1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/hex.h> 36 #include <linux/init.h> 37 #include <linux/types.h> 38 #include <linux/atomic.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/err.h> 43 #include <linux/kthread.h> 44 #include <linux/kernel.h> 45 #include <linux/syscalls.h> 46 #include <linux/spinlock.h> 47 #include <linux/rcupdate.h> 48 #include <linux/mutex.h> 49 #include <linux/gfp.h> 50 #include <linux/pid.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/security.h> 58 #include <linux/lsm_hooks.h> 59 #include <linux/freezer.h> 60 #include <linux/pid_namespace.h> 61 #include <net/netns/generic.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 66 * (Initialization happens after skb_init is called.) */ 67 #define AUDIT_DISABLED -1 68 #define AUDIT_UNINITIALIZED 0 69 #define AUDIT_INITIALIZED 1 70 static int audit_initialized = AUDIT_UNINITIALIZED; 71 72 u32 audit_enabled = AUDIT_OFF; 73 bool audit_ever_enabled = !!AUDIT_OFF; 74 75 EXPORT_SYMBOL_GPL(audit_enabled); 76 77 /* Default state when kernel boots without any parameters. */ 78 static u32 audit_default = AUDIT_OFF; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static u32 audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* private audit network namespace index */ 84 static unsigned int audit_net_id; 85 86 /* Number of modules that provide a security context. 87 List of lsms that provide a security context */ 88 static u32 audit_subj_secctx_cnt; 89 static u32 audit_obj_secctx_cnt; 90 static const struct lsm_id *audit_subj_lsms[MAX_LSM_COUNT]; 91 static const struct lsm_id *audit_obj_lsms[MAX_LSM_COUNT]; 92 93 /** 94 * struct audit_net - audit private network namespace data 95 * @sk: communication socket 96 */ 97 struct audit_net { 98 struct sock *sk; 99 }; 100 101 /** 102 * struct auditd_connection - kernel/auditd connection state 103 * @pid: auditd PID 104 * @portid: netlink portid 105 * @net: the associated network namespace 106 * @rcu: RCU head 107 * 108 * Description: 109 * This struct is RCU protected; you must either hold the RCU lock for reading 110 * or the associated spinlock for writing. 111 */ 112 struct auditd_connection { 113 struct pid *pid; 114 u32 portid; 115 struct net *net; 116 struct rcu_head rcu; 117 }; 118 static struct auditd_connection __rcu *auditd_conn; 119 static DEFINE_SPINLOCK(auditd_conn_lock); 120 121 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 122 * to that number per second. This prevents DoS attacks, but results in 123 * audit records being dropped. */ 124 static u32 audit_rate_limit; 125 126 /* Number of outstanding audit_buffers allowed. 127 * When set to zero, this means unlimited. */ 128 static u32 audit_backlog_limit = 64; 129 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 130 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 131 132 /* The identity of the user shutting down the audit system. */ 133 static kuid_t audit_sig_uid = INVALID_UID; 134 static pid_t audit_sig_pid = -1; 135 static struct lsm_prop audit_sig_lsm; 136 137 /* Records can be lost in several ways: 138 0) [suppressed in audit_alloc] 139 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 140 2) out of memory in audit_log_move [alloc_skb] 141 3) suppressed due to audit_rate_limit 142 4) suppressed due to audit_backlog_limit 143 */ 144 static atomic_t audit_lost = ATOMIC_INIT(0); 145 146 /* Monotonically increasing sum of time the kernel has spent 147 * waiting while the backlog limit is exceeded. 148 */ 149 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 150 151 /* Hash for inode-based rules */ 152 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 153 154 static struct kmem_cache *audit_buffer_cache; 155 156 /* queue msgs to send via kauditd_task */ 157 static struct sk_buff_head audit_queue; 158 /* queue msgs due to temporary unicast send problems */ 159 static struct sk_buff_head audit_retry_queue; 160 /* queue msgs waiting for new auditd connection */ 161 static struct sk_buff_head audit_hold_queue; 162 163 /* queue servicing thread */ 164 static struct task_struct *kauditd_task; 165 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 166 167 /* waitqueue for callers who are blocked on the audit backlog */ 168 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 169 170 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 171 .mask = -1, 172 .features = 0, 173 .lock = 0,}; 174 175 static char *audit_feature_names[2] = { 176 "only_unset_loginuid", 177 "loginuid_immutable", 178 }; 179 180 /** 181 * struct audit_ctl_mutex - serialize requests from userspace 182 * @lock: the mutex used for locking 183 * @owner: the task which owns the lock 184 * 185 * Description: 186 * This is the lock struct used to ensure we only process userspace requests 187 * in an orderly fashion. We can't simply use a mutex/lock here because we 188 * need to track lock ownership so we don't end up blocking the lock owner in 189 * audit_log_start() or similar. 190 */ 191 static struct audit_ctl_mutex { 192 struct mutex lock; 193 void *owner; 194 } audit_cmd_mutex; 195 196 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 197 * audit records. Since printk uses a 1024 byte buffer, this buffer 198 * should be at least that large. */ 199 #define AUDIT_BUFSIZ 1024 200 201 /* The audit_buffer is used when formatting an audit record. The caller 202 * locks briefly to get the record off the freelist or to allocate the 203 * buffer, and locks briefly to send the buffer to the netlink layer or 204 * to place it on a transmit queue. Multiple audit_buffers can be in 205 * use simultaneously. */ 206 struct audit_buffer { 207 struct sk_buff *skb; /* the skb for audit_log functions */ 208 struct sk_buff_head skb_list; /* formatted skbs, ready to send */ 209 struct audit_context *ctx; /* NULL or associated context */ 210 struct audit_stamp stamp; /* audit stamp for these records */ 211 gfp_t gfp_mask; 212 }; 213 214 struct audit_reply { 215 __u32 portid; 216 struct net *net; 217 struct sk_buff *skb; 218 }; 219 220 /** 221 * auditd_test_task - Check to see if a given task is an audit daemon 222 * @task: the task to check 223 * 224 * Description: 225 * Return 1 if the task is a registered audit daemon, 0 otherwise. 226 */ 227 int auditd_test_task(struct task_struct *task) 228 { 229 int rc; 230 struct auditd_connection *ac; 231 232 rcu_read_lock(); 233 ac = rcu_dereference(auditd_conn); 234 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 235 rcu_read_unlock(); 236 237 return rc; 238 } 239 240 /** 241 * audit_ctl_lock - Take the audit control lock 242 */ 243 void audit_ctl_lock(void) 244 { 245 mutex_lock(&audit_cmd_mutex.lock); 246 audit_cmd_mutex.owner = current; 247 } 248 249 /** 250 * audit_ctl_unlock - Drop the audit control lock 251 */ 252 void audit_ctl_unlock(void) 253 { 254 audit_cmd_mutex.owner = NULL; 255 mutex_unlock(&audit_cmd_mutex.lock); 256 } 257 258 /** 259 * audit_ctl_owner_current - Test to see if the current task owns the lock 260 * 261 * Description: 262 * Return true if the current task owns the audit control lock, false if it 263 * doesn't own the lock. 264 */ 265 static bool audit_ctl_owner_current(void) 266 { 267 return (current == audit_cmd_mutex.owner); 268 } 269 270 /** 271 * auditd_pid_vnr - Return the auditd PID relative to the namespace 272 * 273 * Description: 274 * Returns the PID in relation to the namespace, 0 on failure. 275 */ 276 static pid_t auditd_pid_vnr(void) 277 { 278 pid_t pid; 279 const struct auditd_connection *ac; 280 281 rcu_read_lock(); 282 ac = rcu_dereference(auditd_conn); 283 if (!ac || !ac->pid) 284 pid = 0; 285 else 286 pid = pid_vnr(ac->pid); 287 rcu_read_unlock(); 288 289 return pid; 290 } 291 292 /** 293 * audit_cfg_lsm - Identify a security module as providing a secctx. 294 * @lsmid: LSM identity 295 * @flags: which contexts are provided 296 * 297 * Description: 298 * Increments the count of the security modules providing a secctx. 299 * If the LSM id is already in the list leave it alone. 300 */ 301 void audit_cfg_lsm(const struct lsm_id *lsmid, int flags) 302 { 303 int i; 304 305 if (flags & AUDIT_CFG_LSM_SECCTX_SUBJECT) { 306 for (i = 0 ; i < audit_subj_secctx_cnt; i++) 307 if (audit_subj_lsms[i] == lsmid) 308 return; 309 audit_subj_lsms[audit_subj_secctx_cnt++] = lsmid; 310 } 311 if (flags & AUDIT_CFG_LSM_SECCTX_OBJECT) { 312 for (i = 0 ; i < audit_obj_secctx_cnt; i++) 313 if (audit_obj_lsms[i] == lsmid) 314 return; 315 audit_obj_lsms[audit_obj_secctx_cnt++] = lsmid; 316 } 317 } 318 319 /** 320 * audit_get_sk - Return the audit socket for the given network namespace 321 * @net: the destination network namespace 322 * 323 * Description: 324 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 325 * that a reference is held for the network namespace while the sock is in use. 326 */ 327 static struct sock *audit_get_sk(const struct net *net) 328 { 329 struct audit_net *aunet; 330 331 if (!net) 332 return NULL; 333 334 aunet = net_generic(net, audit_net_id); 335 return aunet->sk; 336 } 337 338 void audit_panic(const char *message) 339 { 340 switch (audit_failure) { 341 case AUDIT_FAIL_SILENT: 342 break; 343 case AUDIT_FAIL_PRINTK: 344 if (printk_ratelimit()) 345 pr_err("%s\n", message); 346 break; 347 case AUDIT_FAIL_PANIC: 348 panic("audit: %s\n", message); 349 break; 350 } 351 } 352 353 static inline int audit_rate_check(void) 354 { 355 static unsigned long last_check = 0; 356 static int messages = 0; 357 static DEFINE_SPINLOCK(lock); 358 unsigned long flags; 359 unsigned long now; 360 int retval = 0; 361 362 if (!audit_rate_limit) 363 return 1; 364 365 spin_lock_irqsave(&lock, flags); 366 if (++messages < audit_rate_limit) { 367 retval = 1; 368 } else { 369 now = jiffies; 370 if (time_after(now, last_check + HZ)) { 371 last_check = now; 372 messages = 0; 373 retval = 1; 374 } 375 } 376 spin_unlock_irqrestore(&lock, flags); 377 378 return retval; 379 } 380 381 /** 382 * audit_log_lost - conditionally log lost audit message event 383 * @message: the message stating reason for lost audit message 384 * 385 * Emit at least 1 message per second, even if audit_rate_check is 386 * throttling. 387 * Always increment the lost messages counter. 388 */ 389 void audit_log_lost(const char *message) 390 { 391 static unsigned long last_msg = 0; 392 static DEFINE_SPINLOCK(lock); 393 unsigned long flags; 394 unsigned long now; 395 int print; 396 397 atomic_inc(&audit_lost); 398 399 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 400 401 if (!print) { 402 spin_lock_irqsave(&lock, flags); 403 now = jiffies; 404 if (time_after(now, last_msg + HZ)) { 405 print = 1; 406 last_msg = now; 407 } 408 spin_unlock_irqrestore(&lock, flags); 409 } 410 411 if (print) { 412 if (printk_ratelimit()) 413 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 414 atomic_read(&audit_lost), 415 audit_rate_limit, 416 audit_backlog_limit); 417 audit_panic(message); 418 } 419 } 420 421 static int audit_log_config_change(char *function_name, u32 new, u32 old, 422 int allow_changes) 423 { 424 struct audit_buffer *ab; 425 int rc = 0; 426 427 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 428 if (unlikely(!ab)) 429 return rc; 430 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 431 audit_log_session_info(ab); 432 rc = audit_log_task_context(ab); 433 if (rc) 434 allow_changes = 0; /* Something weird, deny request */ 435 audit_log_format(ab, " res=%d", allow_changes); 436 audit_log_end(ab); 437 return rc; 438 } 439 440 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 441 { 442 int allow_changes, rc = 0; 443 u32 old = *to_change; 444 445 /* check if we are locked */ 446 if (audit_enabled == AUDIT_LOCKED) 447 allow_changes = 0; 448 else 449 allow_changes = 1; 450 451 if (audit_enabled != AUDIT_OFF) { 452 rc = audit_log_config_change(function_name, new, old, allow_changes); 453 if (rc) 454 allow_changes = 0; 455 } 456 457 /* If we are allowed, make the change */ 458 if (allow_changes == 1) 459 *to_change = new; 460 /* Not allowed, update reason */ 461 else if (rc == 0) 462 rc = -EPERM; 463 return rc; 464 } 465 466 static int audit_set_rate_limit(u32 limit) 467 { 468 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 469 } 470 471 static int audit_set_backlog_limit(u32 limit) 472 { 473 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 474 } 475 476 static int audit_set_backlog_wait_time(u32 timeout) 477 { 478 return audit_do_config_change("audit_backlog_wait_time", 479 &audit_backlog_wait_time, timeout); 480 } 481 482 static int audit_set_enabled(u32 state) 483 { 484 int rc; 485 if (state > AUDIT_LOCKED) 486 return -EINVAL; 487 488 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 489 if (!rc) 490 audit_ever_enabled |= !!state; 491 492 return rc; 493 } 494 495 static int audit_set_failure(u32 state) 496 { 497 if (state != AUDIT_FAIL_SILENT 498 && state != AUDIT_FAIL_PRINTK 499 && state != AUDIT_FAIL_PANIC) 500 return -EINVAL; 501 502 return audit_do_config_change("audit_failure", &audit_failure, state); 503 } 504 505 /** 506 * auditd_conn_free - RCU helper to release an auditd connection struct 507 * @rcu: RCU head 508 * 509 * Description: 510 * Drop any references inside the auditd connection tracking struct and free 511 * the memory. 512 */ 513 static void auditd_conn_free(struct rcu_head *rcu) 514 { 515 struct auditd_connection *ac; 516 517 ac = container_of(rcu, struct auditd_connection, rcu); 518 put_pid(ac->pid); 519 put_net(ac->net); 520 kfree(ac); 521 } 522 523 /** 524 * auditd_set - Set/Reset the auditd connection state 525 * @pid: auditd PID 526 * @portid: auditd netlink portid 527 * @net: auditd network namespace pointer 528 * @skb: the netlink command from the audit daemon 529 * @ack: netlink ack flag, cleared if ack'd here 530 * 531 * Description: 532 * This function will obtain and drop network namespace references as 533 * necessary. Returns zero on success, negative values on failure. 534 */ 535 static int auditd_set(struct pid *pid, u32 portid, struct net *net, 536 struct sk_buff *skb, bool *ack) 537 { 538 unsigned long flags; 539 struct auditd_connection *ac_old, *ac_new; 540 struct nlmsghdr *nlh; 541 542 if (!pid || !net) 543 return -EINVAL; 544 545 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 546 if (!ac_new) 547 return -ENOMEM; 548 ac_new->pid = get_pid(pid); 549 ac_new->portid = portid; 550 ac_new->net = get_net(net); 551 552 /* send the ack now to avoid a race with the queue backlog */ 553 if (*ack) { 554 nlh = nlmsg_hdr(skb); 555 netlink_ack(skb, nlh, 0, NULL); 556 *ack = false; 557 } 558 559 spin_lock_irqsave(&auditd_conn_lock, flags); 560 ac_old = rcu_dereference_protected(auditd_conn, 561 lockdep_is_held(&auditd_conn_lock)); 562 rcu_assign_pointer(auditd_conn, ac_new); 563 spin_unlock_irqrestore(&auditd_conn_lock, flags); 564 565 if (ac_old) 566 call_rcu(&ac_old->rcu, auditd_conn_free); 567 568 return 0; 569 } 570 571 /** 572 * kauditd_printk_skb - Print the audit record to the ring buffer 573 * @skb: audit record 574 * 575 * Whatever the reason, this packet may not make it to the auditd connection 576 * so write it via printk so the information isn't completely lost. 577 */ 578 static void kauditd_printk_skb(struct sk_buff *skb) 579 { 580 struct nlmsghdr *nlh = nlmsg_hdr(skb); 581 char *data = nlmsg_data(nlh); 582 583 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 584 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 585 } 586 587 /** 588 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 589 * @skb: audit record 590 * @error: error code (unused) 591 * 592 * Description: 593 * This should only be used by the kauditd_thread when it fails to flush the 594 * hold queue. 595 */ 596 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) 597 { 598 /* put the record back in the queue */ 599 skb_queue_tail(&audit_hold_queue, skb); 600 } 601 602 /** 603 * kauditd_hold_skb - Queue an audit record, waiting for auditd 604 * @skb: audit record 605 * @error: error code 606 * 607 * Description: 608 * Queue the audit record, waiting for an instance of auditd. When this 609 * function is called we haven't given up yet on sending the record, but things 610 * are not looking good. The first thing we want to do is try to write the 611 * record via printk and then see if we want to try and hold on to the record 612 * and queue it, if we have room. If we want to hold on to the record, but we 613 * don't have room, record a record lost message. 614 */ 615 static void kauditd_hold_skb(struct sk_buff *skb, int error) 616 { 617 /* at this point it is uncertain if we will ever send this to auditd so 618 * try to send the message via printk before we go any further */ 619 kauditd_printk_skb(skb); 620 621 /* can we just silently drop the message? */ 622 if (!audit_default) 623 goto drop; 624 625 /* the hold queue is only for when the daemon goes away completely, 626 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the 627 * record on the retry queue unless it's full, in which case drop it 628 */ 629 if (error == -EAGAIN) { 630 if (!audit_backlog_limit || 631 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 632 skb_queue_tail(&audit_retry_queue, skb); 633 return; 634 } 635 audit_log_lost("kauditd retry queue overflow"); 636 goto drop; 637 } 638 639 /* if we have room in the hold queue, queue the message */ 640 if (!audit_backlog_limit || 641 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 642 skb_queue_tail(&audit_hold_queue, skb); 643 return; 644 } 645 646 /* we have no other options - drop the message */ 647 audit_log_lost("kauditd hold queue overflow"); 648 drop: 649 kfree_skb(skb); 650 } 651 652 /** 653 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 654 * @skb: audit record 655 * @error: error code (unused) 656 * 657 * Description: 658 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 659 * but for some reason we are having problems sending it audit records so 660 * queue the given record and attempt to resend. 661 */ 662 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) 663 { 664 if (!audit_backlog_limit || 665 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 666 skb_queue_tail(&audit_retry_queue, skb); 667 return; 668 } 669 670 /* we have to drop the record, send it via printk as a last effort */ 671 kauditd_printk_skb(skb); 672 audit_log_lost("kauditd retry queue overflow"); 673 kfree_skb(skb); 674 } 675 676 /** 677 * auditd_reset - Disconnect the auditd connection 678 * @ac: auditd connection state 679 * 680 * Description: 681 * Break the auditd/kauditd connection and move all the queued records into the 682 * hold queue in case auditd reconnects. It is important to note that the @ac 683 * pointer should never be dereferenced inside this function as it may be NULL 684 * or invalid, you can only compare the memory address! If @ac is NULL then 685 * the connection will always be reset. 686 */ 687 static void auditd_reset(const struct auditd_connection *ac) 688 { 689 unsigned long flags; 690 struct sk_buff *skb; 691 struct auditd_connection *ac_old; 692 693 /* if it isn't already broken, break the connection */ 694 spin_lock_irqsave(&auditd_conn_lock, flags); 695 ac_old = rcu_dereference_protected(auditd_conn, 696 lockdep_is_held(&auditd_conn_lock)); 697 if (ac && ac != ac_old) { 698 /* someone already registered a new auditd connection */ 699 spin_unlock_irqrestore(&auditd_conn_lock, flags); 700 return; 701 } 702 rcu_assign_pointer(auditd_conn, NULL); 703 spin_unlock_irqrestore(&auditd_conn_lock, flags); 704 705 if (ac_old) 706 call_rcu(&ac_old->rcu, auditd_conn_free); 707 708 /* flush the retry queue to the hold queue, but don't touch the main 709 * queue since we need to process that normally for multicast */ 710 while ((skb = skb_dequeue(&audit_retry_queue))) 711 kauditd_hold_skb(skb, -ECONNREFUSED); 712 } 713 714 /** 715 * auditd_send_unicast_skb - Send a record via unicast to auditd 716 * @skb: audit record 717 * 718 * Description: 719 * Send a skb to the audit daemon, returns positive/zero values on success and 720 * negative values on failure; in all cases the skb will be consumed by this 721 * function. If the send results in -ECONNREFUSED the connection with auditd 722 * will be reset. This function may sleep so callers should not hold any locks 723 * where this would cause a problem. 724 */ 725 static int auditd_send_unicast_skb(struct sk_buff *skb) 726 { 727 int rc; 728 u32 portid; 729 struct net *net; 730 struct sock *sk; 731 struct auditd_connection *ac; 732 733 /* NOTE: we can't call netlink_unicast while in the RCU section so 734 * take a reference to the network namespace and grab local 735 * copies of the namespace, the sock, and the portid; the 736 * namespace and sock aren't going to go away while we hold a 737 * reference and if the portid does become invalid after the RCU 738 * section netlink_unicast() should safely return an error */ 739 740 rcu_read_lock(); 741 ac = rcu_dereference(auditd_conn); 742 if (!ac) { 743 rcu_read_unlock(); 744 kfree_skb(skb); 745 rc = -ECONNREFUSED; 746 goto err; 747 } 748 net = get_net(ac->net); 749 sk = audit_get_sk(net); 750 portid = ac->portid; 751 rcu_read_unlock(); 752 753 rc = netlink_unicast(sk, skb, portid, 0); 754 put_net(net); 755 if (rc < 0) 756 goto err; 757 758 return rc; 759 760 err: 761 if (ac && rc == -ECONNREFUSED) 762 auditd_reset(ac); 763 return rc; 764 } 765 766 /** 767 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 768 * @sk: the sending sock 769 * @portid: the netlink destination 770 * @queue: the skb queue to process 771 * @retry_limit: limit on number of netlink unicast failures 772 * @skb_hook: per-skb hook for additional processing 773 * @err_hook: hook called if the skb fails the netlink unicast send 774 * 775 * Description: 776 * Run through the given queue and attempt to send the audit records to auditd, 777 * returns zero on success, negative values on failure. It is up to the caller 778 * to ensure that the @sk is valid for the duration of this function. 779 * 780 */ 781 static int kauditd_send_queue(struct sock *sk, u32 portid, 782 struct sk_buff_head *queue, 783 unsigned int retry_limit, 784 void (*skb_hook)(struct sk_buff *skb), 785 void (*err_hook)(struct sk_buff *skb, int error)) 786 { 787 int rc = 0; 788 struct sk_buff *skb = NULL; 789 struct sk_buff *skb_tail; 790 unsigned int failed = 0; 791 792 /* NOTE: kauditd_thread takes care of all our locking, we just use 793 * the netlink info passed to us (e.g. sk and portid) */ 794 795 skb_tail = skb_peek_tail(queue); 796 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) { 797 /* call the skb_hook for each skb we touch */ 798 if (skb_hook) 799 (*skb_hook)(skb); 800 801 /* can we send to anyone via unicast? */ 802 if (!sk) { 803 if (err_hook) 804 (*err_hook)(skb, -ECONNREFUSED); 805 continue; 806 } 807 808 retry: 809 /* grab an extra skb reference in case of error */ 810 skb_get(skb); 811 rc = netlink_unicast(sk, skb, portid, 0); 812 if (rc < 0) { 813 /* send failed - try a few times unless fatal error */ 814 if (++failed >= retry_limit || 815 rc == -ECONNREFUSED || rc == -EPERM) { 816 sk = NULL; 817 if (err_hook) 818 (*err_hook)(skb, rc); 819 if (rc == -EAGAIN) 820 rc = 0; 821 /* continue to drain the queue */ 822 continue; 823 } else 824 goto retry; 825 } else { 826 /* skb sent - drop the extra reference and continue */ 827 consume_skb(skb); 828 failed = 0; 829 } 830 } 831 832 return (rc >= 0 ? 0 : rc); 833 } 834 835 /* 836 * kauditd_send_multicast_skb - Send a record to any multicast listeners 837 * @skb: audit record 838 * 839 * Description: 840 * Write a multicast message to anyone listening in the initial network 841 * namespace. This function doesn't consume an skb as might be expected since 842 * it has to copy it anyways. 843 */ 844 static void kauditd_send_multicast_skb(struct sk_buff *skb) 845 { 846 struct sk_buff *copy; 847 struct sock *sock = audit_get_sk(&init_net); 848 struct nlmsghdr *nlh; 849 850 /* NOTE: we are not taking an additional reference for init_net since 851 * we don't have to worry about it going away */ 852 853 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 854 return; 855 856 /* 857 * The seemingly wasteful skb_copy() rather than bumping the refcount 858 * using skb_get() is necessary because non-standard mods are made to 859 * the skb by the original kaudit unicast socket send routine. The 860 * existing auditd daemon assumes this breakage. Fixing this would 861 * require co-ordinating a change in the established protocol between 862 * the kaudit kernel subsystem and the auditd userspace code. There is 863 * no reason for new multicast clients to continue with this 864 * non-compliance. 865 */ 866 copy = skb_copy(skb, GFP_KERNEL); 867 if (!copy) 868 return; 869 nlh = nlmsg_hdr(copy); 870 nlh->nlmsg_len = skb->len; 871 872 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 873 } 874 875 /** 876 * kauditd_thread - Worker thread to send audit records to userspace 877 * @dummy: unused 878 */ 879 static int kauditd_thread(void *dummy) 880 { 881 int rc; 882 u32 portid = 0; 883 struct net *net = NULL; 884 struct sock *sk = NULL; 885 struct auditd_connection *ac; 886 887 #define UNICAST_RETRIES 5 888 889 set_freezable(); 890 while (!kthread_should_stop()) { 891 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 892 rcu_read_lock(); 893 ac = rcu_dereference(auditd_conn); 894 if (!ac) { 895 rcu_read_unlock(); 896 goto main_queue; 897 } 898 net = get_net(ac->net); 899 sk = audit_get_sk(net); 900 portid = ac->portid; 901 rcu_read_unlock(); 902 903 /* attempt to flush the hold queue */ 904 rc = kauditd_send_queue(sk, portid, 905 &audit_hold_queue, UNICAST_RETRIES, 906 NULL, kauditd_rehold_skb); 907 if (rc < 0) { 908 sk = NULL; 909 auditd_reset(ac); 910 goto main_queue; 911 } 912 913 /* attempt to flush the retry queue */ 914 rc = kauditd_send_queue(sk, portid, 915 &audit_retry_queue, UNICAST_RETRIES, 916 NULL, kauditd_hold_skb); 917 if (rc < 0) { 918 sk = NULL; 919 auditd_reset(ac); 920 goto main_queue; 921 } 922 923 main_queue: 924 /* process the main queue - do the multicast send and attempt 925 * unicast, dump failed record sends to the retry queue; if 926 * sk == NULL due to previous failures we will just do the 927 * multicast send and move the record to the hold queue */ 928 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 929 kauditd_send_multicast_skb, 930 (sk ? 931 kauditd_retry_skb : kauditd_hold_skb)); 932 if (ac && rc < 0) 933 auditd_reset(ac); 934 sk = NULL; 935 936 /* drop our netns reference, no auditd sends past this line */ 937 if (net) { 938 put_net(net); 939 net = NULL; 940 } 941 942 /* we have processed all the queues so wake everyone */ 943 wake_up(&audit_backlog_wait); 944 945 /* NOTE: we want to wake up if there is anything on the queue, 946 * regardless of if an auditd is connected, as we need to 947 * do the multicast send and rotate records from the 948 * main queue to the retry/hold queues */ 949 wait_event_freezable(kauditd_wait, 950 (skb_queue_len(&audit_queue) ? 1 : 0)); 951 } 952 953 return 0; 954 } 955 956 int audit_send_list_thread(void *_dest) 957 { 958 struct audit_netlink_list *dest = _dest; 959 struct sk_buff *skb; 960 struct sock *sk = audit_get_sk(dest->net); 961 962 /* wait for parent to finish and send an ACK */ 963 audit_ctl_lock(); 964 audit_ctl_unlock(); 965 966 while ((skb = __skb_dequeue(&dest->q)) != NULL) 967 netlink_unicast(sk, skb, dest->portid, 0); 968 969 put_net(dest->net); 970 kfree(dest); 971 972 return 0; 973 } 974 975 struct sk_buff *audit_make_reply(int seq, int type, int done, 976 int multi, const void *payload, int size) 977 { 978 struct sk_buff *skb; 979 struct nlmsghdr *nlh; 980 void *data; 981 int flags = multi ? NLM_F_MULTI : 0; 982 int t = done ? NLMSG_DONE : type; 983 984 skb = nlmsg_new(size, GFP_KERNEL); 985 if (!skb) 986 return NULL; 987 988 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 989 if (!nlh) 990 goto out_kfree_skb; 991 data = nlmsg_data(nlh); 992 memcpy(data, payload, size); 993 return skb; 994 995 out_kfree_skb: 996 kfree_skb(skb); 997 return NULL; 998 } 999 1000 static void audit_free_reply(struct audit_reply *reply) 1001 { 1002 if (!reply) 1003 return; 1004 1005 kfree_skb(reply->skb); 1006 if (reply->net) 1007 put_net(reply->net); 1008 kfree(reply); 1009 } 1010 1011 static int audit_send_reply_thread(void *arg) 1012 { 1013 struct audit_reply *reply = (struct audit_reply *)arg; 1014 1015 audit_ctl_lock(); 1016 audit_ctl_unlock(); 1017 1018 /* Ignore failure. It'll only happen if the sender goes away, 1019 because our timeout is set to infinite. */ 1020 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 1021 reply->skb = NULL; 1022 audit_free_reply(reply); 1023 return 0; 1024 } 1025 1026 /** 1027 * audit_send_reply - send an audit reply message via netlink 1028 * @request_skb: skb of request we are replying to (used to target the reply) 1029 * @seq: sequence number 1030 * @type: audit message type 1031 * @done: done (last) flag 1032 * @multi: multi-part message flag 1033 * @payload: payload data 1034 * @size: payload size 1035 * 1036 * Allocates a skb, builds the netlink message, and sends it to the port id. 1037 */ 1038 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 1039 int multi, const void *payload, int size) 1040 { 1041 struct task_struct *tsk; 1042 struct audit_reply *reply; 1043 1044 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 1045 if (!reply) 1046 return; 1047 1048 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 1049 if (!reply->skb) 1050 goto err; 1051 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 1052 reply->portid = NETLINK_CB(request_skb).portid; 1053 1054 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 1055 if (IS_ERR(tsk)) 1056 goto err; 1057 1058 return; 1059 1060 err: 1061 audit_free_reply(reply); 1062 } 1063 1064 /* 1065 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1066 * control messages. 1067 */ 1068 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1069 { 1070 int err = 0; 1071 1072 /* Only support initial user namespace for now. */ 1073 /* 1074 * We return ECONNREFUSED because it tricks userspace into thinking 1075 * that audit was not configured into the kernel. Lots of users 1076 * configure their PAM stack (because that's what the distro does) 1077 * to reject login if unable to send messages to audit. If we return 1078 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1079 * configured in and will let login proceed. If we return EPERM 1080 * userspace will reject all logins. This should be removed when we 1081 * support non init namespaces!! 1082 */ 1083 if (current_user_ns() != &init_user_ns) 1084 return -ECONNREFUSED; 1085 1086 switch (msg_type) { 1087 case AUDIT_LIST: 1088 case AUDIT_ADD: 1089 case AUDIT_DEL: 1090 return -EOPNOTSUPP; 1091 case AUDIT_GET: 1092 case AUDIT_SET: 1093 case AUDIT_GET_FEATURE: 1094 case AUDIT_SET_FEATURE: 1095 case AUDIT_LIST_RULES: 1096 case AUDIT_ADD_RULE: 1097 case AUDIT_DEL_RULE: 1098 case AUDIT_SIGNAL_INFO: 1099 case AUDIT_TTY_GET: 1100 case AUDIT_TTY_SET: 1101 case AUDIT_TRIM: 1102 case AUDIT_MAKE_EQUIV: 1103 /* Only support auditd and auditctl in initial pid namespace 1104 * for now. */ 1105 if (task_active_pid_ns(current) != &init_pid_ns) 1106 return -EPERM; 1107 1108 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1109 err = -EPERM; 1110 break; 1111 case AUDIT_USER: 1112 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1113 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1114 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1115 err = -EPERM; 1116 break; 1117 default: /* bad msg */ 1118 err = -EINVAL; 1119 } 1120 1121 return err; 1122 } 1123 1124 static void audit_log_common_recv_msg(struct audit_context *context, 1125 struct audit_buffer **ab, u16 msg_type) 1126 { 1127 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1128 pid_t pid = task_tgid_nr(current); 1129 1130 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1131 *ab = NULL; 1132 return; 1133 } 1134 1135 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1136 if (unlikely(!*ab)) 1137 return; 1138 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1139 audit_log_session_info(*ab); 1140 audit_log_task_context(*ab); 1141 } 1142 1143 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1144 u16 msg_type) 1145 { 1146 audit_log_common_recv_msg(NULL, ab, msg_type); 1147 } 1148 1149 static int is_audit_feature_set(int i) 1150 { 1151 return af.features & AUDIT_FEATURE_TO_MASK(i); 1152 } 1153 1154 static int audit_get_feature(struct sk_buff *skb) 1155 { 1156 u32 seq; 1157 1158 seq = nlmsg_hdr(skb)->nlmsg_seq; 1159 1160 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1161 1162 return 0; 1163 } 1164 1165 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1166 u32 old_lock, u32 new_lock, int res) 1167 { 1168 struct audit_buffer *ab; 1169 1170 if (audit_enabled == AUDIT_OFF) 1171 return; 1172 1173 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1174 if (!ab) 1175 return; 1176 audit_log_task_info(ab); 1177 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1178 audit_feature_names[which], !!old_feature, !!new_feature, 1179 !!old_lock, !!new_lock, res); 1180 audit_log_end(ab); 1181 } 1182 1183 static int audit_set_feature(struct audit_features *uaf) 1184 { 1185 int i; 1186 1187 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1188 1189 /* if there is ever a version 2 we should handle that here */ 1190 1191 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1192 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1193 u32 old_feature, new_feature, old_lock, new_lock; 1194 1195 /* if we are not changing this feature, move along */ 1196 if (!(feature & uaf->mask)) 1197 continue; 1198 1199 old_feature = af.features & feature; 1200 new_feature = uaf->features & feature; 1201 new_lock = (uaf->lock | af.lock) & feature; 1202 old_lock = af.lock & feature; 1203 1204 /* are we changing a locked feature? */ 1205 if (old_lock && (new_feature != old_feature)) { 1206 audit_log_feature_change(i, old_feature, new_feature, 1207 old_lock, new_lock, 0); 1208 return -EPERM; 1209 } 1210 } 1211 /* nothing invalid, do the changes */ 1212 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1213 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1214 u32 old_feature, new_feature, old_lock, new_lock; 1215 1216 /* if we are not changing this feature, move along */ 1217 if (!(feature & uaf->mask)) 1218 continue; 1219 1220 old_feature = af.features & feature; 1221 new_feature = uaf->features & feature; 1222 old_lock = af.lock & feature; 1223 new_lock = (uaf->lock | af.lock) & feature; 1224 1225 if (new_feature != old_feature) 1226 audit_log_feature_change(i, old_feature, new_feature, 1227 old_lock, new_lock, 1); 1228 1229 if (new_feature) 1230 af.features |= feature; 1231 else 1232 af.features &= ~feature; 1233 af.lock |= new_lock; 1234 } 1235 1236 return 0; 1237 } 1238 1239 static int audit_replace(struct pid *pid) 1240 { 1241 pid_t pvnr; 1242 struct sk_buff *skb; 1243 1244 pvnr = pid_vnr(pid); 1245 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1246 if (!skb) 1247 return -ENOMEM; 1248 return auditd_send_unicast_skb(skb); 1249 } 1250 1251 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh, 1252 bool *ack) 1253 { 1254 u32 seq; 1255 void *data; 1256 int data_len; 1257 int err; 1258 struct audit_buffer *ab; 1259 u16 msg_type = nlh->nlmsg_type; 1260 struct audit_sig_info *sig_data; 1261 struct lsm_context lsmctx = { NULL, 0, 0 }; 1262 1263 err = audit_netlink_ok(skb, msg_type); 1264 if (err) 1265 return err; 1266 1267 seq = nlh->nlmsg_seq; 1268 data = nlmsg_data(nlh); 1269 data_len = nlmsg_len(nlh); 1270 1271 switch (msg_type) { 1272 case AUDIT_GET: { 1273 struct audit_status s; 1274 memset(&s, 0, sizeof(s)); 1275 s.enabled = audit_enabled; 1276 s.failure = audit_failure; 1277 /* NOTE: use pid_vnr() so the PID is relative to the current 1278 * namespace */ 1279 s.pid = auditd_pid_vnr(); 1280 s.rate_limit = audit_rate_limit; 1281 s.backlog_limit = audit_backlog_limit; 1282 s.lost = atomic_read(&audit_lost); 1283 s.backlog = skb_queue_len(&audit_queue); 1284 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1285 s.backlog_wait_time = audit_backlog_wait_time; 1286 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1287 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1288 break; 1289 } 1290 case AUDIT_SET: { 1291 struct audit_status s; 1292 memset(&s, 0, sizeof(s)); 1293 /* guard against past and future API changes */ 1294 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1295 if (s.mask & AUDIT_STATUS_ENABLED) { 1296 err = audit_set_enabled(s.enabled); 1297 if (err < 0) 1298 return err; 1299 } 1300 if (s.mask & AUDIT_STATUS_FAILURE) { 1301 err = audit_set_failure(s.failure); 1302 if (err < 0) 1303 return err; 1304 } 1305 if (s.mask & AUDIT_STATUS_PID) { 1306 /* NOTE: we are using the vnr PID functions below 1307 * because the s.pid value is relative to the 1308 * namespace of the caller; at present this 1309 * doesn't matter much since you can really only 1310 * run auditd from the initial pid namespace, but 1311 * something to keep in mind if this changes */ 1312 pid_t new_pid = s.pid; 1313 pid_t auditd_pid; 1314 struct pid *req_pid = task_tgid(current); 1315 1316 /* Sanity check - PID values must match. Setting 1317 * pid to 0 is how auditd ends auditing. */ 1318 if (new_pid && (new_pid != pid_vnr(req_pid))) 1319 return -EINVAL; 1320 1321 /* test the auditd connection */ 1322 audit_replace(req_pid); 1323 1324 auditd_pid = auditd_pid_vnr(); 1325 if (auditd_pid) { 1326 /* replacing a healthy auditd is not allowed */ 1327 if (new_pid) { 1328 audit_log_config_change("audit_pid", 1329 new_pid, auditd_pid, 0); 1330 return -EEXIST; 1331 } 1332 /* only current auditd can unregister itself */ 1333 if (pid_vnr(req_pid) != auditd_pid) { 1334 audit_log_config_change("audit_pid", 1335 new_pid, auditd_pid, 0); 1336 return -EACCES; 1337 } 1338 } 1339 1340 if (new_pid) { 1341 /* register a new auditd connection */ 1342 err = auditd_set(req_pid, 1343 NETLINK_CB(skb).portid, 1344 sock_net(NETLINK_CB(skb).sk), 1345 skb, ack); 1346 if (audit_enabled != AUDIT_OFF) 1347 audit_log_config_change("audit_pid", 1348 new_pid, 1349 auditd_pid, 1350 err ? 0 : 1); 1351 if (err) 1352 return err; 1353 1354 /* try to process any backlog */ 1355 wake_up_interruptible(&kauditd_wait); 1356 } else { 1357 if (audit_enabled != AUDIT_OFF) 1358 audit_log_config_change("audit_pid", 1359 new_pid, 1360 auditd_pid, 1); 1361 1362 /* unregister the auditd connection */ 1363 auditd_reset(NULL); 1364 } 1365 } 1366 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1367 err = audit_set_rate_limit(s.rate_limit); 1368 if (err < 0) 1369 return err; 1370 } 1371 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1372 err = audit_set_backlog_limit(s.backlog_limit); 1373 if (err < 0) 1374 return err; 1375 } 1376 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1377 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1378 return -EINVAL; 1379 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1380 return -EINVAL; 1381 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1382 if (err < 0) 1383 return err; 1384 } 1385 if (s.mask == AUDIT_STATUS_LOST) { 1386 u32 lost = atomic_xchg(&audit_lost, 0); 1387 1388 audit_log_config_change("lost", 0, lost, 1); 1389 return lost; 1390 } 1391 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1392 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1393 1394 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1395 return actual; 1396 } 1397 break; 1398 } 1399 case AUDIT_GET_FEATURE: 1400 err = audit_get_feature(skb); 1401 if (err) 1402 return err; 1403 break; 1404 case AUDIT_SET_FEATURE: 1405 if (data_len < sizeof(struct audit_features)) 1406 return -EINVAL; 1407 err = audit_set_feature(data); 1408 if (err) 1409 return err; 1410 break; 1411 case AUDIT_USER: 1412 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1413 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1414 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1415 return 0; 1416 /* exit early if there isn't at least one character to print */ 1417 if (data_len < 2) 1418 return -EINVAL; 1419 1420 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1421 if (err == 1) { /* match or error */ 1422 char *str = data; 1423 1424 err = 0; 1425 if (msg_type == AUDIT_USER_TTY) { 1426 err = tty_audit_push(); 1427 if (err) 1428 break; 1429 } 1430 audit_log_user_recv_msg(&ab, msg_type); 1431 if (msg_type != AUDIT_USER_TTY) { 1432 /* ensure NULL termination */ 1433 str[data_len - 1] = '\0'; 1434 audit_log_format(ab, " msg='%.*s'", 1435 AUDIT_MESSAGE_TEXT_MAX, 1436 str); 1437 } else { 1438 audit_log_format(ab, " data="); 1439 if (str[data_len - 1] == '\0') 1440 data_len--; 1441 audit_log_n_untrustedstring(ab, str, data_len); 1442 } 1443 audit_log_end(ab); 1444 } 1445 break; 1446 case AUDIT_ADD_RULE: 1447 case AUDIT_DEL_RULE: 1448 if (data_len < sizeof(struct audit_rule_data)) 1449 return -EINVAL; 1450 if (audit_enabled == AUDIT_LOCKED) { 1451 audit_log_common_recv_msg(audit_context(), &ab, 1452 AUDIT_CONFIG_CHANGE); 1453 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1454 msg_type == AUDIT_ADD_RULE ? 1455 "add_rule" : "remove_rule", 1456 audit_enabled); 1457 audit_log_end(ab); 1458 return -EPERM; 1459 } 1460 err = audit_rule_change(msg_type, seq, data, data_len); 1461 break; 1462 case AUDIT_LIST_RULES: 1463 err = audit_list_rules_send(skb, seq); 1464 break; 1465 case AUDIT_TRIM: 1466 audit_trim_trees(); 1467 audit_log_common_recv_msg(audit_context(), &ab, 1468 AUDIT_CONFIG_CHANGE); 1469 audit_log_format(ab, " op=trim res=1"); 1470 audit_log_end(ab); 1471 break; 1472 case AUDIT_MAKE_EQUIV: { 1473 void *bufp = data; 1474 u32 sizes[2]; 1475 size_t msglen = data_len; 1476 char *old, *new; 1477 1478 err = -EINVAL; 1479 if (msglen < 2 * sizeof(u32)) 1480 break; 1481 memcpy(sizes, bufp, 2 * sizeof(u32)); 1482 bufp += 2 * sizeof(u32); 1483 msglen -= 2 * sizeof(u32); 1484 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1485 if (IS_ERR(old)) { 1486 err = PTR_ERR(old); 1487 break; 1488 } 1489 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1490 if (IS_ERR(new)) { 1491 err = PTR_ERR(new); 1492 kfree(old); 1493 break; 1494 } 1495 /* OK, here comes... */ 1496 err = audit_tag_tree(old, new); 1497 1498 audit_log_common_recv_msg(audit_context(), &ab, 1499 AUDIT_CONFIG_CHANGE); 1500 audit_log_format(ab, " op=make_equiv old="); 1501 audit_log_untrustedstring(ab, old); 1502 audit_log_format(ab, " new="); 1503 audit_log_untrustedstring(ab, new); 1504 audit_log_format(ab, " res=%d", !err); 1505 audit_log_end(ab); 1506 kfree(old); 1507 kfree(new); 1508 break; 1509 } 1510 case AUDIT_SIGNAL_INFO: 1511 if (lsmprop_is_set(&audit_sig_lsm)) { 1512 err = security_lsmprop_to_secctx(&audit_sig_lsm, 1513 &lsmctx, LSM_ID_UNDEF); 1514 if (err < 0) 1515 return err; 1516 } 1517 sig_data = kmalloc(struct_size(sig_data, ctx, lsmctx.len), 1518 GFP_KERNEL); 1519 if (!sig_data) { 1520 if (lsmprop_is_set(&audit_sig_lsm)) 1521 security_release_secctx(&lsmctx); 1522 return -ENOMEM; 1523 } 1524 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1525 sig_data->pid = audit_sig_pid; 1526 if (lsmprop_is_set(&audit_sig_lsm)) { 1527 memcpy(sig_data->ctx, lsmctx.context, lsmctx.len); 1528 security_release_secctx(&lsmctx); 1529 } 1530 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1531 sig_data, struct_size(sig_data, ctx, 1532 lsmctx.len)); 1533 kfree(sig_data); 1534 break; 1535 case AUDIT_TTY_GET: { 1536 struct audit_tty_status s; 1537 unsigned int t; 1538 1539 t = READ_ONCE(current->signal->audit_tty); 1540 s.enabled = t & AUDIT_TTY_ENABLE; 1541 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1542 1543 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1544 break; 1545 } 1546 case AUDIT_TTY_SET: { 1547 struct audit_tty_status s, old; 1548 struct audit_buffer *ab; 1549 unsigned int t; 1550 1551 memset(&s, 0, sizeof(s)); 1552 /* guard against past and future API changes */ 1553 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1554 /* check if new data is valid */ 1555 if ((s.enabled != 0 && s.enabled != 1) || 1556 (s.log_passwd != 0 && s.log_passwd != 1)) 1557 err = -EINVAL; 1558 1559 if (err) 1560 t = READ_ONCE(current->signal->audit_tty); 1561 else { 1562 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1563 t = xchg(¤t->signal->audit_tty, t); 1564 } 1565 old.enabled = t & AUDIT_TTY_ENABLE; 1566 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1567 1568 audit_log_common_recv_msg(audit_context(), &ab, 1569 AUDIT_CONFIG_CHANGE); 1570 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1571 " old-log_passwd=%d new-log_passwd=%d res=%d", 1572 old.enabled, s.enabled, old.log_passwd, 1573 s.log_passwd, !err); 1574 audit_log_end(ab); 1575 break; 1576 } 1577 default: 1578 err = -EINVAL; 1579 break; 1580 } 1581 1582 return err < 0 ? err : 0; 1583 } 1584 1585 /** 1586 * audit_receive - receive messages from a netlink control socket 1587 * @skb: the message buffer 1588 * 1589 * Parse the provided skb and deal with any messages that may be present, 1590 * malformed skbs are discarded. 1591 */ 1592 static void audit_receive(struct sk_buff *skb) 1593 { 1594 struct nlmsghdr *nlh; 1595 bool ack; 1596 /* 1597 * len MUST be signed for nlmsg_next to be able to dec it below 0 1598 * if the nlmsg_len was not aligned 1599 */ 1600 int len; 1601 int err; 1602 1603 nlh = nlmsg_hdr(skb); 1604 len = skb->len; 1605 1606 audit_ctl_lock(); 1607 while (nlmsg_ok(nlh, len)) { 1608 ack = nlh->nlmsg_flags & NLM_F_ACK; 1609 err = audit_receive_msg(skb, nlh, &ack); 1610 1611 /* send an ack if the user asked for one and audit_receive_msg 1612 * didn't already do it, or if there was an error. */ 1613 if (ack || err) 1614 netlink_ack(skb, nlh, err, NULL); 1615 1616 nlh = nlmsg_next(nlh, &len); 1617 } 1618 audit_ctl_unlock(); 1619 1620 /* can't block with the ctrl lock, so penalize the sender now */ 1621 if (audit_backlog_limit && 1622 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1623 DECLARE_WAITQUEUE(wait, current); 1624 1625 /* wake kauditd to try and flush the queue */ 1626 wake_up_interruptible(&kauditd_wait); 1627 1628 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1629 set_current_state(TASK_UNINTERRUPTIBLE); 1630 schedule_timeout(audit_backlog_wait_time); 1631 remove_wait_queue(&audit_backlog_wait, &wait); 1632 } 1633 } 1634 1635 /* Log information about who is connecting to the audit multicast socket */ 1636 static void audit_log_multicast(int group, const char *op, int err) 1637 { 1638 const struct cred *cred; 1639 struct tty_struct *tty; 1640 char comm[sizeof(current->comm)]; 1641 struct audit_buffer *ab; 1642 1643 if (!audit_enabled) 1644 return; 1645 1646 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1647 if (!ab) 1648 return; 1649 1650 cred = current_cred(); 1651 tty = audit_get_tty(); 1652 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1653 task_tgid_nr(current), 1654 from_kuid(&init_user_ns, cred->uid), 1655 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1656 tty ? tty_name(tty) : "(none)", 1657 audit_get_sessionid(current)); 1658 audit_put_tty(tty); 1659 audit_log_task_context(ab); /* subj= */ 1660 audit_log_format(ab, " comm="); 1661 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1662 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1663 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1664 audit_log_end(ab); 1665 } 1666 1667 /* Run custom bind function on netlink socket group connect or bind requests. */ 1668 static int audit_multicast_bind(struct net *net, int group) 1669 { 1670 int err = 0; 1671 1672 if (!capable(CAP_AUDIT_READ)) 1673 err = -EPERM; 1674 audit_log_multicast(group, "connect", err); 1675 return err; 1676 } 1677 1678 static void audit_multicast_unbind(struct net *net, int group) 1679 { 1680 audit_log_multicast(group, "disconnect", 0); 1681 } 1682 1683 static int __net_init audit_net_init(struct net *net) 1684 { 1685 struct netlink_kernel_cfg cfg = { 1686 .input = audit_receive, 1687 .bind = audit_multicast_bind, 1688 .unbind = audit_multicast_unbind, 1689 .flags = NL_CFG_F_NONROOT_RECV, 1690 .groups = AUDIT_NLGRP_MAX, 1691 }; 1692 1693 struct audit_net *aunet = net_generic(net, audit_net_id); 1694 1695 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1696 if (aunet->sk == NULL) { 1697 audit_panic("cannot initialize netlink socket in namespace"); 1698 return -ENOMEM; 1699 } 1700 /* limit the timeout in case auditd is blocked/stopped */ 1701 aunet->sk->sk_sndtimeo = HZ / 10; 1702 1703 return 0; 1704 } 1705 1706 static void __net_exit audit_net_exit(struct net *net) 1707 { 1708 struct audit_net *aunet = net_generic(net, audit_net_id); 1709 1710 /* NOTE: you would think that we would want to check the auditd 1711 * connection and potentially reset it here if it lives in this 1712 * namespace, but since the auditd connection tracking struct holds a 1713 * reference to this namespace (see auditd_set()) we are only ever 1714 * going to get here after that connection has been released */ 1715 1716 netlink_kernel_release(aunet->sk); 1717 } 1718 1719 static struct pernet_operations audit_net_ops __net_initdata = { 1720 .init = audit_net_init, 1721 .exit = audit_net_exit, 1722 .id = &audit_net_id, 1723 .size = sizeof(struct audit_net), 1724 }; 1725 1726 /* Initialize audit support at boot time. */ 1727 static int __init audit_init(void) 1728 { 1729 int i; 1730 1731 if (audit_initialized == AUDIT_DISABLED) 1732 return 0; 1733 1734 audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC); 1735 1736 skb_queue_head_init(&audit_queue); 1737 skb_queue_head_init(&audit_retry_queue); 1738 skb_queue_head_init(&audit_hold_queue); 1739 1740 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1741 INIT_LIST_HEAD(&audit_inode_hash[i]); 1742 1743 mutex_init(&audit_cmd_mutex.lock); 1744 audit_cmd_mutex.owner = NULL; 1745 1746 pr_info("initializing netlink subsys (%s)\n", 1747 str_enabled_disabled(audit_default)); 1748 register_pernet_subsys(&audit_net_ops); 1749 1750 audit_initialized = AUDIT_INITIALIZED; 1751 1752 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1753 if (IS_ERR(kauditd_task)) { 1754 int err = PTR_ERR(kauditd_task); 1755 panic("audit: failed to start the kauditd thread (%d)\n", err); 1756 } 1757 1758 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1759 "state=initialized audit_enabled=%u res=1", 1760 audit_enabled); 1761 1762 return 0; 1763 } 1764 postcore_initcall(audit_init); 1765 1766 /* 1767 * Process kernel command-line parameter at boot time. 1768 * audit={0|off} or audit={1|on}. 1769 */ 1770 static int __init audit_enable(char *str) 1771 { 1772 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1773 audit_default = AUDIT_OFF; 1774 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1775 audit_default = AUDIT_ON; 1776 else { 1777 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1778 audit_default = AUDIT_ON; 1779 } 1780 1781 if (audit_default == AUDIT_OFF) 1782 audit_initialized = AUDIT_DISABLED; 1783 if (audit_set_enabled(audit_default)) 1784 pr_err("audit: error setting audit state (%d)\n", 1785 audit_default); 1786 1787 pr_info("%s\n", audit_default ? 1788 "enabled (after initialization)" : "disabled (until reboot)"); 1789 1790 return 1; 1791 } 1792 __setup("audit=", audit_enable); 1793 1794 /* Process kernel command-line parameter at boot time. 1795 * audit_backlog_limit=<n> */ 1796 static int __init audit_backlog_limit_set(char *str) 1797 { 1798 u32 audit_backlog_limit_arg; 1799 1800 pr_info("audit_backlog_limit: "); 1801 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1802 pr_cont("using default of %u, unable to parse %s\n", 1803 audit_backlog_limit, str); 1804 return 1; 1805 } 1806 1807 audit_backlog_limit = audit_backlog_limit_arg; 1808 pr_cont("%d\n", audit_backlog_limit); 1809 1810 return 1; 1811 } 1812 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1813 1814 static void audit_buffer_free(struct audit_buffer *ab) 1815 { 1816 struct sk_buff *skb; 1817 1818 if (!ab) 1819 return; 1820 1821 while ((skb = skb_dequeue(&ab->skb_list))) 1822 kfree_skb(skb); 1823 kmem_cache_free(audit_buffer_cache, ab); 1824 } 1825 1826 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1827 gfp_t gfp_mask, int type) 1828 { 1829 struct audit_buffer *ab; 1830 1831 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1832 if (!ab) 1833 return NULL; 1834 1835 skb_queue_head_init(&ab->skb_list); 1836 1837 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1838 if (!ab->skb) 1839 goto err; 1840 1841 skb_queue_tail(&ab->skb_list, ab->skb); 1842 1843 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1844 goto err; 1845 1846 ab->ctx = ctx; 1847 ab->gfp_mask = gfp_mask; 1848 1849 return ab; 1850 1851 err: 1852 audit_buffer_free(ab); 1853 return NULL; 1854 } 1855 1856 /** 1857 * audit_serial - compute a serial number for the audit record 1858 * 1859 * Compute a serial number for the audit record. Audit records are 1860 * written to user-space as soon as they are generated, so a complete 1861 * audit record may be written in several pieces. The timestamp of the 1862 * record and this serial number are used by the user-space tools to 1863 * determine which pieces belong to the same audit record. The 1864 * (timestamp,serial) tuple is unique for each syscall and is live from 1865 * syscall entry to syscall exit. 1866 * 1867 * NOTE: Another possibility is to store the formatted records off the 1868 * audit context (for those records that have a context), and emit them 1869 * all at syscall exit. However, this could delay the reporting of 1870 * significant errors until syscall exit (or never, if the system 1871 * halts). 1872 */ 1873 unsigned int audit_serial(void) 1874 { 1875 static atomic_t serial = ATOMIC_INIT(0); 1876 1877 return atomic_inc_return(&serial); 1878 } 1879 1880 static inline void audit_get_stamp(struct audit_context *ctx, 1881 struct audit_stamp *stamp) 1882 { 1883 if (!ctx || !auditsc_get_stamp(ctx, stamp)) { 1884 ktime_get_coarse_real_ts64(&stamp->ctime); 1885 stamp->serial = audit_serial(); 1886 } 1887 } 1888 1889 /** 1890 * audit_log_start - obtain an audit buffer 1891 * @ctx: audit_context (may be NULL) 1892 * @gfp_mask: type of allocation 1893 * @type: audit message type 1894 * 1895 * Returns audit_buffer pointer on success or NULL on error. 1896 * 1897 * Obtain an audit buffer. This routine does locking to obtain the 1898 * audit buffer, but then no locking is required for calls to 1899 * audit_log_*format. If the task (ctx) is a task that is currently in a 1900 * syscall, then the syscall is marked as auditable and an audit record 1901 * will be written at syscall exit. If there is no associated task, then 1902 * task context (ctx) should be NULL. 1903 */ 1904 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1905 int type) 1906 { 1907 struct audit_buffer *ab; 1908 1909 if (audit_initialized != AUDIT_INITIALIZED) 1910 return NULL; 1911 1912 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1913 return NULL; 1914 1915 /* NOTE: don't ever fail/sleep on these two conditions: 1916 * 1. auditd generated record - since we need auditd to drain the 1917 * queue; also, when we are checking for auditd, compare PIDs using 1918 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1919 * using a PID anchored in the caller's namespace 1920 * 2. generator holding the audit_cmd_mutex - we don't want to block 1921 * while holding the mutex, although we do penalize the sender 1922 * later in audit_receive() when it is safe to block 1923 */ 1924 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1925 long stime = audit_backlog_wait_time; 1926 1927 while (audit_backlog_limit && 1928 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1929 /* wake kauditd to try and flush the queue */ 1930 wake_up_interruptible(&kauditd_wait); 1931 1932 /* sleep if we are allowed and we haven't exhausted our 1933 * backlog wait limit */ 1934 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1935 long rtime = stime; 1936 1937 DECLARE_WAITQUEUE(wait, current); 1938 1939 add_wait_queue_exclusive(&audit_backlog_wait, 1940 &wait); 1941 set_current_state(TASK_UNINTERRUPTIBLE); 1942 stime = schedule_timeout(rtime); 1943 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1944 remove_wait_queue(&audit_backlog_wait, &wait); 1945 } else { 1946 if (audit_rate_check() && printk_ratelimit()) 1947 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1948 skb_queue_len(&audit_queue), 1949 audit_backlog_limit); 1950 audit_log_lost("backlog limit exceeded"); 1951 return NULL; 1952 } 1953 } 1954 } 1955 1956 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1957 if (!ab) { 1958 audit_log_lost("out of memory in audit_log_start"); 1959 return NULL; 1960 } 1961 1962 audit_get_stamp(ab->ctx, &ab->stamp); 1963 /* cancel dummy context to enable supporting records */ 1964 if (ctx) 1965 ctx->dummy = 0; 1966 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1967 (unsigned long long)ab->stamp.ctime.tv_sec, 1968 ab->stamp.ctime.tv_nsec/1000000, 1969 ab->stamp.serial); 1970 1971 return ab; 1972 } 1973 1974 /** 1975 * audit_expand - expand skb in the audit buffer 1976 * @ab: audit_buffer 1977 * @extra: space to add at tail of the skb 1978 * 1979 * Returns 0 (no space) on failed expansion, or available space if 1980 * successful. 1981 */ 1982 static inline int audit_expand(struct audit_buffer *ab, int extra) 1983 { 1984 struct sk_buff *skb = ab->skb; 1985 int oldtail = skb_tailroom(skb); 1986 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1987 int newtail = skb_tailroom(skb); 1988 1989 if (ret < 0) { 1990 audit_log_lost("out of memory in audit_expand"); 1991 return 0; 1992 } 1993 1994 skb->truesize += newtail - oldtail; 1995 return newtail; 1996 } 1997 1998 /* 1999 * Format an audit message into the audit buffer. If there isn't enough 2000 * room in the audit buffer, more room will be allocated and vsnprint 2001 * will be called a second time. Currently, we assume that a printk 2002 * can't format message larger than 1024 bytes, so we don't either. 2003 */ 2004 static __printf(2, 0) 2005 void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args) 2006 { 2007 int len, avail; 2008 struct sk_buff *skb; 2009 va_list args2; 2010 2011 if (!ab) 2012 return; 2013 2014 BUG_ON(!ab->skb); 2015 skb = ab->skb; 2016 avail = skb_tailroom(skb); 2017 if (avail == 0) { 2018 avail = audit_expand(ab, AUDIT_BUFSIZ); 2019 if (!avail) 2020 goto out; 2021 } 2022 va_copy(args2, args); 2023 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 2024 if (len >= avail) { 2025 /* The printk buffer is 1024 bytes long, so if we get 2026 * here and AUDIT_BUFSIZ is at least 1024, then we can 2027 * log everything that printk could have logged. */ 2028 avail = audit_expand(ab, 2029 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 2030 if (!avail) 2031 goto out_va_end; 2032 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 2033 } 2034 if (len > 0) 2035 skb_put(skb, len); 2036 out_va_end: 2037 va_end(args2); 2038 out: 2039 return; 2040 } 2041 2042 /** 2043 * audit_log_format - format a message into the audit buffer. 2044 * @ab: audit_buffer 2045 * @fmt: format string 2046 * @...: optional parameters matching @fmt string 2047 * 2048 * All the work is done in audit_log_vformat. 2049 */ 2050 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 2051 { 2052 va_list args; 2053 2054 if (!ab) 2055 return; 2056 va_start(args, fmt); 2057 audit_log_vformat(ab, fmt, args); 2058 va_end(args); 2059 } 2060 2061 /** 2062 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 2063 * @ab: the audit_buffer 2064 * @buf: buffer to convert to hex 2065 * @len: length of @buf to be converted 2066 * 2067 * No return value; failure to expand is silently ignored. 2068 * 2069 * This function will take the passed buf and convert it into a string of 2070 * ascii hex digits. The new string is placed onto the skb. 2071 */ 2072 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 2073 size_t len) 2074 { 2075 int i, avail, new_len; 2076 unsigned char *ptr; 2077 struct sk_buff *skb; 2078 2079 if (!ab) 2080 return; 2081 2082 BUG_ON(!ab->skb); 2083 skb = ab->skb; 2084 avail = skb_tailroom(skb); 2085 new_len = len<<1; 2086 if (new_len >= avail) { 2087 /* Round the buffer request up to the next multiple */ 2088 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 2089 avail = audit_expand(ab, new_len); 2090 if (!avail) 2091 return; 2092 } 2093 2094 ptr = skb_tail_pointer(skb); 2095 for (i = 0; i < len; i++) 2096 ptr = hex_byte_pack_upper(ptr, buf[i]); 2097 *ptr = 0; 2098 skb_put(skb, len << 1); /* new string is twice the old string */ 2099 } 2100 2101 /* 2102 * Format a string of no more than slen characters into the audit buffer, 2103 * enclosed in quote marks. 2104 */ 2105 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2106 size_t slen) 2107 { 2108 int avail, new_len; 2109 unsigned char *ptr; 2110 struct sk_buff *skb; 2111 2112 if (!ab) 2113 return; 2114 2115 BUG_ON(!ab->skb); 2116 skb = ab->skb; 2117 avail = skb_tailroom(skb); 2118 new_len = slen + 3; /* enclosing quotes + null terminator */ 2119 if (new_len > avail) { 2120 avail = audit_expand(ab, new_len); 2121 if (!avail) 2122 return; 2123 } 2124 ptr = skb_tail_pointer(skb); 2125 *ptr++ = '"'; 2126 memcpy(ptr, string, slen); 2127 ptr += slen; 2128 *ptr++ = '"'; 2129 *ptr = 0; 2130 skb_put(skb, slen + 2); /* don't include null terminator */ 2131 } 2132 2133 /** 2134 * audit_string_contains_control - does a string need to be logged in hex 2135 * @string: string to be checked 2136 * @len: max length of the string to check 2137 */ 2138 bool audit_string_contains_control(const char *string, size_t len) 2139 { 2140 const unsigned char *p; 2141 for (p = string; p < (const unsigned char *)string + len; p++) { 2142 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2143 return true; 2144 } 2145 return false; 2146 } 2147 2148 /** 2149 * audit_log_n_untrustedstring - log a string that may contain random characters 2150 * @ab: audit_buffer 2151 * @string: string to be logged 2152 * @len: length of string (not including trailing null) 2153 * 2154 * This code will escape a string that is passed to it if the string 2155 * contains a control character, unprintable character, double quote mark, 2156 * or a space. Unescaped strings will start and end with a double quote mark. 2157 * Strings that are escaped are printed in hex (2 digits per char). 2158 * 2159 * The caller specifies the number of characters in the string to log, which may 2160 * or may not be the entire string. 2161 */ 2162 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2163 size_t len) 2164 { 2165 if (audit_string_contains_control(string, len)) 2166 audit_log_n_hex(ab, string, len); 2167 else 2168 audit_log_n_string(ab, string, len); 2169 } 2170 2171 /** 2172 * audit_log_untrustedstring - log a string that may contain random characters 2173 * @ab: audit_buffer 2174 * @string: string to be logged 2175 * 2176 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2177 * determine string length. 2178 */ 2179 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2180 { 2181 audit_log_n_untrustedstring(ab, string, strlen(string)); 2182 } 2183 2184 /* This is a helper-function to print the escaped d_path */ 2185 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2186 const struct path *path) 2187 { 2188 char *p, *pathname; 2189 2190 if (prefix) 2191 audit_log_format(ab, "%s", prefix); 2192 2193 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2194 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2195 if (!pathname) { 2196 audit_log_format(ab, "\"<no_memory>\""); 2197 return; 2198 } 2199 p = d_path(path, pathname, PATH_MAX+11); 2200 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2201 /* FIXME: can we save some information here? */ 2202 audit_log_format(ab, "\"<too_long>\""); 2203 } else 2204 audit_log_untrustedstring(ab, p); 2205 kfree(pathname); 2206 } 2207 2208 void audit_log_session_info(struct audit_buffer *ab) 2209 { 2210 unsigned int sessionid = audit_get_sessionid(current); 2211 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2212 2213 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2214 } 2215 2216 void audit_log_key(struct audit_buffer *ab, char *key) 2217 { 2218 audit_log_format(ab, " key="); 2219 if (key) 2220 audit_log_untrustedstring(ab, key); 2221 else 2222 audit_log_format(ab, "(null)"); 2223 } 2224 2225 /** 2226 * audit_buffer_aux_new - Add an aux record buffer to the skb list 2227 * @ab: audit_buffer 2228 * @type: message type 2229 * 2230 * Aux records are allocated and added to the skb list of 2231 * the "main" record. The ab->skb is reset to point to the 2232 * aux record on its creation. When the aux record in complete 2233 * ab->skb has to be reset to point to the "main" record. 2234 * This allows the audit_log_ functions to be ignorant of 2235 * which kind of record it is logging to. It also avoids adding 2236 * special data for aux records. 2237 * 2238 * On success ab->skb will point to the new aux record. 2239 * Returns 0 on success, -ENOMEM should allocation fail. 2240 */ 2241 static int audit_buffer_aux_new(struct audit_buffer *ab, int type) 2242 { 2243 WARN_ON(ab->skb != skb_peek(&ab->skb_list)); 2244 2245 ab->skb = nlmsg_new(AUDIT_BUFSIZ, ab->gfp_mask); 2246 if (!ab->skb) 2247 goto err; 2248 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 2249 goto err; 2250 skb_queue_tail(&ab->skb_list, ab->skb); 2251 2252 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 2253 (unsigned long long)ab->stamp.ctime.tv_sec, 2254 ab->stamp.ctime.tv_nsec/1000000, 2255 ab->stamp.serial); 2256 2257 return 0; 2258 2259 err: 2260 kfree_skb(ab->skb); 2261 ab->skb = skb_peek(&ab->skb_list); 2262 return -ENOMEM; 2263 } 2264 2265 /** 2266 * audit_buffer_aux_end - Switch back to the "main" record from an aux record 2267 * @ab: audit_buffer 2268 * 2269 * Restores the "main" audit record to ab->skb. 2270 */ 2271 static void audit_buffer_aux_end(struct audit_buffer *ab) 2272 { 2273 ab->skb = skb_peek(&ab->skb_list); 2274 } 2275 2276 /** 2277 * audit_log_subj_ctx - Add LSM subject information 2278 * @ab: audit_buffer 2279 * @prop: LSM subject properties. 2280 * 2281 * Add a subj= field and, if necessary, a AUDIT_MAC_TASK_CONTEXTS record. 2282 */ 2283 int audit_log_subj_ctx(struct audit_buffer *ab, struct lsm_prop *prop) 2284 { 2285 struct lsm_context ctx; 2286 char *space = ""; 2287 int error; 2288 int i; 2289 2290 security_current_getlsmprop_subj(prop); 2291 if (!lsmprop_is_set(prop)) 2292 return 0; 2293 2294 if (audit_subj_secctx_cnt < 2) { 2295 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF); 2296 if (error < 0) { 2297 if (error != -EINVAL) 2298 goto error_path; 2299 return 0; 2300 } 2301 audit_log_format(ab, " subj=%s", ctx.context); 2302 security_release_secctx(&ctx); 2303 return 0; 2304 } 2305 /* Multiple LSMs provide contexts. Include an aux record. */ 2306 audit_log_format(ab, " subj=?"); 2307 error = audit_buffer_aux_new(ab, AUDIT_MAC_TASK_CONTEXTS); 2308 if (error) 2309 goto error_path; 2310 2311 for (i = 0; i < audit_subj_secctx_cnt; i++) { 2312 error = security_lsmprop_to_secctx(prop, &ctx, 2313 audit_subj_lsms[i]->id); 2314 if (error < 0) { 2315 /* 2316 * Don't print anything. An LSM like BPF could 2317 * claim to support contexts, but only do so under 2318 * certain conditions. 2319 */ 2320 if (error == -EOPNOTSUPP) 2321 continue; 2322 if (error != -EINVAL) 2323 audit_panic("error in audit_log_subj_ctx"); 2324 } else { 2325 audit_log_format(ab, "%ssubj_%s=%s", space, 2326 audit_subj_lsms[i]->name, ctx.context); 2327 space = " "; 2328 security_release_secctx(&ctx); 2329 } 2330 } 2331 audit_buffer_aux_end(ab); 2332 return 0; 2333 2334 error_path: 2335 audit_panic("error in audit_log_subj_ctx"); 2336 return error; 2337 } 2338 EXPORT_SYMBOL(audit_log_subj_ctx); 2339 2340 int audit_log_task_context(struct audit_buffer *ab) 2341 { 2342 struct lsm_prop prop; 2343 2344 security_current_getlsmprop_subj(&prop); 2345 return audit_log_subj_ctx(ab, &prop); 2346 } 2347 EXPORT_SYMBOL(audit_log_task_context); 2348 2349 int audit_log_obj_ctx(struct audit_buffer *ab, struct lsm_prop *prop) 2350 { 2351 int i; 2352 int rc; 2353 int error = 0; 2354 char *space = ""; 2355 struct lsm_context ctx; 2356 2357 if (audit_obj_secctx_cnt < 2) { 2358 error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF); 2359 if (error < 0) { 2360 if (error != -EINVAL) 2361 goto error_path; 2362 return error; 2363 } 2364 audit_log_format(ab, " obj=%s", ctx.context); 2365 security_release_secctx(&ctx); 2366 return 0; 2367 } 2368 audit_log_format(ab, " obj=?"); 2369 error = audit_buffer_aux_new(ab, AUDIT_MAC_OBJ_CONTEXTS); 2370 if (error) 2371 goto error_path; 2372 2373 for (i = 0; i < audit_obj_secctx_cnt; i++) { 2374 rc = security_lsmprop_to_secctx(prop, &ctx, 2375 audit_obj_lsms[i]->id); 2376 if (rc < 0) { 2377 audit_log_format(ab, "%sobj_%s=?", space, 2378 audit_obj_lsms[i]->name); 2379 if (rc != -EINVAL) 2380 audit_panic("error in audit_log_obj_ctx"); 2381 error = rc; 2382 } else { 2383 audit_log_format(ab, "%sobj_%s=%s", space, 2384 audit_obj_lsms[i]->name, ctx.context); 2385 security_release_secctx(&ctx); 2386 } 2387 space = " "; 2388 } 2389 2390 audit_buffer_aux_end(ab); 2391 return error; 2392 2393 error_path: 2394 audit_panic("error in audit_log_obj_ctx"); 2395 return error; 2396 } 2397 2398 void audit_log_d_path_exe(struct audit_buffer *ab, 2399 struct mm_struct *mm) 2400 { 2401 struct file *exe_file; 2402 2403 if (!mm) 2404 goto out_null; 2405 2406 exe_file = get_mm_exe_file(mm); 2407 if (!exe_file) 2408 goto out_null; 2409 2410 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2411 fput(exe_file); 2412 return; 2413 out_null: 2414 audit_log_format(ab, " exe=(null)"); 2415 } 2416 2417 struct tty_struct *audit_get_tty(void) 2418 { 2419 struct tty_struct *tty = NULL; 2420 unsigned long flags; 2421 2422 spin_lock_irqsave(¤t->sighand->siglock, flags); 2423 if (current->signal) 2424 tty = tty_kref_get(current->signal->tty); 2425 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2426 return tty; 2427 } 2428 2429 void audit_put_tty(struct tty_struct *tty) 2430 { 2431 tty_kref_put(tty); 2432 } 2433 2434 void audit_log_task_info(struct audit_buffer *ab) 2435 { 2436 const struct cred *cred; 2437 char comm[sizeof(current->comm)]; 2438 struct tty_struct *tty; 2439 2440 if (!ab) 2441 return; 2442 2443 cred = current_cred(); 2444 tty = audit_get_tty(); 2445 audit_log_format(ab, 2446 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2447 " euid=%u suid=%u fsuid=%u" 2448 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2449 task_ppid_nr(current), 2450 task_tgid_nr(current), 2451 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2452 from_kuid(&init_user_ns, cred->uid), 2453 from_kgid(&init_user_ns, cred->gid), 2454 from_kuid(&init_user_ns, cred->euid), 2455 from_kuid(&init_user_ns, cred->suid), 2456 from_kuid(&init_user_ns, cred->fsuid), 2457 from_kgid(&init_user_ns, cred->egid), 2458 from_kgid(&init_user_ns, cred->sgid), 2459 from_kgid(&init_user_ns, cred->fsgid), 2460 tty ? tty_name(tty) : "(none)", 2461 audit_get_sessionid(current)); 2462 audit_put_tty(tty); 2463 audit_log_format(ab, " comm="); 2464 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2465 audit_log_d_path_exe(ab, current->mm); 2466 audit_log_task_context(ab); 2467 } 2468 EXPORT_SYMBOL(audit_log_task_info); 2469 2470 /** 2471 * audit_log_path_denied - report a path restriction denial 2472 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2473 * @operation: specific operation name 2474 */ 2475 void audit_log_path_denied(int type, const char *operation) 2476 { 2477 struct audit_buffer *ab; 2478 2479 if (!audit_enabled) 2480 return; 2481 2482 /* Generate log with subject, operation, outcome. */ 2483 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2484 if (!ab) 2485 return; 2486 audit_log_format(ab, "op=%s", operation); 2487 audit_log_task_info(ab); 2488 audit_log_format(ab, " res=0"); 2489 audit_log_end(ab); 2490 } 2491 2492 /* global counter which is incremented every time something logs in */ 2493 static atomic_t session_id = ATOMIC_INIT(0); 2494 2495 static int audit_set_loginuid_perm(kuid_t loginuid) 2496 { 2497 /* if we are unset, we don't need privs */ 2498 if (!audit_loginuid_set(current)) 2499 return 0; 2500 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2501 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2502 return -EPERM; 2503 /* it is set, you need permission */ 2504 if (!capable(CAP_AUDIT_CONTROL)) 2505 return -EPERM; 2506 /* reject if this is not an unset and we don't allow that */ 2507 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2508 && uid_valid(loginuid)) 2509 return -EPERM; 2510 return 0; 2511 } 2512 2513 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2514 unsigned int oldsessionid, 2515 unsigned int sessionid, int rc) 2516 { 2517 struct audit_buffer *ab; 2518 uid_t uid, oldloginuid, loginuid; 2519 struct tty_struct *tty; 2520 2521 if (!audit_enabled) 2522 return; 2523 2524 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2525 if (!ab) 2526 return; 2527 2528 uid = from_kuid(&init_user_ns, task_uid(current)); 2529 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2530 loginuid = from_kuid(&init_user_ns, kloginuid); 2531 tty = audit_get_tty(); 2532 2533 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2534 audit_log_task_context(ab); 2535 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2536 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2537 oldsessionid, sessionid, !rc); 2538 audit_put_tty(tty); 2539 audit_log_end(ab); 2540 } 2541 2542 /** 2543 * audit_set_loginuid - set current task's loginuid 2544 * @loginuid: loginuid value 2545 * 2546 * Returns 0. 2547 * 2548 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2549 */ 2550 int audit_set_loginuid(kuid_t loginuid) 2551 { 2552 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2553 kuid_t oldloginuid; 2554 int rc; 2555 2556 oldloginuid = audit_get_loginuid(current); 2557 oldsessionid = audit_get_sessionid(current); 2558 2559 rc = audit_set_loginuid_perm(loginuid); 2560 if (rc) 2561 goto out; 2562 2563 /* are we setting or clearing? */ 2564 if (uid_valid(loginuid)) { 2565 sessionid = (unsigned int)atomic_inc_return(&session_id); 2566 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2567 sessionid = (unsigned int)atomic_inc_return(&session_id); 2568 } 2569 2570 current->sessionid = sessionid; 2571 current->loginuid = loginuid; 2572 out: 2573 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2574 return rc; 2575 } 2576 2577 /** 2578 * audit_signal_info - record signal info for shutting down audit subsystem 2579 * @sig: signal value 2580 * @t: task being signaled 2581 * 2582 * If the audit subsystem is being terminated, record the task (pid) 2583 * and uid that is doing that. 2584 */ 2585 int audit_signal_info(int sig, struct task_struct *t) 2586 { 2587 kuid_t uid = current_uid(), auid; 2588 2589 if (auditd_test_task(t) && 2590 (sig == SIGTERM || sig == SIGHUP || 2591 sig == SIGUSR1 || sig == SIGUSR2)) { 2592 audit_sig_pid = task_tgid_nr(current); 2593 auid = audit_get_loginuid(current); 2594 if (uid_valid(auid)) 2595 audit_sig_uid = auid; 2596 else 2597 audit_sig_uid = uid; 2598 security_current_getlsmprop_subj(&audit_sig_lsm); 2599 } 2600 2601 return audit_signal_info_syscall(t); 2602 } 2603 2604 /** 2605 * __audit_log_end - enqueue one audit record 2606 * @skb: the buffer to send 2607 */ 2608 static void __audit_log_end(struct sk_buff *skb) 2609 { 2610 struct nlmsghdr *nlh; 2611 2612 if (audit_rate_check()) { 2613 /* setup the netlink header, see the comments in 2614 * kauditd_send_multicast_skb() for length quirks */ 2615 nlh = nlmsg_hdr(skb); 2616 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2617 2618 /* queue the netlink packet */ 2619 skb_queue_tail(&audit_queue, skb); 2620 } else { 2621 audit_log_lost("rate limit exceeded"); 2622 kfree_skb(skb); 2623 } 2624 } 2625 2626 /** 2627 * audit_log_end - end one audit record 2628 * @ab: the audit_buffer 2629 * 2630 * We can not do a netlink send inside an irq context because it blocks (last 2631 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2632 * queue and a kthread is scheduled to remove them from the queue outside the 2633 * irq context. May be called in any context. 2634 */ 2635 void audit_log_end(struct audit_buffer *ab) 2636 { 2637 struct sk_buff *skb; 2638 2639 if (!ab) 2640 return; 2641 2642 while ((skb = skb_dequeue(&ab->skb_list))) 2643 __audit_log_end(skb); 2644 2645 /* poke the kauditd thread */ 2646 wake_up_interruptible(&kauditd_wait); 2647 2648 audit_buffer_free(ab); 2649 } 2650 2651 /** 2652 * audit_log - Log an audit record 2653 * @ctx: audit context 2654 * @gfp_mask: type of allocation 2655 * @type: audit message type 2656 * @fmt: format string to use 2657 * @...: variable parameters matching the format string 2658 * 2659 * This is a convenience function that calls audit_log_start, 2660 * audit_log_vformat, and audit_log_end. It may be called 2661 * in any context. 2662 */ 2663 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2664 const char *fmt, ...) 2665 { 2666 struct audit_buffer *ab; 2667 va_list args; 2668 2669 ab = audit_log_start(ctx, gfp_mask, type); 2670 if (ab) { 2671 va_start(args, fmt); 2672 audit_log_vformat(ab, fmt, args); 2673 va_end(args); 2674 audit_log_end(ab); 2675 } 2676 } 2677 2678 EXPORT_SYMBOL(audit_log_start); 2679 EXPORT_SYMBOL(audit_log_end); 2680 EXPORT_SYMBOL(audit_log_format); 2681 EXPORT_SYMBOL(audit_log); 2682