1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/init.h> 47 #include <linux/types.h> 48 #include <linux/atomic.h> 49 #include <linux/mm.h> 50 #include <linux/export.h> 51 #include <linux/slab.h> 52 #include <linux/err.h> 53 #include <linux/kthread.h> 54 #include <linux/kernel.h> 55 #include <linux/syscalls.h> 56 57 #include <linux/audit.h> 58 59 #include <net/sock.h> 60 #include <net/netlink.h> 61 #include <linux/skbuff.h> 62 #ifdef CONFIG_SECURITY 63 #include <linux/security.h> 64 #endif 65 #include <linux/freezer.h> 66 #include <linux/tty.h> 67 #include <linux/pid_namespace.h> 68 #include <net/netns/generic.h> 69 70 #include "audit.h" 71 72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 73 * (Initialization happens after skb_init is called.) */ 74 #define AUDIT_DISABLED -1 75 #define AUDIT_UNINITIALIZED 0 76 #define AUDIT_INITIALIZED 1 77 static int audit_initialized; 78 79 #define AUDIT_OFF 0 80 #define AUDIT_ON 1 81 #define AUDIT_LOCKED 2 82 u32 audit_enabled; 83 u32 audit_ever_enabled; 84 85 EXPORT_SYMBOL_GPL(audit_enabled); 86 87 /* Default state when kernel boots without any parameters. */ 88 static u32 audit_default; 89 90 /* If auditing cannot proceed, audit_failure selects what happens. */ 91 static u32 audit_failure = AUDIT_FAIL_PRINTK; 92 93 /* 94 * If audit records are to be written to the netlink socket, audit_pid 95 * contains the pid of the auditd process and audit_nlk_portid contains 96 * the portid to use to send netlink messages to that process. 97 */ 98 int audit_pid; 99 static __u32 audit_nlk_portid; 100 101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 102 * to that number per second. This prevents DoS attacks, but results in 103 * audit records being dropped. */ 104 static u32 audit_rate_limit; 105 106 /* Number of outstanding audit_buffers allowed. 107 * When set to zero, this means unlimited. */ 108 static u32 audit_backlog_limit = 64; 109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 111 static u32 audit_backlog_wait_overflow = 0; 112 113 /* The identity of the user shutting down the audit system. */ 114 kuid_t audit_sig_uid = INVALID_UID; 115 pid_t audit_sig_pid = -1; 116 u32 audit_sig_sid = 0; 117 118 /* Records can be lost in several ways: 119 0) [suppressed in audit_alloc] 120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 121 2) out of memory in audit_log_move [alloc_skb] 122 3) suppressed due to audit_rate_limit 123 4) suppressed due to audit_backlog_limit 124 */ 125 static atomic_t audit_lost = ATOMIC_INIT(0); 126 127 /* The netlink socket. */ 128 static struct sock *audit_sock; 129 int audit_net_id; 130 131 /* Hash for inode-based rules */ 132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 133 134 /* The audit_freelist is a list of pre-allocated audit buffers (if more 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 136 * being placed on the freelist). */ 137 static DEFINE_SPINLOCK(audit_freelist_lock); 138 static int audit_freelist_count; 139 static LIST_HEAD(audit_freelist); 140 141 static struct sk_buff_head audit_skb_queue; 142 /* queue of skbs to send to auditd when/if it comes back */ 143 static struct sk_buff_head audit_skb_hold_queue; 144 static struct task_struct *kauditd_task; 145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 147 148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 149 .mask = -1, 150 .features = 0, 151 .lock = 0,}; 152 153 static char *audit_feature_names[2] = { 154 "only_unset_loginuid", 155 "loginuid_immutable", 156 }; 157 158 159 /* Serialize requests from userspace. */ 160 DEFINE_MUTEX(audit_cmd_mutex); 161 162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 163 * audit records. Since printk uses a 1024 byte buffer, this buffer 164 * should be at least that large. */ 165 #define AUDIT_BUFSIZ 1024 166 167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 169 #define AUDIT_MAXFREE (2*NR_CPUS) 170 171 /* The audit_buffer is used when formatting an audit record. The caller 172 * locks briefly to get the record off the freelist or to allocate the 173 * buffer, and locks briefly to send the buffer to the netlink layer or 174 * to place it on a transmit queue. Multiple audit_buffers can be in 175 * use simultaneously. */ 176 struct audit_buffer { 177 struct list_head list; 178 struct sk_buff *skb; /* formatted skb ready to send */ 179 struct audit_context *ctx; /* NULL or associated context */ 180 gfp_t gfp_mask; 181 }; 182 183 struct audit_reply { 184 __u32 portid; 185 struct net *net; 186 struct sk_buff *skb; 187 }; 188 189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 190 { 191 if (ab) { 192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 193 nlh->nlmsg_pid = portid; 194 } 195 } 196 197 void audit_panic(const char *message) 198 { 199 switch (audit_failure) { 200 case AUDIT_FAIL_SILENT: 201 break; 202 case AUDIT_FAIL_PRINTK: 203 if (printk_ratelimit()) 204 pr_err("%s\n", message); 205 break; 206 case AUDIT_FAIL_PANIC: 207 /* test audit_pid since printk is always losey, why bother? */ 208 if (audit_pid) 209 panic("audit: %s\n", message); 210 break; 211 } 212 } 213 214 static inline int audit_rate_check(void) 215 { 216 static unsigned long last_check = 0; 217 static int messages = 0; 218 static DEFINE_SPINLOCK(lock); 219 unsigned long flags; 220 unsigned long now; 221 unsigned long elapsed; 222 int retval = 0; 223 224 if (!audit_rate_limit) return 1; 225 226 spin_lock_irqsave(&lock, flags); 227 if (++messages < audit_rate_limit) { 228 retval = 1; 229 } else { 230 now = jiffies; 231 elapsed = now - last_check; 232 if (elapsed > HZ) { 233 last_check = now; 234 messages = 0; 235 retval = 1; 236 } 237 } 238 spin_unlock_irqrestore(&lock, flags); 239 240 return retval; 241 } 242 243 /** 244 * audit_log_lost - conditionally log lost audit message event 245 * @message: the message stating reason for lost audit message 246 * 247 * Emit at least 1 message per second, even if audit_rate_check is 248 * throttling. 249 * Always increment the lost messages counter. 250 */ 251 void audit_log_lost(const char *message) 252 { 253 static unsigned long last_msg = 0; 254 static DEFINE_SPINLOCK(lock); 255 unsigned long flags; 256 unsigned long now; 257 int print; 258 259 atomic_inc(&audit_lost); 260 261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 262 263 if (!print) { 264 spin_lock_irqsave(&lock, flags); 265 now = jiffies; 266 if (now - last_msg > HZ) { 267 print = 1; 268 last_msg = now; 269 } 270 spin_unlock_irqrestore(&lock, flags); 271 } 272 273 if (print) { 274 if (printk_ratelimit()) 275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 276 atomic_read(&audit_lost), 277 audit_rate_limit, 278 audit_backlog_limit); 279 audit_panic(message); 280 } 281 } 282 283 static int audit_log_config_change(char *function_name, u32 new, u32 old, 284 int allow_changes) 285 { 286 struct audit_buffer *ab; 287 int rc = 0; 288 289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 290 if (unlikely(!ab)) 291 return rc; 292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 293 audit_log_session_info(ab); 294 rc = audit_log_task_context(ab); 295 if (rc) 296 allow_changes = 0; /* Something weird, deny request */ 297 audit_log_format(ab, " res=%d", allow_changes); 298 audit_log_end(ab); 299 return rc; 300 } 301 302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 303 { 304 int allow_changes, rc = 0; 305 u32 old = *to_change; 306 307 /* check if we are locked */ 308 if (audit_enabled == AUDIT_LOCKED) 309 allow_changes = 0; 310 else 311 allow_changes = 1; 312 313 if (audit_enabled != AUDIT_OFF) { 314 rc = audit_log_config_change(function_name, new, old, allow_changes); 315 if (rc) 316 allow_changes = 0; 317 } 318 319 /* If we are allowed, make the change */ 320 if (allow_changes == 1) 321 *to_change = new; 322 /* Not allowed, update reason */ 323 else if (rc == 0) 324 rc = -EPERM; 325 return rc; 326 } 327 328 static int audit_set_rate_limit(u32 limit) 329 { 330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 331 } 332 333 static int audit_set_backlog_limit(u32 limit) 334 { 335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 336 } 337 338 static int audit_set_backlog_wait_time(u32 timeout) 339 { 340 return audit_do_config_change("audit_backlog_wait_time", 341 &audit_backlog_wait_time, timeout); 342 } 343 344 static int audit_set_enabled(u32 state) 345 { 346 int rc; 347 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 348 return -EINVAL; 349 350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 351 if (!rc) 352 audit_ever_enabled |= !!state; 353 354 return rc; 355 } 356 357 static int audit_set_failure(u32 state) 358 { 359 if (state != AUDIT_FAIL_SILENT 360 && state != AUDIT_FAIL_PRINTK 361 && state != AUDIT_FAIL_PANIC) 362 return -EINVAL; 363 364 return audit_do_config_change("audit_failure", &audit_failure, state); 365 } 366 367 /* 368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 369 * already have been sent via prink/syslog and so if these messages are dropped 370 * it is not a huge concern since we already passed the audit_log_lost() 371 * notification and stuff. This is just nice to get audit messages during 372 * boot before auditd is running or messages generated while auditd is stopped. 373 * This only holds messages is audit_default is set, aka booting with audit=1 374 * or building your kernel that way. 375 */ 376 static void audit_hold_skb(struct sk_buff *skb) 377 { 378 if (audit_default && 379 (!audit_backlog_limit || 380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 381 skb_queue_tail(&audit_skb_hold_queue, skb); 382 else 383 kfree_skb(skb); 384 } 385 386 /* 387 * For one reason or another this nlh isn't getting delivered to the userspace 388 * audit daemon, just send it to printk. 389 */ 390 static void audit_printk_skb(struct sk_buff *skb) 391 { 392 struct nlmsghdr *nlh = nlmsg_hdr(skb); 393 char *data = nlmsg_data(nlh); 394 395 if (nlh->nlmsg_type != AUDIT_EOE) { 396 if (printk_ratelimit()) 397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 398 else 399 audit_log_lost("printk limit exceeded"); 400 } 401 402 audit_hold_skb(skb); 403 } 404 405 static void kauditd_send_skb(struct sk_buff *skb) 406 { 407 int err; 408 /* take a reference in case we can't send it and we want to hold it */ 409 skb_get(skb); 410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 411 if (err < 0) { 412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ 413 if (audit_pid) { 414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid); 415 audit_log_lost("auditd disappeared"); 416 audit_pid = 0; 417 audit_sock = NULL; 418 } 419 /* we might get lucky and get this in the next auditd */ 420 audit_hold_skb(skb); 421 } else 422 /* drop the extra reference if sent ok */ 423 consume_skb(skb); 424 } 425 426 /* 427 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners 428 * 429 * This function doesn't consume an skb as might be expected since it has to 430 * copy it anyways. 431 */ 432 static void kauditd_send_multicast_skb(struct sk_buff *skb) 433 { 434 struct sk_buff *copy; 435 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 436 struct sock *sock = aunet->nlsk; 437 438 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 439 return; 440 441 /* 442 * The seemingly wasteful skb_copy() rather than bumping the refcount 443 * using skb_get() is necessary because non-standard mods are made to 444 * the skb by the original kaudit unicast socket send routine. The 445 * existing auditd daemon assumes this breakage. Fixing this would 446 * require co-ordinating a change in the established protocol between 447 * the kaudit kernel subsystem and the auditd userspace code. There is 448 * no reason for new multicast clients to continue with this 449 * non-compliance. 450 */ 451 copy = skb_copy(skb, GFP_KERNEL); 452 if (!copy) 453 return; 454 455 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 456 } 457 458 /* 459 * flush_hold_queue - empty the hold queue if auditd appears 460 * 461 * If auditd just started, drain the queue of messages already 462 * sent to syslog/printk. Remember loss here is ok. We already 463 * called audit_log_lost() if it didn't go out normally. so the 464 * race between the skb_dequeue and the next check for audit_pid 465 * doesn't matter. 466 * 467 * If you ever find kauditd to be too slow we can get a perf win 468 * by doing our own locking and keeping better track if there 469 * are messages in this queue. I don't see the need now, but 470 * in 5 years when I want to play with this again I'll see this 471 * note and still have no friggin idea what i'm thinking today. 472 */ 473 static void flush_hold_queue(void) 474 { 475 struct sk_buff *skb; 476 477 if (!audit_default || !audit_pid) 478 return; 479 480 skb = skb_dequeue(&audit_skb_hold_queue); 481 if (likely(!skb)) 482 return; 483 484 while (skb && audit_pid) { 485 kauditd_send_skb(skb); 486 skb = skb_dequeue(&audit_skb_hold_queue); 487 } 488 489 /* 490 * if auditd just disappeared but we 491 * dequeued an skb we need to drop ref 492 */ 493 if (skb) 494 consume_skb(skb); 495 } 496 497 static int kauditd_thread(void *dummy) 498 { 499 set_freezable(); 500 while (!kthread_should_stop()) { 501 struct sk_buff *skb; 502 DECLARE_WAITQUEUE(wait, current); 503 504 flush_hold_queue(); 505 506 skb = skb_dequeue(&audit_skb_queue); 507 508 if (skb) { 509 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit) 510 wake_up(&audit_backlog_wait); 511 if (audit_pid) 512 kauditd_send_skb(skb); 513 else 514 audit_printk_skb(skb); 515 continue; 516 } 517 set_current_state(TASK_INTERRUPTIBLE); 518 add_wait_queue(&kauditd_wait, &wait); 519 520 if (!skb_queue_len(&audit_skb_queue)) { 521 try_to_freeze(); 522 schedule(); 523 } 524 525 __set_current_state(TASK_RUNNING); 526 remove_wait_queue(&kauditd_wait, &wait); 527 } 528 return 0; 529 } 530 531 int audit_send_list(void *_dest) 532 { 533 struct audit_netlink_list *dest = _dest; 534 struct sk_buff *skb; 535 struct net *net = dest->net; 536 struct audit_net *aunet = net_generic(net, audit_net_id); 537 538 /* wait for parent to finish and send an ACK */ 539 mutex_lock(&audit_cmd_mutex); 540 mutex_unlock(&audit_cmd_mutex); 541 542 while ((skb = __skb_dequeue(&dest->q)) != NULL) 543 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 544 545 put_net(net); 546 kfree(dest); 547 548 return 0; 549 } 550 551 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 552 int multi, const void *payload, int size) 553 { 554 struct sk_buff *skb; 555 struct nlmsghdr *nlh; 556 void *data; 557 int flags = multi ? NLM_F_MULTI : 0; 558 int t = done ? NLMSG_DONE : type; 559 560 skb = nlmsg_new(size, GFP_KERNEL); 561 if (!skb) 562 return NULL; 563 564 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 565 if (!nlh) 566 goto out_kfree_skb; 567 data = nlmsg_data(nlh); 568 memcpy(data, payload, size); 569 return skb; 570 571 out_kfree_skb: 572 kfree_skb(skb); 573 return NULL; 574 } 575 576 static int audit_send_reply_thread(void *arg) 577 { 578 struct audit_reply *reply = (struct audit_reply *)arg; 579 struct net *net = reply->net; 580 struct audit_net *aunet = net_generic(net, audit_net_id); 581 582 mutex_lock(&audit_cmd_mutex); 583 mutex_unlock(&audit_cmd_mutex); 584 585 /* Ignore failure. It'll only happen if the sender goes away, 586 because our timeout is set to infinite. */ 587 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 588 put_net(net); 589 kfree(reply); 590 return 0; 591 } 592 /** 593 * audit_send_reply - send an audit reply message via netlink 594 * @request_skb: skb of request we are replying to (used to target the reply) 595 * @seq: sequence number 596 * @type: audit message type 597 * @done: done (last) flag 598 * @multi: multi-part message flag 599 * @payload: payload data 600 * @size: payload size 601 * 602 * Allocates an skb, builds the netlink message, and sends it to the port id. 603 * No failure notifications. 604 */ 605 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 606 int multi, const void *payload, int size) 607 { 608 u32 portid = NETLINK_CB(request_skb).portid; 609 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 610 struct sk_buff *skb; 611 struct task_struct *tsk; 612 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 613 GFP_KERNEL); 614 615 if (!reply) 616 return; 617 618 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 619 if (!skb) 620 goto out; 621 622 reply->net = get_net(net); 623 reply->portid = portid; 624 reply->skb = skb; 625 626 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 627 if (!IS_ERR(tsk)) 628 return; 629 kfree_skb(skb); 630 out: 631 kfree(reply); 632 } 633 634 /* 635 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 636 * control messages. 637 */ 638 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 639 { 640 int err = 0; 641 642 /* Only support initial user namespace for now. */ 643 /* 644 * We return ECONNREFUSED because it tricks userspace into thinking 645 * that audit was not configured into the kernel. Lots of users 646 * configure their PAM stack (because that's what the distro does) 647 * to reject login if unable to send messages to audit. If we return 648 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 649 * configured in and will let login proceed. If we return EPERM 650 * userspace will reject all logins. This should be removed when we 651 * support non init namespaces!! 652 */ 653 if (current_user_ns() != &init_user_ns) 654 return -ECONNREFUSED; 655 656 switch (msg_type) { 657 case AUDIT_LIST: 658 case AUDIT_ADD: 659 case AUDIT_DEL: 660 return -EOPNOTSUPP; 661 case AUDIT_GET: 662 case AUDIT_SET: 663 case AUDIT_GET_FEATURE: 664 case AUDIT_SET_FEATURE: 665 case AUDIT_LIST_RULES: 666 case AUDIT_ADD_RULE: 667 case AUDIT_DEL_RULE: 668 case AUDIT_SIGNAL_INFO: 669 case AUDIT_TTY_GET: 670 case AUDIT_TTY_SET: 671 case AUDIT_TRIM: 672 case AUDIT_MAKE_EQUIV: 673 /* Only support auditd and auditctl in initial pid namespace 674 * for now. */ 675 if ((task_active_pid_ns(current) != &init_pid_ns)) 676 return -EPERM; 677 678 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 679 err = -EPERM; 680 break; 681 case AUDIT_USER: 682 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 683 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 684 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 685 err = -EPERM; 686 break; 687 default: /* bad msg */ 688 err = -EINVAL; 689 } 690 691 return err; 692 } 693 694 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 695 { 696 int rc = 0; 697 uid_t uid = from_kuid(&init_user_ns, current_uid()); 698 pid_t pid = task_tgid_nr(current); 699 700 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 701 *ab = NULL; 702 return rc; 703 } 704 705 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 706 if (unlikely(!*ab)) 707 return rc; 708 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 709 audit_log_session_info(*ab); 710 audit_log_task_context(*ab); 711 712 return rc; 713 } 714 715 int is_audit_feature_set(int i) 716 { 717 return af.features & AUDIT_FEATURE_TO_MASK(i); 718 } 719 720 721 static int audit_get_feature(struct sk_buff *skb) 722 { 723 u32 seq; 724 725 seq = nlmsg_hdr(skb)->nlmsg_seq; 726 727 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af)); 728 729 return 0; 730 } 731 732 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 733 u32 old_lock, u32 new_lock, int res) 734 { 735 struct audit_buffer *ab; 736 737 if (audit_enabled == AUDIT_OFF) 738 return; 739 740 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 741 audit_log_task_info(ab, current); 742 audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 743 audit_feature_names[which], !!old_feature, !!new_feature, 744 !!old_lock, !!new_lock, res); 745 audit_log_end(ab); 746 } 747 748 static int audit_set_feature(struct sk_buff *skb) 749 { 750 struct audit_features *uaf; 751 int i; 752 753 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0])); 754 uaf = nlmsg_data(nlmsg_hdr(skb)); 755 756 /* if there is ever a version 2 we should handle that here */ 757 758 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 759 u32 feature = AUDIT_FEATURE_TO_MASK(i); 760 u32 old_feature, new_feature, old_lock, new_lock; 761 762 /* if we are not changing this feature, move along */ 763 if (!(feature & uaf->mask)) 764 continue; 765 766 old_feature = af.features & feature; 767 new_feature = uaf->features & feature; 768 new_lock = (uaf->lock | af.lock) & feature; 769 old_lock = af.lock & feature; 770 771 /* are we changing a locked feature? */ 772 if (old_lock && (new_feature != old_feature)) { 773 audit_log_feature_change(i, old_feature, new_feature, 774 old_lock, new_lock, 0); 775 return -EPERM; 776 } 777 } 778 /* nothing invalid, do the changes */ 779 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 780 u32 feature = AUDIT_FEATURE_TO_MASK(i); 781 u32 old_feature, new_feature, old_lock, new_lock; 782 783 /* if we are not changing this feature, move along */ 784 if (!(feature & uaf->mask)) 785 continue; 786 787 old_feature = af.features & feature; 788 new_feature = uaf->features & feature; 789 old_lock = af.lock & feature; 790 new_lock = (uaf->lock | af.lock) & feature; 791 792 if (new_feature != old_feature) 793 audit_log_feature_change(i, old_feature, new_feature, 794 old_lock, new_lock, 1); 795 796 if (new_feature) 797 af.features |= feature; 798 else 799 af.features &= ~feature; 800 af.lock |= new_lock; 801 } 802 803 return 0; 804 } 805 806 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 807 { 808 u32 seq; 809 void *data; 810 int err; 811 struct audit_buffer *ab; 812 u16 msg_type = nlh->nlmsg_type; 813 struct audit_sig_info *sig_data; 814 char *ctx = NULL; 815 u32 len; 816 817 err = audit_netlink_ok(skb, msg_type); 818 if (err) 819 return err; 820 821 /* As soon as there's any sign of userspace auditd, 822 * start kauditd to talk to it */ 823 if (!kauditd_task) { 824 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 825 if (IS_ERR(kauditd_task)) { 826 err = PTR_ERR(kauditd_task); 827 kauditd_task = NULL; 828 return err; 829 } 830 } 831 seq = nlh->nlmsg_seq; 832 data = nlmsg_data(nlh); 833 834 switch (msg_type) { 835 case AUDIT_GET: { 836 struct audit_status s; 837 memset(&s, 0, sizeof(s)); 838 s.enabled = audit_enabled; 839 s.failure = audit_failure; 840 s.pid = audit_pid; 841 s.rate_limit = audit_rate_limit; 842 s.backlog_limit = audit_backlog_limit; 843 s.lost = atomic_read(&audit_lost); 844 s.backlog = skb_queue_len(&audit_skb_queue); 845 s.version = AUDIT_VERSION_LATEST; 846 s.backlog_wait_time = audit_backlog_wait_time; 847 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 848 break; 849 } 850 case AUDIT_SET: { 851 struct audit_status s; 852 memset(&s, 0, sizeof(s)); 853 /* guard against past and future API changes */ 854 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 855 if (s.mask & AUDIT_STATUS_ENABLED) { 856 err = audit_set_enabled(s.enabled); 857 if (err < 0) 858 return err; 859 } 860 if (s.mask & AUDIT_STATUS_FAILURE) { 861 err = audit_set_failure(s.failure); 862 if (err < 0) 863 return err; 864 } 865 if (s.mask & AUDIT_STATUS_PID) { 866 int new_pid = s.pid; 867 868 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 869 return -EACCES; 870 if (audit_enabled != AUDIT_OFF) 871 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 872 audit_pid = new_pid; 873 audit_nlk_portid = NETLINK_CB(skb).portid; 874 audit_sock = skb->sk; 875 } 876 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 877 err = audit_set_rate_limit(s.rate_limit); 878 if (err < 0) 879 return err; 880 } 881 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 882 err = audit_set_backlog_limit(s.backlog_limit); 883 if (err < 0) 884 return err; 885 } 886 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 887 if (sizeof(s) > (size_t)nlh->nlmsg_len) 888 return -EINVAL; 889 if (s.backlog_wait_time < 0 || 890 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 891 return -EINVAL; 892 err = audit_set_backlog_wait_time(s.backlog_wait_time); 893 if (err < 0) 894 return err; 895 } 896 break; 897 } 898 case AUDIT_GET_FEATURE: 899 err = audit_get_feature(skb); 900 if (err) 901 return err; 902 break; 903 case AUDIT_SET_FEATURE: 904 err = audit_set_feature(skb); 905 if (err) 906 return err; 907 break; 908 case AUDIT_USER: 909 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 910 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 911 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 912 return 0; 913 914 err = audit_filter_user(msg_type); 915 if (err == 1) { /* match or error */ 916 err = 0; 917 if (msg_type == AUDIT_USER_TTY) { 918 err = tty_audit_push_current(); 919 if (err) 920 break; 921 } 922 mutex_unlock(&audit_cmd_mutex); 923 audit_log_common_recv_msg(&ab, msg_type); 924 if (msg_type != AUDIT_USER_TTY) 925 audit_log_format(ab, " msg='%.*s'", 926 AUDIT_MESSAGE_TEXT_MAX, 927 (char *)data); 928 else { 929 int size; 930 931 audit_log_format(ab, " data="); 932 size = nlmsg_len(nlh); 933 if (size > 0 && 934 ((unsigned char *)data)[size - 1] == '\0') 935 size--; 936 audit_log_n_untrustedstring(ab, data, size); 937 } 938 audit_set_portid(ab, NETLINK_CB(skb).portid); 939 audit_log_end(ab); 940 mutex_lock(&audit_cmd_mutex); 941 } 942 break; 943 case AUDIT_ADD_RULE: 944 case AUDIT_DEL_RULE: 945 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 946 return -EINVAL; 947 if (audit_enabled == AUDIT_LOCKED) { 948 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 949 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 950 audit_log_end(ab); 951 return -EPERM; 952 } 953 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 954 seq, data, nlmsg_len(nlh)); 955 break; 956 case AUDIT_LIST_RULES: 957 err = audit_list_rules_send(skb, seq); 958 break; 959 case AUDIT_TRIM: 960 audit_trim_trees(); 961 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 962 audit_log_format(ab, " op=trim res=1"); 963 audit_log_end(ab); 964 break; 965 case AUDIT_MAKE_EQUIV: { 966 void *bufp = data; 967 u32 sizes[2]; 968 size_t msglen = nlmsg_len(nlh); 969 char *old, *new; 970 971 err = -EINVAL; 972 if (msglen < 2 * sizeof(u32)) 973 break; 974 memcpy(sizes, bufp, 2 * sizeof(u32)); 975 bufp += 2 * sizeof(u32); 976 msglen -= 2 * sizeof(u32); 977 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 978 if (IS_ERR(old)) { 979 err = PTR_ERR(old); 980 break; 981 } 982 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 983 if (IS_ERR(new)) { 984 err = PTR_ERR(new); 985 kfree(old); 986 break; 987 } 988 /* OK, here comes... */ 989 err = audit_tag_tree(old, new); 990 991 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 992 993 audit_log_format(ab, " op=make_equiv old="); 994 audit_log_untrustedstring(ab, old); 995 audit_log_format(ab, " new="); 996 audit_log_untrustedstring(ab, new); 997 audit_log_format(ab, " res=%d", !err); 998 audit_log_end(ab); 999 kfree(old); 1000 kfree(new); 1001 break; 1002 } 1003 case AUDIT_SIGNAL_INFO: 1004 len = 0; 1005 if (audit_sig_sid) { 1006 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1007 if (err) 1008 return err; 1009 } 1010 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1011 if (!sig_data) { 1012 if (audit_sig_sid) 1013 security_release_secctx(ctx, len); 1014 return -ENOMEM; 1015 } 1016 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1017 sig_data->pid = audit_sig_pid; 1018 if (audit_sig_sid) { 1019 memcpy(sig_data->ctx, ctx, len); 1020 security_release_secctx(ctx, len); 1021 } 1022 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1023 sig_data, sizeof(*sig_data) + len); 1024 kfree(sig_data); 1025 break; 1026 case AUDIT_TTY_GET: { 1027 struct audit_tty_status s; 1028 struct task_struct *tsk = current; 1029 1030 spin_lock(&tsk->sighand->siglock); 1031 s.enabled = tsk->signal->audit_tty; 1032 s.log_passwd = tsk->signal->audit_tty_log_passwd; 1033 spin_unlock(&tsk->sighand->siglock); 1034 1035 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1036 break; 1037 } 1038 case AUDIT_TTY_SET: { 1039 struct audit_tty_status s, old; 1040 struct task_struct *tsk = current; 1041 struct audit_buffer *ab; 1042 1043 memset(&s, 0, sizeof(s)); 1044 /* guard against past and future API changes */ 1045 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1046 /* check if new data is valid */ 1047 if ((s.enabled != 0 && s.enabled != 1) || 1048 (s.log_passwd != 0 && s.log_passwd != 1)) 1049 err = -EINVAL; 1050 1051 spin_lock(&tsk->sighand->siglock); 1052 old.enabled = tsk->signal->audit_tty; 1053 old.log_passwd = tsk->signal->audit_tty_log_passwd; 1054 if (!err) { 1055 tsk->signal->audit_tty = s.enabled; 1056 tsk->signal->audit_tty_log_passwd = s.log_passwd; 1057 } 1058 spin_unlock(&tsk->sighand->siglock); 1059 1060 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1061 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1062 " old-log_passwd=%d new-log_passwd=%d res=%d", 1063 old.enabled, s.enabled, old.log_passwd, 1064 s.log_passwd, !err); 1065 audit_log_end(ab); 1066 break; 1067 } 1068 default: 1069 err = -EINVAL; 1070 break; 1071 } 1072 1073 return err < 0 ? err : 0; 1074 } 1075 1076 /* 1077 * Get message from skb. Each message is processed by audit_receive_msg. 1078 * Malformed skbs with wrong length are discarded silently. 1079 */ 1080 static void audit_receive_skb(struct sk_buff *skb) 1081 { 1082 struct nlmsghdr *nlh; 1083 /* 1084 * len MUST be signed for nlmsg_next to be able to dec it below 0 1085 * if the nlmsg_len was not aligned 1086 */ 1087 int len; 1088 int err; 1089 1090 nlh = nlmsg_hdr(skb); 1091 len = skb->len; 1092 1093 while (nlmsg_ok(nlh, len)) { 1094 err = audit_receive_msg(skb, nlh); 1095 /* if err or if this message says it wants a response */ 1096 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1097 netlink_ack(skb, nlh, err); 1098 1099 nlh = nlmsg_next(nlh, &len); 1100 } 1101 } 1102 1103 /* Receive messages from netlink socket. */ 1104 static void audit_receive(struct sk_buff *skb) 1105 { 1106 mutex_lock(&audit_cmd_mutex); 1107 audit_receive_skb(skb); 1108 mutex_unlock(&audit_cmd_mutex); 1109 } 1110 1111 /* Run custom bind function on netlink socket group connect or bind requests. */ 1112 static int audit_bind(int group) 1113 { 1114 if (!capable(CAP_AUDIT_READ)) 1115 return -EPERM; 1116 1117 return 0; 1118 } 1119 1120 static int __net_init audit_net_init(struct net *net) 1121 { 1122 struct netlink_kernel_cfg cfg = { 1123 .input = audit_receive, 1124 .bind = audit_bind, 1125 .flags = NL_CFG_F_NONROOT_RECV, 1126 .groups = AUDIT_NLGRP_MAX, 1127 }; 1128 1129 struct audit_net *aunet = net_generic(net, audit_net_id); 1130 1131 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1132 if (aunet->nlsk == NULL) { 1133 audit_panic("cannot initialize netlink socket in namespace"); 1134 return -ENOMEM; 1135 } 1136 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1137 return 0; 1138 } 1139 1140 static void __net_exit audit_net_exit(struct net *net) 1141 { 1142 struct audit_net *aunet = net_generic(net, audit_net_id); 1143 struct sock *sock = aunet->nlsk; 1144 if (sock == audit_sock) { 1145 audit_pid = 0; 1146 audit_sock = NULL; 1147 } 1148 1149 RCU_INIT_POINTER(aunet->nlsk, NULL); 1150 synchronize_net(); 1151 netlink_kernel_release(sock); 1152 } 1153 1154 static struct pernet_operations audit_net_ops __net_initdata = { 1155 .init = audit_net_init, 1156 .exit = audit_net_exit, 1157 .id = &audit_net_id, 1158 .size = sizeof(struct audit_net), 1159 }; 1160 1161 /* Initialize audit support at boot time. */ 1162 static int __init audit_init(void) 1163 { 1164 int i; 1165 1166 if (audit_initialized == AUDIT_DISABLED) 1167 return 0; 1168 1169 pr_info("initializing netlink subsys (%s)\n", 1170 audit_default ? "enabled" : "disabled"); 1171 register_pernet_subsys(&audit_net_ops); 1172 1173 skb_queue_head_init(&audit_skb_queue); 1174 skb_queue_head_init(&audit_skb_hold_queue); 1175 audit_initialized = AUDIT_INITIALIZED; 1176 audit_enabled = audit_default; 1177 audit_ever_enabled |= !!audit_default; 1178 1179 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1180 1181 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1182 INIT_LIST_HEAD(&audit_inode_hash[i]); 1183 1184 return 0; 1185 } 1186 __initcall(audit_init); 1187 1188 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1189 static int __init audit_enable(char *str) 1190 { 1191 audit_default = !!simple_strtol(str, NULL, 0); 1192 if (!audit_default) 1193 audit_initialized = AUDIT_DISABLED; 1194 1195 pr_info("%s\n", audit_default ? 1196 "enabled (after initialization)" : "disabled (until reboot)"); 1197 1198 return 1; 1199 } 1200 __setup("audit=", audit_enable); 1201 1202 /* Process kernel command-line parameter at boot time. 1203 * audit_backlog_limit=<n> */ 1204 static int __init audit_backlog_limit_set(char *str) 1205 { 1206 u32 audit_backlog_limit_arg; 1207 1208 pr_info("audit_backlog_limit: "); 1209 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1210 pr_cont("using default of %u, unable to parse %s\n", 1211 audit_backlog_limit, str); 1212 return 1; 1213 } 1214 1215 audit_backlog_limit = audit_backlog_limit_arg; 1216 pr_cont("%d\n", audit_backlog_limit); 1217 1218 return 1; 1219 } 1220 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1221 1222 static void audit_buffer_free(struct audit_buffer *ab) 1223 { 1224 unsigned long flags; 1225 1226 if (!ab) 1227 return; 1228 1229 if (ab->skb) 1230 kfree_skb(ab->skb); 1231 1232 spin_lock_irqsave(&audit_freelist_lock, flags); 1233 if (audit_freelist_count > AUDIT_MAXFREE) 1234 kfree(ab); 1235 else { 1236 audit_freelist_count++; 1237 list_add(&ab->list, &audit_freelist); 1238 } 1239 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1240 } 1241 1242 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1243 gfp_t gfp_mask, int type) 1244 { 1245 unsigned long flags; 1246 struct audit_buffer *ab = NULL; 1247 struct nlmsghdr *nlh; 1248 1249 spin_lock_irqsave(&audit_freelist_lock, flags); 1250 if (!list_empty(&audit_freelist)) { 1251 ab = list_entry(audit_freelist.next, 1252 struct audit_buffer, list); 1253 list_del(&ab->list); 1254 --audit_freelist_count; 1255 } 1256 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1257 1258 if (!ab) { 1259 ab = kmalloc(sizeof(*ab), gfp_mask); 1260 if (!ab) 1261 goto err; 1262 } 1263 1264 ab->ctx = ctx; 1265 ab->gfp_mask = gfp_mask; 1266 1267 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1268 if (!ab->skb) 1269 goto err; 1270 1271 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1272 if (!nlh) 1273 goto out_kfree_skb; 1274 1275 return ab; 1276 1277 out_kfree_skb: 1278 kfree_skb(ab->skb); 1279 ab->skb = NULL; 1280 err: 1281 audit_buffer_free(ab); 1282 return NULL; 1283 } 1284 1285 /** 1286 * audit_serial - compute a serial number for the audit record 1287 * 1288 * Compute a serial number for the audit record. Audit records are 1289 * written to user-space as soon as they are generated, so a complete 1290 * audit record may be written in several pieces. The timestamp of the 1291 * record and this serial number are used by the user-space tools to 1292 * determine which pieces belong to the same audit record. The 1293 * (timestamp,serial) tuple is unique for each syscall and is live from 1294 * syscall entry to syscall exit. 1295 * 1296 * NOTE: Another possibility is to store the formatted records off the 1297 * audit context (for those records that have a context), and emit them 1298 * all at syscall exit. However, this could delay the reporting of 1299 * significant errors until syscall exit (or never, if the system 1300 * halts). 1301 */ 1302 unsigned int audit_serial(void) 1303 { 1304 static DEFINE_SPINLOCK(serial_lock); 1305 static unsigned int serial = 0; 1306 1307 unsigned long flags; 1308 unsigned int ret; 1309 1310 spin_lock_irqsave(&serial_lock, flags); 1311 do { 1312 ret = ++serial; 1313 } while (unlikely(!ret)); 1314 spin_unlock_irqrestore(&serial_lock, flags); 1315 1316 return ret; 1317 } 1318 1319 static inline void audit_get_stamp(struct audit_context *ctx, 1320 struct timespec *t, unsigned int *serial) 1321 { 1322 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1323 *t = CURRENT_TIME; 1324 *serial = audit_serial(); 1325 } 1326 } 1327 1328 /* 1329 * Wait for auditd to drain the queue a little 1330 */ 1331 static long wait_for_auditd(long sleep_time) 1332 { 1333 DECLARE_WAITQUEUE(wait, current); 1334 set_current_state(TASK_UNINTERRUPTIBLE); 1335 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1336 1337 if (audit_backlog_limit && 1338 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1339 sleep_time = schedule_timeout(sleep_time); 1340 1341 __set_current_state(TASK_RUNNING); 1342 remove_wait_queue(&audit_backlog_wait, &wait); 1343 1344 return sleep_time; 1345 } 1346 1347 /** 1348 * audit_log_start - obtain an audit buffer 1349 * @ctx: audit_context (may be NULL) 1350 * @gfp_mask: type of allocation 1351 * @type: audit message type 1352 * 1353 * Returns audit_buffer pointer on success or NULL on error. 1354 * 1355 * Obtain an audit buffer. This routine does locking to obtain the 1356 * audit buffer, but then no locking is required for calls to 1357 * audit_log_*format. If the task (ctx) is a task that is currently in a 1358 * syscall, then the syscall is marked as auditable and an audit record 1359 * will be written at syscall exit. If there is no associated task, then 1360 * task context (ctx) should be NULL. 1361 */ 1362 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1363 int type) 1364 { 1365 struct audit_buffer *ab = NULL; 1366 struct timespec t; 1367 unsigned int uninitialized_var(serial); 1368 int reserve = 5; /* Allow atomic callers to go up to five 1369 entries over the normal backlog limit */ 1370 unsigned long timeout_start = jiffies; 1371 1372 if (audit_initialized != AUDIT_INITIALIZED) 1373 return NULL; 1374 1375 if (unlikely(audit_filter_type(type))) 1376 return NULL; 1377 1378 if (gfp_mask & __GFP_WAIT) { 1379 if (audit_pid && audit_pid == current->pid) 1380 gfp_mask &= ~__GFP_WAIT; 1381 else 1382 reserve = 0; 1383 } 1384 1385 while (audit_backlog_limit 1386 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1387 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) { 1388 long sleep_time; 1389 1390 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1391 if (sleep_time > 0) { 1392 sleep_time = wait_for_auditd(sleep_time); 1393 if (sleep_time > 0) 1394 continue; 1395 } 1396 } 1397 if (audit_rate_check() && printk_ratelimit()) 1398 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1399 skb_queue_len(&audit_skb_queue), 1400 audit_backlog_limit); 1401 audit_log_lost("backlog limit exceeded"); 1402 audit_backlog_wait_time = audit_backlog_wait_overflow; 1403 wake_up(&audit_backlog_wait); 1404 return NULL; 1405 } 1406 1407 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 1408 1409 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1410 if (!ab) { 1411 audit_log_lost("out of memory in audit_log_start"); 1412 return NULL; 1413 } 1414 1415 audit_get_stamp(ab->ctx, &t, &serial); 1416 1417 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1418 t.tv_sec, t.tv_nsec/1000000, serial); 1419 return ab; 1420 } 1421 1422 /** 1423 * audit_expand - expand skb in the audit buffer 1424 * @ab: audit_buffer 1425 * @extra: space to add at tail of the skb 1426 * 1427 * Returns 0 (no space) on failed expansion, or available space if 1428 * successful. 1429 */ 1430 static inline int audit_expand(struct audit_buffer *ab, int extra) 1431 { 1432 struct sk_buff *skb = ab->skb; 1433 int oldtail = skb_tailroom(skb); 1434 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1435 int newtail = skb_tailroom(skb); 1436 1437 if (ret < 0) { 1438 audit_log_lost("out of memory in audit_expand"); 1439 return 0; 1440 } 1441 1442 skb->truesize += newtail - oldtail; 1443 return newtail; 1444 } 1445 1446 /* 1447 * Format an audit message into the audit buffer. If there isn't enough 1448 * room in the audit buffer, more room will be allocated and vsnprint 1449 * will be called a second time. Currently, we assume that a printk 1450 * can't format message larger than 1024 bytes, so we don't either. 1451 */ 1452 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1453 va_list args) 1454 { 1455 int len, avail; 1456 struct sk_buff *skb; 1457 va_list args2; 1458 1459 if (!ab) 1460 return; 1461 1462 BUG_ON(!ab->skb); 1463 skb = ab->skb; 1464 avail = skb_tailroom(skb); 1465 if (avail == 0) { 1466 avail = audit_expand(ab, AUDIT_BUFSIZ); 1467 if (!avail) 1468 goto out; 1469 } 1470 va_copy(args2, args); 1471 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1472 if (len >= avail) { 1473 /* The printk buffer is 1024 bytes long, so if we get 1474 * here and AUDIT_BUFSIZ is at least 1024, then we can 1475 * log everything that printk could have logged. */ 1476 avail = audit_expand(ab, 1477 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1478 if (!avail) 1479 goto out_va_end; 1480 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1481 } 1482 if (len > 0) 1483 skb_put(skb, len); 1484 out_va_end: 1485 va_end(args2); 1486 out: 1487 return; 1488 } 1489 1490 /** 1491 * audit_log_format - format a message into the audit buffer. 1492 * @ab: audit_buffer 1493 * @fmt: format string 1494 * @...: optional parameters matching @fmt string 1495 * 1496 * All the work is done in audit_log_vformat. 1497 */ 1498 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1499 { 1500 va_list args; 1501 1502 if (!ab) 1503 return; 1504 va_start(args, fmt); 1505 audit_log_vformat(ab, fmt, args); 1506 va_end(args); 1507 } 1508 1509 /** 1510 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1511 * @ab: the audit_buffer 1512 * @buf: buffer to convert to hex 1513 * @len: length of @buf to be converted 1514 * 1515 * No return value; failure to expand is silently ignored. 1516 * 1517 * This function will take the passed buf and convert it into a string of 1518 * ascii hex digits. The new string is placed onto the skb. 1519 */ 1520 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1521 size_t len) 1522 { 1523 int i, avail, new_len; 1524 unsigned char *ptr; 1525 struct sk_buff *skb; 1526 1527 if (!ab) 1528 return; 1529 1530 BUG_ON(!ab->skb); 1531 skb = ab->skb; 1532 avail = skb_tailroom(skb); 1533 new_len = len<<1; 1534 if (new_len >= avail) { 1535 /* Round the buffer request up to the next multiple */ 1536 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1537 avail = audit_expand(ab, new_len); 1538 if (!avail) 1539 return; 1540 } 1541 1542 ptr = skb_tail_pointer(skb); 1543 for (i = 0; i < len; i++) 1544 ptr = hex_byte_pack_upper(ptr, buf[i]); 1545 *ptr = 0; 1546 skb_put(skb, len << 1); /* new string is twice the old string */ 1547 } 1548 1549 /* 1550 * Format a string of no more than slen characters into the audit buffer, 1551 * enclosed in quote marks. 1552 */ 1553 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1554 size_t slen) 1555 { 1556 int avail, new_len; 1557 unsigned char *ptr; 1558 struct sk_buff *skb; 1559 1560 if (!ab) 1561 return; 1562 1563 BUG_ON(!ab->skb); 1564 skb = ab->skb; 1565 avail = skb_tailroom(skb); 1566 new_len = slen + 3; /* enclosing quotes + null terminator */ 1567 if (new_len > avail) { 1568 avail = audit_expand(ab, new_len); 1569 if (!avail) 1570 return; 1571 } 1572 ptr = skb_tail_pointer(skb); 1573 *ptr++ = '"'; 1574 memcpy(ptr, string, slen); 1575 ptr += slen; 1576 *ptr++ = '"'; 1577 *ptr = 0; 1578 skb_put(skb, slen + 2); /* don't include null terminator */ 1579 } 1580 1581 /** 1582 * audit_string_contains_control - does a string need to be logged in hex 1583 * @string: string to be checked 1584 * @len: max length of the string to check 1585 */ 1586 int audit_string_contains_control(const char *string, size_t len) 1587 { 1588 const unsigned char *p; 1589 for (p = string; p < (const unsigned char *)string + len; p++) { 1590 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1591 return 1; 1592 } 1593 return 0; 1594 } 1595 1596 /** 1597 * audit_log_n_untrustedstring - log a string that may contain random characters 1598 * @ab: audit_buffer 1599 * @len: length of string (not including trailing null) 1600 * @string: string to be logged 1601 * 1602 * This code will escape a string that is passed to it if the string 1603 * contains a control character, unprintable character, double quote mark, 1604 * or a space. Unescaped strings will start and end with a double quote mark. 1605 * Strings that are escaped are printed in hex (2 digits per char). 1606 * 1607 * The caller specifies the number of characters in the string to log, which may 1608 * or may not be the entire string. 1609 */ 1610 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1611 size_t len) 1612 { 1613 if (audit_string_contains_control(string, len)) 1614 audit_log_n_hex(ab, string, len); 1615 else 1616 audit_log_n_string(ab, string, len); 1617 } 1618 1619 /** 1620 * audit_log_untrustedstring - log a string that may contain random characters 1621 * @ab: audit_buffer 1622 * @string: string to be logged 1623 * 1624 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1625 * determine string length. 1626 */ 1627 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1628 { 1629 audit_log_n_untrustedstring(ab, string, strlen(string)); 1630 } 1631 1632 /* This is a helper-function to print the escaped d_path */ 1633 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1634 const struct path *path) 1635 { 1636 char *p, *pathname; 1637 1638 if (prefix) 1639 audit_log_format(ab, "%s", prefix); 1640 1641 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1642 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1643 if (!pathname) { 1644 audit_log_string(ab, "<no_memory>"); 1645 return; 1646 } 1647 p = d_path(path, pathname, PATH_MAX+11); 1648 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1649 /* FIXME: can we save some information here? */ 1650 audit_log_string(ab, "<too_long>"); 1651 } else 1652 audit_log_untrustedstring(ab, p); 1653 kfree(pathname); 1654 } 1655 1656 void audit_log_session_info(struct audit_buffer *ab) 1657 { 1658 unsigned int sessionid = audit_get_sessionid(current); 1659 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1660 1661 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1662 } 1663 1664 void audit_log_key(struct audit_buffer *ab, char *key) 1665 { 1666 audit_log_format(ab, " key="); 1667 if (key) 1668 audit_log_untrustedstring(ab, key); 1669 else 1670 audit_log_format(ab, "(null)"); 1671 } 1672 1673 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1674 { 1675 int i; 1676 1677 audit_log_format(ab, " %s=", prefix); 1678 CAP_FOR_EACH_U32(i) { 1679 audit_log_format(ab, "%08x", 1680 cap->cap[CAP_LAST_U32 - i]); 1681 } 1682 } 1683 1684 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1685 { 1686 kernel_cap_t *perm = &name->fcap.permitted; 1687 kernel_cap_t *inh = &name->fcap.inheritable; 1688 int log = 0; 1689 1690 if (!cap_isclear(*perm)) { 1691 audit_log_cap(ab, "cap_fp", perm); 1692 log = 1; 1693 } 1694 if (!cap_isclear(*inh)) { 1695 audit_log_cap(ab, "cap_fi", inh); 1696 log = 1; 1697 } 1698 1699 if (log) 1700 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1701 name->fcap.fE, name->fcap_ver); 1702 } 1703 1704 static inline int audit_copy_fcaps(struct audit_names *name, 1705 const struct dentry *dentry) 1706 { 1707 struct cpu_vfs_cap_data caps; 1708 int rc; 1709 1710 if (!dentry) 1711 return 0; 1712 1713 rc = get_vfs_caps_from_disk(dentry, &caps); 1714 if (rc) 1715 return rc; 1716 1717 name->fcap.permitted = caps.permitted; 1718 name->fcap.inheritable = caps.inheritable; 1719 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1720 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1721 VFS_CAP_REVISION_SHIFT; 1722 1723 return 0; 1724 } 1725 1726 /* Copy inode data into an audit_names. */ 1727 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1728 const struct inode *inode) 1729 { 1730 name->ino = inode->i_ino; 1731 name->dev = inode->i_sb->s_dev; 1732 name->mode = inode->i_mode; 1733 name->uid = inode->i_uid; 1734 name->gid = inode->i_gid; 1735 name->rdev = inode->i_rdev; 1736 security_inode_getsecid(inode, &name->osid); 1737 audit_copy_fcaps(name, dentry); 1738 } 1739 1740 /** 1741 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1742 * @context: audit_context for the task 1743 * @n: audit_names structure with reportable details 1744 * @path: optional path to report instead of audit_names->name 1745 * @record_num: record number to report when handling a list of names 1746 * @call_panic: optional pointer to int that will be updated if secid fails 1747 */ 1748 void audit_log_name(struct audit_context *context, struct audit_names *n, 1749 struct path *path, int record_num, int *call_panic) 1750 { 1751 struct audit_buffer *ab; 1752 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1753 if (!ab) 1754 return; 1755 1756 audit_log_format(ab, "item=%d", record_num); 1757 1758 if (path) 1759 audit_log_d_path(ab, " name=", path); 1760 else if (n->name) { 1761 switch (n->name_len) { 1762 case AUDIT_NAME_FULL: 1763 /* log the full path */ 1764 audit_log_format(ab, " name="); 1765 audit_log_untrustedstring(ab, n->name->name); 1766 break; 1767 case 0: 1768 /* name was specified as a relative path and the 1769 * directory component is the cwd */ 1770 audit_log_d_path(ab, " name=", &context->pwd); 1771 break; 1772 default: 1773 /* log the name's directory component */ 1774 audit_log_format(ab, " name="); 1775 audit_log_n_untrustedstring(ab, n->name->name, 1776 n->name_len); 1777 } 1778 } else 1779 audit_log_format(ab, " name=(null)"); 1780 1781 if (n->ino != (unsigned long)-1) { 1782 audit_log_format(ab, " inode=%lu" 1783 " dev=%02x:%02x mode=%#ho" 1784 " ouid=%u ogid=%u rdev=%02x:%02x", 1785 n->ino, 1786 MAJOR(n->dev), 1787 MINOR(n->dev), 1788 n->mode, 1789 from_kuid(&init_user_ns, n->uid), 1790 from_kgid(&init_user_ns, n->gid), 1791 MAJOR(n->rdev), 1792 MINOR(n->rdev)); 1793 } 1794 if (n->osid != 0) { 1795 char *ctx = NULL; 1796 u32 len; 1797 if (security_secid_to_secctx( 1798 n->osid, &ctx, &len)) { 1799 audit_log_format(ab, " osid=%u", n->osid); 1800 if (call_panic) 1801 *call_panic = 2; 1802 } else { 1803 audit_log_format(ab, " obj=%s", ctx); 1804 security_release_secctx(ctx, len); 1805 } 1806 } 1807 1808 /* log the audit_names record type */ 1809 audit_log_format(ab, " nametype="); 1810 switch(n->type) { 1811 case AUDIT_TYPE_NORMAL: 1812 audit_log_format(ab, "NORMAL"); 1813 break; 1814 case AUDIT_TYPE_PARENT: 1815 audit_log_format(ab, "PARENT"); 1816 break; 1817 case AUDIT_TYPE_CHILD_DELETE: 1818 audit_log_format(ab, "DELETE"); 1819 break; 1820 case AUDIT_TYPE_CHILD_CREATE: 1821 audit_log_format(ab, "CREATE"); 1822 break; 1823 default: 1824 audit_log_format(ab, "UNKNOWN"); 1825 break; 1826 } 1827 1828 audit_log_fcaps(ab, n); 1829 audit_log_end(ab); 1830 } 1831 1832 int audit_log_task_context(struct audit_buffer *ab) 1833 { 1834 char *ctx = NULL; 1835 unsigned len; 1836 int error; 1837 u32 sid; 1838 1839 security_task_getsecid(current, &sid); 1840 if (!sid) 1841 return 0; 1842 1843 error = security_secid_to_secctx(sid, &ctx, &len); 1844 if (error) { 1845 if (error != -EINVAL) 1846 goto error_path; 1847 return 0; 1848 } 1849 1850 audit_log_format(ab, " subj=%s", ctx); 1851 security_release_secctx(ctx, len); 1852 return 0; 1853 1854 error_path: 1855 audit_panic("error in audit_log_task_context"); 1856 return error; 1857 } 1858 EXPORT_SYMBOL(audit_log_task_context); 1859 1860 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1861 { 1862 const struct cred *cred; 1863 char name[sizeof(tsk->comm)]; 1864 struct mm_struct *mm = tsk->mm; 1865 char *tty; 1866 1867 if (!ab) 1868 return; 1869 1870 /* tsk == current */ 1871 cred = current_cred(); 1872 1873 spin_lock_irq(&tsk->sighand->siglock); 1874 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1875 tty = tsk->signal->tty->name; 1876 else 1877 tty = "(none)"; 1878 spin_unlock_irq(&tsk->sighand->siglock); 1879 1880 audit_log_format(ab, 1881 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1882 " euid=%u suid=%u fsuid=%u" 1883 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1884 task_ppid_nr(tsk), 1885 task_pid_nr(tsk), 1886 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1887 from_kuid(&init_user_ns, cred->uid), 1888 from_kgid(&init_user_ns, cred->gid), 1889 from_kuid(&init_user_ns, cred->euid), 1890 from_kuid(&init_user_ns, cred->suid), 1891 from_kuid(&init_user_ns, cred->fsuid), 1892 from_kgid(&init_user_ns, cred->egid), 1893 from_kgid(&init_user_ns, cred->sgid), 1894 from_kgid(&init_user_ns, cred->fsgid), 1895 tty, audit_get_sessionid(tsk)); 1896 1897 get_task_comm(name, tsk); 1898 audit_log_format(ab, " comm="); 1899 audit_log_untrustedstring(ab, name); 1900 1901 if (mm) { 1902 down_read(&mm->mmap_sem); 1903 if (mm->exe_file) 1904 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 1905 up_read(&mm->mmap_sem); 1906 } else 1907 audit_log_format(ab, " exe=(null)"); 1908 audit_log_task_context(ab); 1909 } 1910 EXPORT_SYMBOL(audit_log_task_info); 1911 1912 /** 1913 * audit_log_link_denied - report a link restriction denial 1914 * @operation: specific link opreation 1915 * @link: the path that triggered the restriction 1916 */ 1917 void audit_log_link_denied(const char *operation, struct path *link) 1918 { 1919 struct audit_buffer *ab; 1920 struct audit_names *name; 1921 1922 name = kzalloc(sizeof(*name), GFP_NOFS); 1923 if (!name) 1924 return; 1925 1926 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1927 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1928 AUDIT_ANOM_LINK); 1929 if (!ab) 1930 goto out; 1931 audit_log_format(ab, "op=%s", operation); 1932 audit_log_task_info(ab, current); 1933 audit_log_format(ab, " res=0"); 1934 audit_log_end(ab); 1935 1936 /* Generate AUDIT_PATH record with object. */ 1937 name->type = AUDIT_TYPE_NORMAL; 1938 audit_copy_inode(name, link->dentry, link->dentry->d_inode); 1939 audit_log_name(current->audit_context, name, link, 0, NULL); 1940 out: 1941 kfree(name); 1942 } 1943 1944 /** 1945 * audit_log_end - end one audit record 1946 * @ab: the audit_buffer 1947 * 1948 * netlink_unicast() cannot be called inside an irq context because it blocks 1949 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed 1950 * on a queue and a tasklet is scheduled to remove them from the queue outside 1951 * the irq context. May be called in any context. 1952 */ 1953 void audit_log_end(struct audit_buffer *ab) 1954 { 1955 if (!ab) 1956 return; 1957 if (!audit_rate_check()) { 1958 audit_log_lost("rate limit exceeded"); 1959 } else { 1960 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1961 1962 kauditd_send_multicast_skb(ab->skb); 1963 1964 /* 1965 * The original kaudit unicast socket sends up messages with 1966 * nlmsg_len set to the payload length rather than the entire 1967 * message length. This breaks the standard set by netlink. 1968 * The existing auditd daemon assumes this breakage. Fixing 1969 * this would require co-ordinating a change in the established 1970 * protocol between the kaudit kernel subsystem and the auditd 1971 * userspace code. 1972 */ 1973 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN; 1974 1975 if (audit_pid) { 1976 skb_queue_tail(&audit_skb_queue, ab->skb); 1977 wake_up_interruptible(&kauditd_wait); 1978 } else { 1979 audit_printk_skb(ab->skb); 1980 } 1981 ab->skb = NULL; 1982 } 1983 audit_buffer_free(ab); 1984 } 1985 1986 /** 1987 * audit_log - Log an audit record 1988 * @ctx: audit context 1989 * @gfp_mask: type of allocation 1990 * @type: audit message type 1991 * @fmt: format string to use 1992 * @...: variable parameters matching the format string 1993 * 1994 * This is a convenience function that calls audit_log_start, 1995 * audit_log_vformat, and audit_log_end. It may be called 1996 * in any context. 1997 */ 1998 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1999 const char *fmt, ...) 2000 { 2001 struct audit_buffer *ab; 2002 va_list args; 2003 2004 ab = audit_log_start(ctx, gfp_mask, type); 2005 if (ab) { 2006 va_start(args, fmt); 2007 audit_log_vformat(ab, fmt, args); 2008 va_end(args); 2009 audit_log_end(ab); 2010 } 2011 } 2012 2013 #ifdef CONFIG_SECURITY 2014 /** 2015 * audit_log_secctx - Converts and logs SELinux context 2016 * @ab: audit_buffer 2017 * @secid: security number 2018 * 2019 * This is a helper function that calls security_secid_to_secctx to convert 2020 * secid to secctx and then adds the (converted) SELinux context to the audit 2021 * log by calling audit_log_format, thus also preventing leak of internal secid 2022 * to userspace. If secid cannot be converted audit_panic is called. 2023 */ 2024 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2025 { 2026 u32 len; 2027 char *secctx; 2028 2029 if (security_secid_to_secctx(secid, &secctx, &len)) { 2030 audit_panic("Cannot convert secid to context"); 2031 } else { 2032 audit_log_format(ab, " obj=%s", secctx); 2033 security_release_secctx(secctx, len); 2034 } 2035 } 2036 EXPORT_SYMBOL(audit_log_secctx); 2037 #endif 2038 2039 EXPORT_SYMBOL(audit_log_start); 2040 EXPORT_SYMBOL(audit_log_end); 2041 EXPORT_SYMBOL(audit_log_format); 2042 EXPORT_SYMBOL(audit_log); 2043