit_log_feature_change(i, old_feature, new_feature, 800 old_lock, new_lock, 1); 801 802 if (new_feature) 803 af.features |= feature; 804 else 805 af.features &= ~feature; 806 af.lock |= new_lock; 807 } 808 809 return 0; 810 } 811 812 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 813 { 814 u32 seq; 815 void *data; 816 int err; 817 struct audit_buffer *ab; 818 u16 msg_type = nlh->nlmsg_type; 819 struct audit_sig_info *sig_data; 820 char *ctx = NULL; 821 u32 len; 822 823 err = audit_netlink_ok(skb, msg_type); 824 if (err) 825 return err; 826 827 /* As soon as there's any sign of userspace auditd, 828 * start kauditd to talk to it */ 829 if (!kauditd_task) { 830 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 831 if (IS_ERR(kauditd_task)) { 832 err = PTR_ERR(kauditd_task); 833 kauditd_task = NULL; 834 return err; 835 } 836 } 837 seq = nlh->nlmsg_seq; 838 data = nlmsg_data(nlh); 839 840 switch (msg_type) { 841 case AUDIT_GET: { 842 struct audit_status s; 843 memset(&s, 0, sizeof(s)); 844 s.enabled = audit_enabled; 845 s.failure = audit_failure; 846 s.pid = audit_pid; 847 s.rate_limit = audit_rate_limit; 848 s.backlog_limit = audit_backlog_limit; 849 s.lost = atomic_read(&audit_lost); 850 s.backlog = skb_queue_len(&audit_skb_queue); 851 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 852 s.backlog_wait_time = audit_backlog_wait_time_master; 853 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 854 break; 855 } 856 case AUDIT_SET: { 857 struct audit_status s; 858 memset(&s, 0, sizeof(s)); 859 /* guard against past and future API changes */ 860 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 861 if (s.mask & AUDIT_STATUS_ENABLED) { 862 err = audit_set_enabled(s.enabled); 863 if (err < 0) 864 return err; 865 } 866 if (s.mask & AUDIT_STATUS_FAILURE) { 867 err = audit_set_failure(s.failure); 868 if (err < 0) 869 return err; 870 } 871 if (s.mask & AUDIT_STATUS_PID) { 872 int new_pid = s.pid; 873 874 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 875 return -EACCES; 876 if (audit_enabled != AUDIT_OFF) 877 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 878 audit_pid = new_pid; 879 audit_nlk_portid = NETLINK_CB(skb).portid; 880 audit_sock = skb->sk; 881 } 882 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 883 err = audit_set_rate_limit(s.rate_limit); 884 if (err < 0) 885 return err; 886 } 887 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 888 err = audit_set_backlog_limit(s.backlog_limit); 889 if (err < 0) 890 return err; 891 } 892 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 893 if (sizeof(s) > (size_t)nlh->nlmsg_len) 894 return -EINVAL; 895 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 896 return -EINVAL; 897 err = audit_set_backlog_wait_time(s.backlog_wait_time); 898 if (err < 0) 899 return err; 900 } 901 break; 902 } 903 case AUDIT_GET_FEATURE: 904 err = audit_get_feature(skb); 905 if (err) 906 return err; 907 break; 908 case AUDIT_SET_FEATURE: 909 err = audit_set_feature(skb); 910 if (err) 911 return err; 912 break; 913 case AUDIT_USER: 914 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 915 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 916 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 917 return 0; 918 919 err = audit_filter_user(msg_type); 920 if (err == 1) { /* match or error */ 921 err = 0; 922 if (msg_type == AUDIT_USER_TTY) { 923 err = tty_audit_push_current(); 924 if (err) 925 break; 926 } 927 mutex_unlock(&audit_cmd_mutex); 928 audit_log_common_recv_msg(&ab, msg_type); 929 if (msg_type != AUDIT_USER_TTY) 930 audit_log_format(ab, " msg='%.*s'", 931 AUDIT_MESSAGE_TEXT_MAX, 932 (char *)data); 933 else { 934 int size; 935 936 audit_log_format(ab, " data="); 937 size = nlmsg_len(nlh); 938 if (size > 0 && 939 ((unsigned char *)data)[size - 1] == '\0') 940 size--; 941 audit_log_n_untrustedstring(ab, data, size); 942 } 943 audit_set_portid(ab, NETLINK_CB(skb).portid); 944 audit_log_end(ab); 945 mutex_lock(&audit_cmd_mutex); 946 } 947 break; 948 case AUDIT_ADD_RULE: 949 case AUDIT_DEL_RULE: 950 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 951 return -EINVAL; 952 if (audit_enabled == AUDIT_LOCKED) { 953 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 954 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 955 audit_log_end(ab); 956 return -EPERM; 957 } 958 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 959 seq, data, nlmsg_len(nlh)); 960 break; 961 case AUDIT_LIST_RULES: 962 err = audit_list_rules_send(skb, seq); 963 break; 964 case AUDIT_TRIM: 965 audit_trim_trees(); 966 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 967 audit_log_format(ab, " op=trim res=1"); 968 audit_log_end(ab); 969 break; 970 case AUDIT_MAKE_EQUIV: { 971 void *bufp = data; 972 u32 sizes[2]; 973 size_t msglen = nlmsg_len(nlh); 974 char *old, *new; 975 976 err = -EINVAL; 977 if (msglen < 2 * sizeof(u32)) 978 break; 979 memcpy(sizes, bufp, 2 * sizeof(u32)); 980 bufp += 2 * sizeof(u32); 981 msglen -= 2 * sizeof(u32); 982 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 983 if (IS_ERR(old)) { 984 err = PTR_ERR(old); 985 break; 986 } 987 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 988 if (IS_ERR(new)) { 989 err = PTR_ERR(new); 990 kfree(old); 991 break; 992 } 993 /* OK, here comes... */ 994 err = audit_tag_tree(old, new); 995 996 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 997 998 audit_log_format(ab, " op=make_equiv old="); 999 audit_log_untrustedstring(ab, old); 1000 audit_log_format(ab, " new="); 1001 audit_log_untrustedstring(ab, new); 1002 audit_log_format(ab, " res=%d", !err); 1003 audit_log_end(ab); 1004 kfree(old); 1005 kfree(new); 1006 break; 1007 } 1008 case AUDIT_SIGNAL_INFO: 1009 len = 0; 1010 if (audit_sig_sid) { 1011 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1012 if (err) 1013 return err; 1014 } 1015 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1016 if (!sig_data) { 1017 if (audit_sig_sid) 1018 security_release_secctx(ctx, len); 1019 return -ENOMEM; 1020 } 1021 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1022 sig_data->pid = audit_sig_pid; 1023 if (audit_sig_sid) { 1024 memcpy(sig_data->ctx, ctx, len); 1025 security_release_secctx(ctx, len); 1026 } 1027 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1028 sig_data, sizeof(*sig_data) + len); 1029 kfree(sig_data); 1030 break; 1031 case AUDIT_TTY_GET: { 1032 struct audit_tty_status s; 1033 struct task_struct *tsk = current; 1034 1035 spin_lock(&tsk->sighand->siglock); 1036 s.enabled = tsk->signal->audit_tty; 1037 s.log_passwd = tsk->signal->audit_tty_log_passwd; 1038 spin_unlock(&tsk->sighand->siglock); 1039 1040 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1041 break; 1042 } 1043 case AUDIT_TTY_SET: { 1044 struct audit_tty_status s, old; 1045 struct task_struct *tsk = current; 1046 struct audit_buffer *ab; 1047 1048 memset(&s, 0, sizeof(s)); 1049 /* guard against past and future API changes */ 1050 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1051 /* check if new data is valid */ 1052 if ((s.enabled != 0 && s.enabled != 1) || 1053 (s.log_passwd != 0 && s.log_passwd != 1)) 1054 err = -EINVAL; 1055 1056 spin_lock(&tsk->sighand->siglock); 1057 old.enabled = tsk->signal->audit_tty; 1058 old.log_passwd = tsk->signal->audit_tty_log_passwd; 1059 if (!err) { 1060 tsk->signal->audit_tty = s.enabled; 1061 tsk->signal->audit_tty_log_passwd = s.log_passwd; 1062 } 1063 spin_unlock(&tsk->sighand->siglock); 1064 1065 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1066 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1067 " old-log_passwd=%d new-log_passwd=%d res=%d", 1068 old.enabled, s.enabled, old.log_passwd, 1069 s.log_passwd, !err); 1070 audit_log_end(ab); 1071 break; 1072 } 1073 default: 1074 err = -EINVAL; 1075 break; 1076 } 1077 1078 return err < 0 ? err : 0; 1079 } 1080 1081 /* 1082 * Get message from skb. Each message is processed by audit_receive_msg. 1083 * Malformed skbs with wrong length are discarded silently. 1084 */ 1085 static void audit_receive_skb(struct sk_buff *skb) 1086 { 1087 struct nlmsghdr *nlh; 1088 /* 1089 * len MUST be signed for nlmsg_next to be able to dec it below 0 1090 * if the nlmsg_len was not aligned 1091 */ 1092 int len; 1093 int err; 1094 1095 nlh = nlmsg_hdr(skb); 1096 len = skb->len; 1097 1098 while (nlmsg_ok(nlh, len)) { 1099 err = audit_receive_msg(skb, nlh); 1100 /* if err or if this message says it wants a response */ 1101 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1102 netlink_ack(skb, nlh, err); 1103 1104 nlh = nlmsg_next(nlh, &len); 1105 } 1106 } 1107 1108 /* Receive messages from netlink socket. */ 1109 static void audit_receive(struct sk_buff *skb) 1110 { 1111 mutex_lock(&audit_cmd_mutex); 1112 audit_receive_skb(skb); 1113 mutex_unlock(&audit_cmd_mutex); 1114 } 1115 1116 /* Run custom bind function on netlink socket group connect or bind requests. */ 1117 static int audit_bind(struct net *net, int group) 1118 { 1119 if (!capable(CAP_AUDIT_READ)) 1120 return -EPERM; 1121 1122 return 0; 1123 } 1124 1125 static int __net_init audit_net_init(struct net *net) 1126 { 1127 struct netlink_kernel_cfg cfg = { 1128 .input = audit_receive, 1129 .bind = audit_bind, 1130 .flags = NL_CFG_F_NONROOT_RECV, 1131 .groups = AUDIT_NLGRP_MAX, 1132 }; 1133 1134 struct audit_net *aunet = net_generic(net, audit_net_id); 1135 1136 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1137 if (aunet->nlsk == NULL) { 1138 audit_panic("cannot initialize netlink socket in namespace"); 1139 return -ENOMEM; 1140 } 1141 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1142 return 0; 1143 } 1144 1145 static void __net_exit audit_net_exit(struct net *net) 1146 { 1147 struct audit_net *aunet = net_generic(net, audit_net_id); 1148 struct sock *sock = aunet->nlsk; 1149 if (sock == audit_sock) { 1150 audit_pid = 0; 1151 audit_sock = NULL; 1152 } 1153 1154 RCU_INIT_POINTER(aunet->nlsk, NULL); 1155 synchronize_net(); 1156 netlink_kernel_release(sock); 1157 } 1158 1159 static struct pernet_operations audit_net_ops __net_initdata = { 1160 .init = audit_net_init, 1161 .exit = audit_net_exit, 1162 .id = &audit_net_id, 1163 .size = sizeof(struct audit_net), 1164 }; 1165 1166 /* Initialize audit support at boot time. */ 1167 static int __init audit_init(void) 1168 { 1169 int i; 1170 1171 if (audit_initialized == AUDIT_DISABLED) 1172 return 0; 1173 1174 pr_info("initializing netlink subsys (%s)\n", 1175 audit_default ? "enabled" : "disabled"); 1176 register_pernet_subsys(&audit_net_ops); 1177 1178 skb_queue_head_init(&audit_skb_queue); 1179 skb_queue_head_init(&audit_skb_hold_queue); 1180 audit_initialized = AUDIT_INITIALIZED; 1181 audit_enabled = audit_default; 1182 audit_ever_enabled |= !!audit_default; 1183 1184 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1185 1186 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1187 INIT_LIST_HEAD(&audit_inode_hash[i]); 1188 1189 return 0; 1190 } 1191 __initcall(audit_init); 1192 1193 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1194 static int __init audit_enable(char *str) 1195 { 1196 audit_default = !!simple_strtol(str, NULL, 0); 1197 if (!audit_default) 1198 audit_initialized = AUDIT_DISABLED; 1199 1200 pr_info("%s\n", audit_default ? 1201 "enabled (after initialization)" : "disabled (until reboot)"); 1202 1203 return 1; 1204 } 1205 __setup("audit=", audit_enable); 1206 1207 /* Process kernel command-line parameter at boot time. 1208 * audit_backlog_limit=<n> */ 1209 static int __init audit_backlog_limit_set(char *str) 1210 { 1211 u32 audit_backlog_limit_arg; 1212 1213 pr_info("audit_backlog_limit: "); 1214 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1215 pr_cont("using default of %u, unable to parse %s\n", 1216 audit_backlog_limit, str); 1217 return 1; 1218 } 1219 1220 audit_backlog_limit = audit_backlog_limit_arg; 1221 pr_cont("%d\n", audit_backlog_limit); 1222 1223 return 1; 1224 } 1225 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1226 1227 static void audit_buffer_free(struct audit_buffer *ab) 1228 { 1229 unsigned long flags; 1230 1231 if (!ab) 1232 return; 1233 1234 kfree_skb(ab->skb); 1235 spin_lock_irqsave(&audit_freelist_lock, flags); 1236 if (audit_freelist_count > AUDIT_MAXFREE) 1237 kfree(ab); 1238 else { 1239 audit_freelist_count++; 1240 list_add(&ab->list, &audit_freelist); 1241 } 1242 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1243 } 1244 1245 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1246 gfp_t gfp_mask, int type) 1247 { 1248 unsigned long flags; 1249 struct audit_buffer *ab = NULL; 1250 struct nlmsghdr *nlh; 1251 1252 spin_lock_irqsave(&audit_freelist_lock, flags); 1253 if (!list_empty(&audit_freelist)) { 1254 ab = list_entry(audit_freelist.next, 1255 struct audit_buffer, list); 1256 list_del(&ab->list); 1257 --audit_freelist_count; 1258 } 1259 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1260 1261 if (!ab) { 1262 ab = kmalloc(sizeof(*ab), gfp_mask); 1263 if (!ab) 1264 goto err; 1265 } 1266 1267 ab->ctx = ctx; 1268 ab->gfp_mask = gfp_mask; 1269 1270 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1271 if (!ab->skb) 1272 goto err; 1273 1274 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1275 if (!nlh) 1276 goto out_kfree_skb; 1277 1278 return ab; 1279 1280 out_kfree_skb: 1281 kfree_skb(ab->skb); 1282 ab->skb = NULL; 1283 err: 1284 audit_buffer_free(ab); 1285 return NULL; 1286 } 1287 1288 /** 1289 * audit_serial - compute a serial number for the audit record 1290 * 1291 * Compute a serial number for the audit record. Audit records are 1292 * written to user-space as soon as they are generated, so a complete 1293 * audit record may be written in several pieces. The timestamp of the 1294 * record and this serial number are used by the user-space tools to 1295 * determine which pieces belong to the same audit record. The 1296 * (timestamp,serial) tuple is unique for each syscall and is live from 1297 * syscall entry to syscall exit. 1298 * 1299 * NOTE: Another possibility is to store the formatted records off the 1300 * audit context (for those records that have a context), and emit them 1301 * all at syscall exit. However, this could delay the reporting of 1302 * significant errors until syscall exit (or never, if the system 1303 * halts). 1304 */ 1305 unsigned int audit_serial(void) 1306 { 1307 static atomic_t serial = ATOMIC_INIT(0); 1308 1309 return atomic_add_return(1, &serial); 1310 } 1311 1312 static inline void audit_get_stamp(struct audit_context *ctx, 1313 struct timespec *t, unsigned int *serial) 1314 { 1315 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1316 *t = CURRENT_TIME; 1317 *serial = audit_serial(); 1318 } 1319 } 1320 1321 /* 1322 * Wait for auditd to drain the queue a little 1323 */ 1324 static long wait_for_auditd(long sleep_time) 1325 { 1326 DECLARE_WAITQUEUE(wait, current); 1327 set_current_state(TASK_UNINTERRUPTIBLE); 1328 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1329 1330 if (audit_backlog_limit && 1331 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1332 sleep_time = schedule_timeout(sleep_time); 1333 1334 __set_current_state(TASK_RUNNING); 1335 remove_wait_queue(&audit_backlog_wait, &wait); 1336 1337 return sleep_time; 1338 } 1339 1340 /** 1341 * audit_log_start - obtain an audit buffer 1342 * @ctx: audit_context (may be NULL) 1343 * @gfp_mask: type of allocation 1344 * @type: audit message type 1345 * 1346 * Returns audit_buffer pointer on success or NULL on error. 1347 * 1348 * Obtain an audit buffer. This routine does locking to obtain the 1349 * audit buffer, but then no locking is required for calls to 1350 * audit_log_*format. If the task (ctx) is a task that is currently in a 1351 * syscall, then the syscall is marked as auditable and an audit record 1352 * will be written at syscall exit. If there is no associated task, then 1353 * task context (ctx) should be NULL. 1354 */ 1355 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1356 int type) 1357 { 1358 struct audit_buffer *ab = NULL; 1359 struct timespec t; 1360 unsigned int uninitialized_var(serial); 1361 int reserve = 5; /* Allow atomic callers to go up to five 1362 entries over the normal backlog limit */ 1363 unsigned long timeout_start = jiffies; 1364 1365 if (audit_initialized != AUDIT_INITIALIZED) 1366 return NULL; 1367 1368 if (unlikely(audit_filter_type(type))) 1369 return NULL; 1370 1371 if (gfp_mask & __GFP_DIRECT_RECLAIM) { 1372 if (audit_pid && audit_pid == current->tgid) 1373 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 1374 else 1375 reserve = 0; 1376 } 1377 1378 while (audit_backlog_limit 1379 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1380 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) { 1381 long sleep_time; 1382 1383 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1384 if (sleep_time > 0) { 1385 sleep_time = wait_for_auditd(sleep_time); 1386 if (sleep_time > 0) 1387 continue; 1388 } 1389 } 1390 if (audit_rate_check() && printk_ratelimit()) 1391 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1392 skb_queue_len(&audit_skb_queue), 1393 audit_backlog_limit); 1394 audit_log_lost("backlog limit exceeded"); 1395 audit_backlog_wait_time = 0; 1396 wake_up(&audit_backlog_wait); 1397 return NULL; 1398 } 1399 1400 if (!reserve && !audit_backlog_wait_time) 1401 audit_backlog_wait_time = audit_backlog_wait_time_master; 1402 1403 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1404 if (!ab) { 1405 audit_log_lost("out of memory in audit_log_start"); 1406 return NULL; 1407 } 1408 1409 audit_get_stamp(ab->ctx, &t, &serial); 1410 1411 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1412 t.tv_sec, t.tv_nsec/1000000, serial); 1413 return ab; 1414 } 1415 1416 /** 1417 * audit_expand - expand skb in the audit buffer 1418 * @ab: audit_buffer 1419 * @extra: space to add at tail of the skb 1420 * 1421 * Returns 0 (no space) on failed expansion, or available space if 1422 * successful. 1423 */ 1424 static inline int audit_expand(struct audit_buffer *ab, int extra) 1425 { 1426 struct sk_buff *skb = ab->skb; 1427 int oldtail = skb_tailroom(skb); 1428 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1429 int newtail = skb_tailroom(skb); 1430 1431 if (ret < 0) { 1432 audit_log_lost("out of memory in audit_expand"); 1433 return 0; 1434 } 1435 1436 skb->truesize += newtail - oldtail; 1437 return newtail; 1438 } 1439 1440 /* 1441 * Format an audit message into the audit buffer. If there isn't enough 1442 * room in the audit buffer, more room will be allocated and vsnprint 1443 * will be called a second time. Currently, we assume that a printk 1444 * can't format message larger than 1024 bytes, so we don't either. 1445 */ 1446 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1447 va_list args) 1448 { 1449 int len, avail; 1450 struct sk_buff *skb; 1451 va_list args2; 1452 1453 if (!ab) 1454 return; 1455 1456 BUG_ON(!ab->skb); 1457 skb = ab->skb; 1458 avail = skb_tailroom(skb); 1459 if (avail == 0) { 1460 avail = audit_expand(ab, AUDIT_BUFSIZ); 1461 if (!avail) 1462 goto out; 1463 } 1464 va_copy(args2, args); 1465 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1466 if (len >= avail) { 1467 /* The printk buffer is 1024 bytes long, so if we get 1468 * here and AUDIT_BUFSIZ is at least 1024, then we can 1469 * log everything that printk could have logged. */ 1470 avail = audit_expand(ab, 1471 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1472 if (!avail) 1473 goto out_va_end; 1474 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1475 } 1476 if (len > 0) 1477 skb_put(skb, len); 1478 out_va_end: 1479 va_end(args2); 1480 out: 1481 return; 1482 } 1483 1484 /** 1485 * audit_log_format - format a message into the audit buffer. 1486 * @ab: audit_buffer 1487 * @fmt: format string 1488 * @...: optional parameters matching @fmt string 1489 * 1490 * All the work is done in audit_log_vformat. 1491 */ 1492 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1493 { 1494 va_list args; 1495 1496 if (!ab) 1497 return; 1498 va_start(args, fmt); 1499 audit_log_vformat(ab, fmt, args); 1500 va_end(args); 1501 } 1502 1503 /** 1504 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1505 * @ab: the audit_buffer 1506 * @buf: buffer to convert to hex 1507 * @len: length of @buf to be converted 1508 * 1509 * No return value; failure to expand is silently ignored. 1510 * 1511 * This function will take the passed buf and convert it into a string of 1512 * ascii hex digits. The new string is placed onto the skb. 1513 */ 1514 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1515 size_t len) 1516 { 1517 int i, avail, new_len; 1518 unsigned char *ptr; 1519 struct sk_buff *skb; 1520 1521 if (!ab) 1522 return; 1523 1524 BUG_ON(!ab->skb); 1525 skb = ab->skb; 1526 avail = skb_tailroom(skb); 1527 new_len = len<<1; 1528 if (new_len >= avail) { 1529 /* Round the buffer request up to the next multiple */ 1530 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1531 avail = audit_expand(ab, new_len); 1532 if (!avail) 1533 return; 1534 } 1535 1536 ptr = skb_tail_pointer(skb); 1537 for (i = 0; i < len; i++) 1538 ptr = hex_byte_pack_upper(ptr, buf[i]); 1539 *ptr = 0; 1540 skb_put(skb, len << 1); /* new string is twice the old string */ 1541 } 1542 1543 /* 1544 * Format a string of no more than slen characters into the audit buffer, 1545 * enclosed in quote marks. 1546 */ 1547 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1548 size_t slen) 1549 { 1550 int avail, new_len; 1551 unsigned char *ptr; 1552 struct sk_buff *skb; 1553 1554 if (!ab) 1555 return; 1556 1557 BUG_ON(!ab->skb); 1558 skb = ab->skb; 1559 avail = skb_tailroom(skb); 1560 new_len = slen + 3; /* enclosing quotes + null terminator */ 1561 if (new_len > avail) { 1562 avail = audit_expand(ab, new_len); 1563 if (!avail) 1564 return; 1565 } 1566 ptr = skb_tail_pointer(skb); 1567 *ptr++ = '"'; 1568 memcpy(ptr, string, slen); 1569 ptr += slen; 1570 *ptr++ = '"'; 1571 *ptr = 0; 1572 skb_put(skb, slen + 2); /* don't include null terminator */ 1573 } 1574 1575 /** 1576 * audit_string_contains_control - does a string need to be logged in hex 1577 * @string: string to be checked 1578 * @len: max length of the string to check 1579 */ 1580 bool audit_string_contains_control(const char *string, size_t len) 1581 { 1582 const unsigned char *p; 1583 for (p = string; p < (const unsigned char *)string + len; p++) { 1584 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1585 return true; 1586 } 1587 return false; 1588 } 1589 1590 /** 1591 * audit_log_n_untrustedstring - log a string that may contain random characters 1592 * @ab: audit_buffer 1593 * @len: length of string (not including trailing null) 1594 * @string: string to be logged 1595 * 1596 * This code will escape a string that is passed to it if the string 1597 * contains a control character, unprintable character, double quote mark, 1598 * or a space. Unescaped strings will start and end with a double quote mark. 1599 * Strings that are escaped are printed in hex (2 digits per char). 1600 * 1601 * The caller specifies the number of characters in the string to log, which may 1602 * or may not be the entire string. 1603 */ 1604 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1605 size_t len) 1606 { 1607 if (audit_string_contains_control(string, len)) 1608 audit_log_n_hex(ab, string, len); 1609 else 1610 audit_log_n_string(ab, string, len); 1611 } 1612 1613 /** 1614 * audit_log_untrustedstring - log a string that may contain random characters 1615 * @ab: audit_buffer 1616 * @string: string to be logged 1617 * 1618 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1619 * determine string length. 1620 */ 1621 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1622 { 1623 audit_log_n_untrustedstring(ab, string, strlen(string)); 1624 } 1625 1626 /* This is a helper-function to print the escaped d_path */ 1627 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1628 const struct path *path) 1629 { 1630 char *p, *pathname; 1631 1632 if (prefix) 1633 audit_log_format(ab, "%s", prefix); 1634 1635 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1636 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1637 if (!pathname) { 1638 audit_log_string(ab, "<no_memory>"); 1639 return; 1640 } 1641 p = d_path(path, pathname, PATH_MAX+11); 1642 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1643 /* FIXME: can we save some information here? */ 1644 audit_log_string(ab, "<too_long>"); 1645 } else 1646 audit_log_untrustedstring(ab, p); 1647 kfree(pathname); 1648 } 1649 1650 void audit_log_session_info(struct audit_buffer *ab) 1651 { 1652 unsigned int sessionid = audit_get_sessionid(current); 1653 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1654 1655 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1656 } 1657 1658 void audit_log_key(struct audit_buffer *ab, char *key) 1659 { 1660 audit_log_format(ab, " key="); 1661 if (key) 1662 audit_log_untrustedstring(ab, key); 1663 else 1664 audit_log_format(ab, "(null)"); 1665 } 1666 1667 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1668 { 1669 int i; 1670 1671 audit_log_format(ab, " %s=", prefix); 1672 CAP_FOR_EACH_U32(i) { 1673 audit_log_format(ab, "%08x", 1674 cap->cap[CAP_LAST_U32 - i]); 1675 } 1676 } 1677 1678 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1679 { 1680 kernel_cap_t *perm = &name->fcap.permitted; 1681 kernel_cap_t *inh = &name->fcap.inheritable; 1682 int log = 0; 1683 1684 if (!cap_isclear(*perm)) { 1685 audit_log_cap(ab, "cap_fp", perm); 1686 log = 1; 1687 } 1688 if (!cap_isclear(*inh)) { 1689 audit_log_cap(ab, "cap_fi", inh); 1690 log = 1; 1691 } 1692 1693 if (log) 1694 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1695 name->fcap.fE, name->fcap_ver); 1696 } 1697 1698 static inline int audit_copy_fcaps(struct audit_names *name, 1699 const struct dentry *dentry) 1700 { 1701 struct cpu_vfs_cap_data caps; 1702 int rc; 1703 1704 if (!dentry) 1705 return 0; 1706 1707 rc = get_vfs_caps_from_disk(dentry, &caps); 1708 if (rc) 1709 return rc; 1710 1711 name->fcap.permitted = caps.permitted; 1712 name->fcap.inheritable = caps.inheritable; 1713 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1714 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1715 VFS_CAP_REVISION_SHIFT; 1716 1717 return 0; 1718 } 1719 1720 /* Copy inode data into an audit_names. */ 1721 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1722 struct inode *inode) 1723 { 1724 name->ino = inode->i_ino; 1725 name->dev = inode->i_sb->s_dev; 1726 name->mode = inode->i_mode; 1727 name->uid = inode->i_uid; 1728 name->gid = inode->i_gid; 1729 name->rdev = inode->i_rdev; 1730 security_inode_getsecid(inode, &name->osid); 1731 audit_copy_fcaps(name, dentry); 1732 } 1733 1734 /** 1735 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1736 * @context: audit_context for the task 1737 * @n: audit_names structure with reportable details 1738 * @path: optional path to report instead of audit_names->name 1739 * @record_num: record number to report when handling a list of names 1740 * @call_panic: optional pointer to int that will be updated if secid fails 1741 */ 1742 void audit_log_name(struct audit_context *context, struct audit_names *n, 1743 struct path *path, int record_num, int *call_panic) 1744 { 1745 struct audit_buffer *ab; 1746 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1747 if (!ab) 1748 return; 1749 1750 audit_log_format(ab, "item=%d", record_num); 1751 1752 if (path) 1753 audit_log_d_path(ab, " name=", path); 1754 else if (n->name) { 1755 switch (n->name_len) { 1756 case AUDIT_NAME_FULL: 1757 /* log the full path */ 1758 audit_log_format(ab, " name="); 1759 audit_log_untrustedstring(ab, n->name->name); 1760 break; 1761 case 0: 1762 /* name was specified as a relative path and the 1763 * directory component is the cwd */ 1764 audit_log_d_path(ab, " name=", &context->pwd); 1765 break; 1766 default: 1767 /* log the name's directory component */ 1768 audit_log_format(ab, " name="); 1769 audit_log_n_untrustedstring(ab, n->name->name, 1770 n->name_len); 1771 } 1772 } else 1773 audit_log_format(ab, " name=(null)"); 1774 1775 if (n->ino != AUDIT_INO_UNSET) 1776 audit_log_format(ab, " inode=%lu" 1777 " dev=%02x:%02x mode=%#ho" 1778 " ouid=%u ogid=%u rdev=%02x:%02x", 1779 n->ino, 1780 MAJOR(n->dev), 1781 MINOR(n->dev), 1782 n->mode, 1783 from_kuid(&init_user_ns, n->uid), 1784 from_kgid(&init_user_ns, n->gid), 1785 MAJOR(n->rdev), 1786 MINOR(n->rdev)); 1787 if (n->osid != 0) { 1788 char *ctx = NULL; 1789 u32 len; 1790 if (security_secid_to_secctx( 1791 n->osid, &ctx, &len)) { 1792 audit_log_format(ab, " osid=%u", n->osid); 1793 if (call_panic) 1794 *call_panic = 2; 1795 } else { 1796 audit_log_format(ab, " obj=%s", ctx); 1797 security_release_secctx(ctx, len); 1798 } 1799 } 1800 1801 /* log the audit_names record type */ 1802 audit_log_format(ab, " nametype="); 1803 switch(n->type) { 1804 case AUDIT_TYPE_NORMAL: 1805 audit_log_format(ab, "NORMAL"); 1806 break; 1807 case AUDIT_TYPE_PARENT: 1808 audit_log_format(ab, "PARENT"); 1809 break; 1810 case AUDIT_TYPE_CHILD_DELETE: 1811 audit_log_format(ab, "DELETE"); 1812 break; 1813 case AUDIT_TYPE_CHILD_CREATE: 1814 audit_log_format(ab, "CREATE"); 1815 break; 1816 default: 1817 audit_log_format(ab, "UNKNOWN"); 1818 break; 1819 } 1820 1821 audit_log_fcaps(ab, n); 1822 audit_log_end(ab); 1823 } 1824 1825 int audit_log_task_context(struct audit_buffer *ab) 1826 { 1827 char *ctx = NULL; 1828 unsigned len; 1829 int error; 1830 u32 sid; 1831 1832 security_task_getsecid(current, &sid); 1833 if (!sid) 1834 return 0; 1835 1836 error = security_secid_to_secctx(sid, &ctx, &len); 1837 if (error) { 1838 if (error != -EINVAL) 1839 goto error_path; 1840 return 0; 1841 } 1842 1843 audit_log_format(ab, " subj=%s", ctx); 1844 security_release_secctx(ctx, len); 1845 return 0; 1846 1847 error_path: 1848 audit_panic("error in audit_log_task_context"); 1849 return error; 1850 } 1851 EXPORT_SYMBOL(audit_log_task_context); 1852 1853 void audit_log_d_path_exe(struct audit_buffer *ab, 1854 struct mm_struct *mm) 1855 { 1856 struct file *exe_file; 1857 1858 if (!mm) 1859 goto out_null; 1860 1861 exe_file = get_mm_exe_file(mm); 1862 if (!exe_file) 1863 goto out_null; 1864 1865 audit_log_d_path(ab, " exe=", &exe_file->f_path); 1866 fput(exe_file); 1867 return; 1868 out_null: 1869 audit_log_format(ab, " exe=(null)"); 1870 } 1871 1872 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1873 { 1874 const struct cred *cred; 1875 char comm[sizeof(tsk->comm)]; 1876 char *tty; 1877 1878 if (!ab) 1879 return; 1880 1881 /* tsk == current */ 1882 cred = current_cred(); 1883 1884 spin_lock_irq(&tsk->sighand->siglock); 1885 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1886 tty = tsk->signal->tty->name; 1887 else 1888 tty = "(none)"; 1889 spin_unlock_irq(&tsk->sighand->siglock); 1890 1891 audit_log_format(ab, 1892 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1893 " euid=%u suid=%u fsuid=%u" 1894 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1895 task_ppid_nr(tsk), 1896 task_pid_nr(tsk), 1897 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1898 from_kuid(&init_user_ns, cred->uid), 1899 from_kgid(&init_user_ns, cred->gid), 1900 from_kuid(&init_user_ns, cred->euid), 1901 from_kuid(&init_user_ns, cred->suid), 1902 from_kuid(&init_user_ns, cred->fsuid), 1903 from_kgid(&init_user_ns, cred->egid), 1904 from_kgid(&init_user_ns, cred->sgid), 1905 from_kgid(&init_user_ns, cred->fsgid), 1906 tty, audit_get_sessionid(tsk)); 1907 1908 audit_log_format(ab, " comm="); 1909 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 1910 1911 audit_log_d_path_exe(ab, tsk->mm); 1912 audit_log_task_context(ab); 1913 } 1914 EXPORT_SYMBOL(audit_log_task_info); 1915 1916 /** 1917 * audit_log_link_denied - report a link restriction denial 1918 * @operation: specific link operation 1919 * @link: the path that triggered the restriction 1920 */ 1921 void audit_log_link_denied(const char *operation, struct path *link) 1922 { 1923 struct audit_buffer *ab; 1924 struct audit_names *name; 1925 1926 name = kzalloc(sizeof(*name), GFP_NOFS); 1927 if (!name) 1928 return; 1929 1930 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1931 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1932 AUDIT_ANOM_LINK); 1933 if (!ab) 1934 goto out; 1935 audit_log_format(ab, "op=%s", operation); 1936 audit_log_task_info(ab, current); 1937 audit_log_format(ab, " res=0"); 1938 audit_log_end(ab); 1939 1940 /* Generate AUDIT_PATH record with object. */ 1941 name->type = AUDIT_TYPE_NORMAL; 1942 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 1943 audit_log_name(current->audit_context, name, link, 0, NULL); 1944 out: 1945 kfree(name); 1946 } 1947 1948 /** 1949 * audit_log_end - end one audit record 1950 * @ab: the audit_buffer 1951 * 1952 * netlink_unicast() cannot be called inside an irq context because it blocks 1953 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed 1954 * on a queue and a tasklet is scheduled to remove them from the queue outside 1955 * the irq context. May be called in any context. 1956 */ 1957 void audit_log_end(struct audit_buffer *ab) 1958 { 1959 if (!ab) 1960 return; 1961 if (!audit_rate_check()) { 1962 audit_log_lost("rate limit exceeded"); 1963 } else { 1964 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1965 1966 nlh->nlmsg_len = ab->skb->len; 1967 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask); 1968 1969 /* 1970 * The original kaudit unicast socket sends up messages with 1971 * nlmsg_len set to the payload length rather than the entire 1972 * message length. This breaks the standard set by netlink. 1973 * The existing auditd daemon assumes this breakage. Fixing 1974 * this would require co-ordinating a change in the established 1975 * protocol between the kaudit kernel subsystem and the auditd 1976 * userspace code. 1977 */ 1978 nlh->nlmsg_len -= NLMSG_HDRLEN; 1979 1980 if (audit_pid) { 1981 skb_queue_tail(&audit_skb_queue, ab->skb); 1982 wake_up_interruptible(&kauditd_wait); 1983 } else { 1984 audit_printk_skb(ab->skb); 1985 } 1986 ab->skb = NULL; 1987 } 1988 audit_buffer_free(ab); 1989 } 1990 1991 /** 1992 * audit_log - Log an audit record 1993 * @ctx: audit context 1994 * @gfp_mask: type of allocation 1995 * @type: audit message type 1996 * @fmt: format string to use 1997 * @...: variable parameters matching the format string 1998 * 1999 * This is a convenience function that calls audit_log_start, 2000 * audit_log_vformat, and audit_log_end. It may be called 2001 * in any context. 2002 */ 2003 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2004 const char *fmt, ...) 2005 { 2006 struct audit_buffer *ab; 2007 va_list args; 2008 2009 ab = audit_log_start(ctx, gfp_mask, type); 2010 if (ab) { 2011 va_start(args, fmt); 2012 audit_log_vformat(ab, fmt, args); 2013 va_end(args); 2014 audit_log_end(ab); 2015 } 2016 } 2017 2018 #ifdef CONFIG_SECURITY 2019 /** 2020 * audit_log_secctx - Converts and logs SELinux context 2021 * @ab: audit_buffer 2022 * @secid: security number 2023 * 2024 * This is a helper function that calls security_secid_to_secctx to convert 2025 * secid to secctx and then adds the (converted) SELinux context to the audit 2026 * log by calling audit_log_format, thus also preventing leak of internal secid 2027 * to userspace. If secid cannot be converted audit_panic is called. 2028 */ 2029 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2030 { 2031 u32 len; 2032 char *secctx; 2033 2034 if (security_secid_to_secctx(secid, &secctx, &len)) { 2035 audit_panic("Cannot convert secid to context"); 2036 } else { 2037 audit_log_format(ab, " obj=%s", secctx); 2038 security_release_secctx(secctx, len); 2039 } 2040 } 2041 EXPORT_SYMBOL(audit_log_secctx); 2042 #endif 2043 2044 EXPORT_SYMBOL(audit_log_start); 2045 EXPORT_SYMBOL(audit_log_end); 2046 EXPORT_SYMBOL(audit_log_format); 2047 EXPORT_SYMBOL(audit_log); 2048