xref: /linux/kernel/audit.c (revision 4f6d9bfc882450631251052756ed84658ec88a70)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61 
62 #include <linux/audit.h>
63 
64 #include <net/sock.h>
65 #include <net/netlink.h>
66 #include <linux/skbuff.h>
67 #ifdef CONFIG_SECURITY
68 #include <linux/security.h>
69 #endif
70 #include <linux/freezer.h>
71 #include <linux/pid_namespace.h>
72 #include <net/netns/generic.h>
73 
74 #include "audit.h"
75 
76 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
77  * (Initialization happens after skb_init is called.) */
78 #define AUDIT_DISABLED		-1
79 #define AUDIT_UNINITIALIZED	0
80 #define AUDIT_INITIALIZED	1
81 static int	audit_initialized;
82 
83 #define AUDIT_OFF	0
84 #define AUDIT_ON	1
85 #define AUDIT_LOCKED	2
86 u32		audit_enabled;
87 u32		audit_ever_enabled;
88 
89 EXPORT_SYMBOL_GPL(audit_enabled);
90 
91 /* Default state when kernel boots without any parameters. */
92 static u32	audit_default;
93 
94 /* If auditing cannot proceed, audit_failure selects what happens. */
95 static u32	audit_failure = AUDIT_FAIL_PRINTK;
96 
97 /* private audit network namespace index */
98 static unsigned int audit_net_id;
99 
100 /**
101  * struct audit_net - audit private network namespace data
102  * @sk: communication socket
103  */
104 struct audit_net {
105 	struct sock *sk;
106 };
107 
108 /**
109  * struct auditd_connection - kernel/auditd connection state
110  * @pid: auditd PID
111  * @portid: netlink portid
112  * @net: the associated network namespace
113  * @lock: spinlock to protect write access
114  *
115  * Description:
116  * This struct is RCU protected; you must either hold the RCU lock for reading
117  * or the included spinlock for writing.
118  */
119 static struct auditd_connection {
120 	int pid;
121 	u32 portid;
122 	struct net *net;
123 	spinlock_t lock;
124 } auditd_conn;
125 
126 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
127  * to that number per second.  This prevents DoS attacks, but results in
128  * audit records being dropped. */
129 static u32	audit_rate_limit;
130 
131 /* Number of outstanding audit_buffers allowed.
132  * When set to zero, this means unlimited. */
133 static u32	audit_backlog_limit = 64;
134 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
135 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
136 
137 /* The identity of the user shutting down the audit system. */
138 kuid_t		audit_sig_uid = INVALID_UID;
139 pid_t		audit_sig_pid = -1;
140 u32		audit_sig_sid = 0;
141 
142 /* Records can be lost in several ways:
143    0) [suppressed in audit_alloc]
144    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
145    2) out of memory in audit_log_move [alloc_skb]
146    3) suppressed due to audit_rate_limit
147    4) suppressed due to audit_backlog_limit
148 */
149 static atomic_t	audit_lost = ATOMIC_INIT(0);
150 
151 /* Hash for inode-based rules */
152 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
153 
154 /* The audit_freelist is a list of pre-allocated audit buffers (if more
155  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
156  * being placed on the freelist). */
157 static DEFINE_SPINLOCK(audit_freelist_lock);
158 static int	   audit_freelist_count;
159 static LIST_HEAD(audit_freelist);
160 
161 /* queue msgs to send via kauditd_task */
162 static struct sk_buff_head audit_queue;
163 /* queue msgs due to temporary unicast send problems */
164 static struct sk_buff_head audit_retry_queue;
165 /* queue msgs waiting for new auditd connection */
166 static struct sk_buff_head audit_hold_queue;
167 
168 /* queue servicing thread */
169 static struct task_struct *kauditd_task;
170 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
171 
172 /* waitqueue for callers who are blocked on the audit backlog */
173 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
174 
175 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
176 				   .mask = -1,
177 				   .features = 0,
178 				   .lock = 0,};
179 
180 static char *audit_feature_names[2] = {
181 	"only_unset_loginuid",
182 	"loginuid_immutable",
183 };
184 
185 
186 /* Serialize requests from userspace. */
187 DEFINE_MUTEX(audit_cmd_mutex);
188 
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190  * audit records.  Since printk uses a 1024 byte buffer, this buffer
191  * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193 
194 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
195  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
196 #define AUDIT_MAXFREE  (2*NR_CPUS)
197 
198 /* The audit_buffer is used when formatting an audit record.  The caller
199  * locks briefly to get the record off the freelist or to allocate the
200  * buffer, and locks briefly to send the buffer to the netlink layer or
201  * to place it on a transmit queue.  Multiple audit_buffers can be in
202  * use simultaneously. */
203 struct audit_buffer {
204 	struct list_head     list;
205 	struct sk_buff       *skb;	/* formatted skb ready to send */
206 	struct audit_context *ctx;	/* NULL or associated context */
207 	gfp_t		     gfp_mask;
208 };
209 
210 struct audit_reply {
211 	__u32 portid;
212 	struct net *net;
213 	struct sk_buff *skb;
214 };
215 
216 /**
217  * auditd_test_task - Check to see if a given task is an audit daemon
218  * @task: the task to check
219  *
220  * Description:
221  * Return 1 if the task is a registered audit daemon, 0 otherwise.
222  */
223 int auditd_test_task(const struct task_struct *task)
224 {
225 	int rc;
226 
227 	rcu_read_lock();
228 	rc = (auditd_conn.pid && task->tgid == auditd_conn.pid ? 1 : 0);
229 	rcu_read_unlock();
230 
231 	return rc;
232 }
233 
234 /**
235  * audit_get_sk - Return the audit socket for the given network namespace
236  * @net: the destination network namespace
237  *
238  * Description:
239  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
240  * that a reference is held for the network namespace while the sock is in use.
241  */
242 static struct sock *audit_get_sk(const struct net *net)
243 {
244 	struct audit_net *aunet;
245 
246 	if (!net)
247 		return NULL;
248 
249 	aunet = net_generic(net, audit_net_id);
250 	return aunet->sk;
251 }
252 
253 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
254 {
255 	if (ab) {
256 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
257 		nlh->nlmsg_pid = portid;
258 	}
259 }
260 
261 void audit_panic(const char *message)
262 {
263 	switch (audit_failure) {
264 	case AUDIT_FAIL_SILENT:
265 		break;
266 	case AUDIT_FAIL_PRINTK:
267 		if (printk_ratelimit())
268 			pr_err("%s\n", message);
269 		break;
270 	case AUDIT_FAIL_PANIC:
271 		panic("audit: %s\n", message);
272 		break;
273 	}
274 }
275 
276 static inline int audit_rate_check(void)
277 {
278 	static unsigned long	last_check = 0;
279 	static int		messages   = 0;
280 	static DEFINE_SPINLOCK(lock);
281 	unsigned long		flags;
282 	unsigned long		now;
283 	unsigned long		elapsed;
284 	int			retval	   = 0;
285 
286 	if (!audit_rate_limit) return 1;
287 
288 	spin_lock_irqsave(&lock, flags);
289 	if (++messages < audit_rate_limit) {
290 		retval = 1;
291 	} else {
292 		now     = jiffies;
293 		elapsed = now - last_check;
294 		if (elapsed > HZ) {
295 			last_check = now;
296 			messages   = 0;
297 			retval     = 1;
298 		}
299 	}
300 	spin_unlock_irqrestore(&lock, flags);
301 
302 	return retval;
303 }
304 
305 /**
306  * audit_log_lost - conditionally log lost audit message event
307  * @message: the message stating reason for lost audit message
308  *
309  * Emit at least 1 message per second, even if audit_rate_check is
310  * throttling.
311  * Always increment the lost messages counter.
312 */
313 void audit_log_lost(const char *message)
314 {
315 	static unsigned long	last_msg = 0;
316 	static DEFINE_SPINLOCK(lock);
317 	unsigned long		flags;
318 	unsigned long		now;
319 	int			print;
320 
321 	atomic_inc(&audit_lost);
322 
323 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
324 
325 	if (!print) {
326 		spin_lock_irqsave(&lock, flags);
327 		now = jiffies;
328 		if (now - last_msg > HZ) {
329 			print = 1;
330 			last_msg = now;
331 		}
332 		spin_unlock_irqrestore(&lock, flags);
333 	}
334 
335 	if (print) {
336 		if (printk_ratelimit())
337 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
338 				atomic_read(&audit_lost),
339 				audit_rate_limit,
340 				audit_backlog_limit);
341 		audit_panic(message);
342 	}
343 }
344 
345 static int audit_log_config_change(char *function_name, u32 new, u32 old,
346 				   int allow_changes)
347 {
348 	struct audit_buffer *ab;
349 	int rc = 0;
350 
351 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
352 	if (unlikely(!ab))
353 		return rc;
354 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
355 	audit_log_session_info(ab);
356 	rc = audit_log_task_context(ab);
357 	if (rc)
358 		allow_changes = 0; /* Something weird, deny request */
359 	audit_log_format(ab, " res=%d", allow_changes);
360 	audit_log_end(ab);
361 	return rc;
362 }
363 
364 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
365 {
366 	int allow_changes, rc = 0;
367 	u32 old = *to_change;
368 
369 	/* check if we are locked */
370 	if (audit_enabled == AUDIT_LOCKED)
371 		allow_changes = 0;
372 	else
373 		allow_changes = 1;
374 
375 	if (audit_enabled != AUDIT_OFF) {
376 		rc = audit_log_config_change(function_name, new, old, allow_changes);
377 		if (rc)
378 			allow_changes = 0;
379 	}
380 
381 	/* If we are allowed, make the change */
382 	if (allow_changes == 1)
383 		*to_change = new;
384 	/* Not allowed, update reason */
385 	else if (rc == 0)
386 		rc = -EPERM;
387 	return rc;
388 }
389 
390 static int audit_set_rate_limit(u32 limit)
391 {
392 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
393 }
394 
395 static int audit_set_backlog_limit(u32 limit)
396 {
397 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
398 }
399 
400 static int audit_set_backlog_wait_time(u32 timeout)
401 {
402 	return audit_do_config_change("audit_backlog_wait_time",
403 				      &audit_backlog_wait_time, timeout);
404 }
405 
406 static int audit_set_enabled(u32 state)
407 {
408 	int rc;
409 	if (state > AUDIT_LOCKED)
410 		return -EINVAL;
411 
412 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
413 	if (!rc)
414 		audit_ever_enabled |= !!state;
415 
416 	return rc;
417 }
418 
419 static int audit_set_failure(u32 state)
420 {
421 	if (state != AUDIT_FAIL_SILENT
422 	    && state != AUDIT_FAIL_PRINTK
423 	    && state != AUDIT_FAIL_PANIC)
424 		return -EINVAL;
425 
426 	return audit_do_config_change("audit_failure", &audit_failure, state);
427 }
428 
429 /**
430  * auditd_set - Set/Reset the auditd connection state
431  * @pid: auditd PID
432  * @portid: auditd netlink portid
433  * @net: auditd network namespace pointer
434  *
435  * Description:
436  * This function will obtain and drop network namespace references as
437  * necessary.
438  */
439 static void auditd_set(int pid, u32 portid, struct net *net)
440 {
441 	unsigned long flags;
442 
443 	spin_lock_irqsave(&auditd_conn.lock, flags);
444 	auditd_conn.pid = pid;
445 	auditd_conn.portid = portid;
446 	if (auditd_conn.net)
447 		put_net(auditd_conn.net);
448 	if (net)
449 		auditd_conn.net = get_net(net);
450 	else
451 		auditd_conn.net = NULL;
452 	spin_unlock_irqrestore(&auditd_conn.lock, flags);
453 }
454 
455 /**
456  * kauditd_print_skb - Print the audit record to the ring buffer
457  * @skb: audit record
458  *
459  * Whatever the reason, this packet may not make it to the auditd connection
460  * so write it via printk so the information isn't completely lost.
461  */
462 static void kauditd_printk_skb(struct sk_buff *skb)
463 {
464 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
465 	char *data = nlmsg_data(nlh);
466 
467 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
468 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
469 }
470 
471 /**
472  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
473  * @skb: audit record
474  *
475  * Description:
476  * This should only be used by the kauditd_thread when it fails to flush the
477  * hold queue.
478  */
479 static void kauditd_rehold_skb(struct sk_buff *skb)
480 {
481 	/* put the record back in the queue at the same place */
482 	skb_queue_head(&audit_hold_queue, skb);
483 }
484 
485 /**
486  * kauditd_hold_skb - Queue an audit record, waiting for auditd
487  * @skb: audit record
488  *
489  * Description:
490  * Queue the audit record, waiting for an instance of auditd.  When this
491  * function is called we haven't given up yet on sending the record, but things
492  * are not looking good.  The first thing we want to do is try to write the
493  * record via printk and then see if we want to try and hold on to the record
494  * and queue it, if we have room.  If we want to hold on to the record, but we
495  * don't have room, record a record lost message.
496  */
497 static void kauditd_hold_skb(struct sk_buff *skb)
498 {
499 	/* at this point it is uncertain if we will ever send this to auditd so
500 	 * try to send the message via printk before we go any further */
501 	kauditd_printk_skb(skb);
502 
503 	/* can we just silently drop the message? */
504 	if (!audit_default) {
505 		kfree_skb(skb);
506 		return;
507 	}
508 
509 	/* if we have room, queue the message */
510 	if (!audit_backlog_limit ||
511 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
512 		skb_queue_tail(&audit_hold_queue, skb);
513 		return;
514 	}
515 
516 	/* we have no other options - drop the message */
517 	audit_log_lost("kauditd hold queue overflow");
518 	kfree_skb(skb);
519 }
520 
521 /**
522  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
523  * @skb: audit record
524  *
525  * Description:
526  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
527  * but for some reason we are having problems sending it audit records so
528  * queue the given record and attempt to resend.
529  */
530 static void kauditd_retry_skb(struct sk_buff *skb)
531 {
532 	/* NOTE: because records should only live in the retry queue for a
533 	 * short period of time, before either being sent or moved to the hold
534 	 * queue, we don't currently enforce a limit on this queue */
535 	skb_queue_tail(&audit_retry_queue, skb);
536 }
537 
538 /**
539  * auditd_reset - Disconnect the auditd connection
540  *
541  * Description:
542  * Break the auditd/kauditd connection and move all the queued records into the
543  * hold queue in case auditd reconnects.
544  */
545 static void auditd_reset(void)
546 {
547 	struct sk_buff *skb;
548 
549 	/* if it isn't already broken, break the connection */
550 	rcu_read_lock();
551 	if (auditd_conn.pid)
552 		auditd_set(0, 0, NULL);
553 	rcu_read_unlock();
554 
555 	/* flush all of the main and retry queues to the hold queue */
556 	while ((skb = skb_dequeue(&audit_retry_queue)))
557 		kauditd_hold_skb(skb);
558 	while ((skb = skb_dequeue(&audit_queue)))
559 		kauditd_hold_skb(skb);
560 }
561 
562 /**
563  * auditd_send_unicast_skb - Send a record via unicast to auditd
564  * @skb: audit record
565  *
566  * Description:
567  * Send a skb to the audit daemon, returns positive/zero values on success and
568  * negative values on failure; in all cases the skb will be consumed by this
569  * function.  If the send results in -ECONNREFUSED the connection with auditd
570  * will be reset.  This function may sleep so callers should not hold any locks
571  * where this would cause a problem.
572  */
573 static int auditd_send_unicast_skb(struct sk_buff *skb)
574 {
575 	int rc;
576 	u32 portid;
577 	struct net *net;
578 	struct sock *sk;
579 
580 	/* NOTE: we can't call netlink_unicast while in the RCU section so
581 	 *       take a reference to the network namespace and grab local
582 	 *       copies of the namespace, the sock, and the portid; the
583 	 *       namespace and sock aren't going to go away while we hold a
584 	 *       reference and if the portid does become invalid after the RCU
585 	 *       section netlink_unicast() should safely return an error */
586 
587 	rcu_read_lock();
588 	if (!auditd_conn.pid) {
589 		rcu_read_unlock();
590 		rc = -ECONNREFUSED;
591 		goto err;
592 	}
593 	net = auditd_conn.net;
594 	get_net(net);
595 	sk = audit_get_sk(net);
596 	portid = auditd_conn.portid;
597 	rcu_read_unlock();
598 
599 	rc = netlink_unicast(sk, skb, portid, 0);
600 	put_net(net);
601 	if (rc < 0)
602 		goto err;
603 
604 	return rc;
605 
606 err:
607 	if (rc == -ECONNREFUSED)
608 		auditd_reset();
609 	return rc;
610 }
611 
612 /**
613  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
614  * @sk: the sending sock
615  * @portid: the netlink destination
616  * @queue: the skb queue to process
617  * @retry_limit: limit on number of netlink unicast failures
618  * @skb_hook: per-skb hook for additional processing
619  * @err_hook: hook called if the skb fails the netlink unicast send
620  *
621  * Description:
622  * Run through the given queue and attempt to send the audit records to auditd,
623  * returns zero on success, negative values on failure.  It is up to the caller
624  * to ensure that the @sk is valid for the duration of this function.
625  *
626  */
627 static int kauditd_send_queue(struct sock *sk, u32 portid,
628 			      struct sk_buff_head *queue,
629 			      unsigned int retry_limit,
630 			      void (*skb_hook)(struct sk_buff *skb),
631 			      void (*err_hook)(struct sk_buff *skb))
632 {
633 	int rc = 0;
634 	struct sk_buff *skb;
635 	static unsigned int failed = 0;
636 
637 	/* NOTE: kauditd_thread takes care of all our locking, we just use
638 	 *       the netlink info passed to us (e.g. sk and portid) */
639 
640 	while ((skb = skb_dequeue(queue))) {
641 		/* call the skb_hook for each skb we touch */
642 		if (skb_hook)
643 			(*skb_hook)(skb);
644 
645 		/* can we send to anyone via unicast? */
646 		if (!sk) {
647 			if (err_hook)
648 				(*err_hook)(skb);
649 			continue;
650 		}
651 
652 		/* grab an extra skb reference in case of error */
653 		skb_get(skb);
654 		rc = netlink_unicast(sk, skb, portid, 0);
655 		if (rc < 0) {
656 			/* fatal failure for our queue flush attempt? */
657 			if (++failed >= retry_limit ||
658 			    rc == -ECONNREFUSED || rc == -EPERM) {
659 				/* yes - error processing for the queue */
660 				sk = NULL;
661 				if (err_hook)
662 					(*err_hook)(skb);
663 				if (!skb_hook)
664 					goto out;
665 				/* keep processing with the skb_hook */
666 				continue;
667 			} else
668 				/* no - requeue to preserve ordering */
669 				skb_queue_head(queue, skb);
670 		} else {
671 			/* it worked - drop the extra reference and continue */
672 			consume_skb(skb);
673 			failed = 0;
674 		}
675 	}
676 
677 out:
678 	return (rc >= 0 ? 0 : rc);
679 }
680 
681 /*
682  * kauditd_send_multicast_skb - Send a record to any multicast listeners
683  * @skb: audit record
684  *
685  * Description:
686  * Write a multicast message to anyone listening in the initial network
687  * namespace.  This function doesn't consume an skb as might be expected since
688  * it has to copy it anyways.
689  */
690 static void kauditd_send_multicast_skb(struct sk_buff *skb)
691 {
692 	struct sk_buff *copy;
693 	struct sock *sock = audit_get_sk(&init_net);
694 	struct nlmsghdr *nlh;
695 
696 	/* NOTE: we are not taking an additional reference for init_net since
697 	 *       we don't have to worry about it going away */
698 
699 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
700 		return;
701 
702 	/*
703 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
704 	 * using skb_get() is necessary because non-standard mods are made to
705 	 * the skb by the original kaudit unicast socket send routine.  The
706 	 * existing auditd daemon assumes this breakage.  Fixing this would
707 	 * require co-ordinating a change in the established protocol between
708 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
709 	 * no reason for new multicast clients to continue with this
710 	 * non-compliance.
711 	 */
712 	copy = skb_copy(skb, GFP_KERNEL);
713 	if (!copy)
714 		return;
715 	nlh = nlmsg_hdr(copy);
716 	nlh->nlmsg_len = skb->len;
717 
718 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
719 }
720 
721 /**
722  * kauditd_thread - Worker thread to send audit records to userspace
723  * @dummy: unused
724  */
725 static int kauditd_thread(void *dummy)
726 {
727 	int rc;
728 	u32 portid = 0;
729 	struct net *net = NULL;
730 	struct sock *sk = NULL;
731 
732 #define UNICAST_RETRIES 5
733 
734 	set_freezable();
735 	while (!kthread_should_stop()) {
736 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
737 		rcu_read_lock();
738 		if (!auditd_conn.pid) {
739 			rcu_read_unlock();
740 			goto main_queue;
741 		}
742 		net = auditd_conn.net;
743 		get_net(net);
744 		sk = audit_get_sk(net);
745 		portid = auditd_conn.portid;
746 		rcu_read_unlock();
747 
748 		/* attempt to flush the hold queue */
749 		rc = kauditd_send_queue(sk, portid,
750 					&audit_hold_queue, UNICAST_RETRIES,
751 					NULL, kauditd_rehold_skb);
752 		if (rc < 0) {
753 			sk = NULL;
754 			auditd_reset();
755 			goto main_queue;
756 		}
757 
758 		/* attempt to flush the retry queue */
759 		rc = kauditd_send_queue(sk, portid,
760 					&audit_retry_queue, UNICAST_RETRIES,
761 					NULL, kauditd_hold_skb);
762 		if (rc < 0) {
763 			sk = NULL;
764 			auditd_reset();
765 			goto main_queue;
766 		}
767 
768 main_queue:
769 		/* process the main queue - do the multicast send and attempt
770 		 * unicast, dump failed record sends to the retry queue; if
771 		 * sk == NULL due to previous failures we will just do the
772 		 * multicast send and move the record to the retry queue */
773 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
774 					kauditd_send_multicast_skb,
775 					kauditd_retry_skb);
776 		if (sk == NULL || rc < 0)
777 			auditd_reset();
778 		sk = NULL;
779 
780 		/* drop our netns reference, no auditd sends past this line */
781 		if (net) {
782 			put_net(net);
783 			net = NULL;
784 		}
785 
786 		/* we have processed all the queues so wake everyone */
787 		wake_up(&audit_backlog_wait);
788 
789 		/* NOTE: we want to wake up if there is anything on the queue,
790 		 *       regardless of if an auditd is connected, as we need to
791 		 *       do the multicast send and rotate records from the
792 		 *       main queue to the retry/hold queues */
793 		wait_event_freezable(kauditd_wait,
794 				     (skb_queue_len(&audit_queue) ? 1 : 0));
795 	}
796 
797 	return 0;
798 }
799 
800 int audit_send_list(void *_dest)
801 {
802 	struct audit_netlink_list *dest = _dest;
803 	struct sk_buff *skb;
804 	struct sock *sk = audit_get_sk(dest->net);
805 
806 	/* wait for parent to finish and send an ACK */
807 	mutex_lock(&audit_cmd_mutex);
808 	mutex_unlock(&audit_cmd_mutex);
809 
810 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
811 		netlink_unicast(sk, skb, dest->portid, 0);
812 
813 	put_net(dest->net);
814 	kfree(dest);
815 
816 	return 0;
817 }
818 
819 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
820 				 int multi, const void *payload, int size)
821 {
822 	struct sk_buff	*skb;
823 	struct nlmsghdr	*nlh;
824 	void		*data;
825 	int		flags = multi ? NLM_F_MULTI : 0;
826 	int		t     = done  ? NLMSG_DONE  : type;
827 
828 	skb = nlmsg_new(size, GFP_KERNEL);
829 	if (!skb)
830 		return NULL;
831 
832 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
833 	if (!nlh)
834 		goto out_kfree_skb;
835 	data = nlmsg_data(nlh);
836 	memcpy(data, payload, size);
837 	return skb;
838 
839 out_kfree_skb:
840 	kfree_skb(skb);
841 	return NULL;
842 }
843 
844 static int audit_send_reply_thread(void *arg)
845 {
846 	struct audit_reply *reply = (struct audit_reply *)arg;
847 	struct sock *sk = audit_get_sk(reply->net);
848 
849 	mutex_lock(&audit_cmd_mutex);
850 	mutex_unlock(&audit_cmd_mutex);
851 
852 	/* Ignore failure. It'll only happen if the sender goes away,
853 	   because our timeout is set to infinite. */
854 	netlink_unicast(sk, reply->skb, reply->portid, 0);
855 	put_net(reply->net);
856 	kfree(reply);
857 	return 0;
858 }
859 
860 /**
861  * audit_send_reply - send an audit reply message via netlink
862  * @request_skb: skb of request we are replying to (used to target the reply)
863  * @seq: sequence number
864  * @type: audit message type
865  * @done: done (last) flag
866  * @multi: multi-part message flag
867  * @payload: payload data
868  * @size: payload size
869  *
870  * Allocates an skb, builds the netlink message, and sends it to the port id.
871  * No failure notifications.
872  */
873 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
874 			     int multi, const void *payload, int size)
875 {
876 	u32 portid = NETLINK_CB(request_skb).portid;
877 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
878 	struct sk_buff *skb;
879 	struct task_struct *tsk;
880 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
881 					    GFP_KERNEL);
882 
883 	if (!reply)
884 		return;
885 
886 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
887 	if (!skb)
888 		goto out;
889 
890 	reply->net = get_net(net);
891 	reply->portid = portid;
892 	reply->skb = skb;
893 
894 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
895 	if (!IS_ERR(tsk))
896 		return;
897 	kfree_skb(skb);
898 out:
899 	kfree(reply);
900 }
901 
902 /*
903  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
904  * control messages.
905  */
906 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
907 {
908 	int err = 0;
909 
910 	/* Only support initial user namespace for now. */
911 	/*
912 	 * We return ECONNREFUSED because it tricks userspace into thinking
913 	 * that audit was not configured into the kernel.  Lots of users
914 	 * configure their PAM stack (because that's what the distro does)
915 	 * to reject login if unable to send messages to audit.  If we return
916 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
917 	 * configured in and will let login proceed.  If we return EPERM
918 	 * userspace will reject all logins.  This should be removed when we
919 	 * support non init namespaces!!
920 	 */
921 	if (current_user_ns() != &init_user_ns)
922 		return -ECONNREFUSED;
923 
924 	switch (msg_type) {
925 	case AUDIT_LIST:
926 	case AUDIT_ADD:
927 	case AUDIT_DEL:
928 		return -EOPNOTSUPP;
929 	case AUDIT_GET:
930 	case AUDIT_SET:
931 	case AUDIT_GET_FEATURE:
932 	case AUDIT_SET_FEATURE:
933 	case AUDIT_LIST_RULES:
934 	case AUDIT_ADD_RULE:
935 	case AUDIT_DEL_RULE:
936 	case AUDIT_SIGNAL_INFO:
937 	case AUDIT_TTY_GET:
938 	case AUDIT_TTY_SET:
939 	case AUDIT_TRIM:
940 	case AUDIT_MAKE_EQUIV:
941 		/* Only support auditd and auditctl in initial pid namespace
942 		 * for now. */
943 		if (task_active_pid_ns(current) != &init_pid_ns)
944 			return -EPERM;
945 
946 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
947 			err = -EPERM;
948 		break;
949 	case AUDIT_USER:
950 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
951 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
952 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
953 			err = -EPERM;
954 		break;
955 	default:  /* bad msg */
956 		err = -EINVAL;
957 	}
958 
959 	return err;
960 }
961 
962 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
963 {
964 	uid_t uid = from_kuid(&init_user_ns, current_uid());
965 	pid_t pid = task_tgid_nr(current);
966 
967 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
968 		*ab = NULL;
969 		return;
970 	}
971 
972 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
973 	if (unlikely(!*ab))
974 		return;
975 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
976 	audit_log_session_info(*ab);
977 	audit_log_task_context(*ab);
978 }
979 
980 int is_audit_feature_set(int i)
981 {
982 	return af.features & AUDIT_FEATURE_TO_MASK(i);
983 }
984 
985 
986 static int audit_get_feature(struct sk_buff *skb)
987 {
988 	u32 seq;
989 
990 	seq = nlmsg_hdr(skb)->nlmsg_seq;
991 
992 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
993 
994 	return 0;
995 }
996 
997 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
998 				     u32 old_lock, u32 new_lock, int res)
999 {
1000 	struct audit_buffer *ab;
1001 
1002 	if (audit_enabled == AUDIT_OFF)
1003 		return;
1004 
1005 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1006 	audit_log_task_info(ab, current);
1007 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1008 			 audit_feature_names[which], !!old_feature, !!new_feature,
1009 			 !!old_lock, !!new_lock, res);
1010 	audit_log_end(ab);
1011 }
1012 
1013 static int audit_set_feature(struct sk_buff *skb)
1014 {
1015 	struct audit_features *uaf;
1016 	int i;
1017 
1018 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1019 	uaf = nlmsg_data(nlmsg_hdr(skb));
1020 
1021 	/* if there is ever a version 2 we should handle that here */
1022 
1023 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1024 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1025 		u32 old_feature, new_feature, old_lock, new_lock;
1026 
1027 		/* if we are not changing this feature, move along */
1028 		if (!(feature & uaf->mask))
1029 			continue;
1030 
1031 		old_feature = af.features & feature;
1032 		new_feature = uaf->features & feature;
1033 		new_lock = (uaf->lock | af.lock) & feature;
1034 		old_lock = af.lock & feature;
1035 
1036 		/* are we changing a locked feature? */
1037 		if (old_lock && (new_feature != old_feature)) {
1038 			audit_log_feature_change(i, old_feature, new_feature,
1039 						 old_lock, new_lock, 0);
1040 			return -EPERM;
1041 		}
1042 	}
1043 	/* nothing invalid, do the changes */
1044 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1045 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1046 		u32 old_feature, new_feature, old_lock, new_lock;
1047 
1048 		/* if we are not changing this feature, move along */
1049 		if (!(feature & uaf->mask))
1050 			continue;
1051 
1052 		old_feature = af.features & feature;
1053 		new_feature = uaf->features & feature;
1054 		old_lock = af.lock & feature;
1055 		new_lock = (uaf->lock | af.lock) & feature;
1056 
1057 		if (new_feature != old_feature)
1058 			audit_log_feature_change(i, old_feature, new_feature,
1059 						 old_lock, new_lock, 1);
1060 
1061 		if (new_feature)
1062 			af.features |= feature;
1063 		else
1064 			af.features &= ~feature;
1065 		af.lock |= new_lock;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int audit_replace(pid_t pid)
1072 {
1073 	struct sk_buff *skb;
1074 
1075 	skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, &pid, sizeof(pid));
1076 	if (!skb)
1077 		return -ENOMEM;
1078 	return auditd_send_unicast_skb(skb);
1079 }
1080 
1081 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1082 {
1083 	u32			seq;
1084 	void			*data;
1085 	int			err;
1086 	struct audit_buffer	*ab;
1087 	u16			msg_type = nlh->nlmsg_type;
1088 	struct audit_sig_info   *sig_data;
1089 	char			*ctx = NULL;
1090 	u32			len;
1091 
1092 	err = audit_netlink_ok(skb, msg_type);
1093 	if (err)
1094 		return err;
1095 
1096 	seq  = nlh->nlmsg_seq;
1097 	data = nlmsg_data(nlh);
1098 
1099 	switch (msg_type) {
1100 	case AUDIT_GET: {
1101 		struct audit_status	s;
1102 		memset(&s, 0, sizeof(s));
1103 		s.enabled		= audit_enabled;
1104 		s.failure		= audit_failure;
1105 		rcu_read_lock();
1106 		s.pid			= auditd_conn.pid;
1107 		rcu_read_unlock();
1108 		s.rate_limit		= audit_rate_limit;
1109 		s.backlog_limit		= audit_backlog_limit;
1110 		s.lost			= atomic_read(&audit_lost);
1111 		s.backlog		= skb_queue_len(&audit_queue);
1112 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1113 		s.backlog_wait_time	= audit_backlog_wait_time;
1114 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1115 		break;
1116 	}
1117 	case AUDIT_SET: {
1118 		struct audit_status	s;
1119 		memset(&s, 0, sizeof(s));
1120 		/* guard against past and future API changes */
1121 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1122 		if (s.mask & AUDIT_STATUS_ENABLED) {
1123 			err = audit_set_enabled(s.enabled);
1124 			if (err < 0)
1125 				return err;
1126 		}
1127 		if (s.mask & AUDIT_STATUS_FAILURE) {
1128 			err = audit_set_failure(s.failure);
1129 			if (err < 0)
1130 				return err;
1131 		}
1132 		if (s.mask & AUDIT_STATUS_PID) {
1133 			/* NOTE: we are using task_tgid_vnr() below because
1134 			 *       the s.pid value is relative to the namespace
1135 			 *       of the caller; at present this doesn't matter
1136 			 *       much since you can really only run auditd
1137 			 *       from the initial pid namespace, but something
1138 			 *       to keep in mind if this changes */
1139 			int new_pid = s.pid;
1140 			pid_t auditd_pid;
1141 			pid_t requesting_pid = task_tgid_vnr(current);
1142 
1143 			/* test the auditd connection */
1144 			audit_replace(requesting_pid);
1145 
1146 			rcu_read_lock();
1147 			auditd_pid = auditd_conn.pid;
1148 			/* only the current auditd can unregister itself */
1149 			if ((!new_pid) && (requesting_pid != auditd_pid)) {
1150 				rcu_read_unlock();
1151 				audit_log_config_change("audit_pid", new_pid,
1152 							auditd_pid, 0);
1153 				return -EACCES;
1154 			}
1155 			/* replacing a healthy auditd is not allowed */
1156 			if (auditd_pid && new_pid) {
1157 				rcu_read_unlock();
1158 				audit_log_config_change("audit_pid", new_pid,
1159 							auditd_pid, 0);
1160 				return -EEXIST;
1161 			}
1162 			rcu_read_unlock();
1163 
1164 			if (audit_enabled != AUDIT_OFF)
1165 				audit_log_config_change("audit_pid", new_pid,
1166 							auditd_pid, 1);
1167 
1168 			if (new_pid) {
1169 				/* register a new auditd connection */
1170 				auditd_set(new_pid,
1171 					   NETLINK_CB(skb).portid,
1172 					   sock_net(NETLINK_CB(skb).sk));
1173 				/* try to process any backlog */
1174 				wake_up_interruptible(&kauditd_wait);
1175 			} else
1176 				/* unregister the auditd connection */
1177 				auditd_reset();
1178 		}
1179 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1180 			err = audit_set_rate_limit(s.rate_limit);
1181 			if (err < 0)
1182 				return err;
1183 		}
1184 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1185 			err = audit_set_backlog_limit(s.backlog_limit);
1186 			if (err < 0)
1187 				return err;
1188 		}
1189 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1190 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1191 				return -EINVAL;
1192 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1193 				return -EINVAL;
1194 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1195 			if (err < 0)
1196 				return err;
1197 		}
1198 		if (s.mask == AUDIT_STATUS_LOST) {
1199 			u32 lost = atomic_xchg(&audit_lost, 0);
1200 
1201 			audit_log_config_change("lost", 0, lost, 1);
1202 			return lost;
1203 		}
1204 		break;
1205 	}
1206 	case AUDIT_GET_FEATURE:
1207 		err = audit_get_feature(skb);
1208 		if (err)
1209 			return err;
1210 		break;
1211 	case AUDIT_SET_FEATURE:
1212 		err = audit_set_feature(skb);
1213 		if (err)
1214 			return err;
1215 		break;
1216 	case AUDIT_USER:
1217 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1218 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1219 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1220 			return 0;
1221 
1222 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1223 		if (err == 1) { /* match or error */
1224 			err = 0;
1225 			if (msg_type == AUDIT_USER_TTY) {
1226 				err = tty_audit_push();
1227 				if (err)
1228 					break;
1229 			}
1230 			audit_log_common_recv_msg(&ab, msg_type);
1231 			if (msg_type != AUDIT_USER_TTY)
1232 				audit_log_format(ab, " msg='%.*s'",
1233 						 AUDIT_MESSAGE_TEXT_MAX,
1234 						 (char *)data);
1235 			else {
1236 				int size;
1237 
1238 				audit_log_format(ab, " data=");
1239 				size = nlmsg_len(nlh);
1240 				if (size > 0 &&
1241 				    ((unsigned char *)data)[size - 1] == '\0')
1242 					size--;
1243 				audit_log_n_untrustedstring(ab, data, size);
1244 			}
1245 			audit_set_portid(ab, NETLINK_CB(skb).portid);
1246 			audit_log_end(ab);
1247 		}
1248 		break;
1249 	case AUDIT_ADD_RULE:
1250 	case AUDIT_DEL_RULE:
1251 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1252 			return -EINVAL;
1253 		if (audit_enabled == AUDIT_LOCKED) {
1254 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1255 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1256 			audit_log_end(ab);
1257 			return -EPERM;
1258 		}
1259 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
1260 					   seq, data, nlmsg_len(nlh));
1261 		break;
1262 	case AUDIT_LIST_RULES:
1263 		err = audit_list_rules_send(skb, seq);
1264 		break;
1265 	case AUDIT_TRIM:
1266 		audit_trim_trees();
1267 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1268 		audit_log_format(ab, " op=trim res=1");
1269 		audit_log_end(ab);
1270 		break;
1271 	case AUDIT_MAKE_EQUIV: {
1272 		void *bufp = data;
1273 		u32 sizes[2];
1274 		size_t msglen = nlmsg_len(nlh);
1275 		char *old, *new;
1276 
1277 		err = -EINVAL;
1278 		if (msglen < 2 * sizeof(u32))
1279 			break;
1280 		memcpy(sizes, bufp, 2 * sizeof(u32));
1281 		bufp += 2 * sizeof(u32);
1282 		msglen -= 2 * sizeof(u32);
1283 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1284 		if (IS_ERR(old)) {
1285 			err = PTR_ERR(old);
1286 			break;
1287 		}
1288 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1289 		if (IS_ERR(new)) {
1290 			err = PTR_ERR(new);
1291 			kfree(old);
1292 			break;
1293 		}
1294 		/* OK, here comes... */
1295 		err = audit_tag_tree(old, new);
1296 
1297 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1298 
1299 		audit_log_format(ab, " op=make_equiv old=");
1300 		audit_log_untrustedstring(ab, old);
1301 		audit_log_format(ab, " new=");
1302 		audit_log_untrustedstring(ab, new);
1303 		audit_log_format(ab, " res=%d", !err);
1304 		audit_log_end(ab);
1305 		kfree(old);
1306 		kfree(new);
1307 		break;
1308 	}
1309 	case AUDIT_SIGNAL_INFO:
1310 		len = 0;
1311 		if (audit_sig_sid) {
1312 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1313 			if (err)
1314 				return err;
1315 		}
1316 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1317 		if (!sig_data) {
1318 			if (audit_sig_sid)
1319 				security_release_secctx(ctx, len);
1320 			return -ENOMEM;
1321 		}
1322 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1323 		sig_data->pid = audit_sig_pid;
1324 		if (audit_sig_sid) {
1325 			memcpy(sig_data->ctx, ctx, len);
1326 			security_release_secctx(ctx, len);
1327 		}
1328 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1329 				 sig_data, sizeof(*sig_data) + len);
1330 		kfree(sig_data);
1331 		break;
1332 	case AUDIT_TTY_GET: {
1333 		struct audit_tty_status s;
1334 		unsigned int t;
1335 
1336 		t = READ_ONCE(current->signal->audit_tty);
1337 		s.enabled = t & AUDIT_TTY_ENABLE;
1338 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1339 
1340 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1341 		break;
1342 	}
1343 	case AUDIT_TTY_SET: {
1344 		struct audit_tty_status s, old;
1345 		struct audit_buffer	*ab;
1346 		unsigned int t;
1347 
1348 		memset(&s, 0, sizeof(s));
1349 		/* guard against past and future API changes */
1350 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1351 		/* check if new data is valid */
1352 		if ((s.enabled != 0 && s.enabled != 1) ||
1353 		    (s.log_passwd != 0 && s.log_passwd != 1))
1354 			err = -EINVAL;
1355 
1356 		if (err)
1357 			t = READ_ONCE(current->signal->audit_tty);
1358 		else {
1359 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1360 			t = xchg(&current->signal->audit_tty, t);
1361 		}
1362 		old.enabled = t & AUDIT_TTY_ENABLE;
1363 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1364 
1365 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1366 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1367 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1368 				 old.enabled, s.enabled, old.log_passwd,
1369 				 s.log_passwd, !err);
1370 		audit_log_end(ab);
1371 		break;
1372 	}
1373 	default:
1374 		err = -EINVAL;
1375 		break;
1376 	}
1377 
1378 	return err < 0 ? err : 0;
1379 }
1380 
1381 /*
1382  * Get message from skb.  Each message is processed by audit_receive_msg.
1383  * Malformed skbs with wrong length are discarded silently.
1384  */
1385 static void audit_receive_skb(struct sk_buff *skb)
1386 {
1387 	struct nlmsghdr *nlh;
1388 	/*
1389 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1390 	 * if the nlmsg_len was not aligned
1391 	 */
1392 	int len;
1393 	int err;
1394 
1395 	nlh = nlmsg_hdr(skb);
1396 	len = skb->len;
1397 
1398 	while (nlmsg_ok(nlh, len)) {
1399 		err = audit_receive_msg(skb, nlh);
1400 		/* if err or if this message says it wants a response */
1401 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1402 			netlink_ack(skb, nlh, err);
1403 
1404 		nlh = nlmsg_next(nlh, &len);
1405 	}
1406 }
1407 
1408 /* Receive messages from netlink socket. */
1409 static void audit_receive(struct sk_buff  *skb)
1410 {
1411 	mutex_lock(&audit_cmd_mutex);
1412 	audit_receive_skb(skb);
1413 	mutex_unlock(&audit_cmd_mutex);
1414 }
1415 
1416 /* Run custom bind function on netlink socket group connect or bind requests. */
1417 static int audit_bind(struct net *net, int group)
1418 {
1419 	if (!capable(CAP_AUDIT_READ))
1420 		return -EPERM;
1421 
1422 	return 0;
1423 }
1424 
1425 static int __net_init audit_net_init(struct net *net)
1426 {
1427 	struct netlink_kernel_cfg cfg = {
1428 		.input	= audit_receive,
1429 		.bind	= audit_bind,
1430 		.flags	= NL_CFG_F_NONROOT_RECV,
1431 		.groups	= AUDIT_NLGRP_MAX,
1432 	};
1433 
1434 	struct audit_net *aunet = net_generic(net, audit_net_id);
1435 
1436 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1437 	if (aunet->sk == NULL) {
1438 		audit_panic("cannot initialize netlink socket in namespace");
1439 		return -ENOMEM;
1440 	}
1441 	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1442 
1443 	return 0;
1444 }
1445 
1446 static void __net_exit audit_net_exit(struct net *net)
1447 {
1448 	struct audit_net *aunet = net_generic(net, audit_net_id);
1449 
1450 	rcu_read_lock();
1451 	if (net == auditd_conn.net)
1452 		auditd_reset();
1453 	rcu_read_unlock();
1454 
1455 	netlink_kernel_release(aunet->sk);
1456 }
1457 
1458 static struct pernet_operations audit_net_ops __net_initdata = {
1459 	.init = audit_net_init,
1460 	.exit = audit_net_exit,
1461 	.id = &audit_net_id,
1462 	.size = sizeof(struct audit_net),
1463 };
1464 
1465 /* Initialize audit support at boot time. */
1466 static int __init audit_init(void)
1467 {
1468 	int i;
1469 
1470 	if (audit_initialized == AUDIT_DISABLED)
1471 		return 0;
1472 
1473 	memset(&auditd_conn, 0, sizeof(auditd_conn));
1474 	spin_lock_init(&auditd_conn.lock);
1475 
1476 	skb_queue_head_init(&audit_queue);
1477 	skb_queue_head_init(&audit_retry_queue);
1478 	skb_queue_head_init(&audit_hold_queue);
1479 
1480 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1481 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1482 
1483 	pr_info("initializing netlink subsys (%s)\n",
1484 		audit_default ? "enabled" : "disabled");
1485 	register_pernet_subsys(&audit_net_ops);
1486 
1487 	audit_initialized = AUDIT_INITIALIZED;
1488 	audit_enabled = audit_default;
1489 	audit_ever_enabled |= !!audit_default;
1490 
1491 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1492 	if (IS_ERR(kauditd_task)) {
1493 		int err = PTR_ERR(kauditd_task);
1494 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1495 	}
1496 
1497 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1498 		"state=initialized audit_enabled=%u res=1",
1499 		 audit_enabled);
1500 
1501 	return 0;
1502 }
1503 __initcall(audit_init);
1504 
1505 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1506 static int __init audit_enable(char *str)
1507 {
1508 	audit_default = !!simple_strtol(str, NULL, 0);
1509 	if (!audit_default)
1510 		audit_initialized = AUDIT_DISABLED;
1511 
1512 	pr_info("%s\n", audit_default ?
1513 		"enabled (after initialization)" : "disabled (until reboot)");
1514 
1515 	return 1;
1516 }
1517 __setup("audit=", audit_enable);
1518 
1519 /* Process kernel command-line parameter at boot time.
1520  * audit_backlog_limit=<n> */
1521 static int __init audit_backlog_limit_set(char *str)
1522 {
1523 	u32 audit_backlog_limit_arg;
1524 
1525 	pr_info("audit_backlog_limit: ");
1526 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1527 		pr_cont("using default of %u, unable to parse %s\n",
1528 			audit_backlog_limit, str);
1529 		return 1;
1530 	}
1531 
1532 	audit_backlog_limit = audit_backlog_limit_arg;
1533 	pr_cont("%d\n", audit_backlog_limit);
1534 
1535 	return 1;
1536 }
1537 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1538 
1539 static void audit_buffer_free(struct audit_buffer *ab)
1540 {
1541 	unsigned long flags;
1542 
1543 	if (!ab)
1544 		return;
1545 
1546 	kfree_skb(ab->skb);
1547 	spin_lock_irqsave(&audit_freelist_lock, flags);
1548 	if (audit_freelist_count > AUDIT_MAXFREE)
1549 		kfree(ab);
1550 	else {
1551 		audit_freelist_count++;
1552 		list_add(&ab->list, &audit_freelist);
1553 	}
1554 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1555 }
1556 
1557 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1558 						gfp_t gfp_mask, int type)
1559 {
1560 	unsigned long flags;
1561 	struct audit_buffer *ab = NULL;
1562 	struct nlmsghdr *nlh;
1563 
1564 	spin_lock_irqsave(&audit_freelist_lock, flags);
1565 	if (!list_empty(&audit_freelist)) {
1566 		ab = list_entry(audit_freelist.next,
1567 				struct audit_buffer, list);
1568 		list_del(&ab->list);
1569 		--audit_freelist_count;
1570 	}
1571 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1572 
1573 	if (!ab) {
1574 		ab = kmalloc(sizeof(*ab), gfp_mask);
1575 		if (!ab)
1576 			goto err;
1577 	}
1578 
1579 	ab->ctx = ctx;
1580 	ab->gfp_mask = gfp_mask;
1581 
1582 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1583 	if (!ab->skb)
1584 		goto err;
1585 
1586 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1587 	if (!nlh)
1588 		goto out_kfree_skb;
1589 
1590 	return ab;
1591 
1592 out_kfree_skb:
1593 	kfree_skb(ab->skb);
1594 	ab->skb = NULL;
1595 err:
1596 	audit_buffer_free(ab);
1597 	return NULL;
1598 }
1599 
1600 /**
1601  * audit_serial - compute a serial number for the audit record
1602  *
1603  * Compute a serial number for the audit record.  Audit records are
1604  * written to user-space as soon as they are generated, so a complete
1605  * audit record may be written in several pieces.  The timestamp of the
1606  * record and this serial number are used by the user-space tools to
1607  * determine which pieces belong to the same audit record.  The
1608  * (timestamp,serial) tuple is unique for each syscall and is live from
1609  * syscall entry to syscall exit.
1610  *
1611  * NOTE: Another possibility is to store the formatted records off the
1612  * audit context (for those records that have a context), and emit them
1613  * all at syscall exit.  However, this could delay the reporting of
1614  * significant errors until syscall exit (or never, if the system
1615  * halts).
1616  */
1617 unsigned int audit_serial(void)
1618 {
1619 	static atomic_t serial = ATOMIC_INIT(0);
1620 
1621 	return atomic_add_return(1, &serial);
1622 }
1623 
1624 static inline void audit_get_stamp(struct audit_context *ctx,
1625 				   struct timespec *t, unsigned int *serial)
1626 {
1627 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1628 		*t = CURRENT_TIME;
1629 		*serial = audit_serial();
1630 	}
1631 }
1632 
1633 /**
1634  * audit_log_start - obtain an audit buffer
1635  * @ctx: audit_context (may be NULL)
1636  * @gfp_mask: type of allocation
1637  * @type: audit message type
1638  *
1639  * Returns audit_buffer pointer on success or NULL on error.
1640  *
1641  * Obtain an audit buffer.  This routine does locking to obtain the
1642  * audit buffer, but then no locking is required for calls to
1643  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1644  * syscall, then the syscall is marked as auditable and an audit record
1645  * will be written at syscall exit.  If there is no associated task, then
1646  * task context (ctx) should be NULL.
1647  */
1648 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1649 				     int type)
1650 {
1651 	struct audit_buffer *ab;
1652 	struct timespec t;
1653 	unsigned int uninitialized_var(serial);
1654 
1655 	if (audit_initialized != AUDIT_INITIALIZED)
1656 		return NULL;
1657 
1658 	if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1659 		return NULL;
1660 
1661 	/* NOTE: don't ever fail/sleep on these two conditions:
1662 	 * 1. auditd generated record - since we need auditd to drain the
1663 	 *    queue; also, when we are checking for auditd, compare PIDs using
1664 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1665 	 *    using a PID anchored in the caller's namespace
1666 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1667 	 *    while holding the mutex */
1668 	if (!(auditd_test_task(current) ||
1669 	      (current == __mutex_owner(&audit_cmd_mutex)))) {
1670 		long stime = audit_backlog_wait_time;
1671 
1672 		while (audit_backlog_limit &&
1673 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1674 			/* wake kauditd to try and flush the queue */
1675 			wake_up_interruptible(&kauditd_wait);
1676 
1677 			/* sleep if we are allowed and we haven't exhausted our
1678 			 * backlog wait limit */
1679 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1680 				DECLARE_WAITQUEUE(wait, current);
1681 
1682 				add_wait_queue_exclusive(&audit_backlog_wait,
1683 							 &wait);
1684 				set_current_state(TASK_UNINTERRUPTIBLE);
1685 				stime = schedule_timeout(stime);
1686 				remove_wait_queue(&audit_backlog_wait, &wait);
1687 			} else {
1688 				if (audit_rate_check() && printk_ratelimit())
1689 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1690 						skb_queue_len(&audit_queue),
1691 						audit_backlog_limit);
1692 				audit_log_lost("backlog limit exceeded");
1693 				return NULL;
1694 			}
1695 		}
1696 	}
1697 
1698 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1699 	if (!ab) {
1700 		audit_log_lost("out of memory in audit_log_start");
1701 		return NULL;
1702 	}
1703 
1704 	audit_get_stamp(ab->ctx, &t, &serial);
1705 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1706 			 t.tv_sec, t.tv_nsec/1000000, serial);
1707 
1708 	return ab;
1709 }
1710 
1711 /**
1712  * audit_expand - expand skb in the audit buffer
1713  * @ab: audit_buffer
1714  * @extra: space to add at tail of the skb
1715  *
1716  * Returns 0 (no space) on failed expansion, or available space if
1717  * successful.
1718  */
1719 static inline int audit_expand(struct audit_buffer *ab, int extra)
1720 {
1721 	struct sk_buff *skb = ab->skb;
1722 	int oldtail = skb_tailroom(skb);
1723 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1724 	int newtail = skb_tailroom(skb);
1725 
1726 	if (ret < 0) {
1727 		audit_log_lost("out of memory in audit_expand");
1728 		return 0;
1729 	}
1730 
1731 	skb->truesize += newtail - oldtail;
1732 	return newtail;
1733 }
1734 
1735 /*
1736  * Format an audit message into the audit buffer.  If there isn't enough
1737  * room in the audit buffer, more room will be allocated and vsnprint
1738  * will be called a second time.  Currently, we assume that a printk
1739  * can't format message larger than 1024 bytes, so we don't either.
1740  */
1741 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1742 			      va_list args)
1743 {
1744 	int len, avail;
1745 	struct sk_buff *skb;
1746 	va_list args2;
1747 
1748 	if (!ab)
1749 		return;
1750 
1751 	BUG_ON(!ab->skb);
1752 	skb = ab->skb;
1753 	avail = skb_tailroom(skb);
1754 	if (avail == 0) {
1755 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1756 		if (!avail)
1757 			goto out;
1758 	}
1759 	va_copy(args2, args);
1760 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1761 	if (len >= avail) {
1762 		/* The printk buffer is 1024 bytes long, so if we get
1763 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1764 		 * log everything that printk could have logged. */
1765 		avail = audit_expand(ab,
1766 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1767 		if (!avail)
1768 			goto out_va_end;
1769 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1770 	}
1771 	if (len > 0)
1772 		skb_put(skb, len);
1773 out_va_end:
1774 	va_end(args2);
1775 out:
1776 	return;
1777 }
1778 
1779 /**
1780  * audit_log_format - format a message into the audit buffer.
1781  * @ab: audit_buffer
1782  * @fmt: format string
1783  * @...: optional parameters matching @fmt string
1784  *
1785  * All the work is done in audit_log_vformat.
1786  */
1787 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1788 {
1789 	va_list args;
1790 
1791 	if (!ab)
1792 		return;
1793 	va_start(args, fmt);
1794 	audit_log_vformat(ab, fmt, args);
1795 	va_end(args);
1796 }
1797 
1798 /**
1799  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1800  * @ab: the audit_buffer
1801  * @buf: buffer to convert to hex
1802  * @len: length of @buf to be converted
1803  *
1804  * No return value; failure to expand is silently ignored.
1805  *
1806  * This function will take the passed buf and convert it into a string of
1807  * ascii hex digits. The new string is placed onto the skb.
1808  */
1809 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1810 		size_t len)
1811 {
1812 	int i, avail, new_len;
1813 	unsigned char *ptr;
1814 	struct sk_buff *skb;
1815 
1816 	if (!ab)
1817 		return;
1818 
1819 	BUG_ON(!ab->skb);
1820 	skb = ab->skb;
1821 	avail = skb_tailroom(skb);
1822 	new_len = len<<1;
1823 	if (new_len >= avail) {
1824 		/* Round the buffer request up to the next multiple */
1825 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1826 		avail = audit_expand(ab, new_len);
1827 		if (!avail)
1828 			return;
1829 	}
1830 
1831 	ptr = skb_tail_pointer(skb);
1832 	for (i = 0; i < len; i++)
1833 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1834 	*ptr = 0;
1835 	skb_put(skb, len << 1); /* new string is twice the old string */
1836 }
1837 
1838 /*
1839  * Format a string of no more than slen characters into the audit buffer,
1840  * enclosed in quote marks.
1841  */
1842 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1843 			size_t slen)
1844 {
1845 	int avail, new_len;
1846 	unsigned char *ptr;
1847 	struct sk_buff *skb;
1848 
1849 	if (!ab)
1850 		return;
1851 
1852 	BUG_ON(!ab->skb);
1853 	skb = ab->skb;
1854 	avail = skb_tailroom(skb);
1855 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1856 	if (new_len > avail) {
1857 		avail = audit_expand(ab, new_len);
1858 		if (!avail)
1859 			return;
1860 	}
1861 	ptr = skb_tail_pointer(skb);
1862 	*ptr++ = '"';
1863 	memcpy(ptr, string, slen);
1864 	ptr += slen;
1865 	*ptr++ = '"';
1866 	*ptr = 0;
1867 	skb_put(skb, slen + 2);	/* don't include null terminator */
1868 }
1869 
1870 /**
1871  * audit_string_contains_control - does a string need to be logged in hex
1872  * @string: string to be checked
1873  * @len: max length of the string to check
1874  */
1875 bool audit_string_contains_control(const char *string, size_t len)
1876 {
1877 	const unsigned char *p;
1878 	for (p = string; p < (const unsigned char *)string + len; p++) {
1879 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1880 			return true;
1881 	}
1882 	return false;
1883 }
1884 
1885 /**
1886  * audit_log_n_untrustedstring - log a string that may contain random characters
1887  * @ab: audit_buffer
1888  * @len: length of string (not including trailing null)
1889  * @string: string to be logged
1890  *
1891  * This code will escape a string that is passed to it if the string
1892  * contains a control character, unprintable character, double quote mark,
1893  * or a space. Unescaped strings will start and end with a double quote mark.
1894  * Strings that are escaped are printed in hex (2 digits per char).
1895  *
1896  * The caller specifies the number of characters in the string to log, which may
1897  * or may not be the entire string.
1898  */
1899 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1900 				 size_t len)
1901 {
1902 	if (audit_string_contains_control(string, len))
1903 		audit_log_n_hex(ab, string, len);
1904 	else
1905 		audit_log_n_string(ab, string, len);
1906 }
1907 
1908 /**
1909  * audit_log_untrustedstring - log a string that may contain random characters
1910  * @ab: audit_buffer
1911  * @string: string to be logged
1912  *
1913  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1914  * determine string length.
1915  */
1916 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1917 {
1918 	audit_log_n_untrustedstring(ab, string, strlen(string));
1919 }
1920 
1921 /* This is a helper-function to print the escaped d_path */
1922 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1923 		      const struct path *path)
1924 {
1925 	char *p, *pathname;
1926 
1927 	if (prefix)
1928 		audit_log_format(ab, "%s", prefix);
1929 
1930 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1931 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1932 	if (!pathname) {
1933 		audit_log_string(ab, "<no_memory>");
1934 		return;
1935 	}
1936 	p = d_path(path, pathname, PATH_MAX+11);
1937 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1938 		/* FIXME: can we save some information here? */
1939 		audit_log_string(ab, "<too_long>");
1940 	} else
1941 		audit_log_untrustedstring(ab, p);
1942 	kfree(pathname);
1943 }
1944 
1945 void audit_log_session_info(struct audit_buffer *ab)
1946 {
1947 	unsigned int sessionid = audit_get_sessionid(current);
1948 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1949 
1950 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1951 }
1952 
1953 void audit_log_key(struct audit_buffer *ab, char *key)
1954 {
1955 	audit_log_format(ab, " key=");
1956 	if (key)
1957 		audit_log_untrustedstring(ab, key);
1958 	else
1959 		audit_log_format(ab, "(null)");
1960 }
1961 
1962 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1963 {
1964 	int i;
1965 
1966 	audit_log_format(ab, " %s=", prefix);
1967 	CAP_FOR_EACH_U32(i) {
1968 		audit_log_format(ab, "%08x",
1969 				 cap->cap[CAP_LAST_U32 - i]);
1970 	}
1971 }
1972 
1973 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1974 {
1975 	kernel_cap_t *perm = &name->fcap.permitted;
1976 	kernel_cap_t *inh = &name->fcap.inheritable;
1977 	int log = 0;
1978 
1979 	if (!cap_isclear(*perm)) {
1980 		audit_log_cap(ab, "cap_fp", perm);
1981 		log = 1;
1982 	}
1983 	if (!cap_isclear(*inh)) {
1984 		audit_log_cap(ab, "cap_fi", inh);
1985 		log = 1;
1986 	}
1987 
1988 	if (log)
1989 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1990 				 name->fcap.fE, name->fcap_ver);
1991 }
1992 
1993 static inline int audit_copy_fcaps(struct audit_names *name,
1994 				   const struct dentry *dentry)
1995 {
1996 	struct cpu_vfs_cap_data caps;
1997 	int rc;
1998 
1999 	if (!dentry)
2000 		return 0;
2001 
2002 	rc = get_vfs_caps_from_disk(dentry, &caps);
2003 	if (rc)
2004 		return rc;
2005 
2006 	name->fcap.permitted = caps.permitted;
2007 	name->fcap.inheritable = caps.inheritable;
2008 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2009 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2010 				VFS_CAP_REVISION_SHIFT;
2011 
2012 	return 0;
2013 }
2014 
2015 /* Copy inode data into an audit_names. */
2016 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2017 		      struct inode *inode)
2018 {
2019 	name->ino   = inode->i_ino;
2020 	name->dev   = inode->i_sb->s_dev;
2021 	name->mode  = inode->i_mode;
2022 	name->uid   = inode->i_uid;
2023 	name->gid   = inode->i_gid;
2024 	name->rdev  = inode->i_rdev;
2025 	security_inode_getsecid(inode, &name->osid);
2026 	audit_copy_fcaps(name, dentry);
2027 }
2028 
2029 /**
2030  * audit_log_name - produce AUDIT_PATH record from struct audit_names
2031  * @context: audit_context for the task
2032  * @n: audit_names structure with reportable details
2033  * @path: optional path to report instead of audit_names->name
2034  * @record_num: record number to report when handling a list of names
2035  * @call_panic: optional pointer to int that will be updated if secid fails
2036  */
2037 void audit_log_name(struct audit_context *context, struct audit_names *n,
2038 		    const struct path *path, int record_num, int *call_panic)
2039 {
2040 	struct audit_buffer *ab;
2041 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2042 	if (!ab)
2043 		return;
2044 
2045 	audit_log_format(ab, "item=%d", record_num);
2046 
2047 	if (path)
2048 		audit_log_d_path(ab, " name=", path);
2049 	else if (n->name) {
2050 		switch (n->name_len) {
2051 		case AUDIT_NAME_FULL:
2052 			/* log the full path */
2053 			audit_log_format(ab, " name=");
2054 			audit_log_untrustedstring(ab, n->name->name);
2055 			break;
2056 		case 0:
2057 			/* name was specified as a relative path and the
2058 			 * directory component is the cwd */
2059 			audit_log_d_path(ab, " name=", &context->pwd);
2060 			break;
2061 		default:
2062 			/* log the name's directory component */
2063 			audit_log_format(ab, " name=");
2064 			audit_log_n_untrustedstring(ab, n->name->name,
2065 						    n->name_len);
2066 		}
2067 	} else
2068 		audit_log_format(ab, " name=(null)");
2069 
2070 	if (n->ino != AUDIT_INO_UNSET)
2071 		audit_log_format(ab, " inode=%lu"
2072 				 " dev=%02x:%02x mode=%#ho"
2073 				 " ouid=%u ogid=%u rdev=%02x:%02x",
2074 				 n->ino,
2075 				 MAJOR(n->dev),
2076 				 MINOR(n->dev),
2077 				 n->mode,
2078 				 from_kuid(&init_user_ns, n->uid),
2079 				 from_kgid(&init_user_ns, n->gid),
2080 				 MAJOR(n->rdev),
2081 				 MINOR(n->rdev));
2082 	if (n->osid != 0) {
2083 		char *ctx = NULL;
2084 		u32 len;
2085 		if (security_secid_to_secctx(
2086 			n->osid, &ctx, &len)) {
2087 			audit_log_format(ab, " osid=%u", n->osid);
2088 			if (call_panic)
2089 				*call_panic = 2;
2090 		} else {
2091 			audit_log_format(ab, " obj=%s", ctx);
2092 			security_release_secctx(ctx, len);
2093 		}
2094 	}
2095 
2096 	/* log the audit_names record type */
2097 	audit_log_format(ab, " nametype=");
2098 	switch(n->type) {
2099 	case AUDIT_TYPE_NORMAL:
2100 		audit_log_format(ab, "NORMAL");
2101 		break;
2102 	case AUDIT_TYPE_PARENT:
2103 		audit_log_format(ab, "PARENT");
2104 		break;
2105 	case AUDIT_TYPE_CHILD_DELETE:
2106 		audit_log_format(ab, "DELETE");
2107 		break;
2108 	case AUDIT_TYPE_CHILD_CREATE:
2109 		audit_log_format(ab, "CREATE");
2110 		break;
2111 	default:
2112 		audit_log_format(ab, "UNKNOWN");
2113 		break;
2114 	}
2115 
2116 	audit_log_fcaps(ab, n);
2117 	audit_log_end(ab);
2118 }
2119 
2120 int audit_log_task_context(struct audit_buffer *ab)
2121 {
2122 	char *ctx = NULL;
2123 	unsigned len;
2124 	int error;
2125 	u32 sid;
2126 
2127 	security_task_getsecid(current, &sid);
2128 	if (!sid)
2129 		return 0;
2130 
2131 	error = security_secid_to_secctx(sid, &ctx, &len);
2132 	if (error) {
2133 		if (error != -EINVAL)
2134 			goto error_path;
2135 		return 0;
2136 	}
2137 
2138 	audit_log_format(ab, " subj=%s", ctx);
2139 	security_release_secctx(ctx, len);
2140 	return 0;
2141 
2142 error_path:
2143 	audit_panic("error in audit_log_task_context");
2144 	return error;
2145 }
2146 EXPORT_SYMBOL(audit_log_task_context);
2147 
2148 void audit_log_d_path_exe(struct audit_buffer *ab,
2149 			  struct mm_struct *mm)
2150 {
2151 	struct file *exe_file;
2152 
2153 	if (!mm)
2154 		goto out_null;
2155 
2156 	exe_file = get_mm_exe_file(mm);
2157 	if (!exe_file)
2158 		goto out_null;
2159 
2160 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2161 	fput(exe_file);
2162 	return;
2163 out_null:
2164 	audit_log_format(ab, " exe=(null)");
2165 }
2166 
2167 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2168 {
2169 	struct tty_struct *tty = NULL;
2170 	unsigned long flags;
2171 
2172 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2173 	if (tsk->signal)
2174 		tty = tty_kref_get(tsk->signal->tty);
2175 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2176 	return tty;
2177 }
2178 
2179 void audit_put_tty(struct tty_struct *tty)
2180 {
2181 	tty_kref_put(tty);
2182 }
2183 
2184 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2185 {
2186 	const struct cred *cred;
2187 	char comm[sizeof(tsk->comm)];
2188 	struct tty_struct *tty;
2189 
2190 	if (!ab)
2191 		return;
2192 
2193 	/* tsk == current */
2194 	cred = current_cred();
2195 	tty = audit_get_tty(tsk);
2196 	audit_log_format(ab,
2197 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2198 			 " euid=%u suid=%u fsuid=%u"
2199 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2200 			 task_ppid_nr(tsk),
2201 			 task_tgid_nr(tsk),
2202 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2203 			 from_kuid(&init_user_ns, cred->uid),
2204 			 from_kgid(&init_user_ns, cred->gid),
2205 			 from_kuid(&init_user_ns, cred->euid),
2206 			 from_kuid(&init_user_ns, cred->suid),
2207 			 from_kuid(&init_user_ns, cred->fsuid),
2208 			 from_kgid(&init_user_ns, cred->egid),
2209 			 from_kgid(&init_user_ns, cred->sgid),
2210 			 from_kgid(&init_user_ns, cred->fsgid),
2211 			 tty ? tty_name(tty) : "(none)",
2212 			 audit_get_sessionid(tsk));
2213 	audit_put_tty(tty);
2214 	audit_log_format(ab, " comm=");
2215 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2216 	audit_log_d_path_exe(ab, tsk->mm);
2217 	audit_log_task_context(ab);
2218 }
2219 EXPORT_SYMBOL(audit_log_task_info);
2220 
2221 /**
2222  * audit_log_link_denied - report a link restriction denial
2223  * @operation: specific link operation
2224  * @link: the path that triggered the restriction
2225  */
2226 void audit_log_link_denied(const char *operation, const struct path *link)
2227 {
2228 	struct audit_buffer *ab;
2229 	struct audit_names *name;
2230 
2231 	name = kzalloc(sizeof(*name), GFP_NOFS);
2232 	if (!name)
2233 		return;
2234 
2235 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2236 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
2237 			     AUDIT_ANOM_LINK);
2238 	if (!ab)
2239 		goto out;
2240 	audit_log_format(ab, "op=%s", operation);
2241 	audit_log_task_info(ab, current);
2242 	audit_log_format(ab, " res=0");
2243 	audit_log_end(ab);
2244 
2245 	/* Generate AUDIT_PATH record with object. */
2246 	name->type = AUDIT_TYPE_NORMAL;
2247 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2248 	audit_log_name(current->audit_context, name, link, 0, NULL);
2249 out:
2250 	kfree(name);
2251 }
2252 
2253 /**
2254  * audit_log_end - end one audit record
2255  * @ab: the audit_buffer
2256  *
2257  * We can not do a netlink send inside an irq context because it blocks (last
2258  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2259  * queue and a tasklet is scheduled to remove them from the queue outside the
2260  * irq context.  May be called in any context.
2261  */
2262 void audit_log_end(struct audit_buffer *ab)
2263 {
2264 	struct sk_buff *skb;
2265 	struct nlmsghdr *nlh;
2266 
2267 	if (!ab)
2268 		return;
2269 
2270 	if (audit_rate_check()) {
2271 		skb = ab->skb;
2272 		ab->skb = NULL;
2273 
2274 		/* setup the netlink header, see the comments in
2275 		 * kauditd_send_multicast_skb() for length quirks */
2276 		nlh = nlmsg_hdr(skb);
2277 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2278 
2279 		/* queue the netlink packet and poke the kauditd thread */
2280 		skb_queue_tail(&audit_queue, skb);
2281 		wake_up_interruptible(&kauditd_wait);
2282 	} else
2283 		audit_log_lost("rate limit exceeded");
2284 
2285 	audit_buffer_free(ab);
2286 }
2287 
2288 /**
2289  * audit_log - Log an audit record
2290  * @ctx: audit context
2291  * @gfp_mask: type of allocation
2292  * @type: audit message type
2293  * @fmt: format string to use
2294  * @...: variable parameters matching the format string
2295  *
2296  * This is a convenience function that calls audit_log_start,
2297  * audit_log_vformat, and audit_log_end.  It may be called
2298  * in any context.
2299  */
2300 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2301 	       const char *fmt, ...)
2302 {
2303 	struct audit_buffer *ab;
2304 	va_list args;
2305 
2306 	ab = audit_log_start(ctx, gfp_mask, type);
2307 	if (ab) {
2308 		va_start(args, fmt);
2309 		audit_log_vformat(ab, fmt, args);
2310 		va_end(args);
2311 		audit_log_end(ab);
2312 	}
2313 }
2314 
2315 #ifdef CONFIG_SECURITY
2316 /**
2317  * audit_log_secctx - Converts and logs SELinux context
2318  * @ab: audit_buffer
2319  * @secid: security number
2320  *
2321  * This is a helper function that calls security_secid_to_secctx to convert
2322  * secid to secctx and then adds the (converted) SELinux context to the audit
2323  * log by calling audit_log_format, thus also preventing leak of internal secid
2324  * to userspace. If secid cannot be converted audit_panic is called.
2325  */
2326 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2327 {
2328 	u32 len;
2329 	char *secctx;
2330 
2331 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2332 		audit_panic("Cannot convert secid to context");
2333 	} else {
2334 		audit_log_format(ab, " obj=%s", secctx);
2335 		security_release_secctx(secctx, len);
2336 	}
2337 }
2338 EXPORT_SYMBOL(audit_log_secctx);
2339 #endif
2340 
2341 EXPORT_SYMBOL(audit_log_start);
2342 EXPORT_SYMBOL(audit_log_end);
2343 EXPORT_SYMBOL(audit_log_format);
2344 EXPORT_SYMBOL(audit_log);
2345