1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 #include <linux/spinlock.h> 58 #include <linux/rcupdate.h> 59 #include <linux/mutex.h> 60 #include <linux/gfp.h> 61 #include <linux/pid.h> 62 #include <linux/slab.h> 63 64 #include <linux/audit.h> 65 66 #include <net/sock.h> 67 #include <net/netlink.h> 68 #include <linux/skbuff.h> 69 #ifdef CONFIG_SECURITY 70 #include <linux/security.h> 71 #endif 72 #include <linux/freezer.h> 73 #include <linux/pid_namespace.h> 74 #include <net/netns/generic.h> 75 76 #include "audit.h" 77 78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 79 * (Initialization happens after skb_init is called.) */ 80 #define AUDIT_DISABLED -1 81 #define AUDIT_UNINITIALIZED 0 82 #define AUDIT_INITIALIZED 1 83 static int audit_initialized; 84 85 #define AUDIT_OFF 0 86 #define AUDIT_ON 1 87 #define AUDIT_LOCKED 2 88 u32 audit_enabled; 89 u32 audit_ever_enabled; 90 91 EXPORT_SYMBOL_GPL(audit_enabled); 92 93 /* Default state when kernel boots without any parameters. */ 94 static u32 audit_default; 95 96 /* If auditing cannot proceed, audit_failure selects what happens. */ 97 static u32 audit_failure = AUDIT_FAIL_PRINTK; 98 99 /* private audit network namespace index */ 100 static unsigned int audit_net_id; 101 102 /** 103 * struct audit_net - audit private network namespace data 104 * @sk: communication socket 105 */ 106 struct audit_net { 107 struct sock *sk; 108 }; 109 110 /** 111 * struct auditd_connection - kernel/auditd connection state 112 * @pid: auditd PID 113 * @portid: netlink portid 114 * @net: the associated network namespace 115 * @rcu: RCU head 116 * 117 * Description: 118 * This struct is RCU protected; you must either hold the RCU lock for reading 119 * or the associated spinlock for writing. 120 */ 121 static struct auditd_connection { 122 struct pid *pid; 123 u32 portid; 124 struct net *net; 125 struct rcu_head rcu; 126 } *auditd_conn = NULL; 127 static DEFINE_SPINLOCK(auditd_conn_lock); 128 129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 130 * to that number per second. This prevents DoS attacks, but results in 131 * audit records being dropped. */ 132 static u32 audit_rate_limit; 133 134 /* Number of outstanding audit_buffers allowed. 135 * When set to zero, this means unlimited. */ 136 static u32 audit_backlog_limit = 64; 137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 138 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 139 140 /* The identity of the user shutting down the audit system. */ 141 kuid_t audit_sig_uid = INVALID_UID; 142 pid_t audit_sig_pid = -1; 143 u32 audit_sig_sid = 0; 144 145 /* Records can be lost in several ways: 146 0) [suppressed in audit_alloc] 147 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 148 2) out of memory in audit_log_move [alloc_skb] 149 3) suppressed due to audit_rate_limit 150 4) suppressed due to audit_backlog_limit 151 */ 152 static atomic_t audit_lost = ATOMIC_INIT(0); 153 154 /* Hash for inode-based rules */ 155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 156 157 static struct kmem_cache *audit_buffer_cache; 158 159 /* queue msgs to send via kauditd_task */ 160 static struct sk_buff_head audit_queue; 161 /* queue msgs due to temporary unicast send problems */ 162 static struct sk_buff_head audit_retry_queue; 163 /* queue msgs waiting for new auditd connection */ 164 static struct sk_buff_head audit_hold_queue; 165 166 /* queue servicing thread */ 167 static struct task_struct *kauditd_task; 168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 169 170 /* waitqueue for callers who are blocked on the audit backlog */ 171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 172 173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 174 .mask = -1, 175 .features = 0, 176 .lock = 0,}; 177 178 static char *audit_feature_names[2] = { 179 "only_unset_loginuid", 180 "loginuid_immutable", 181 }; 182 183 184 /* Serialize requests from userspace. */ 185 DEFINE_MUTEX(audit_cmd_mutex); 186 187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 188 * audit records. Since printk uses a 1024 byte buffer, this buffer 189 * should be at least that large. */ 190 #define AUDIT_BUFSIZ 1024 191 192 /* The audit_buffer is used when formatting an audit record. The caller 193 * locks briefly to get the record off the freelist or to allocate the 194 * buffer, and locks briefly to send the buffer to the netlink layer or 195 * to place it on a transmit queue. Multiple audit_buffers can be in 196 * use simultaneously. */ 197 struct audit_buffer { 198 struct sk_buff *skb; /* formatted skb ready to send */ 199 struct audit_context *ctx; /* NULL or associated context */ 200 gfp_t gfp_mask; 201 }; 202 203 struct audit_reply { 204 __u32 portid; 205 struct net *net; 206 struct sk_buff *skb; 207 }; 208 209 /** 210 * auditd_test_task - Check to see if a given task is an audit daemon 211 * @task: the task to check 212 * 213 * Description: 214 * Return 1 if the task is a registered audit daemon, 0 otherwise. 215 */ 216 int auditd_test_task(struct task_struct *task) 217 { 218 int rc; 219 struct auditd_connection *ac; 220 221 rcu_read_lock(); 222 ac = rcu_dereference(auditd_conn); 223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 224 rcu_read_unlock(); 225 226 return rc; 227 } 228 229 /** 230 * auditd_pid_vnr - Return the auditd PID relative to the namespace 231 * 232 * Description: 233 * Returns the PID in relation to the namespace, 0 on failure. 234 */ 235 static pid_t auditd_pid_vnr(void) 236 { 237 pid_t pid; 238 const struct auditd_connection *ac; 239 240 rcu_read_lock(); 241 ac = rcu_dereference(auditd_conn); 242 if (!ac || !ac->pid) 243 pid = 0; 244 else 245 pid = pid_vnr(ac->pid); 246 rcu_read_unlock(); 247 248 return pid; 249 } 250 251 /** 252 * audit_get_sk - Return the audit socket for the given network namespace 253 * @net: the destination network namespace 254 * 255 * Description: 256 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 257 * that a reference is held for the network namespace while the sock is in use. 258 */ 259 static struct sock *audit_get_sk(const struct net *net) 260 { 261 struct audit_net *aunet; 262 263 if (!net) 264 return NULL; 265 266 aunet = net_generic(net, audit_net_id); 267 return aunet->sk; 268 } 269 270 void audit_panic(const char *message) 271 { 272 switch (audit_failure) { 273 case AUDIT_FAIL_SILENT: 274 break; 275 case AUDIT_FAIL_PRINTK: 276 if (printk_ratelimit()) 277 pr_err("%s\n", message); 278 break; 279 case AUDIT_FAIL_PANIC: 280 panic("audit: %s\n", message); 281 break; 282 } 283 } 284 285 static inline int audit_rate_check(void) 286 { 287 static unsigned long last_check = 0; 288 static int messages = 0; 289 static DEFINE_SPINLOCK(lock); 290 unsigned long flags; 291 unsigned long now; 292 unsigned long elapsed; 293 int retval = 0; 294 295 if (!audit_rate_limit) return 1; 296 297 spin_lock_irqsave(&lock, flags); 298 if (++messages < audit_rate_limit) { 299 retval = 1; 300 } else { 301 now = jiffies; 302 elapsed = now - last_check; 303 if (elapsed > HZ) { 304 last_check = now; 305 messages = 0; 306 retval = 1; 307 } 308 } 309 spin_unlock_irqrestore(&lock, flags); 310 311 return retval; 312 } 313 314 /** 315 * audit_log_lost - conditionally log lost audit message event 316 * @message: the message stating reason for lost audit message 317 * 318 * Emit at least 1 message per second, even if audit_rate_check is 319 * throttling. 320 * Always increment the lost messages counter. 321 */ 322 void audit_log_lost(const char *message) 323 { 324 static unsigned long last_msg = 0; 325 static DEFINE_SPINLOCK(lock); 326 unsigned long flags; 327 unsigned long now; 328 int print; 329 330 atomic_inc(&audit_lost); 331 332 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 333 334 if (!print) { 335 spin_lock_irqsave(&lock, flags); 336 now = jiffies; 337 if (now - last_msg > HZ) { 338 print = 1; 339 last_msg = now; 340 } 341 spin_unlock_irqrestore(&lock, flags); 342 } 343 344 if (print) { 345 if (printk_ratelimit()) 346 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 347 atomic_read(&audit_lost), 348 audit_rate_limit, 349 audit_backlog_limit); 350 audit_panic(message); 351 } 352 } 353 354 static int audit_log_config_change(char *function_name, u32 new, u32 old, 355 int allow_changes) 356 { 357 struct audit_buffer *ab; 358 int rc = 0; 359 360 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 361 if (unlikely(!ab)) 362 return rc; 363 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 364 audit_log_session_info(ab); 365 rc = audit_log_task_context(ab); 366 if (rc) 367 allow_changes = 0; /* Something weird, deny request */ 368 audit_log_format(ab, " res=%d", allow_changes); 369 audit_log_end(ab); 370 return rc; 371 } 372 373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 374 { 375 int allow_changes, rc = 0; 376 u32 old = *to_change; 377 378 /* check if we are locked */ 379 if (audit_enabled == AUDIT_LOCKED) 380 allow_changes = 0; 381 else 382 allow_changes = 1; 383 384 if (audit_enabled != AUDIT_OFF) { 385 rc = audit_log_config_change(function_name, new, old, allow_changes); 386 if (rc) 387 allow_changes = 0; 388 } 389 390 /* If we are allowed, make the change */ 391 if (allow_changes == 1) 392 *to_change = new; 393 /* Not allowed, update reason */ 394 else if (rc == 0) 395 rc = -EPERM; 396 return rc; 397 } 398 399 static int audit_set_rate_limit(u32 limit) 400 { 401 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 402 } 403 404 static int audit_set_backlog_limit(u32 limit) 405 { 406 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 407 } 408 409 static int audit_set_backlog_wait_time(u32 timeout) 410 { 411 return audit_do_config_change("audit_backlog_wait_time", 412 &audit_backlog_wait_time, timeout); 413 } 414 415 static int audit_set_enabled(u32 state) 416 { 417 int rc; 418 if (state > AUDIT_LOCKED) 419 return -EINVAL; 420 421 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 422 if (!rc) 423 audit_ever_enabled |= !!state; 424 425 return rc; 426 } 427 428 static int audit_set_failure(u32 state) 429 { 430 if (state != AUDIT_FAIL_SILENT 431 && state != AUDIT_FAIL_PRINTK 432 && state != AUDIT_FAIL_PANIC) 433 return -EINVAL; 434 435 return audit_do_config_change("audit_failure", &audit_failure, state); 436 } 437 438 /** 439 * auditd_conn_free - RCU helper to release an auditd connection struct 440 * @rcu: RCU head 441 * 442 * Description: 443 * Drop any references inside the auditd connection tracking struct and free 444 * the memory. 445 */ 446 static void auditd_conn_free(struct rcu_head *rcu) 447 { 448 struct auditd_connection *ac; 449 450 ac = container_of(rcu, struct auditd_connection, rcu); 451 put_pid(ac->pid); 452 put_net(ac->net); 453 kfree(ac); 454 } 455 456 /** 457 * auditd_set - Set/Reset the auditd connection state 458 * @pid: auditd PID 459 * @portid: auditd netlink portid 460 * @net: auditd network namespace pointer 461 * 462 * Description: 463 * This function will obtain and drop network namespace references as 464 * necessary. Returns zero on success, negative values on failure. 465 */ 466 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 467 { 468 unsigned long flags; 469 struct auditd_connection *ac_old, *ac_new; 470 471 if (!pid || !net) 472 return -EINVAL; 473 474 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 475 if (!ac_new) 476 return -ENOMEM; 477 ac_new->pid = get_pid(pid); 478 ac_new->portid = portid; 479 ac_new->net = get_net(net); 480 481 spin_lock_irqsave(&auditd_conn_lock, flags); 482 ac_old = rcu_dereference_protected(auditd_conn, 483 lockdep_is_held(&auditd_conn_lock)); 484 rcu_assign_pointer(auditd_conn, ac_new); 485 spin_unlock_irqrestore(&auditd_conn_lock, flags); 486 487 if (ac_old) 488 call_rcu(&ac_old->rcu, auditd_conn_free); 489 490 return 0; 491 } 492 493 /** 494 * kauditd_print_skb - Print the audit record to the ring buffer 495 * @skb: audit record 496 * 497 * Whatever the reason, this packet may not make it to the auditd connection 498 * so write it via printk so the information isn't completely lost. 499 */ 500 static void kauditd_printk_skb(struct sk_buff *skb) 501 { 502 struct nlmsghdr *nlh = nlmsg_hdr(skb); 503 char *data = nlmsg_data(nlh); 504 505 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 506 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 507 } 508 509 /** 510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 511 * @skb: audit record 512 * 513 * Description: 514 * This should only be used by the kauditd_thread when it fails to flush the 515 * hold queue. 516 */ 517 static void kauditd_rehold_skb(struct sk_buff *skb) 518 { 519 /* put the record back in the queue at the same place */ 520 skb_queue_head(&audit_hold_queue, skb); 521 } 522 523 /** 524 * kauditd_hold_skb - Queue an audit record, waiting for auditd 525 * @skb: audit record 526 * 527 * Description: 528 * Queue the audit record, waiting for an instance of auditd. When this 529 * function is called we haven't given up yet on sending the record, but things 530 * are not looking good. The first thing we want to do is try to write the 531 * record via printk and then see if we want to try and hold on to the record 532 * and queue it, if we have room. If we want to hold on to the record, but we 533 * don't have room, record a record lost message. 534 */ 535 static void kauditd_hold_skb(struct sk_buff *skb) 536 { 537 /* at this point it is uncertain if we will ever send this to auditd so 538 * try to send the message via printk before we go any further */ 539 kauditd_printk_skb(skb); 540 541 /* can we just silently drop the message? */ 542 if (!audit_default) { 543 kfree_skb(skb); 544 return; 545 } 546 547 /* if we have room, queue the message */ 548 if (!audit_backlog_limit || 549 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 550 skb_queue_tail(&audit_hold_queue, skb); 551 return; 552 } 553 554 /* we have no other options - drop the message */ 555 audit_log_lost("kauditd hold queue overflow"); 556 kfree_skb(skb); 557 } 558 559 /** 560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 561 * @skb: audit record 562 * 563 * Description: 564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 565 * but for some reason we are having problems sending it audit records so 566 * queue the given record and attempt to resend. 567 */ 568 static void kauditd_retry_skb(struct sk_buff *skb) 569 { 570 /* NOTE: because records should only live in the retry queue for a 571 * short period of time, before either being sent or moved to the hold 572 * queue, we don't currently enforce a limit on this queue */ 573 skb_queue_tail(&audit_retry_queue, skb); 574 } 575 576 /** 577 * auditd_reset - Disconnect the auditd connection 578 * @ac: auditd connection state 579 * 580 * Description: 581 * Break the auditd/kauditd connection and move all the queued records into the 582 * hold queue in case auditd reconnects. It is important to note that the @ac 583 * pointer should never be dereferenced inside this function as it may be NULL 584 * or invalid, you can only compare the memory address! If @ac is NULL then 585 * the connection will always be reset. 586 */ 587 static void auditd_reset(const struct auditd_connection *ac) 588 { 589 unsigned long flags; 590 struct sk_buff *skb; 591 struct auditd_connection *ac_old; 592 593 /* if it isn't already broken, break the connection */ 594 spin_lock_irqsave(&auditd_conn_lock, flags); 595 ac_old = rcu_dereference_protected(auditd_conn, 596 lockdep_is_held(&auditd_conn_lock)); 597 if (ac && ac != ac_old) { 598 /* someone already registered a new auditd connection */ 599 spin_unlock_irqrestore(&auditd_conn_lock, flags); 600 return; 601 } 602 rcu_assign_pointer(auditd_conn, NULL); 603 spin_unlock_irqrestore(&auditd_conn_lock, flags); 604 605 if (ac_old) 606 call_rcu(&ac_old->rcu, auditd_conn_free); 607 608 /* flush the retry queue to the hold queue, but don't touch the main 609 * queue since we need to process that normally for multicast */ 610 while ((skb = skb_dequeue(&audit_retry_queue))) 611 kauditd_hold_skb(skb); 612 } 613 614 /** 615 * auditd_send_unicast_skb - Send a record via unicast to auditd 616 * @skb: audit record 617 * 618 * Description: 619 * Send a skb to the audit daemon, returns positive/zero values on success and 620 * negative values on failure; in all cases the skb will be consumed by this 621 * function. If the send results in -ECONNREFUSED the connection with auditd 622 * will be reset. This function may sleep so callers should not hold any locks 623 * where this would cause a problem. 624 */ 625 static int auditd_send_unicast_skb(struct sk_buff *skb) 626 { 627 int rc; 628 u32 portid; 629 struct net *net; 630 struct sock *sk; 631 struct auditd_connection *ac; 632 633 /* NOTE: we can't call netlink_unicast while in the RCU section so 634 * take a reference to the network namespace and grab local 635 * copies of the namespace, the sock, and the portid; the 636 * namespace and sock aren't going to go away while we hold a 637 * reference and if the portid does become invalid after the RCU 638 * section netlink_unicast() should safely return an error */ 639 640 rcu_read_lock(); 641 ac = rcu_dereference(auditd_conn); 642 if (!ac) { 643 rcu_read_unlock(); 644 kfree_skb(skb); 645 rc = -ECONNREFUSED; 646 goto err; 647 } 648 net = get_net(ac->net); 649 sk = audit_get_sk(net); 650 portid = ac->portid; 651 rcu_read_unlock(); 652 653 rc = netlink_unicast(sk, skb, portid, 0); 654 put_net(net); 655 if (rc < 0) 656 goto err; 657 658 return rc; 659 660 err: 661 if (ac && rc == -ECONNREFUSED) 662 auditd_reset(ac); 663 return rc; 664 } 665 666 /** 667 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 668 * @sk: the sending sock 669 * @portid: the netlink destination 670 * @queue: the skb queue to process 671 * @retry_limit: limit on number of netlink unicast failures 672 * @skb_hook: per-skb hook for additional processing 673 * @err_hook: hook called if the skb fails the netlink unicast send 674 * 675 * Description: 676 * Run through the given queue and attempt to send the audit records to auditd, 677 * returns zero on success, negative values on failure. It is up to the caller 678 * to ensure that the @sk is valid for the duration of this function. 679 * 680 */ 681 static int kauditd_send_queue(struct sock *sk, u32 portid, 682 struct sk_buff_head *queue, 683 unsigned int retry_limit, 684 void (*skb_hook)(struct sk_buff *skb), 685 void (*err_hook)(struct sk_buff *skb)) 686 { 687 int rc = 0; 688 struct sk_buff *skb; 689 static unsigned int failed = 0; 690 691 /* NOTE: kauditd_thread takes care of all our locking, we just use 692 * the netlink info passed to us (e.g. sk and portid) */ 693 694 while ((skb = skb_dequeue(queue))) { 695 /* call the skb_hook for each skb we touch */ 696 if (skb_hook) 697 (*skb_hook)(skb); 698 699 /* can we send to anyone via unicast? */ 700 if (!sk) { 701 if (err_hook) 702 (*err_hook)(skb); 703 continue; 704 } 705 706 /* grab an extra skb reference in case of error */ 707 skb_get(skb); 708 rc = netlink_unicast(sk, skb, portid, 0); 709 if (rc < 0) { 710 /* fatal failure for our queue flush attempt? */ 711 if (++failed >= retry_limit || 712 rc == -ECONNREFUSED || rc == -EPERM) { 713 /* yes - error processing for the queue */ 714 sk = NULL; 715 if (err_hook) 716 (*err_hook)(skb); 717 if (!skb_hook) 718 goto out; 719 /* keep processing with the skb_hook */ 720 continue; 721 } else 722 /* no - requeue to preserve ordering */ 723 skb_queue_head(queue, skb); 724 } else { 725 /* it worked - drop the extra reference and continue */ 726 consume_skb(skb); 727 failed = 0; 728 } 729 } 730 731 out: 732 return (rc >= 0 ? 0 : rc); 733 } 734 735 /* 736 * kauditd_send_multicast_skb - Send a record to any multicast listeners 737 * @skb: audit record 738 * 739 * Description: 740 * Write a multicast message to anyone listening in the initial network 741 * namespace. This function doesn't consume an skb as might be expected since 742 * it has to copy it anyways. 743 */ 744 static void kauditd_send_multicast_skb(struct sk_buff *skb) 745 { 746 struct sk_buff *copy; 747 struct sock *sock = audit_get_sk(&init_net); 748 struct nlmsghdr *nlh; 749 750 /* NOTE: we are not taking an additional reference for init_net since 751 * we don't have to worry about it going away */ 752 753 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 754 return; 755 756 /* 757 * The seemingly wasteful skb_copy() rather than bumping the refcount 758 * using skb_get() is necessary because non-standard mods are made to 759 * the skb by the original kaudit unicast socket send routine. The 760 * existing auditd daemon assumes this breakage. Fixing this would 761 * require co-ordinating a change in the established protocol between 762 * the kaudit kernel subsystem and the auditd userspace code. There is 763 * no reason for new multicast clients to continue with this 764 * non-compliance. 765 */ 766 copy = skb_copy(skb, GFP_KERNEL); 767 if (!copy) 768 return; 769 nlh = nlmsg_hdr(copy); 770 nlh->nlmsg_len = skb->len; 771 772 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 773 } 774 775 /** 776 * kauditd_thread - Worker thread to send audit records to userspace 777 * @dummy: unused 778 */ 779 static int kauditd_thread(void *dummy) 780 { 781 int rc; 782 u32 portid = 0; 783 struct net *net = NULL; 784 struct sock *sk = NULL; 785 struct auditd_connection *ac; 786 787 #define UNICAST_RETRIES 5 788 789 set_freezable(); 790 while (!kthread_should_stop()) { 791 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 792 rcu_read_lock(); 793 ac = rcu_dereference(auditd_conn); 794 if (!ac) { 795 rcu_read_unlock(); 796 goto main_queue; 797 } 798 net = get_net(ac->net); 799 sk = audit_get_sk(net); 800 portid = ac->portid; 801 rcu_read_unlock(); 802 803 /* attempt to flush the hold queue */ 804 rc = kauditd_send_queue(sk, portid, 805 &audit_hold_queue, UNICAST_RETRIES, 806 NULL, kauditd_rehold_skb); 807 if (ac && rc < 0) { 808 sk = NULL; 809 auditd_reset(ac); 810 goto main_queue; 811 } 812 813 /* attempt to flush the retry queue */ 814 rc = kauditd_send_queue(sk, portid, 815 &audit_retry_queue, UNICAST_RETRIES, 816 NULL, kauditd_hold_skb); 817 if (ac && rc < 0) { 818 sk = NULL; 819 auditd_reset(ac); 820 goto main_queue; 821 } 822 823 main_queue: 824 /* process the main queue - do the multicast send and attempt 825 * unicast, dump failed record sends to the retry queue; if 826 * sk == NULL due to previous failures we will just do the 827 * multicast send and move the record to the hold queue */ 828 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 829 kauditd_send_multicast_skb, 830 (sk ? 831 kauditd_retry_skb : kauditd_hold_skb)); 832 if (ac && rc < 0) 833 auditd_reset(ac); 834 sk = NULL; 835 836 /* drop our netns reference, no auditd sends past this line */ 837 if (net) { 838 put_net(net); 839 net = NULL; 840 } 841 842 /* we have processed all the queues so wake everyone */ 843 wake_up(&audit_backlog_wait); 844 845 /* NOTE: we want to wake up if there is anything on the queue, 846 * regardless of if an auditd is connected, as we need to 847 * do the multicast send and rotate records from the 848 * main queue to the retry/hold queues */ 849 wait_event_freezable(kauditd_wait, 850 (skb_queue_len(&audit_queue) ? 1 : 0)); 851 } 852 853 return 0; 854 } 855 856 int audit_send_list(void *_dest) 857 { 858 struct audit_netlink_list *dest = _dest; 859 struct sk_buff *skb; 860 struct sock *sk = audit_get_sk(dest->net); 861 862 /* wait for parent to finish and send an ACK */ 863 mutex_lock(&audit_cmd_mutex); 864 mutex_unlock(&audit_cmd_mutex); 865 866 while ((skb = __skb_dequeue(&dest->q)) != NULL) 867 netlink_unicast(sk, skb, dest->portid, 0); 868 869 put_net(dest->net); 870 kfree(dest); 871 872 return 0; 873 } 874 875 struct sk_buff *audit_make_reply(int seq, int type, int done, 876 int multi, const void *payload, int size) 877 { 878 struct sk_buff *skb; 879 struct nlmsghdr *nlh; 880 void *data; 881 int flags = multi ? NLM_F_MULTI : 0; 882 int t = done ? NLMSG_DONE : type; 883 884 skb = nlmsg_new(size, GFP_KERNEL); 885 if (!skb) 886 return NULL; 887 888 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 889 if (!nlh) 890 goto out_kfree_skb; 891 data = nlmsg_data(nlh); 892 memcpy(data, payload, size); 893 return skb; 894 895 out_kfree_skb: 896 kfree_skb(skb); 897 return NULL; 898 } 899 900 static int audit_send_reply_thread(void *arg) 901 { 902 struct audit_reply *reply = (struct audit_reply *)arg; 903 struct sock *sk = audit_get_sk(reply->net); 904 905 mutex_lock(&audit_cmd_mutex); 906 mutex_unlock(&audit_cmd_mutex); 907 908 /* Ignore failure. It'll only happen if the sender goes away, 909 because our timeout is set to infinite. */ 910 netlink_unicast(sk, reply->skb, reply->portid, 0); 911 put_net(reply->net); 912 kfree(reply); 913 return 0; 914 } 915 916 /** 917 * audit_send_reply - send an audit reply message via netlink 918 * @request_skb: skb of request we are replying to (used to target the reply) 919 * @seq: sequence number 920 * @type: audit message type 921 * @done: done (last) flag 922 * @multi: multi-part message flag 923 * @payload: payload data 924 * @size: payload size 925 * 926 * Allocates an skb, builds the netlink message, and sends it to the port id. 927 * No failure notifications. 928 */ 929 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 930 int multi, const void *payload, int size) 931 { 932 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 933 struct sk_buff *skb; 934 struct task_struct *tsk; 935 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 936 GFP_KERNEL); 937 938 if (!reply) 939 return; 940 941 skb = audit_make_reply(seq, type, done, multi, payload, size); 942 if (!skb) 943 goto out; 944 945 reply->net = get_net(net); 946 reply->portid = NETLINK_CB(request_skb).portid; 947 reply->skb = skb; 948 949 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 950 if (!IS_ERR(tsk)) 951 return; 952 kfree_skb(skb); 953 out: 954 kfree(reply); 955 } 956 957 /* 958 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 959 * control messages. 960 */ 961 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 962 { 963 int err = 0; 964 965 /* Only support initial user namespace for now. */ 966 /* 967 * We return ECONNREFUSED because it tricks userspace into thinking 968 * that audit was not configured into the kernel. Lots of users 969 * configure their PAM stack (because that's what the distro does) 970 * to reject login if unable to send messages to audit. If we return 971 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 972 * configured in and will let login proceed. If we return EPERM 973 * userspace will reject all logins. This should be removed when we 974 * support non init namespaces!! 975 */ 976 if (current_user_ns() != &init_user_ns) 977 return -ECONNREFUSED; 978 979 switch (msg_type) { 980 case AUDIT_LIST: 981 case AUDIT_ADD: 982 case AUDIT_DEL: 983 return -EOPNOTSUPP; 984 case AUDIT_GET: 985 case AUDIT_SET: 986 case AUDIT_GET_FEATURE: 987 case AUDIT_SET_FEATURE: 988 case AUDIT_LIST_RULES: 989 case AUDIT_ADD_RULE: 990 case AUDIT_DEL_RULE: 991 case AUDIT_SIGNAL_INFO: 992 case AUDIT_TTY_GET: 993 case AUDIT_TTY_SET: 994 case AUDIT_TRIM: 995 case AUDIT_MAKE_EQUIV: 996 /* Only support auditd and auditctl in initial pid namespace 997 * for now. */ 998 if (task_active_pid_ns(current) != &init_pid_ns) 999 return -EPERM; 1000 1001 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1002 err = -EPERM; 1003 break; 1004 case AUDIT_USER: 1005 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1006 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1007 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1008 err = -EPERM; 1009 break; 1010 default: /* bad msg */ 1011 err = -EINVAL; 1012 } 1013 1014 return err; 1015 } 1016 1017 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 1018 { 1019 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1020 pid_t pid = task_tgid_nr(current); 1021 1022 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1023 *ab = NULL; 1024 return; 1025 } 1026 1027 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 1028 if (unlikely(!*ab)) 1029 return; 1030 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 1031 audit_log_session_info(*ab); 1032 audit_log_task_context(*ab); 1033 } 1034 1035 int is_audit_feature_set(int i) 1036 { 1037 return af.features & AUDIT_FEATURE_TO_MASK(i); 1038 } 1039 1040 1041 static int audit_get_feature(struct sk_buff *skb) 1042 { 1043 u32 seq; 1044 1045 seq = nlmsg_hdr(skb)->nlmsg_seq; 1046 1047 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1048 1049 return 0; 1050 } 1051 1052 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1053 u32 old_lock, u32 new_lock, int res) 1054 { 1055 struct audit_buffer *ab; 1056 1057 if (audit_enabled == AUDIT_OFF) 1058 return; 1059 1060 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1061 audit_log_task_info(ab, current); 1062 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1063 audit_feature_names[which], !!old_feature, !!new_feature, 1064 !!old_lock, !!new_lock, res); 1065 audit_log_end(ab); 1066 } 1067 1068 static int audit_set_feature(struct sk_buff *skb) 1069 { 1070 struct audit_features *uaf; 1071 int i; 1072 1073 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1074 uaf = nlmsg_data(nlmsg_hdr(skb)); 1075 1076 /* if there is ever a version 2 we should handle that here */ 1077 1078 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1079 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1080 u32 old_feature, new_feature, old_lock, new_lock; 1081 1082 /* if we are not changing this feature, move along */ 1083 if (!(feature & uaf->mask)) 1084 continue; 1085 1086 old_feature = af.features & feature; 1087 new_feature = uaf->features & feature; 1088 new_lock = (uaf->lock | af.lock) & feature; 1089 old_lock = af.lock & feature; 1090 1091 /* are we changing a locked feature? */ 1092 if (old_lock && (new_feature != old_feature)) { 1093 audit_log_feature_change(i, old_feature, new_feature, 1094 old_lock, new_lock, 0); 1095 return -EPERM; 1096 } 1097 } 1098 /* nothing invalid, do the changes */ 1099 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1100 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1101 u32 old_feature, new_feature, old_lock, new_lock; 1102 1103 /* if we are not changing this feature, move along */ 1104 if (!(feature & uaf->mask)) 1105 continue; 1106 1107 old_feature = af.features & feature; 1108 new_feature = uaf->features & feature; 1109 old_lock = af.lock & feature; 1110 new_lock = (uaf->lock | af.lock) & feature; 1111 1112 if (new_feature != old_feature) 1113 audit_log_feature_change(i, old_feature, new_feature, 1114 old_lock, new_lock, 1); 1115 1116 if (new_feature) 1117 af.features |= feature; 1118 else 1119 af.features &= ~feature; 1120 af.lock |= new_lock; 1121 } 1122 1123 return 0; 1124 } 1125 1126 static int audit_replace(struct pid *pid) 1127 { 1128 pid_t pvnr; 1129 struct sk_buff *skb; 1130 1131 pvnr = pid_vnr(pid); 1132 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1133 if (!skb) 1134 return -ENOMEM; 1135 return auditd_send_unicast_skb(skb); 1136 } 1137 1138 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1139 { 1140 u32 seq; 1141 void *data; 1142 int err; 1143 struct audit_buffer *ab; 1144 u16 msg_type = nlh->nlmsg_type; 1145 struct audit_sig_info *sig_data; 1146 char *ctx = NULL; 1147 u32 len; 1148 1149 err = audit_netlink_ok(skb, msg_type); 1150 if (err) 1151 return err; 1152 1153 seq = nlh->nlmsg_seq; 1154 data = nlmsg_data(nlh); 1155 1156 switch (msg_type) { 1157 case AUDIT_GET: { 1158 struct audit_status s; 1159 memset(&s, 0, sizeof(s)); 1160 s.enabled = audit_enabled; 1161 s.failure = audit_failure; 1162 /* NOTE: use pid_vnr() so the PID is relative to the current 1163 * namespace */ 1164 s.pid = auditd_pid_vnr(); 1165 s.rate_limit = audit_rate_limit; 1166 s.backlog_limit = audit_backlog_limit; 1167 s.lost = atomic_read(&audit_lost); 1168 s.backlog = skb_queue_len(&audit_queue); 1169 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1170 s.backlog_wait_time = audit_backlog_wait_time; 1171 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1172 break; 1173 } 1174 case AUDIT_SET: { 1175 struct audit_status s; 1176 memset(&s, 0, sizeof(s)); 1177 /* guard against past and future API changes */ 1178 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1179 if (s.mask & AUDIT_STATUS_ENABLED) { 1180 err = audit_set_enabled(s.enabled); 1181 if (err < 0) 1182 return err; 1183 } 1184 if (s.mask & AUDIT_STATUS_FAILURE) { 1185 err = audit_set_failure(s.failure); 1186 if (err < 0) 1187 return err; 1188 } 1189 if (s.mask & AUDIT_STATUS_PID) { 1190 /* NOTE: we are using the vnr PID functions below 1191 * because the s.pid value is relative to the 1192 * namespace of the caller; at present this 1193 * doesn't matter much since you can really only 1194 * run auditd from the initial pid namespace, but 1195 * something to keep in mind if this changes */ 1196 pid_t new_pid = s.pid; 1197 pid_t auditd_pid; 1198 struct pid *req_pid = task_tgid(current); 1199 1200 /* sanity check - PID values must match */ 1201 if (new_pid != pid_vnr(req_pid)) 1202 return -EINVAL; 1203 1204 /* test the auditd connection */ 1205 audit_replace(req_pid); 1206 1207 auditd_pid = auditd_pid_vnr(); 1208 /* only the current auditd can unregister itself */ 1209 if ((!new_pid) && (new_pid != auditd_pid)) { 1210 audit_log_config_change("audit_pid", new_pid, 1211 auditd_pid, 0); 1212 return -EACCES; 1213 } 1214 /* replacing a healthy auditd is not allowed */ 1215 if (auditd_pid && new_pid) { 1216 audit_log_config_change("audit_pid", new_pid, 1217 auditd_pid, 0); 1218 return -EEXIST; 1219 } 1220 1221 if (new_pid) { 1222 /* register a new auditd connection */ 1223 err = auditd_set(req_pid, 1224 NETLINK_CB(skb).portid, 1225 sock_net(NETLINK_CB(skb).sk)); 1226 if (audit_enabled != AUDIT_OFF) 1227 audit_log_config_change("audit_pid", 1228 new_pid, 1229 auditd_pid, 1230 err ? 0 : 1); 1231 if (err) 1232 return err; 1233 1234 /* try to process any backlog */ 1235 wake_up_interruptible(&kauditd_wait); 1236 } else { 1237 if (audit_enabled != AUDIT_OFF) 1238 audit_log_config_change("audit_pid", 1239 new_pid, 1240 auditd_pid, 1); 1241 1242 /* unregister the auditd connection */ 1243 auditd_reset(NULL); 1244 } 1245 } 1246 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1247 err = audit_set_rate_limit(s.rate_limit); 1248 if (err < 0) 1249 return err; 1250 } 1251 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1252 err = audit_set_backlog_limit(s.backlog_limit); 1253 if (err < 0) 1254 return err; 1255 } 1256 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1257 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1258 return -EINVAL; 1259 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1260 return -EINVAL; 1261 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1262 if (err < 0) 1263 return err; 1264 } 1265 if (s.mask == AUDIT_STATUS_LOST) { 1266 u32 lost = atomic_xchg(&audit_lost, 0); 1267 1268 audit_log_config_change("lost", 0, lost, 1); 1269 return lost; 1270 } 1271 break; 1272 } 1273 case AUDIT_GET_FEATURE: 1274 err = audit_get_feature(skb); 1275 if (err) 1276 return err; 1277 break; 1278 case AUDIT_SET_FEATURE: 1279 err = audit_set_feature(skb); 1280 if (err) 1281 return err; 1282 break; 1283 case AUDIT_USER: 1284 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1285 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1286 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1287 return 0; 1288 1289 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1290 if (err == 1) { /* match or error */ 1291 err = 0; 1292 if (msg_type == AUDIT_USER_TTY) { 1293 err = tty_audit_push(); 1294 if (err) 1295 break; 1296 } 1297 audit_log_common_recv_msg(&ab, msg_type); 1298 if (msg_type != AUDIT_USER_TTY) 1299 audit_log_format(ab, " msg='%.*s'", 1300 AUDIT_MESSAGE_TEXT_MAX, 1301 (char *)data); 1302 else { 1303 int size; 1304 1305 audit_log_format(ab, " data="); 1306 size = nlmsg_len(nlh); 1307 if (size > 0 && 1308 ((unsigned char *)data)[size - 1] == '\0') 1309 size--; 1310 audit_log_n_untrustedstring(ab, data, size); 1311 } 1312 audit_log_end(ab); 1313 } 1314 break; 1315 case AUDIT_ADD_RULE: 1316 case AUDIT_DEL_RULE: 1317 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1318 return -EINVAL; 1319 if (audit_enabled == AUDIT_LOCKED) { 1320 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1321 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 1322 audit_log_end(ab); 1323 return -EPERM; 1324 } 1325 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh)); 1326 break; 1327 case AUDIT_LIST_RULES: 1328 err = audit_list_rules_send(skb, seq); 1329 break; 1330 case AUDIT_TRIM: 1331 audit_trim_trees(); 1332 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1333 audit_log_format(ab, " op=trim res=1"); 1334 audit_log_end(ab); 1335 break; 1336 case AUDIT_MAKE_EQUIV: { 1337 void *bufp = data; 1338 u32 sizes[2]; 1339 size_t msglen = nlmsg_len(nlh); 1340 char *old, *new; 1341 1342 err = -EINVAL; 1343 if (msglen < 2 * sizeof(u32)) 1344 break; 1345 memcpy(sizes, bufp, 2 * sizeof(u32)); 1346 bufp += 2 * sizeof(u32); 1347 msglen -= 2 * sizeof(u32); 1348 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1349 if (IS_ERR(old)) { 1350 err = PTR_ERR(old); 1351 break; 1352 } 1353 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1354 if (IS_ERR(new)) { 1355 err = PTR_ERR(new); 1356 kfree(old); 1357 break; 1358 } 1359 /* OK, here comes... */ 1360 err = audit_tag_tree(old, new); 1361 1362 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1363 1364 audit_log_format(ab, " op=make_equiv old="); 1365 audit_log_untrustedstring(ab, old); 1366 audit_log_format(ab, " new="); 1367 audit_log_untrustedstring(ab, new); 1368 audit_log_format(ab, " res=%d", !err); 1369 audit_log_end(ab); 1370 kfree(old); 1371 kfree(new); 1372 break; 1373 } 1374 case AUDIT_SIGNAL_INFO: 1375 len = 0; 1376 if (audit_sig_sid) { 1377 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1378 if (err) 1379 return err; 1380 } 1381 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1382 if (!sig_data) { 1383 if (audit_sig_sid) 1384 security_release_secctx(ctx, len); 1385 return -ENOMEM; 1386 } 1387 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1388 sig_data->pid = audit_sig_pid; 1389 if (audit_sig_sid) { 1390 memcpy(sig_data->ctx, ctx, len); 1391 security_release_secctx(ctx, len); 1392 } 1393 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1394 sig_data, sizeof(*sig_data) + len); 1395 kfree(sig_data); 1396 break; 1397 case AUDIT_TTY_GET: { 1398 struct audit_tty_status s; 1399 unsigned int t; 1400 1401 t = READ_ONCE(current->signal->audit_tty); 1402 s.enabled = t & AUDIT_TTY_ENABLE; 1403 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1404 1405 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1406 break; 1407 } 1408 case AUDIT_TTY_SET: { 1409 struct audit_tty_status s, old; 1410 struct audit_buffer *ab; 1411 unsigned int t; 1412 1413 memset(&s, 0, sizeof(s)); 1414 /* guard against past and future API changes */ 1415 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1416 /* check if new data is valid */ 1417 if ((s.enabled != 0 && s.enabled != 1) || 1418 (s.log_passwd != 0 && s.log_passwd != 1)) 1419 err = -EINVAL; 1420 1421 if (err) 1422 t = READ_ONCE(current->signal->audit_tty); 1423 else { 1424 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1425 t = xchg(¤t->signal->audit_tty, t); 1426 } 1427 old.enabled = t & AUDIT_TTY_ENABLE; 1428 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1429 1430 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1431 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1432 " old-log_passwd=%d new-log_passwd=%d res=%d", 1433 old.enabled, s.enabled, old.log_passwd, 1434 s.log_passwd, !err); 1435 audit_log_end(ab); 1436 break; 1437 } 1438 default: 1439 err = -EINVAL; 1440 break; 1441 } 1442 1443 return err < 0 ? err : 0; 1444 } 1445 1446 /** 1447 * audit_receive - receive messages from a netlink control socket 1448 * @skb: the message buffer 1449 * 1450 * Parse the provided skb and deal with any messages that may be present, 1451 * malformed skbs are discarded. 1452 */ 1453 static void audit_receive(struct sk_buff *skb) 1454 { 1455 struct nlmsghdr *nlh; 1456 /* 1457 * len MUST be signed for nlmsg_next to be able to dec it below 0 1458 * if the nlmsg_len was not aligned 1459 */ 1460 int len; 1461 int err; 1462 1463 nlh = nlmsg_hdr(skb); 1464 len = skb->len; 1465 1466 mutex_lock(&audit_cmd_mutex); 1467 while (nlmsg_ok(nlh, len)) { 1468 err = audit_receive_msg(skb, nlh); 1469 /* if err or if this message says it wants a response */ 1470 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1471 netlink_ack(skb, nlh, err, NULL); 1472 1473 nlh = nlmsg_next(nlh, &len); 1474 } 1475 mutex_unlock(&audit_cmd_mutex); 1476 } 1477 1478 /* Run custom bind function on netlink socket group connect or bind requests. */ 1479 static int audit_bind(struct net *net, int group) 1480 { 1481 if (!capable(CAP_AUDIT_READ)) 1482 return -EPERM; 1483 1484 return 0; 1485 } 1486 1487 static int __net_init audit_net_init(struct net *net) 1488 { 1489 struct netlink_kernel_cfg cfg = { 1490 .input = audit_receive, 1491 .bind = audit_bind, 1492 .flags = NL_CFG_F_NONROOT_RECV, 1493 .groups = AUDIT_NLGRP_MAX, 1494 }; 1495 1496 struct audit_net *aunet = net_generic(net, audit_net_id); 1497 1498 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1499 if (aunet->sk == NULL) { 1500 audit_panic("cannot initialize netlink socket in namespace"); 1501 return -ENOMEM; 1502 } 1503 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1504 1505 return 0; 1506 } 1507 1508 static void __net_exit audit_net_exit(struct net *net) 1509 { 1510 struct audit_net *aunet = net_generic(net, audit_net_id); 1511 1512 /* NOTE: you would think that we would want to check the auditd 1513 * connection and potentially reset it here if it lives in this 1514 * namespace, but since the auditd connection tracking struct holds a 1515 * reference to this namespace (see auditd_set()) we are only ever 1516 * going to get here after that connection has been released */ 1517 1518 netlink_kernel_release(aunet->sk); 1519 } 1520 1521 static struct pernet_operations audit_net_ops __net_initdata = { 1522 .init = audit_net_init, 1523 .exit = audit_net_exit, 1524 .id = &audit_net_id, 1525 .size = sizeof(struct audit_net), 1526 }; 1527 1528 /* Initialize audit support at boot time. */ 1529 static int __init audit_init(void) 1530 { 1531 int i; 1532 1533 if (audit_initialized == AUDIT_DISABLED) 1534 return 0; 1535 1536 audit_buffer_cache = kmem_cache_create("audit_buffer", 1537 sizeof(struct audit_buffer), 1538 0, SLAB_PANIC, NULL); 1539 1540 skb_queue_head_init(&audit_queue); 1541 skb_queue_head_init(&audit_retry_queue); 1542 skb_queue_head_init(&audit_hold_queue); 1543 1544 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1545 INIT_LIST_HEAD(&audit_inode_hash[i]); 1546 1547 pr_info("initializing netlink subsys (%s)\n", 1548 audit_default ? "enabled" : "disabled"); 1549 register_pernet_subsys(&audit_net_ops); 1550 1551 audit_initialized = AUDIT_INITIALIZED; 1552 audit_enabled = audit_default; 1553 audit_ever_enabled |= !!audit_default; 1554 1555 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1556 if (IS_ERR(kauditd_task)) { 1557 int err = PTR_ERR(kauditd_task); 1558 panic("audit: failed to start the kauditd thread (%d)\n", err); 1559 } 1560 1561 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1562 "state=initialized audit_enabled=%u res=1", 1563 audit_enabled); 1564 1565 return 0; 1566 } 1567 __initcall(audit_init); 1568 1569 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1570 static int __init audit_enable(char *str) 1571 { 1572 audit_default = !!simple_strtol(str, NULL, 0); 1573 if (!audit_default) 1574 audit_initialized = AUDIT_DISABLED; 1575 1576 pr_info("%s\n", audit_default ? 1577 "enabled (after initialization)" : "disabled (until reboot)"); 1578 1579 return 1; 1580 } 1581 __setup("audit=", audit_enable); 1582 1583 /* Process kernel command-line parameter at boot time. 1584 * audit_backlog_limit=<n> */ 1585 static int __init audit_backlog_limit_set(char *str) 1586 { 1587 u32 audit_backlog_limit_arg; 1588 1589 pr_info("audit_backlog_limit: "); 1590 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1591 pr_cont("using default of %u, unable to parse %s\n", 1592 audit_backlog_limit, str); 1593 return 1; 1594 } 1595 1596 audit_backlog_limit = audit_backlog_limit_arg; 1597 pr_cont("%d\n", audit_backlog_limit); 1598 1599 return 1; 1600 } 1601 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1602 1603 static void audit_buffer_free(struct audit_buffer *ab) 1604 { 1605 if (!ab) 1606 return; 1607 1608 kfree_skb(ab->skb); 1609 kmem_cache_free(audit_buffer_cache, ab); 1610 } 1611 1612 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1613 gfp_t gfp_mask, int type) 1614 { 1615 struct audit_buffer *ab; 1616 1617 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1618 if (!ab) 1619 return NULL; 1620 1621 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1622 if (!ab->skb) 1623 goto err; 1624 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1625 goto err; 1626 1627 ab->ctx = ctx; 1628 ab->gfp_mask = gfp_mask; 1629 1630 return ab; 1631 1632 err: 1633 audit_buffer_free(ab); 1634 return NULL; 1635 } 1636 1637 /** 1638 * audit_serial - compute a serial number for the audit record 1639 * 1640 * Compute a serial number for the audit record. Audit records are 1641 * written to user-space as soon as they are generated, so a complete 1642 * audit record may be written in several pieces. The timestamp of the 1643 * record and this serial number are used by the user-space tools to 1644 * determine which pieces belong to the same audit record. The 1645 * (timestamp,serial) tuple is unique for each syscall and is live from 1646 * syscall entry to syscall exit. 1647 * 1648 * NOTE: Another possibility is to store the formatted records off the 1649 * audit context (for those records that have a context), and emit them 1650 * all at syscall exit. However, this could delay the reporting of 1651 * significant errors until syscall exit (or never, if the system 1652 * halts). 1653 */ 1654 unsigned int audit_serial(void) 1655 { 1656 static atomic_t serial = ATOMIC_INIT(0); 1657 1658 return atomic_add_return(1, &serial); 1659 } 1660 1661 static inline void audit_get_stamp(struct audit_context *ctx, 1662 struct timespec64 *t, unsigned int *serial) 1663 { 1664 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1665 ktime_get_real_ts64(t); 1666 *serial = audit_serial(); 1667 } 1668 } 1669 1670 /** 1671 * audit_log_start - obtain an audit buffer 1672 * @ctx: audit_context (may be NULL) 1673 * @gfp_mask: type of allocation 1674 * @type: audit message type 1675 * 1676 * Returns audit_buffer pointer on success or NULL on error. 1677 * 1678 * Obtain an audit buffer. This routine does locking to obtain the 1679 * audit buffer, but then no locking is required for calls to 1680 * audit_log_*format. If the task (ctx) is a task that is currently in a 1681 * syscall, then the syscall is marked as auditable and an audit record 1682 * will be written at syscall exit. If there is no associated task, then 1683 * task context (ctx) should be NULL. 1684 */ 1685 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1686 int type) 1687 { 1688 struct audit_buffer *ab; 1689 struct timespec64 t; 1690 unsigned int uninitialized_var(serial); 1691 1692 if (audit_initialized != AUDIT_INITIALIZED) 1693 return NULL; 1694 1695 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE))) 1696 return NULL; 1697 1698 /* NOTE: don't ever fail/sleep on these two conditions: 1699 * 1. auditd generated record - since we need auditd to drain the 1700 * queue; also, when we are checking for auditd, compare PIDs using 1701 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1702 * using a PID anchored in the caller's namespace 1703 * 2. generator holding the audit_cmd_mutex - we don't want to block 1704 * while holding the mutex */ 1705 if (!(auditd_test_task(current) || 1706 (current == __mutex_owner(&audit_cmd_mutex)))) { 1707 long stime = audit_backlog_wait_time; 1708 1709 while (audit_backlog_limit && 1710 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1711 /* wake kauditd to try and flush the queue */ 1712 wake_up_interruptible(&kauditd_wait); 1713 1714 /* sleep if we are allowed and we haven't exhausted our 1715 * backlog wait limit */ 1716 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1717 DECLARE_WAITQUEUE(wait, current); 1718 1719 add_wait_queue_exclusive(&audit_backlog_wait, 1720 &wait); 1721 set_current_state(TASK_UNINTERRUPTIBLE); 1722 stime = schedule_timeout(stime); 1723 remove_wait_queue(&audit_backlog_wait, &wait); 1724 } else { 1725 if (audit_rate_check() && printk_ratelimit()) 1726 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1727 skb_queue_len(&audit_queue), 1728 audit_backlog_limit); 1729 audit_log_lost("backlog limit exceeded"); 1730 return NULL; 1731 } 1732 } 1733 } 1734 1735 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1736 if (!ab) { 1737 audit_log_lost("out of memory in audit_log_start"); 1738 return NULL; 1739 } 1740 1741 audit_get_stamp(ab->ctx, &t, &serial); 1742 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1743 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1744 1745 return ab; 1746 } 1747 1748 /** 1749 * audit_expand - expand skb in the audit buffer 1750 * @ab: audit_buffer 1751 * @extra: space to add at tail of the skb 1752 * 1753 * Returns 0 (no space) on failed expansion, or available space if 1754 * successful. 1755 */ 1756 static inline int audit_expand(struct audit_buffer *ab, int extra) 1757 { 1758 struct sk_buff *skb = ab->skb; 1759 int oldtail = skb_tailroom(skb); 1760 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1761 int newtail = skb_tailroom(skb); 1762 1763 if (ret < 0) { 1764 audit_log_lost("out of memory in audit_expand"); 1765 return 0; 1766 } 1767 1768 skb->truesize += newtail - oldtail; 1769 return newtail; 1770 } 1771 1772 /* 1773 * Format an audit message into the audit buffer. If there isn't enough 1774 * room in the audit buffer, more room will be allocated and vsnprint 1775 * will be called a second time. Currently, we assume that a printk 1776 * can't format message larger than 1024 bytes, so we don't either. 1777 */ 1778 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1779 va_list args) 1780 { 1781 int len, avail; 1782 struct sk_buff *skb; 1783 va_list args2; 1784 1785 if (!ab) 1786 return; 1787 1788 BUG_ON(!ab->skb); 1789 skb = ab->skb; 1790 avail = skb_tailroom(skb); 1791 if (avail == 0) { 1792 avail = audit_expand(ab, AUDIT_BUFSIZ); 1793 if (!avail) 1794 goto out; 1795 } 1796 va_copy(args2, args); 1797 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1798 if (len >= avail) { 1799 /* The printk buffer is 1024 bytes long, so if we get 1800 * here and AUDIT_BUFSIZ is at least 1024, then we can 1801 * log everything that printk could have logged. */ 1802 avail = audit_expand(ab, 1803 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1804 if (!avail) 1805 goto out_va_end; 1806 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1807 } 1808 if (len > 0) 1809 skb_put(skb, len); 1810 out_va_end: 1811 va_end(args2); 1812 out: 1813 return; 1814 } 1815 1816 /** 1817 * audit_log_format - format a message into the audit buffer. 1818 * @ab: audit_buffer 1819 * @fmt: format string 1820 * @...: optional parameters matching @fmt string 1821 * 1822 * All the work is done in audit_log_vformat. 1823 */ 1824 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1825 { 1826 va_list args; 1827 1828 if (!ab) 1829 return; 1830 va_start(args, fmt); 1831 audit_log_vformat(ab, fmt, args); 1832 va_end(args); 1833 } 1834 1835 /** 1836 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1837 * @ab: the audit_buffer 1838 * @buf: buffer to convert to hex 1839 * @len: length of @buf to be converted 1840 * 1841 * No return value; failure to expand is silently ignored. 1842 * 1843 * This function will take the passed buf and convert it into a string of 1844 * ascii hex digits. The new string is placed onto the skb. 1845 */ 1846 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1847 size_t len) 1848 { 1849 int i, avail, new_len; 1850 unsigned char *ptr; 1851 struct sk_buff *skb; 1852 1853 if (!ab) 1854 return; 1855 1856 BUG_ON(!ab->skb); 1857 skb = ab->skb; 1858 avail = skb_tailroom(skb); 1859 new_len = len<<1; 1860 if (new_len >= avail) { 1861 /* Round the buffer request up to the next multiple */ 1862 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1863 avail = audit_expand(ab, new_len); 1864 if (!avail) 1865 return; 1866 } 1867 1868 ptr = skb_tail_pointer(skb); 1869 for (i = 0; i < len; i++) 1870 ptr = hex_byte_pack_upper(ptr, buf[i]); 1871 *ptr = 0; 1872 skb_put(skb, len << 1); /* new string is twice the old string */ 1873 } 1874 1875 /* 1876 * Format a string of no more than slen characters into the audit buffer, 1877 * enclosed in quote marks. 1878 */ 1879 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1880 size_t slen) 1881 { 1882 int avail, new_len; 1883 unsigned char *ptr; 1884 struct sk_buff *skb; 1885 1886 if (!ab) 1887 return; 1888 1889 BUG_ON(!ab->skb); 1890 skb = ab->skb; 1891 avail = skb_tailroom(skb); 1892 new_len = slen + 3; /* enclosing quotes + null terminator */ 1893 if (new_len > avail) { 1894 avail = audit_expand(ab, new_len); 1895 if (!avail) 1896 return; 1897 } 1898 ptr = skb_tail_pointer(skb); 1899 *ptr++ = '"'; 1900 memcpy(ptr, string, slen); 1901 ptr += slen; 1902 *ptr++ = '"'; 1903 *ptr = 0; 1904 skb_put(skb, slen + 2); /* don't include null terminator */ 1905 } 1906 1907 /** 1908 * audit_string_contains_control - does a string need to be logged in hex 1909 * @string: string to be checked 1910 * @len: max length of the string to check 1911 */ 1912 bool audit_string_contains_control(const char *string, size_t len) 1913 { 1914 const unsigned char *p; 1915 for (p = string; p < (const unsigned char *)string + len; p++) { 1916 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1917 return true; 1918 } 1919 return false; 1920 } 1921 1922 /** 1923 * audit_log_n_untrustedstring - log a string that may contain random characters 1924 * @ab: audit_buffer 1925 * @len: length of string (not including trailing null) 1926 * @string: string to be logged 1927 * 1928 * This code will escape a string that is passed to it if the string 1929 * contains a control character, unprintable character, double quote mark, 1930 * or a space. Unescaped strings will start and end with a double quote mark. 1931 * Strings that are escaped are printed in hex (2 digits per char). 1932 * 1933 * The caller specifies the number of characters in the string to log, which may 1934 * or may not be the entire string. 1935 */ 1936 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1937 size_t len) 1938 { 1939 if (audit_string_contains_control(string, len)) 1940 audit_log_n_hex(ab, string, len); 1941 else 1942 audit_log_n_string(ab, string, len); 1943 } 1944 1945 /** 1946 * audit_log_untrustedstring - log a string that may contain random characters 1947 * @ab: audit_buffer 1948 * @string: string to be logged 1949 * 1950 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1951 * determine string length. 1952 */ 1953 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1954 { 1955 audit_log_n_untrustedstring(ab, string, strlen(string)); 1956 } 1957 1958 /* This is a helper-function to print the escaped d_path */ 1959 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1960 const struct path *path) 1961 { 1962 char *p, *pathname; 1963 1964 if (prefix) 1965 audit_log_format(ab, "%s", prefix); 1966 1967 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1968 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1969 if (!pathname) { 1970 audit_log_string(ab, "<no_memory>"); 1971 return; 1972 } 1973 p = d_path(path, pathname, PATH_MAX+11); 1974 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1975 /* FIXME: can we save some information here? */ 1976 audit_log_string(ab, "<too_long>"); 1977 } else 1978 audit_log_untrustedstring(ab, p); 1979 kfree(pathname); 1980 } 1981 1982 void audit_log_session_info(struct audit_buffer *ab) 1983 { 1984 unsigned int sessionid = audit_get_sessionid(current); 1985 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1986 1987 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1988 } 1989 1990 void audit_log_key(struct audit_buffer *ab, char *key) 1991 { 1992 audit_log_format(ab, " key="); 1993 if (key) 1994 audit_log_untrustedstring(ab, key); 1995 else 1996 audit_log_format(ab, "(null)"); 1997 } 1998 1999 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 2000 { 2001 int i; 2002 2003 audit_log_format(ab, " %s=", prefix); 2004 CAP_FOR_EACH_U32(i) { 2005 audit_log_format(ab, "%08x", 2006 cap->cap[CAP_LAST_U32 - i]); 2007 } 2008 } 2009 2010 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 2011 { 2012 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 2013 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 2014 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 2015 name->fcap.fE, name->fcap_ver); 2016 } 2017 2018 static inline int audit_copy_fcaps(struct audit_names *name, 2019 const struct dentry *dentry) 2020 { 2021 struct cpu_vfs_cap_data caps; 2022 int rc; 2023 2024 if (!dentry) 2025 return 0; 2026 2027 rc = get_vfs_caps_from_disk(dentry, &caps); 2028 if (rc) 2029 return rc; 2030 2031 name->fcap.permitted = caps.permitted; 2032 name->fcap.inheritable = caps.inheritable; 2033 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2034 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2035 VFS_CAP_REVISION_SHIFT; 2036 2037 return 0; 2038 } 2039 2040 /* Copy inode data into an audit_names. */ 2041 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 2042 struct inode *inode) 2043 { 2044 name->ino = inode->i_ino; 2045 name->dev = inode->i_sb->s_dev; 2046 name->mode = inode->i_mode; 2047 name->uid = inode->i_uid; 2048 name->gid = inode->i_gid; 2049 name->rdev = inode->i_rdev; 2050 security_inode_getsecid(inode, &name->osid); 2051 audit_copy_fcaps(name, dentry); 2052 } 2053 2054 /** 2055 * audit_log_name - produce AUDIT_PATH record from struct audit_names 2056 * @context: audit_context for the task 2057 * @n: audit_names structure with reportable details 2058 * @path: optional path to report instead of audit_names->name 2059 * @record_num: record number to report when handling a list of names 2060 * @call_panic: optional pointer to int that will be updated if secid fails 2061 */ 2062 void audit_log_name(struct audit_context *context, struct audit_names *n, 2063 const struct path *path, int record_num, int *call_panic) 2064 { 2065 struct audit_buffer *ab; 2066 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 2067 if (!ab) 2068 return; 2069 2070 audit_log_format(ab, "item=%d", record_num); 2071 2072 if (path) 2073 audit_log_d_path(ab, " name=", path); 2074 else if (n->name) { 2075 switch (n->name_len) { 2076 case AUDIT_NAME_FULL: 2077 /* log the full path */ 2078 audit_log_format(ab, " name="); 2079 audit_log_untrustedstring(ab, n->name->name); 2080 break; 2081 case 0: 2082 /* name was specified as a relative path and the 2083 * directory component is the cwd */ 2084 audit_log_d_path(ab, " name=", &context->pwd); 2085 break; 2086 default: 2087 /* log the name's directory component */ 2088 audit_log_format(ab, " name="); 2089 audit_log_n_untrustedstring(ab, n->name->name, 2090 n->name_len); 2091 } 2092 } else 2093 audit_log_format(ab, " name=(null)"); 2094 2095 if (n->ino != AUDIT_INO_UNSET) 2096 audit_log_format(ab, " inode=%lu" 2097 " dev=%02x:%02x mode=%#ho" 2098 " ouid=%u ogid=%u rdev=%02x:%02x", 2099 n->ino, 2100 MAJOR(n->dev), 2101 MINOR(n->dev), 2102 n->mode, 2103 from_kuid(&init_user_ns, n->uid), 2104 from_kgid(&init_user_ns, n->gid), 2105 MAJOR(n->rdev), 2106 MINOR(n->rdev)); 2107 if (n->osid != 0) { 2108 char *ctx = NULL; 2109 u32 len; 2110 if (security_secid_to_secctx( 2111 n->osid, &ctx, &len)) { 2112 audit_log_format(ab, " osid=%u", n->osid); 2113 if (call_panic) 2114 *call_panic = 2; 2115 } else { 2116 audit_log_format(ab, " obj=%s", ctx); 2117 security_release_secctx(ctx, len); 2118 } 2119 } 2120 2121 /* log the audit_names record type */ 2122 audit_log_format(ab, " nametype="); 2123 switch(n->type) { 2124 case AUDIT_TYPE_NORMAL: 2125 audit_log_format(ab, "NORMAL"); 2126 break; 2127 case AUDIT_TYPE_PARENT: 2128 audit_log_format(ab, "PARENT"); 2129 break; 2130 case AUDIT_TYPE_CHILD_DELETE: 2131 audit_log_format(ab, "DELETE"); 2132 break; 2133 case AUDIT_TYPE_CHILD_CREATE: 2134 audit_log_format(ab, "CREATE"); 2135 break; 2136 default: 2137 audit_log_format(ab, "UNKNOWN"); 2138 break; 2139 } 2140 2141 audit_log_fcaps(ab, n); 2142 audit_log_end(ab); 2143 } 2144 2145 int audit_log_task_context(struct audit_buffer *ab) 2146 { 2147 char *ctx = NULL; 2148 unsigned len; 2149 int error; 2150 u32 sid; 2151 2152 security_task_getsecid(current, &sid); 2153 if (!sid) 2154 return 0; 2155 2156 error = security_secid_to_secctx(sid, &ctx, &len); 2157 if (error) { 2158 if (error != -EINVAL) 2159 goto error_path; 2160 return 0; 2161 } 2162 2163 audit_log_format(ab, " subj=%s", ctx); 2164 security_release_secctx(ctx, len); 2165 return 0; 2166 2167 error_path: 2168 audit_panic("error in audit_log_task_context"); 2169 return error; 2170 } 2171 EXPORT_SYMBOL(audit_log_task_context); 2172 2173 void audit_log_d_path_exe(struct audit_buffer *ab, 2174 struct mm_struct *mm) 2175 { 2176 struct file *exe_file; 2177 2178 if (!mm) 2179 goto out_null; 2180 2181 exe_file = get_mm_exe_file(mm); 2182 if (!exe_file) 2183 goto out_null; 2184 2185 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2186 fput(exe_file); 2187 return; 2188 out_null: 2189 audit_log_format(ab, " exe=(null)"); 2190 } 2191 2192 struct tty_struct *audit_get_tty(struct task_struct *tsk) 2193 { 2194 struct tty_struct *tty = NULL; 2195 unsigned long flags; 2196 2197 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2198 if (tsk->signal) 2199 tty = tty_kref_get(tsk->signal->tty); 2200 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2201 return tty; 2202 } 2203 2204 void audit_put_tty(struct tty_struct *tty) 2205 { 2206 tty_kref_put(tty); 2207 } 2208 2209 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 2210 { 2211 const struct cred *cred; 2212 char comm[sizeof(tsk->comm)]; 2213 struct tty_struct *tty; 2214 2215 if (!ab) 2216 return; 2217 2218 /* tsk == current */ 2219 cred = current_cred(); 2220 tty = audit_get_tty(tsk); 2221 audit_log_format(ab, 2222 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2223 " euid=%u suid=%u fsuid=%u" 2224 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2225 task_ppid_nr(tsk), 2226 task_tgid_nr(tsk), 2227 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 2228 from_kuid(&init_user_ns, cred->uid), 2229 from_kgid(&init_user_ns, cred->gid), 2230 from_kuid(&init_user_ns, cred->euid), 2231 from_kuid(&init_user_ns, cred->suid), 2232 from_kuid(&init_user_ns, cred->fsuid), 2233 from_kgid(&init_user_ns, cred->egid), 2234 from_kgid(&init_user_ns, cred->sgid), 2235 from_kgid(&init_user_ns, cred->fsgid), 2236 tty ? tty_name(tty) : "(none)", 2237 audit_get_sessionid(tsk)); 2238 audit_put_tty(tty); 2239 audit_log_format(ab, " comm="); 2240 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 2241 audit_log_d_path_exe(ab, tsk->mm); 2242 audit_log_task_context(ab); 2243 } 2244 EXPORT_SYMBOL(audit_log_task_info); 2245 2246 /** 2247 * audit_log_link_denied - report a link restriction denial 2248 * @operation: specific link operation 2249 * @link: the path that triggered the restriction 2250 */ 2251 void audit_log_link_denied(const char *operation, const struct path *link) 2252 { 2253 struct audit_buffer *ab; 2254 struct audit_names *name; 2255 2256 name = kzalloc(sizeof(*name), GFP_NOFS); 2257 if (!name) 2258 return; 2259 2260 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 2261 ab = audit_log_start(current->audit_context, GFP_KERNEL, 2262 AUDIT_ANOM_LINK); 2263 if (!ab) 2264 goto out; 2265 audit_log_format(ab, "op=%s", operation); 2266 audit_log_task_info(ab, current); 2267 audit_log_format(ab, " res=0"); 2268 audit_log_end(ab); 2269 2270 /* Generate AUDIT_PATH record with object. */ 2271 name->type = AUDIT_TYPE_NORMAL; 2272 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 2273 audit_log_name(current->audit_context, name, link, 0, NULL); 2274 out: 2275 kfree(name); 2276 } 2277 2278 /** 2279 * audit_log_end - end one audit record 2280 * @ab: the audit_buffer 2281 * 2282 * We can not do a netlink send inside an irq context because it blocks (last 2283 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2284 * queue and a tasklet is scheduled to remove them from the queue outside the 2285 * irq context. May be called in any context. 2286 */ 2287 void audit_log_end(struct audit_buffer *ab) 2288 { 2289 struct sk_buff *skb; 2290 struct nlmsghdr *nlh; 2291 2292 if (!ab) 2293 return; 2294 2295 if (audit_rate_check()) { 2296 skb = ab->skb; 2297 ab->skb = NULL; 2298 2299 /* setup the netlink header, see the comments in 2300 * kauditd_send_multicast_skb() for length quirks */ 2301 nlh = nlmsg_hdr(skb); 2302 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2303 2304 /* queue the netlink packet and poke the kauditd thread */ 2305 skb_queue_tail(&audit_queue, skb); 2306 wake_up_interruptible(&kauditd_wait); 2307 } else 2308 audit_log_lost("rate limit exceeded"); 2309 2310 audit_buffer_free(ab); 2311 } 2312 2313 /** 2314 * audit_log - Log an audit record 2315 * @ctx: audit context 2316 * @gfp_mask: type of allocation 2317 * @type: audit message type 2318 * @fmt: format string to use 2319 * @...: variable parameters matching the format string 2320 * 2321 * This is a convenience function that calls audit_log_start, 2322 * audit_log_vformat, and audit_log_end. It may be called 2323 * in any context. 2324 */ 2325 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2326 const char *fmt, ...) 2327 { 2328 struct audit_buffer *ab; 2329 va_list args; 2330 2331 ab = audit_log_start(ctx, gfp_mask, type); 2332 if (ab) { 2333 va_start(args, fmt); 2334 audit_log_vformat(ab, fmt, args); 2335 va_end(args); 2336 audit_log_end(ab); 2337 } 2338 } 2339 2340 #ifdef CONFIG_SECURITY 2341 /** 2342 * audit_log_secctx - Converts and logs SELinux context 2343 * @ab: audit_buffer 2344 * @secid: security number 2345 * 2346 * This is a helper function that calls security_secid_to_secctx to convert 2347 * secid to secctx and then adds the (converted) SELinux context to the audit 2348 * log by calling audit_log_format, thus also preventing leak of internal secid 2349 * to userspace. If secid cannot be converted audit_panic is called. 2350 */ 2351 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2352 { 2353 u32 len; 2354 char *secctx; 2355 2356 if (security_secid_to_secctx(secid, &secctx, &len)) { 2357 audit_panic("Cannot convert secid to context"); 2358 } else { 2359 audit_log_format(ab, " obj=%s", secctx); 2360 security_release_secctx(secctx, len); 2361 } 2362 } 2363 EXPORT_SYMBOL(audit_log_secctx); 2364 #endif 2365 2366 EXPORT_SYMBOL(audit_log_start); 2367 EXPORT_SYMBOL(audit_log_end); 2368 EXPORT_SYMBOL(audit_log_format); 2369 EXPORT_SYMBOL(audit_log); 2370