xref: /linux/kernel/audit.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with SELinux.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51 
52 #include <linux/audit.h>
53 
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/selinux.h>
59 #include <linux/inotify.h>
60 
61 #include "audit.h"
62 
63 /* No auditing will take place until audit_initialized != 0.
64  * (Initialization happens after skb_init is called.) */
65 static int	audit_initialized;
66 
67 /* No syscall auditing will take place unless audit_enabled != 0. */
68 int		audit_enabled;
69 
70 /* Default state when kernel boots without any parameters. */
71 static int	audit_default;
72 
73 /* If auditing cannot proceed, audit_failure selects what happens. */
74 static int	audit_failure = AUDIT_FAIL_PRINTK;
75 
76 /* If audit records are to be written to the netlink socket, audit_pid
77  * contains the (non-zero) pid. */
78 int		audit_pid;
79 
80 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
81  * to that number per second.  This prevents DoS attacks, but results in
82  * audit records being dropped. */
83 static int	audit_rate_limit;
84 
85 /* Number of outstanding audit_buffers allowed. */
86 static int	audit_backlog_limit = 64;
87 static int	audit_backlog_wait_time = 60 * HZ;
88 static int	audit_backlog_wait_overflow = 0;
89 
90 /* The identity of the user shutting down the audit system. */
91 uid_t		audit_sig_uid = -1;
92 pid_t		audit_sig_pid = -1;
93 u32		audit_sig_sid = 0;
94 
95 /* Records can be lost in several ways:
96    0) [suppressed in audit_alloc]
97    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
98    2) out of memory in audit_log_move [alloc_skb]
99    3) suppressed due to audit_rate_limit
100    4) suppressed due to audit_backlog_limit
101 */
102 static atomic_t    audit_lost = ATOMIC_INIT(0);
103 
104 /* The netlink socket. */
105 static struct sock *audit_sock;
106 
107 /* Inotify handle. */
108 struct inotify_handle *audit_ih;
109 
110 /* Hash for inode-based rules */
111 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
112 
113 /* The audit_freelist is a list of pre-allocated audit buffers (if more
114  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
115  * being placed on the freelist). */
116 static DEFINE_SPINLOCK(audit_freelist_lock);
117 static int	   audit_freelist_count;
118 static LIST_HEAD(audit_freelist);
119 
120 static struct sk_buff_head audit_skb_queue;
121 static struct task_struct *kauditd_task;
122 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
123 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
124 
125 /* Serialize requests from userspace. */
126 static DEFINE_MUTEX(audit_cmd_mutex);
127 
128 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
129  * audit records.  Since printk uses a 1024 byte buffer, this buffer
130  * should be at least that large. */
131 #define AUDIT_BUFSIZ 1024
132 
133 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
134  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
135 #define AUDIT_MAXFREE  (2*NR_CPUS)
136 
137 /* The audit_buffer is used when formatting an audit record.  The caller
138  * locks briefly to get the record off the freelist or to allocate the
139  * buffer, and locks briefly to send the buffer to the netlink layer or
140  * to place it on a transmit queue.  Multiple audit_buffers can be in
141  * use simultaneously. */
142 struct audit_buffer {
143 	struct list_head     list;
144 	struct sk_buff       *skb;	/* formatted skb ready to send */
145 	struct audit_context *ctx;	/* NULL or associated context */
146 	gfp_t		     gfp_mask;
147 };
148 
149 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
150 {
151 	struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
152 	nlh->nlmsg_pid = pid;
153 }
154 
155 void audit_panic(const char *message)
156 {
157 	switch (audit_failure)
158 	{
159 	case AUDIT_FAIL_SILENT:
160 		break;
161 	case AUDIT_FAIL_PRINTK:
162 		printk(KERN_ERR "audit: %s\n", message);
163 		break;
164 	case AUDIT_FAIL_PANIC:
165 		panic("audit: %s\n", message);
166 		break;
167 	}
168 }
169 
170 static inline int audit_rate_check(void)
171 {
172 	static unsigned long	last_check = 0;
173 	static int		messages   = 0;
174 	static DEFINE_SPINLOCK(lock);
175 	unsigned long		flags;
176 	unsigned long		now;
177 	unsigned long		elapsed;
178 	int			retval	   = 0;
179 
180 	if (!audit_rate_limit) return 1;
181 
182 	spin_lock_irqsave(&lock, flags);
183 	if (++messages < audit_rate_limit) {
184 		retval = 1;
185 	} else {
186 		now     = jiffies;
187 		elapsed = now - last_check;
188 		if (elapsed > HZ) {
189 			last_check = now;
190 			messages   = 0;
191 			retval     = 1;
192 		}
193 	}
194 	spin_unlock_irqrestore(&lock, flags);
195 
196 	return retval;
197 }
198 
199 /**
200  * audit_log_lost - conditionally log lost audit message event
201  * @message: the message stating reason for lost audit message
202  *
203  * Emit at least 1 message per second, even if audit_rate_check is
204  * throttling.
205  * Always increment the lost messages counter.
206 */
207 void audit_log_lost(const char *message)
208 {
209 	static unsigned long	last_msg = 0;
210 	static DEFINE_SPINLOCK(lock);
211 	unsigned long		flags;
212 	unsigned long		now;
213 	int			print;
214 
215 	atomic_inc(&audit_lost);
216 
217 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
218 
219 	if (!print) {
220 		spin_lock_irqsave(&lock, flags);
221 		now = jiffies;
222 		if (now - last_msg > HZ) {
223 			print = 1;
224 			last_msg = now;
225 		}
226 		spin_unlock_irqrestore(&lock, flags);
227 	}
228 
229 	if (print) {
230 		printk(KERN_WARNING
231 		       "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
232 		       atomic_read(&audit_lost),
233 		       audit_rate_limit,
234 		       audit_backlog_limit);
235 		audit_panic(message);
236 	}
237 }
238 
239 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid)
240 {
241 	int old	= audit_rate_limit;
242 
243 	if (sid) {
244 		char *ctx = NULL;
245 		u32 len;
246 		int rc;
247 		if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
248 			return rc;
249 		else
250 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
251 				"audit_rate_limit=%d old=%d by auid=%u subj=%s",
252 				limit, old, loginuid, ctx);
253 		kfree(ctx);
254 	} else
255 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
256 			"audit_rate_limit=%d old=%d by auid=%u",
257 			limit, old, loginuid);
258 	audit_rate_limit = limit;
259 	return 0;
260 }
261 
262 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid)
263 {
264 	int old	= audit_backlog_limit;
265 
266 	if (sid) {
267 		char *ctx = NULL;
268 		u32 len;
269 		int rc;
270 		if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
271 			return rc;
272 		else
273 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
274 			    "audit_backlog_limit=%d old=%d by auid=%u subj=%s",
275 				limit, old, loginuid, ctx);
276 		kfree(ctx);
277 	} else
278 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
279 			"audit_backlog_limit=%d old=%d by auid=%u",
280 			limit, old, loginuid);
281 	audit_backlog_limit = limit;
282 	return 0;
283 }
284 
285 static int audit_set_enabled(int state, uid_t loginuid, u32 sid)
286 {
287 	int old = audit_enabled;
288 
289 	if (state != 0 && state != 1)
290 		return -EINVAL;
291 
292 	if (sid) {
293 		char *ctx = NULL;
294 		u32 len;
295 		int rc;
296 		if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
297 			return rc;
298 		else
299 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
300 				"audit_enabled=%d old=%d by auid=%u subj=%s",
301 				state, old, loginuid, ctx);
302 		kfree(ctx);
303 	} else
304 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
305 			"audit_enabled=%d old=%d by auid=%u",
306 			state, old, loginuid);
307 	audit_enabled = state;
308 	return 0;
309 }
310 
311 static int audit_set_failure(int state, uid_t loginuid, u32 sid)
312 {
313 	int old = audit_failure;
314 
315 	if (state != AUDIT_FAIL_SILENT
316 	    && state != AUDIT_FAIL_PRINTK
317 	    && state != AUDIT_FAIL_PANIC)
318 		return -EINVAL;
319 
320 	if (sid) {
321 		char *ctx = NULL;
322 		u32 len;
323 		int rc;
324 		if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
325 			return rc;
326 		else
327 			audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
328 				"audit_failure=%d old=%d by auid=%u subj=%s",
329 				state, old, loginuid, ctx);
330 		kfree(ctx);
331 	} else
332 		audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
333 			"audit_failure=%d old=%d by auid=%u",
334 			state, old, loginuid);
335 	audit_failure = state;
336 	return 0;
337 }
338 
339 static int kauditd_thread(void *dummy)
340 {
341 	struct sk_buff *skb;
342 
343 	while (1) {
344 		skb = skb_dequeue(&audit_skb_queue);
345 		wake_up(&audit_backlog_wait);
346 		if (skb) {
347 			if (audit_pid) {
348 				int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
349 				if (err < 0) {
350 					BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
351 					printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
352 					audit_pid = 0;
353 				}
354 			} else {
355 				printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
356 				kfree_skb(skb);
357 			}
358 		} else {
359 			DECLARE_WAITQUEUE(wait, current);
360 			set_current_state(TASK_INTERRUPTIBLE);
361 			add_wait_queue(&kauditd_wait, &wait);
362 
363 			if (!skb_queue_len(&audit_skb_queue)) {
364 				try_to_freeze();
365 				schedule();
366 			}
367 
368 			__set_current_state(TASK_RUNNING);
369 			remove_wait_queue(&kauditd_wait, &wait);
370 		}
371 	}
372 }
373 
374 int audit_send_list(void *_dest)
375 {
376 	struct audit_netlink_list *dest = _dest;
377 	int pid = dest->pid;
378 	struct sk_buff *skb;
379 
380 	/* wait for parent to finish and send an ACK */
381 	mutex_lock(&audit_cmd_mutex);
382 	mutex_unlock(&audit_cmd_mutex);
383 
384 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
385 		netlink_unicast(audit_sock, skb, pid, 0);
386 
387 	kfree(dest);
388 
389 	return 0;
390 }
391 
392 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
393 				 int multi, void *payload, int size)
394 {
395 	struct sk_buff	*skb;
396 	struct nlmsghdr	*nlh;
397 	int		len = NLMSG_SPACE(size);
398 	void		*data;
399 	int		flags = multi ? NLM_F_MULTI : 0;
400 	int		t     = done  ? NLMSG_DONE  : type;
401 
402 	skb = alloc_skb(len, GFP_KERNEL);
403 	if (!skb)
404 		return NULL;
405 
406 	nlh		 = NLMSG_PUT(skb, pid, seq, t, size);
407 	nlh->nlmsg_flags = flags;
408 	data		 = NLMSG_DATA(nlh);
409 	memcpy(data, payload, size);
410 	return skb;
411 
412 nlmsg_failure:			/* Used by NLMSG_PUT */
413 	if (skb)
414 		kfree_skb(skb);
415 	return NULL;
416 }
417 
418 /**
419  * audit_send_reply - send an audit reply message via netlink
420  * @pid: process id to send reply to
421  * @seq: sequence number
422  * @type: audit message type
423  * @done: done (last) flag
424  * @multi: multi-part message flag
425  * @payload: payload data
426  * @size: payload size
427  *
428  * Allocates an skb, builds the netlink message, and sends it to the pid.
429  * No failure notifications.
430  */
431 void audit_send_reply(int pid, int seq, int type, int done, int multi,
432 		      void *payload, int size)
433 {
434 	struct sk_buff	*skb;
435 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
436 	if (!skb)
437 		return;
438 	/* Ignore failure. It'll only happen if the sender goes away,
439 	   because our timeout is set to infinite. */
440 	netlink_unicast(audit_sock, skb, pid, 0);
441 	return;
442 }
443 
444 /*
445  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
446  * control messages.
447  */
448 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
449 {
450 	int err = 0;
451 
452 	switch (msg_type) {
453 	case AUDIT_GET:
454 	case AUDIT_LIST:
455 	case AUDIT_LIST_RULES:
456 	case AUDIT_SET:
457 	case AUDIT_ADD:
458 	case AUDIT_ADD_RULE:
459 	case AUDIT_DEL:
460 	case AUDIT_DEL_RULE:
461 	case AUDIT_SIGNAL_INFO:
462 		if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
463 			err = -EPERM;
464 		break;
465 	case AUDIT_USER:
466 	case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
467 	case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
468 		if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
469 			err = -EPERM;
470 		break;
471 	default:  /* bad msg */
472 		err = -EINVAL;
473 	}
474 
475 	return err;
476 }
477 
478 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
479 {
480 	u32			uid, pid, seq, sid;
481 	void			*data;
482 	struct audit_status	*status_get, status_set;
483 	int			err;
484 	struct audit_buffer	*ab;
485 	u16			msg_type = nlh->nlmsg_type;
486 	uid_t			loginuid; /* loginuid of sender */
487 	struct audit_sig_info   *sig_data;
488 	char			*ctx;
489 	u32			len;
490 
491 	err = audit_netlink_ok(skb, msg_type);
492 	if (err)
493 		return err;
494 
495 	/* As soon as there's any sign of userspace auditd,
496 	 * start kauditd to talk to it */
497 	if (!kauditd_task)
498 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
499 	if (IS_ERR(kauditd_task)) {
500 		err = PTR_ERR(kauditd_task);
501 		kauditd_task = NULL;
502 		return err;
503 	}
504 
505 	pid  = NETLINK_CREDS(skb)->pid;
506 	uid  = NETLINK_CREDS(skb)->uid;
507 	loginuid = NETLINK_CB(skb).loginuid;
508 	sid  = NETLINK_CB(skb).sid;
509 	seq  = nlh->nlmsg_seq;
510 	data = NLMSG_DATA(nlh);
511 
512 	switch (msg_type) {
513 	case AUDIT_GET:
514 		status_set.enabled	 = audit_enabled;
515 		status_set.failure	 = audit_failure;
516 		status_set.pid		 = audit_pid;
517 		status_set.rate_limit	 = audit_rate_limit;
518 		status_set.backlog_limit = audit_backlog_limit;
519 		status_set.lost		 = atomic_read(&audit_lost);
520 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
521 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
522 				 &status_set, sizeof(status_set));
523 		break;
524 	case AUDIT_SET:
525 		if (nlh->nlmsg_len < sizeof(struct audit_status))
526 			return -EINVAL;
527 		status_get   = (struct audit_status *)data;
528 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
529 			err = audit_set_enabled(status_get->enabled,
530 							loginuid, sid);
531 			if (err < 0) return err;
532 		}
533 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
534 			err = audit_set_failure(status_get->failure,
535 							 loginuid, sid);
536 			if (err < 0) return err;
537 		}
538 		if (status_get->mask & AUDIT_STATUS_PID) {
539 			int old   = audit_pid;
540 			if (sid) {
541 				if ((err = selinux_ctxid_to_string(
542 						sid, &ctx, &len)))
543 					return err;
544 				else
545 					audit_log(NULL, GFP_KERNEL,
546 						AUDIT_CONFIG_CHANGE,
547 						"audit_pid=%d old=%d by auid=%u subj=%s",
548 						status_get->pid, old,
549 						loginuid, ctx);
550 				kfree(ctx);
551 			} else
552 				audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
553 					"audit_pid=%d old=%d by auid=%u",
554 					  status_get->pid, old, loginuid);
555 			audit_pid = status_get->pid;
556 		}
557 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
558 			err = audit_set_rate_limit(status_get->rate_limit,
559 							 loginuid, sid);
560 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
561 			err = audit_set_backlog_limit(status_get->backlog_limit,
562 							loginuid, sid);
563 		break;
564 	case AUDIT_USER:
565 	case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
566 	case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
567 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
568 			return 0;
569 
570 		err = audit_filter_user(&NETLINK_CB(skb), msg_type);
571 		if (err == 1) {
572 			err = 0;
573 			ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
574 			if (ab) {
575 				audit_log_format(ab,
576 						 "user pid=%d uid=%u auid=%u",
577 						 pid, uid, loginuid);
578 				if (sid) {
579 					if (selinux_ctxid_to_string(
580 							sid, &ctx, &len)) {
581 						audit_log_format(ab,
582 							" ssid=%u", sid);
583 						/* Maybe call audit_panic? */
584 					} else
585 						audit_log_format(ab,
586 							" subj=%s", ctx);
587 					kfree(ctx);
588 				}
589 				audit_log_format(ab, " msg='%.1024s'",
590 					 (char *)data);
591 				audit_set_pid(ab, pid);
592 				audit_log_end(ab);
593 			}
594 		}
595 		break;
596 	case AUDIT_ADD:
597 	case AUDIT_DEL:
598 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
599 			return -EINVAL;
600 		/* fallthrough */
601 	case AUDIT_LIST:
602 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
603 					   uid, seq, data, nlmsg_len(nlh),
604 					   loginuid, sid);
605 		break;
606 	case AUDIT_ADD_RULE:
607 	case AUDIT_DEL_RULE:
608 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
609 			return -EINVAL;
610 		/* fallthrough */
611 	case AUDIT_LIST_RULES:
612 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
613 					   uid, seq, data, nlmsg_len(nlh),
614 					   loginuid, sid);
615 		break;
616 	case AUDIT_SIGNAL_INFO:
617 		err = selinux_ctxid_to_string(audit_sig_sid, &ctx, &len);
618 		if (err)
619 			return err;
620 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
621 		if (!sig_data) {
622 			kfree(ctx);
623 			return -ENOMEM;
624 		}
625 		sig_data->uid = audit_sig_uid;
626 		sig_data->pid = audit_sig_pid;
627 		memcpy(sig_data->ctx, ctx, len);
628 		kfree(ctx);
629 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
630 				0, 0, sig_data, sizeof(*sig_data) + len);
631 		kfree(sig_data);
632 		break;
633 	default:
634 		err = -EINVAL;
635 		break;
636 	}
637 
638 	return err < 0 ? err : 0;
639 }
640 
641 /*
642  * Get message from skb (based on rtnetlink_rcv_skb).  Each message is
643  * processed by audit_receive_msg.  Malformed skbs with wrong length are
644  * discarded silently.
645  */
646 static void audit_receive_skb(struct sk_buff *skb)
647 {
648 	int		err;
649 	struct nlmsghdr	*nlh;
650 	u32		rlen;
651 
652 	while (skb->len >= NLMSG_SPACE(0)) {
653 		nlh = (struct nlmsghdr *)skb->data;
654 		if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
655 			return;
656 		rlen = NLMSG_ALIGN(nlh->nlmsg_len);
657 		if (rlen > skb->len)
658 			rlen = skb->len;
659 		if ((err = audit_receive_msg(skb, nlh))) {
660 			netlink_ack(skb, nlh, err);
661 		} else if (nlh->nlmsg_flags & NLM_F_ACK)
662 			netlink_ack(skb, nlh, 0);
663 		skb_pull(skb, rlen);
664 	}
665 }
666 
667 /* Receive messages from netlink socket. */
668 static void audit_receive(struct sock *sk, int length)
669 {
670 	struct sk_buff  *skb;
671 	unsigned int qlen;
672 
673 	mutex_lock(&audit_cmd_mutex);
674 
675 	for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) {
676 		skb = skb_dequeue(&sk->sk_receive_queue);
677 		audit_receive_skb(skb);
678 		kfree_skb(skb);
679 	}
680 	mutex_unlock(&audit_cmd_mutex);
681 }
682 
683 #ifdef CONFIG_AUDITSYSCALL
684 static const struct inotify_operations audit_inotify_ops = {
685 	.handle_event	= audit_handle_ievent,
686 	.destroy_watch	= audit_free_parent,
687 };
688 #endif
689 
690 /* Initialize audit support at boot time. */
691 static int __init audit_init(void)
692 {
693 #ifdef CONFIG_AUDITSYSCALL
694 	int i;
695 #endif
696 
697 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
698 	       audit_default ? "enabled" : "disabled");
699 	audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive,
700 					   THIS_MODULE);
701 	if (!audit_sock)
702 		audit_panic("cannot initialize netlink socket");
703 	else
704 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
705 
706 	skb_queue_head_init(&audit_skb_queue);
707 	audit_initialized = 1;
708 	audit_enabled = audit_default;
709 
710 	/* Register the callback with selinux.  This callback will be invoked
711 	 * when a new policy is loaded. */
712 	selinux_audit_set_callback(&selinux_audit_rule_update);
713 
714 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
715 
716 #ifdef CONFIG_AUDITSYSCALL
717 	audit_ih = inotify_init(&audit_inotify_ops);
718 	if (IS_ERR(audit_ih))
719 		audit_panic("cannot initialize inotify handle");
720 
721 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
722 		INIT_LIST_HEAD(&audit_inode_hash[i]);
723 #endif
724 
725 	return 0;
726 }
727 __initcall(audit_init);
728 
729 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
730 static int __init audit_enable(char *str)
731 {
732 	audit_default = !!simple_strtol(str, NULL, 0);
733 	printk(KERN_INFO "audit: %s%s\n",
734 	       audit_default ? "enabled" : "disabled",
735 	       audit_initialized ? "" : " (after initialization)");
736 	if (audit_initialized)
737 		audit_enabled = audit_default;
738 	return 1;
739 }
740 
741 __setup("audit=", audit_enable);
742 
743 static void audit_buffer_free(struct audit_buffer *ab)
744 {
745 	unsigned long flags;
746 
747 	if (!ab)
748 		return;
749 
750 	if (ab->skb)
751 		kfree_skb(ab->skb);
752 
753 	spin_lock_irqsave(&audit_freelist_lock, flags);
754 	if (audit_freelist_count > AUDIT_MAXFREE)
755 		kfree(ab);
756 	else {
757 		audit_freelist_count++;
758 		list_add(&ab->list, &audit_freelist);
759 	}
760 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
761 }
762 
763 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
764 						gfp_t gfp_mask, int type)
765 {
766 	unsigned long flags;
767 	struct audit_buffer *ab = NULL;
768 	struct nlmsghdr *nlh;
769 
770 	spin_lock_irqsave(&audit_freelist_lock, flags);
771 	if (!list_empty(&audit_freelist)) {
772 		ab = list_entry(audit_freelist.next,
773 				struct audit_buffer, list);
774 		list_del(&ab->list);
775 		--audit_freelist_count;
776 	}
777 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
778 
779 	if (!ab) {
780 		ab = kmalloc(sizeof(*ab), gfp_mask);
781 		if (!ab)
782 			goto err;
783 	}
784 
785 	ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
786 	if (!ab->skb)
787 		goto err;
788 
789 	ab->ctx = ctx;
790 	ab->gfp_mask = gfp_mask;
791 	nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
792 	nlh->nlmsg_type = type;
793 	nlh->nlmsg_flags = 0;
794 	nlh->nlmsg_pid = 0;
795 	nlh->nlmsg_seq = 0;
796 	return ab;
797 err:
798 	audit_buffer_free(ab);
799 	return NULL;
800 }
801 
802 /**
803  * audit_serial - compute a serial number for the audit record
804  *
805  * Compute a serial number for the audit record.  Audit records are
806  * written to user-space as soon as they are generated, so a complete
807  * audit record may be written in several pieces.  The timestamp of the
808  * record and this serial number are used by the user-space tools to
809  * determine which pieces belong to the same audit record.  The
810  * (timestamp,serial) tuple is unique for each syscall and is live from
811  * syscall entry to syscall exit.
812  *
813  * NOTE: Another possibility is to store the formatted records off the
814  * audit context (for those records that have a context), and emit them
815  * all at syscall exit.  However, this could delay the reporting of
816  * significant errors until syscall exit (or never, if the system
817  * halts).
818  */
819 unsigned int audit_serial(void)
820 {
821 	static DEFINE_SPINLOCK(serial_lock);
822 	static unsigned int serial = 0;
823 
824 	unsigned long flags;
825 	unsigned int ret;
826 
827 	spin_lock_irqsave(&serial_lock, flags);
828 	do {
829 		ret = ++serial;
830 	} while (unlikely(!ret));
831 	spin_unlock_irqrestore(&serial_lock, flags);
832 
833 	return ret;
834 }
835 
836 static inline void audit_get_stamp(struct audit_context *ctx,
837 				   struct timespec *t, unsigned int *serial)
838 {
839 	if (ctx)
840 		auditsc_get_stamp(ctx, t, serial);
841 	else {
842 		*t = CURRENT_TIME;
843 		*serial = audit_serial();
844 	}
845 }
846 
847 /* Obtain an audit buffer.  This routine does locking to obtain the
848  * audit buffer, but then no locking is required for calls to
849  * audit_log_*format.  If the tsk is a task that is currently in a
850  * syscall, then the syscall is marked as auditable and an audit record
851  * will be written at syscall exit.  If there is no associated task, tsk
852  * should be NULL. */
853 
854 /**
855  * audit_log_start - obtain an audit buffer
856  * @ctx: audit_context (may be NULL)
857  * @gfp_mask: type of allocation
858  * @type: audit message type
859  *
860  * Returns audit_buffer pointer on success or NULL on error.
861  *
862  * Obtain an audit buffer.  This routine does locking to obtain the
863  * audit buffer, but then no locking is required for calls to
864  * audit_log_*format.  If the task (ctx) is a task that is currently in a
865  * syscall, then the syscall is marked as auditable and an audit record
866  * will be written at syscall exit.  If there is no associated task, then
867  * task context (ctx) should be NULL.
868  */
869 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
870 				     int type)
871 {
872 	struct audit_buffer	*ab	= NULL;
873 	struct timespec		t;
874 	unsigned int		serial;
875 	int reserve;
876 	unsigned long timeout_start = jiffies;
877 
878 	if (!audit_initialized)
879 		return NULL;
880 
881 	if (unlikely(audit_filter_type(type)))
882 		return NULL;
883 
884 	if (gfp_mask & __GFP_WAIT)
885 		reserve = 0;
886 	else
887 		reserve = 5; /* Allow atomic callers to go up to five
888 				entries over the normal backlog limit */
889 
890 	while (audit_backlog_limit
891 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
892 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
893 		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
894 
895 			/* Wait for auditd to drain the queue a little */
896 			DECLARE_WAITQUEUE(wait, current);
897 			set_current_state(TASK_INTERRUPTIBLE);
898 			add_wait_queue(&audit_backlog_wait, &wait);
899 
900 			if (audit_backlog_limit &&
901 			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
902 				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
903 
904 			__set_current_state(TASK_RUNNING);
905 			remove_wait_queue(&audit_backlog_wait, &wait);
906 			continue;
907 		}
908 		if (audit_rate_check())
909 			printk(KERN_WARNING
910 			       "audit: audit_backlog=%d > "
911 			       "audit_backlog_limit=%d\n",
912 			       skb_queue_len(&audit_skb_queue),
913 			       audit_backlog_limit);
914 		audit_log_lost("backlog limit exceeded");
915 		audit_backlog_wait_time = audit_backlog_wait_overflow;
916 		wake_up(&audit_backlog_wait);
917 		return NULL;
918 	}
919 
920 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
921 	if (!ab) {
922 		audit_log_lost("out of memory in audit_log_start");
923 		return NULL;
924 	}
925 
926 	audit_get_stamp(ab->ctx, &t, &serial);
927 
928 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
929 			 t.tv_sec, t.tv_nsec/1000000, serial);
930 	return ab;
931 }
932 
933 /**
934  * audit_expand - expand skb in the audit buffer
935  * @ab: audit_buffer
936  * @extra: space to add at tail of the skb
937  *
938  * Returns 0 (no space) on failed expansion, or available space if
939  * successful.
940  */
941 static inline int audit_expand(struct audit_buffer *ab, int extra)
942 {
943 	struct sk_buff *skb = ab->skb;
944 	int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
945 				   ab->gfp_mask);
946 	if (ret < 0) {
947 		audit_log_lost("out of memory in audit_expand");
948 		return 0;
949 	}
950 	return skb_tailroom(skb);
951 }
952 
953 /*
954  * Format an audit message into the audit buffer.  If there isn't enough
955  * room in the audit buffer, more room will be allocated and vsnprint
956  * will be called a second time.  Currently, we assume that a printk
957  * can't format message larger than 1024 bytes, so we don't either.
958  */
959 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
960 			      va_list args)
961 {
962 	int len, avail;
963 	struct sk_buff *skb;
964 	va_list args2;
965 
966 	if (!ab)
967 		return;
968 
969 	BUG_ON(!ab->skb);
970 	skb = ab->skb;
971 	avail = skb_tailroom(skb);
972 	if (avail == 0) {
973 		avail = audit_expand(ab, AUDIT_BUFSIZ);
974 		if (!avail)
975 			goto out;
976 	}
977 	va_copy(args2, args);
978 	len = vsnprintf(skb->tail, avail, fmt, args);
979 	if (len >= avail) {
980 		/* The printk buffer is 1024 bytes long, so if we get
981 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
982 		 * log everything that printk could have logged. */
983 		avail = audit_expand(ab,
984 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
985 		if (!avail)
986 			goto out;
987 		len = vsnprintf(skb->tail, avail, fmt, args2);
988 	}
989 	if (len > 0)
990 		skb_put(skb, len);
991 out:
992 	return;
993 }
994 
995 /**
996  * audit_log_format - format a message into the audit buffer.
997  * @ab: audit_buffer
998  * @fmt: format string
999  * @...: optional parameters matching @fmt string
1000  *
1001  * All the work is done in audit_log_vformat.
1002  */
1003 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1004 {
1005 	va_list args;
1006 
1007 	if (!ab)
1008 		return;
1009 	va_start(args, fmt);
1010 	audit_log_vformat(ab, fmt, args);
1011 	va_end(args);
1012 }
1013 
1014 /**
1015  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1016  * @ab: the audit_buffer
1017  * @buf: buffer to convert to hex
1018  * @len: length of @buf to be converted
1019  *
1020  * No return value; failure to expand is silently ignored.
1021  *
1022  * This function will take the passed buf and convert it into a string of
1023  * ascii hex digits. The new string is placed onto the skb.
1024  */
1025 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
1026 		size_t len)
1027 {
1028 	int i, avail, new_len;
1029 	unsigned char *ptr;
1030 	struct sk_buff *skb;
1031 	static const unsigned char *hex = "0123456789ABCDEF";
1032 
1033 	BUG_ON(!ab->skb);
1034 	skb = ab->skb;
1035 	avail = skb_tailroom(skb);
1036 	new_len = len<<1;
1037 	if (new_len >= avail) {
1038 		/* Round the buffer request up to the next multiple */
1039 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1040 		avail = audit_expand(ab, new_len);
1041 		if (!avail)
1042 			return;
1043 	}
1044 
1045 	ptr = skb->tail;
1046 	for (i=0; i<len; i++) {
1047 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1048 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1049 	}
1050 	*ptr = 0;
1051 	skb_put(skb, len << 1); /* new string is twice the old string */
1052 }
1053 
1054 /*
1055  * Format a string of no more than slen characters into the audit buffer,
1056  * enclosed in quote marks.
1057  */
1058 static void audit_log_n_string(struct audit_buffer *ab, size_t slen,
1059 			       const char *string)
1060 {
1061 	int avail, new_len;
1062 	unsigned char *ptr;
1063 	struct sk_buff *skb;
1064 
1065 	BUG_ON(!ab->skb);
1066 	skb = ab->skb;
1067 	avail = skb_tailroom(skb);
1068 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1069 	if (new_len > avail) {
1070 		avail = audit_expand(ab, new_len);
1071 		if (!avail)
1072 			return;
1073 	}
1074 	ptr = skb->tail;
1075 	*ptr++ = '"';
1076 	memcpy(ptr, string, slen);
1077 	ptr += slen;
1078 	*ptr++ = '"';
1079 	*ptr = 0;
1080 	skb_put(skb, slen + 2);	/* don't include null terminator */
1081 }
1082 
1083 /**
1084  * audit_log_n_unstrustedstring - log a string that may contain random characters
1085  * @ab: audit_buffer
1086  * @len: lenth of string (not including trailing null)
1087  * @string: string to be logged
1088  *
1089  * This code will escape a string that is passed to it if the string
1090  * contains a control character, unprintable character, double quote mark,
1091  * or a space. Unescaped strings will start and end with a double quote mark.
1092  * Strings that are escaped are printed in hex (2 digits per char).
1093  *
1094  * The caller specifies the number of characters in the string to log, which may
1095  * or may not be the entire string.
1096  */
1097 const char *audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len,
1098 					const char *string)
1099 {
1100 	const unsigned char *p = string;
1101 
1102 	while (*p) {
1103 		if (*p == '"' || *p < 0x21 || *p > 0x7f) {
1104 			audit_log_hex(ab, string, len);
1105 			return string + len + 1;
1106 		}
1107 		p++;
1108 	}
1109 	audit_log_n_string(ab, len, string);
1110 	return p + 1;
1111 }
1112 
1113 /**
1114  * audit_log_unstrustedstring - log a string that may contain random characters
1115  * @ab: audit_buffer
1116  * @string: string to be logged
1117  *
1118  * Same as audit_log_n_unstrustedstring(), except that strlen is used to
1119  * determine string length.
1120  */
1121 const char *audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1122 {
1123 	return audit_log_n_untrustedstring(ab, strlen(string), string);
1124 }
1125 
1126 /* This is a helper-function to print the escaped d_path */
1127 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1128 		      struct dentry *dentry, struct vfsmount *vfsmnt)
1129 {
1130 	char *p, *path;
1131 
1132 	if (prefix)
1133 		audit_log_format(ab, " %s", prefix);
1134 
1135 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1136 	path = kmalloc(PATH_MAX+11, ab->gfp_mask);
1137 	if (!path) {
1138 		audit_log_format(ab, "<no memory>");
1139 		return;
1140 	}
1141 	p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
1142 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1143 		/* FIXME: can we save some information here? */
1144 		audit_log_format(ab, "<too long>");
1145 	} else
1146 		audit_log_untrustedstring(ab, p);
1147 	kfree(path);
1148 }
1149 
1150 /**
1151  * audit_log_end - end one audit record
1152  * @ab: the audit_buffer
1153  *
1154  * The netlink_* functions cannot be called inside an irq context, so
1155  * the audit buffer is placed on a queue and a tasklet is scheduled to
1156  * remove them from the queue outside the irq context.  May be called in
1157  * any context.
1158  */
1159 void audit_log_end(struct audit_buffer *ab)
1160 {
1161 	if (!ab)
1162 		return;
1163 	if (!audit_rate_check()) {
1164 		audit_log_lost("rate limit exceeded");
1165 	} else {
1166 		if (audit_pid) {
1167 			struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
1168 			nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1169 			skb_queue_tail(&audit_skb_queue, ab->skb);
1170 			ab->skb = NULL;
1171 			wake_up_interruptible(&kauditd_wait);
1172 		} else {
1173 			printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0));
1174 		}
1175 	}
1176 	audit_buffer_free(ab);
1177 }
1178 
1179 /**
1180  * audit_log - Log an audit record
1181  * @ctx: audit context
1182  * @gfp_mask: type of allocation
1183  * @type: audit message type
1184  * @fmt: format string to use
1185  * @...: variable parameters matching the format string
1186  *
1187  * This is a convenience function that calls audit_log_start,
1188  * audit_log_vformat, and audit_log_end.  It may be called
1189  * in any context.
1190  */
1191 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1192 	       const char *fmt, ...)
1193 {
1194 	struct audit_buffer *ab;
1195 	va_list args;
1196 
1197 	ab = audit_log_start(ctx, gfp_mask, type);
1198 	if (ab) {
1199 		va_start(args, fmt);
1200 		audit_log_vformat(ab, fmt, args);
1201 		va_end(args);
1202 		audit_log_end(ab);
1203 	}
1204 }
1205 
1206 EXPORT_SYMBOL(audit_log_start);
1207 EXPORT_SYMBOL(audit_log_end);
1208 EXPORT_SYMBOL(audit_log_format);
1209 EXPORT_SYMBOL(audit_log);
1210