xref: /linux/kernel/audit.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with SELinux.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/atomic.h>
46 #include <asm/types.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51 
52 #include <linux/audit.h>
53 
54 #include <net/sock.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 
58 /* No auditing will take place until audit_initialized != 0.
59  * (Initialization happens after skb_init is called.) */
60 static int	audit_initialized;
61 
62 /* No syscall auditing will take place unless audit_enabled != 0. */
63 int		audit_enabled;
64 
65 /* Default state when kernel boots without any parameters. */
66 static int	audit_default;
67 
68 /* If auditing cannot proceed, audit_failure selects what happens. */
69 static int	audit_failure = AUDIT_FAIL_PRINTK;
70 
71 /* If audit records are to be written to the netlink socket, audit_pid
72  * contains the (non-zero) pid. */
73 int		audit_pid;
74 
75 /* If audit_limit is non-zero, limit the rate of sending audit records
76  * to that number per second.  This prevents DoS attacks, but results in
77  * audit records being dropped. */
78 static int	audit_rate_limit;
79 
80 /* Number of outstanding audit_buffers allowed. */
81 static int	audit_backlog_limit = 64;
82 
83 /* The identity of the user shutting down the audit system. */
84 uid_t		audit_sig_uid = -1;
85 pid_t		audit_sig_pid = -1;
86 
87 /* Records can be lost in several ways:
88    0) [suppressed in audit_alloc]
89    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
90    2) out of memory in audit_log_move [alloc_skb]
91    3) suppressed due to audit_rate_limit
92    4) suppressed due to audit_backlog_limit
93 */
94 static atomic_t    audit_lost = ATOMIC_INIT(0);
95 
96 /* The netlink socket. */
97 static struct sock *audit_sock;
98 
99 /* The audit_freelist is a list of pre-allocated audit buffers (if more
100  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
101  * being placed on the freelist). */
102 static DEFINE_SPINLOCK(audit_freelist_lock);
103 static int	   audit_freelist_count = 0;
104 static LIST_HEAD(audit_freelist);
105 
106 static struct sk_buff_head audit_skb_queue;
107 static struct task_struct *kauditd_task;
108 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
109 
110 /* There are three lists of rules -- one to search at task creation
111  * time, one to search at syscall entry time, and another to search at
112  * syscall exit time. */
113 static LIST_HEAD(audit_tsklist);
114 static LIST_HEAD(audit_entlist);
115 static LIST_HEAD(audit_extlist);
116 
117 /* The netlink socket is only to be read by 1 CPU, which lets us assume
118  * that list additions and deletions never happen simultaneously in
119  * auditsc.c */
120 static DECLARE_MUTEX(audit_netlink_sem);
121 
122 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
123  * audit records.  Since printk uses a 1024 byte buffer, this buffer
124  * should be at least that large. */
125 #define AUDIT_BUFSIZ 1024
126 
127 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
128  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
129 #define AUDIT_MAXFREE  (2*NR_CPUS)
130 
131 /* The audit_buffer is used when formatting an audit record.  The caller
132  * locks briefly to get the record off the freelist or to allocate the
133  * buffer, and locks briefly to send the buffer to the netlink layer or
134  * to place it on a transmit queue.  Multiple audit_buffers can be in
135  * use simultaneously. */
136 struct audit_buffer {
137 	struct list_head     list;
138 	struct sk_buff       *skb;	/* formatted skb ready to send */
139 	struct audit_context *ctx;	/* NULL or associated context */
140 };
141 
142 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
143 {
144 	struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
145 	nlh->nlmsg_pid = pid;
146 }
147 
148 struct audit_entry {
149 	struct list_head  list;
150 	struct audit_rule rule;
151 };
152 
153 static void audit_panic(const char *message)
154 {
155 	switch (audit_failure)
156 	{
157 	case AUDIT_FAIL_SILENT:
158 		break;
159 	case AUDIT_FAIL_PRINTK:
160 		printk(KERN_ERR "audit: %s\n", message);
161 		break;
162 	case AUDIT_FAIL_PANIC:
163 		panic("audit: %s\n", message);
164 		break;
165 	}
166 }
167 
168 static inline int audit_rate_check(void)
169 {
170 	static unsigned long	last_check = 0;
171 	static int		messages   = 0;
172 	static DEFINE_SPINLOCK(lock);
173 	unsigned long		flags;
174 	unsigned long		now;
175 	unsigned long		elapsed;
176 	int			retval	   = 0;
177 
178 	if (!audit_rate_limit) return 1;
179 
180 	spin_lock_irqsave(&lock, flags);
181 	if (++messages < audit_rate_limit) {
182 		retval = 1;
183 	} else {
184 		now     = jiffies;
185 		elapsed = now - last_check;
186 		if (elapsed > HZ) {
187 			last_check = now;
188 			messages   = 0;
189 			retval     = 1;
190 		}
191 	}
192 	spin_unlock_irqrestore(&lock, flags);
193 
194 	return retval;
195 }
196 
197 /* Emit at least 1 message per second, even if audit_rate_check is
198  * throttling. */
199 void audit_log_lost(const char *message)
200 {
201 	static unsigned long	last_msg = 0;
202 	static DEFINE_SPINLOCK(lock);
203 	unsigned long		flags;
204 	unsigned long		now;
205 	int			print;
206 
207 	atomic_inc(&audit_lost);
208 
209 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
210 
211 	if (!print) {
212 		spin_lock_irqsave(&lock, flags);
213 		now = jiffies;
214 		if (now - last_msg > HZ) {
215 			print = 1;
216 			last_msg = now;
217 		}
218 		spin_unlock_irqrestore(&lock, flags);
219 	}
220 
221 	if (print) {
222 		printk(KERN_WARNING
223 		       "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
224 		       atomic_read(&audit_lost),
225 		       audit_rate_limit,
226 		       audit_backlog_limit);
227 		audit_panic(message);
228 	}
229 
230 }
231 
232 static int audit_set_rate_limit(int limit, uid_t loginuid)
233 {
234 	int old		 = audit_rate_limit;
235 	audit_rate_limit = limit;
236 	audit_log(NULL, AUDIT_CONFIG_CHANGE,
237 			"audit_rate_limit=%d old=%d by auid=%u",
238 			audit_rate_limit, old, loginuid);
239 	return old;
240 }
241 
242 static int audit_set_backlog_limit(int limit, uid_t loginuid)
243 {
244 	int old		 = audit_backlog_limit;
245 	audit_backlog_limit = limit;
246 	audit_log(NULL, AUDIT_CONFIG_CHANGE,
247 			"audit_backlog_limit=%d old=%d by auid=%u",
248 			audit_backlog_limit, old, loginuid);
249 	return old;
250 }
251 
252 static int audit_set_enabled(int state, uid_t loginuid)
253 {
254 	int old		 = audit_enabled;
255 	if (state != 0 && state != 1)
256 		return -EINVAL;
257 	audit_enabled = state;
258 	audit_log(NULL, AUDIT_CONFIG_CHANGE,
259 			"audit_enabled=%d old=%d by auid=%u",
260 			audit_enabled, old, loginuid);
261 	return old;
262 }
263 
264 static int audit_set_failure(int state, uid_t loginuid)
265 {
266 	int old		 = audit_failure;
267 	if (state != AUDIT_FAIL_SILENT
268 	    && state != AUDIT_FAIL_PRINTK
269 	    && state != AUDIT_FAIL_PANIC)
270 		return -EINVAL;
271 	audit_failure = state;
272 	audit_log(NULL, AUDIT_CONFIG_CHANGE,
273 			"audit_failure=%d old=%d by auid=%u",
274 			audit_failure, old, loginuid);
275 	return old;
276 }
277 
278 int kauditd_thread(void *dummy)
279 {
280 	struct sk_buff *skb;
281 
282 	while (1) {
283 		skb = skb_dequeue(&audit_skb_queue);
284 		if (skb) {
285 			if (audit_pid) {
286 				int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
287 				if (err < 0) {
288 					BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
289 					printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
290 					audit_pid = 0;
291 				}
292 			} else {
293 				printk(KERN_ERR "%s\n", skb->data + NLMSG_SPACE(0));
294 				kfree_skb(skb);
295 			}
296 		} else {
297 			DECLARE_WAITQUEUE(wait, current);
298 			set_current_state(TASK_INTERRUPTIBLE);
299 			add_wait_queue(&kauditd_wait, &wait);
300 
301 			if (!skb_queue_len(&audit_skb_queue))
302 				schedule();
303 
304 			__set_current_state(TASK_RUNNING);
305 			remove_wait_queue(&kauditd_wait, &wait);
306 		}
307 	}
308 }
309 
310 void audit_send_reply(int pid, int seq, int type, int done, int multi,
311 		      void *payload, int size)
312 {
313 	struct sk_buff	*skb;
314 	struct nlmsghdr	*nlh;
315 	int		len = NLMSG_SPACE(size);
316 	void		*data;
317 	int		flags = multi ? NLM_F_MULTI : 0;
318 	int		t     = done  ? NLMSG_DONE  : type;
319 
320 	skb = alloc_skb(len, GFP_KERNEL);
321 	if (!skb)
322 		return;
323 
324 	nlh		 = NLMSG_PUT(skb, pid, seq, t, size);
325 	nlh->nlmsg_flags = flags;
326 	data		 = NLMSG_DATA(nlh);
327 	memcpy(data, payload, size);
328 
329 	/* Ignore failure. It'll only happen if the sender goes away,
330 	   because our timeout is set to infinite. */
331 	netlink_unicast(audit_sock, skb, pid, 0);
332 	return;
333 
334 nlmsg_failure:			/* Used by NLMSG_PUT */
335 	if (skb)
336 		kfree_skb(skb);
337 }
338 
339 /*
340  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
341  * control messages.
342  */
343 static int audit_netlink_ok(kernel_cap_t eff_cap, u16 msg_type)
344 {
345 	int err = 0;
346 
347 	switch (msg_type) {
348 	case AUDIT_GET:
349 	case AUDIT_LIST:
350 	case AUDIT_SET:
351 	case AUDIT_ADD:
352 	case AUDIT_DEL:
353 	case AUDIT_SIGNAL_INFO:
354 		if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL))
355 			err = -EPERM;
356 		break;
357 	case AUDIT_USER:
358 	case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
359 		if (!cap_raised(eff_cap, CAP_AUDIT_WRITE))
360 			err = -EPERM;
361 		break;
362 	default:  /* bad msg */
363 		err = -EINVAL;
364 	}
365 
366 	return err;
367 }
368 
369 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
370 {
371 	u32			uid, pid, seq;
372 	void			*data;
373 	struct audit_status	*status_get, status_set;
374 	int			err;
375 	struct audit_buffer	*ab;
376 	u16			msg_type = nlh->nlmsg_type;
377 	uid_t			loginuid; /* loginuid of sender */
378 	struct audit_sig_info   sig_data;
379 
380 	err = audit_netlink_ok(NETLINK_CB(skb).eff_cap, msg_type);
381 	if (err)
382 		return err;
383 
384 	/* As soon as there's any sign of userspace auditd, start kauditd to talk to it */
385 	if (!kauditd_task)
386 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
387 	if (IS_ERR(kauditd_task)) {
388 		err = PTR_ERR(kauditd_task);
389 		kauditd_task = NULL;
390 		return err;
391 	}
392 
393 	pid  = NETLINK_CREDS(skb)->pid;
394 	uid  = NETLINK_CREDS(skb)->uid;
395 	loginuid = NETLINK_CB(skb).loginuid;
396 	seq  = nlh->nlmsg_seq;
397 	data = NLMSG_DATA(nlh);
398 
399 	switch (msg_type) {
400 	case AUDIT_GET:
401 		status_set.enabled	 = audit_enabled;
402 		status_set.failure	 = audit_failure;
403 		status_set.pid		 = audit_pid;
404 		status_set.rate_limit	 = audit_rate_limit;
405 		status_set.backlog_limit = audit_backlog_limit;
406 		status_set.lost		 = atomic_read(&audit_lost);
407 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
408 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
409 				 &status_set, sizeof(status_set));
410 		break;
411 	case AUDIT_SET:
412 		if (nlh->nlmsg_len < sizeof(struct audit_status))
413 			return -EINVAL;
414 		status_get   = (struct audit_status *)data;
415 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
416 			err = audit_set_enabled(status_get->enabled, loginuid);
417 			if (err < 0) return err;
418 		}
419 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
420 			err = audit_set_failure(status_get->failure, loginuid);
421 			if (err < 0) return err;
422 		}
423 		if (status_get->mask & AUDIT_STATUS_PID) {
424 			int old   = audit_pid;
425 			audit_pid = status_get->pid;
426 			audit_log(NULL, AUDIT_CONFIG_CHANGE,
427 				"audit_pid=%d old=%d by auid=%u",
428 				  audit_pid, old, loginuid);
429 		}
430 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
431 			audit_set_rate_limit(status_get->rate_limit, loginuid);
432 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
433 			audit_set_backlog_limit(status_get->backlog_limit,
434 							loginuid);
435 		break;
436 	case AUDIT_USER:
437 	case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
438 		ab = audit_log_start(NULL, msg_type);
439 		if (!ab)
440 			break;	/* audit_panic has been called */
441 		audit_log_format(ab,
442 				 "user pid=%d uid=%u auid=%u"
443 				 " msg='%.1024s'",
444 				 pid, uid, loginuid, (char *)data);
445 		audit_set_pid(ab, pid);
446 		audit_log_end(ab);
447 		break;
448 	case AUDIT_ADD:
449 	case AUDIT_DEL:
450 		if (nlh->nlmsg_len < sizeof(struct audit_rule))
451 			return -EINVAL;
452 		/* fallthrough */
453 	case AUDIT_LIST:
454 		err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
455 					   uid, seq, data, loginuid);
456 		break;
457 	case AUDIT_SIGNAL_INFO:
458 		sig_data.uid = audit_sig_uid;
459 		sig_data.pid = audit_sig_pid;
460 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
461 				0, 0, &sig_data, sizeof(sig_data));
462 		break;
463 	default:
464 		err = -EINVAL;
465 		break;
466 	}
467 
468 	return err < 0 ? err : 0;
469 }
470 
471 /* Get message from skb (based on rtnetlink_rcv_skb).  Each message is
472  * processed by audit_receive_msg.  Malformed skbs with wrong length are
473  * discarded silently.  */
474 static void audit_receive_skb(struct sk_buff *skb)
475 {
476 	int		err;
477 	struct nlmsghdr	*nlh;
478 	u32		rlen;
479 
480 	while (skb->len >= NLMSG_SPACE(0)) {
481 		nlh = (struct nlmsghdr *)skb->data;
482 		if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
483 			return;
484 		rlen = NLMSG_ALIGN(nlh->nlmsg_len);
485 		if (rlen > skb->len)
486 			rlen = skb->len;
487 		if ((err = audit_receive_msg(skb, nlh))) {
488 			netlink_ack(skb, nlh, err);
489 		} else if (nlh->nlmsg_flags & NLM_F_ACK)
490 			netlink_ack(skb, nlh, 0);
491 		skb_pull(skb, rlen);
492 	}
493 }
494 
495 /* Receive messages from netlink socket. */
496 static void audit_receive(struct sock *sk, int length)
497 {
498 	struct sk_buff  *skb;
499 	unsigned int qlen;
500 
501 	down(&audit_netlink_sem);
502 
503 	for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) {
504 		skb = skb_dequeue(&sk->sk_receive_queue);
505 		audit_receive_skb(skb);
506 		kfree_skb(skb);
507 	}
508 	up(&audit_netlink_sem);
509 }
510 
511 
512 /* Initialize audit support at boot time. */
513 static int __init audit_init(void)
514 {
515 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
516 	       audit_default ? "enabled" : "disabled");
517 	audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive,
518 					   THIS_MODULE);
519 	if (!audit_sock)
520 		audit_panic("cannot initialize netlink socket");
521 
522 	audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
523 	skb_queue_head_init(&audit_skb_queue);
524 	audit_initialized = 1;
525 	audit_enabled = audit_default;
526 	audit_log(NULL, AUDIT_KERNEL, "initialized");
527 	return 0;
528 }
529 __initcall(audit_init);
530 
531 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
532 static int __init audit_enable(char *str)
533 {
534 	audit_default = !!simple_strtol(str, NULL, 0);
535 	printk(KERN_INFO "audit: %s%s\n",
536 	       audit_default ? "enabled" : "disabled",
537 	       audit_initialized ? "" : " (after initialization)");
538 	if (audit_initialized)
539 		audit_enabled = audit_default;
540 	return 0;
541 }
542 
543 __setup("audit=", audit_enable);
544 
545 static void audit_buffer_free(struct audit_buffer *ab)
546 {
547 	unsigned long flags;
548 
549 	if (!ab)
550 		return;
551 
552 	if (ab->skb)
553 		kfree_skb(ab->skb);
554 
555 	spin_lock_irqsave(&audit_freelist_lock, flags);
556 	if (++audit_freelist_count > AUDIT_MAXFREE)
557 		kfree(ab);
558 	else
559 		list_add(&ab->list, &audit_freelist);
560 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
561 }
562 
563 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
564 						int gfp_mask, int type)
565 {
566 	unsigned long flags;
567 	struct audit_buffer *ab = NULL;
568 	struct nlmsghdr *nlh;
569 
570 	spin_lock_irqsave(&audit_freelist_lock, flags);
571 	if (!list_empty(&audit_freelist)) {
572 		ab = list_entry(audit_freelist.next,
573 				struct audit_buffer, list);
574 		list_del(&ab->list);
575 		--audit_freelist_count;
576 	}
577 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
578 
579 	if (!ab) {
580 		ab = kmalloc(sizeof(*ab), gfp_mask);
581 		if (!ab)
582 			goto err;
583 	}
584 
585 	ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
586 	if (!ab->skb)
587 		goto err;
588 
589 	ab->ctx = ctx;
590 	nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
591 	nlh->nlmsg_type = type;
592 	nlh->nlmsg_flags = 0;
593 	nlh->nlmsg_pid = 0;
594 	nlh->nlmsg_seq = 0;
595 	return ab;
596 err:
597 	audit_buffer_free(ab);
598 	return NULL;
599 }
600 
601 /* Compute a serial number for the audit record.  Audit records are
602  * written to user-space as soon as they are generated, so a complete
603  * audit record may be written in several pieces.  The timestamp of the
604  * record and this serial number are used by the user-space tools to
605  * determine which pieces belong to the same audit record.  The
606  * (timestamp,serial) tuple is unique for each syscall and is live from
607  * syscall entry to syscall exit.
608  *
609  * Atomic values are only guaranteed to be 24-bit, so we count down.
610  *
611  * NOTE: Another possibility is to store the formatted records off the
612  * audit context (for those records that have a context), and emit them
613  * all at syscall exit.  However, this could delay the reporting of
614  * significant errors until syscall exit (or never, if the system
615  * halts). */
616 unsigned int audit_serial(void)
617 {
618 	static atomic_t serial = ATOMIC_INIT(0xffffff);
619 	unsigned int a, b;
620 
621 	do {
622 		a = atomic_read(&serial);
623 		if (atomic_dec_and_test(&serial))
624 			atomic_set(&serial, 0xffffff);
625 		b = atomic_read(&serial);
626 	} while (b != a - 1);
627 
628 	return 0xffffff - b;
629 }
630 
631 static inline void audit_get_stamp(struct audit_context *ctx,
632 				   struct timespec *t, unsigned int *serial)
633 {
634 	if (ctx)
635 		auditsc_get_stamp(ctx, t, serial);
636 	else {
637 		*t = CURRENT_TIME;
638 		*serial = audit_serial();
639 	}
640 }
641 
642 /* Obtain an audit buffer.  This routine does locking to obtain the
643  * audit buffer, but then no locking is required for calls to
644  * audit_log_*format.  If the tsk is a task that is currently in a
645  * syscall, then the syscall is marked as auditable and an audit record
646  * will be written at syscall exit.  If there is no associated task, tsk
647  * should be NULL. */
648 struct audit_buffer *audit_log_start(struct audit_context *ctx, int type)
649 {
650 	struct audit_buffer	*ab	= NULL;
651 	struct timespec		t;
652 	unsigned int		serial;
653 
654 	if (!audit_initialized)
655 		return NULL;
656 
657 	if (audit_backlog_limit
658 	    && skb_queue_len(&audit_skb_queue) > audit_backlog_limit) {
659 		if (audit_rate_check())
660 			printk(KERN_WARNING
661 			       "audit: audit_backlog=%d > "
662 			       "audit_backlog_limit=%d\n",
663 			       skb_queue_len(&audit_skb_queue),
664 			       audit_backlog_limit);
665 		audit_log_lost("backlog limit exceeded");
666 		return NULL;
667 	}
668 
669 	ab = audit_buffer_alloc(ctx, GFP_ATOMIC, type);
670 	if (!ab) {
671 		audit_log_lost("out of memory in audit_log_start");
672 		return NULL;
673 	}
674 
675 	audit_get_stamp(ab->ctx, &t, &serial);
676 
677 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
678 			 t.tv_sec, t.tv_nsec/1000000, serial);
679 	return ab;
680 }
681 
682 /**
683  * audit_expand - expand skb in the audit buffer
684  * @ab: audit_buffer
685  *
686  * Returns 0 (no space) on failed expansion, or available space if
687  * successful.
688  */
689 static inline int audit_expand(struct audit_buffer *ab, int extra)
690 {
691 	struct sk_buff *skb = ab->skb;
692 	int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
693 				   GFP_ATOMIC);
694 	if (ret < 0) {
695 		audit_log_lost("out of memory in audit_expand");
696 		return 0;
697 	}
698 	return skb_tailroom(skb);
699 }
700 
701 /* Format an audit message into the audit buffer.  If there isn't enough
702  * room in the audit buffer, more room will be allocated and vsnprint
703  * will be called a second time.  Currently, we assume that a printk
704  * can't format message larger than 1024 bytes, so we don't either. */
705 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
706 			      va_list args)
707 {
708 	int len, avail;
709 	struct sk_buff *skb;
710 	va_list args2;
711 
712 	if (!ab)
713 		return;
714 
715 	BUG_ON(!ab->skb);
716 	skb = ab->skb;
717 	avail = skb_tailroom(skb);
718 	if (avail == 0) {
719 		avail = audit_expand(ab, AUDIT_BUFSIZ);
720 		if (!avail)
721 			goto out;
722 	}
723 	va_copy(args2, args);
724 	len = vsnprintf(skb->tail, avail, fmt, args);
725 	if (len >= avail) {
726 		/* The printk buffer is 1024 bytes long, so if we get
727 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
728 		 * log everything that printk could have logged. */
729 		avail = audit_expand(ab, max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
730 		if (!avail)
731 			goto out;
732 		len = vsnprintf(skb->tail, avail, fmt, args2);
733 	}
734 	if (len > 0)
735 		skb_put(skb, len);
736 out:
737 	return;
738 }
739 
740 /* Format a message into the audit buffer.  All the work is done in
741  * audit_log_vformat. */
742 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
743 {
744 	va_list args;
745 
746 	if (!ab)
747 		return;
748 	va_start(args, fmt);
749 	audit_log_vformat(ab, fmt, args);
750 	va_end(args);
751 }
752 
753 /* This function will take the passed buf and convert it into a string of
754  * ascii hex digits. The new string is placed onto the skb. */
755 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
756 		size_t len)
757 {
758 	int i, avail, new_len;
759 	unsigned char *ptr;
760 	struct sk_buff *skb;
761 	static const unsigned char *hex = "0123456789ABCDEF";
762 
763 	BUG_ON(!ab->skb);
764 	skb = ab->skb;
765 	avail = skb_tailroom(skb);
766 	new_len = len<<1;
767 	if (new_len >= avail) {
768 		/* Round the buffer request up to the next multiple */
769 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
770 		avail = audit_expand(ab, new_len);
771 		if (!avail)
772 			return;
773 	}
774 
775 	ptr = skb->tail;
776 	for (i=0; i<len; i++) {
777 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
778 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
779 	}
780 	*ptr = 0;
781 	skb_put(skb, len << 1); /* new string is twice the old string */
782 }
783 
784 /* This code will escape a string that is passed to it if the string
785  * contains a control character, unprintable character, double quote mark,
786  * or a space. Unescaped strings will start and end with a double quote mark.
787  * Strings that are escaped are printed in hex (2 digits per char). */
788 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
789 {
790 	const unsigned char *p = string;
791 
792 	while (*p) {
793 		if (*p == '"' || *p < 0x21 || *p > 0x7f) {
794 			audit_log_hex(ab, string, strlen(string));
795 			return;
796 		}
797 		p++;
798 	}
799 	audit_log_format(ab, "\"%s\"", string);
800 }
801 
802 /* This is a helper-function to print the escaped d_path */
803 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
804 		      struct dentry *dentry, struct vfsmount *vfsmnt)
805 {
806 	char *p, *path;
807 
808 	if (prefix)
809 		audit_log_format(ab, " %s", prefix);
810 
811 	/* We will allow 11 spaces for ' (deleted)' to be appended */
812 	path = kmalloc(PATH_MAX+11, GFP_KERNEL);
813 	if (!path) {
814 		audit_log_format(ab, "<no memory>");
815 		return;
816 	}
817 	p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
818 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
819 		/* FIXME: can we save some information here? */
820 		audit_log_format(ab, "<too long>");
821 	} else
822 		audit_log_untrustedstring(ab, p);
823 	kfree(path);
824 }
825 
826 /* The netlink_* functions cannot be called inside an irq context, so
827  * the audit buffer is places on a queue and a tasklet is scheduled to
828  * remove them from the queue outside the irq context.  May be called in
829  * any context. */
830 void audit_log_end(struct audit_buffer *ab)
831 {
832 	if (!ab)
833 		return;
834 	if (!audit_rate_check()) {
835 		audit_log_lost("rate limit exceeded");
836 	} else {
837 		if (audit_pid) {
838 			struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
839 			nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
840 			skb_queue_tail(&audit_skb_queue, ab->skb);
841 			ab->skb = NULL;
842 			wake_up_interruptible(&kauditd_wait);
843 		} else {
844 			printk("%s\n", ab->skb->data + NLMSG_SPACE(0));
845 		}
846 	}
847 	audit_buffer_free(ab);
848 }
849 
850 /* Log an audit record.  This is a convenience function that calls
851  * audit_log_start, audit_log_vformat, and audit_log_end.  It may be
852  * called in any context. */
853 void audit_log(struct audit_context *ctx, int type, const char *fmt, ...)
854 {
855 	struct audit_buffer *ab;
856 	va_list args;
857 
858 	ab = audit_log_start(ctx, type);
859 	if (ab) {
860 		va_start(args, fmt);
861 		audit_log_vformat(ab, fmt, args);
862 		va_end(args);
863 		audit_log_end(ab);
864 	}
865 }
866