xref: /linux/kernel/audit.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 
58 #include <linux/audit.h>
59 
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70 
71 #include "audit.h"
72 
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74  * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED		-1
76 #define AUDIT_UNINITIALIZED	0
77 #define AUDIT_INITIALIZED	1
78 static int	audit_initialized;
79 
80 #define AUDIT_OFF	0
81 #define AUDIT_ON	1
82 #define AUDIT_LOCKED	2
83 u32		audit_enabled;
84 u32		audit_ever_enabled;
85 
86 EXPORT_SYMBOL_GPL(audit_enabled);
87 
88 /* Default state when kernel boots without any parameters. */
89 static u32	audit_default;
90 
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32	audit_failure = AUDIT_FAIL_PRINTK;
93 
94 /*
95  * If audit records are to be written to the netlink socket, audit_pid
96  * contains the pid of the auditd process and audit_nlk_portid contains
97  * the portid to use to send netlink messages to that process.
98  */
99 int		audit_pid;
100 static __u32	audit_nlk_portid;
101 
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103  * to that number per second.  This prevents DoS attacks, but results in
104  * audit records being dropped. */
105 static u32	audit_rate_limit;
106 
107 /* Number of outstanding audit_buffers allowed.
108  * When set to zero, this means unlimited. */
109 static u32	audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32	audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113 
114 /* The identity of the user shutting down the audit system. */
115 kuid_t		audit_sig_uid = INVALID_UID;
116 pid_t		audit_sig_pid = -1;
117 u32		audit_sig_sid = 0;
118 
119 /* Records can be lost in several ways:
120    0) [suppressed in audit_alloc]
121    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122    2) out of memory in audit_log_move [alloc_skb]
123    3) suppressed due to audit_rate_limit
124    4) suppressed due to audit_backlog_limit
125 */
126 static atomic_t    audit_lost = ATOMIC_INIT(0);
127 
128 /* The netlink socket. */
129 static struct sock *audit_sock;
130 static int audit_net_id;
131 
132 /* Hash for inode-based rules */
133 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134 
135 /* The audit_freelist is a list of pre-allocated audit buffers (if more
136  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137  * being placed on the freelist). */
138 static DEFINE_SPINLOCK(audit_freelist_lock);
139 static int	   audit_freelist_count;
140 static LIST_HEAD(audit_freelist);
141 
142 static struct sk_buff_head audit_skb_queue;
143 /* queue of skbs to send to auditd when/if it comes back */
144 static struct sk_buff_head audit_skb_hold_queue;
145 static struct task_struct *kauditd_task;
146 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148 
149 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 				   .mask = -1,
151 				   .features = 0,
152 				   .lock = 0,};
153 
154 static char *audit_feature_names[2] = {
155 	"only_unset_loginuid",
156 	"loginuid_immutable",
157 };
158 
159 
160 /* Serialize requests from userspace. */
161 DEFINE_MUTEX(audit_cmd_mutex);
162 
163 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164  * audit records.  Since printk uses a 1024 byte buffer, this buffer
165  * should be at least that large. */
166 #define AUDIT_BUFSIZ 1024
167 
168 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
170 #define AUDIT_MAXFREE  (2*NR_CPUS)
171 
172 /* The audit_buffer is used when formatting an audit record.  The caller
173  * locks briefly to get the record off the freelist or to allocate the
174  * buffer, and locks briefly to send the buffer to the netlink layer or
175  * to place it on a transmit queue.  Multiple audit_buffers can be in
176  * use simultaneously. */
177 struct audit_buffer {
178 	struct list_head     list;
179 	struct sk_buff       *skb;	/* formatted skb ready to send */
180 	struct audit_context *ctx;	/* NULL or associated context */
181 	gfp_t		     gfp_mask;
182 };
183 
184 struct audit_reply {
185 	__u32 portid;
186 	struct net *net;
187 	struct sk_buff *skb;
188 };
189 
190 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191 {
192 	if (ab) {
193 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 		nlh->nlmsg_pid = portid;
195 	}
196 }
197 
198 void audit_panic(const char *message)
199 {
200 	switch (audit_failure) {
201 	case AUDIT_FAIL_SILENT:
202 		break;
203 	case AUDIT_FAIL_PRINTK:
204 		if (printk_ratelimit())
205 			pr_err("%s\n", message);
206 		break;
207 	case AUDIT_FAIL_PANIC:
208 		/* test audit_pid since printk is always losey, why bother? */
209 		if (audit_pid)
210 			panic("audit: %s\n", message);
211 		break;
212 	}
213 }
214 
215 static inline int audit_rate_check(void)
216 {
217 	static unsigned long	last_check = 0;
218 	static int		messages   = 0;
219 	static DEFINE_SPINLOCK(lock);
220 	unsigned long		flags;
221 	unsigned long		now;
222 	unsigned long		elapsed;
223 	int			retval	   = 0;
224 
225 	if (!audit_rate_limit) return 1;
226 
227 	spin_lock_irqsave(&lock, flags);
228 	if (++messages < audit_rate_limit) {
229 		retval = 1;
230 	} else {
231 		now     = jiffies;
232 		elapsed = now - last_check;
233 		if (elapsed > HZ) {
234 			last_check = now;
235 			messages   = 0;
236 			retval     = 1;
237 		}
238 	}
239 	spin_unlock_irqrestore(&lock, flags);
240 
241 	return retval;
242 }
243 
244 /**
245  * audit_log_lost - conditionally log lost audit message event
246  * @message: the message stating reason for lost audit message
247  *
248  * Emit at least 1 message per second, even if audit_rate_check is
249  * throttling.
250  * Always increment the lost messages counter.
251 */
252 void audit_log_lost(const char *message)
253 {
254 	static unsigned long	last_msg = 0;
255 	static DEFINE_SPINLOCK(lock);
256 	unsigned long		flags;
257 	unsigned long		now;
258 	int			print;
259 
260 	atomic_inc(&audit_lost);
261 
262 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263 
264 	if (!print) {
265 		spin_lock_irqsave(&lock, flags);
266 		now = jiffies;
267 		if (now - last_msg > HZ) {
268 			print = 1;
269 			last_msg = now;
270 		}
271 		spin_unlock_irqrestore(&lock, flags);
272 	}
273 
274 	if (print) {
275 		if (printk_ratelimit())
276 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 				atomic_read(&audit_lost),
278 				audit_rate_limit,
279 				audit_backlog_limit);
280 		audit_panic(message);
281 	}
282 }
283 
284 static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 				   int allow_changes)
286 {
287 	struct audit_buffer *ab;
288 	int rc = 0;
289 
290 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 	if (unlikely(!ab))
292 		return rc;
293 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 	audit_log_session_info(ab);
295 	rc = audit_log_task_context(ab);
296 	if (rc)
297 		allow_changes = 0; /* Something weird, deny request */
298 	audit_log_format(ab, " res=%d", allow_changes);
299 	audit_log_end(ab);
300 	return rc;
301 }
302 
303 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304 {
305 	int allow_changes, rc = 0;
306 	u32 old = *to_change;
307 
308 	/* check if we are locked */
309 	if (audit_enabled == AUDIT_LOCKED)
310 		allow_changes = 0;
311 	else
312 		allow_changes = 1;
313 
314 	if (audit_enabled != AUDIT_OFF) {
315 		rc = audit_log_config_change(function_name, new, old, allow_changes);
316 		if (rc)
317 			allow_changes = 0;
318 	}
319 
320 	/* If we are allowed, make the change */
321 	if (allow_changes == 1)
322 		*to_change = new;
323 	/* Not allowed, update reason */
324 	else if (rc == 0)
325 		rc = -EPERM;
326 	return rc;
327 }
328 
329 static int audit_set_rate_limit(u32 limit)
330 {
331 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
332 }
333 
334 static int audit_set_backlog_limit(u32 limit)
335 {
336 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
337 }
338 
339 static int audit_set_backlog_wait_time(u32 timeout)
340 {
341 	return audit_do_config_change("audit_backlog_wait_time",
342 				      &audit_backlog_wait_time_master, timeout);
343 }
344 
345 static int audit_set_enabled(u32 state)
346 {
347 	int rc;
348 	if (state > AUDIT_LOCKED)
349 		return -EINVAL;
350 
351 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
352 	if (!rc)
353 		audit_ever_enabled |= !!state;
354 
355 	return rc;
356 }
357 
358 static int audit_set_failure(u32 state)
359 {
360 	if (state != AUDIT_FAIL_SILENT
361 	    && state != AUDIT_FAIL_PRINTK
362 	    && state != AUDIT_FAIL_PANIC)
363 		return -EINVAL;
364 
365 	return audit_do_config_change("audit_failure", &audit_failure, state);
366 }
367 
368 /*
369  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
370  * already have been sent via prink/syslog and so if these messages are dropped
371  * it is not a huge concern since we already passed the audit_log_lost()
372  * notification and stuff.  This is just nice to get audit messages during
373  * boot before auditd is running or messages generated while auditd is stopped.
374  * This only holds messages is audit_default is set, aka booting with audit=1
375  * or building your kernel that way.
376  */
377 static void audit_hold_skb(struct sk_buff *skb)
378 {
379 	if (audit_default &&
380 	    (!audit_backlog_limit ||
381 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 		skb_queue_tail(&audit_skb_hold_queue, skb);
383 	else
384 		kfree_skb(skb);
385 }
386 
387 /*
388  * For one reason or another this nlh isn't getting delivered to the userspace
389  * audit daemon, just send it to printk.
390  */
391 static void audit_printk_skb(struct sk_buff *skb)
392 {
393 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 	char *data = nlmsg_data(nlh);
395 
396 	if (nlh->nlmsg_type != AUDIT_EOE) {
397 		if (printk_ratelimit())
398 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 		else
400 			audit_log_lost("printk limit exceeded");
401 	}
402 
403 	audit_hold_skb(skb);
404 }
405 
406 static void kauditd_send_skb(struct sk_buff *skb)
407 {
408 	int err;
409 	int attempts = 0;
410 #define AUDITD_RETRIES 5
411 
412 restart:
413 	/* take a reference in case we can't send it and we want to hold it */
414 	skb_get(skb);
415 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 	if (err < 0) {
417 		pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 		       audit_pid, err);
419 		if (audit_pid) {
420 			if (err == -ECONNREFUSED || err == -EPERM
421 			    || ++attempts >= AUDITD_RETRIES) {
422 				char s[32];
423 
424 				snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 				audit_log_lost(s);
426 				audit_pid = 0;
427 				audit_sock = NULL;
428 			} else {
429 				pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 					attempts, audit_pid);
431 				set_current_state(TASK_INTERRUPTIBLE);
432 				schedule();
433 				__set_current_state(TASK_RUNNING);
434 				goto restart;
435 			}
436 		}
437 		/* we might get lucky and get this in the next auditd */
438 		audit_hold_skb(skb);
439 	} else
440 		/* drop the extra reference if sent ok */
441 		consume_skb(skb);
442 }
443 
444 /*
445  * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
446  *
447  * This function doesn't consume an skb as might be expected since it has to
448  * copy it anyways.
449  */
450 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
451 {
452 	struct sk_buff		*copy;
453 	struct audit_net	*aunet = net_generic(&init_net, audit_net_id);
454 	struct sock		*sock = aunet->nlsk;
455 
456 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 		return;
458 
459 	/*
460 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 	 * using skb_get() is necessary because non-standard mods are made to
462 	 * the skb by the original kaudit unicast socket send routine.  The
463 	 * existing auditd daemon assumes this breakage.  Fixing this would
464 	 * require co-ordinating a change in the established protocol between
465 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
466 	 * no reason for new multicast clients to continue with this
467 	 * non-compliance.
468 	 */
469 	copy = skb_copy(skb, gfp_mask);
470 	if (!copy)
471 		return;
472 
473 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
474 }
475 
476 /*
477  * flush_hold_queue - empty the hold queue if auditd appears
478  *
479  * If auditd just started, drain the queue of messages already
480  * sent to syslog/printk.  Remember loss here is ok.  We already
481  * called audit_log_lost() if it didn't go out normally.  so the
482  * race between the skb_dequeue and the next check for audit_pid
483  * doesn't matter.
484  *
485  * If you ever find kauditd to be too slow we can get a perf win
486  * by doing our own locking and keeping better track if there
487  * are messages in this queue.  I don't see the need now, but
488  * in 5 years when I want to play with this again I'll see this
489  * note and still have no friggin idea what i'm thinking today.
490  */
491 static void flush_hold_queue(void)
492 {
493 	struct sk_buff *skb;
494 
495 	if (!audit_default || !audit_pid)
496 		return;
497 
498 	skb = skb_dequeue(&audit_skb_hold_queue);
499 	if (likely(!skb))
500 		return;
501 
502 	while (skb && audit_pid) {
503 		kauditd_send_skb(skb);
504 		skb = skb_dequeue(&audit_skb_hold_queue);
505 	}
506 
507 	/*
508 	 * if auditd just disappeared but we
509 	 * dequeued an skb we need to drop ref
510 	 */
511 	consume_skb(skb);
512 }
513 
514 static int kauditd_thread(void *dummy)
515 {
516 	set_freezable();
517 	while (!kthread_should_stop()) {
518 		struct sk_buff *skb;
519 
520 		flush_hold_queue();
521 
522 		skb = skb_dequeue(&audit_skb_queue);
523 
524 		if (skb) {
525 			if (!audit_backlog_limit ||
526 			    (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
527 				wake_up(&audit_backlog_wait);
528 			if (audit_pid)
529 				kauditd_send_skb(skb);
530 			else
531 				audit_printk_skb(skb);
532 			continue;
533 		}
534 
535 		wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
536 	}
537 	return 0;
538 }
539 
540 int audit_send_list(void *_dest)
541 {
542 	struct audit_netlink_list *dest = _dest;
543 	struct sk_buff *skb;
544 	struct net *net = dest->net;
545 	struct audit_net *aunet = net_generic(net, audit_net_id);
546 
547 	/* wait for parent to finish and send an ACK */
548 	mutex_lock(&audit_cmd_mutex);
549 	mutex_unlock(&audit_cmd_mutex);
550 
551 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
552 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
553 
554 	put_net(net);
555 	kfree(dest);
556 
557 	return 0;
558 }
559 
560 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
561 				 int multi, const void *payload, int size)
562 {
563 	struct sk_buff	*skb;
564 	struct nlmsghdr	*nlh;
565 	void		*data;
566 	int		flags = multi ? NLM_F_MULTI : 0;
567 	int		t     = done  ? NLMSG_DONE  : type;
568 
569 	skb = nlmsg_new(size, GFP_KERNEL);
570 	if (!skb)
571 		return NULL;
572 
573 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
574 	if (!nlh)
575 		goto out_kfree_skb;
576 	data = nlmsg_data(nlh);
577 	memcpy(data, payload, size);
578 	return skb;
579 
580 out_kfree_skb:
581 	kfree_skb(skb);
582 	return NULL;
583 }
584 
585 static int audit_send_reply_thread(void *arg)
586 {
587 	struct audit_reply *reply = (struct audit_reply *)arg;
588 	struct net *net = reply->net;
589 	struct audit_net *aunet = net_generic(net, audit_net_id);
590 
591 	mutex_lock(&audit_cmd_mutex);
592 	mutex_unlock(&audit_cmd_mutex);
593 
594 	/* Ignore failure. It'll only happen if the sender goes away,
595 	   because our timeout is set to infinite. */
596 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
597 	put_net(net);
598 	kfree(reply);
599 	return 0;
600 }
601 /**
602  * audit_send_reply - send an audit reply message via netlink
603  * @request_skb: skb of request we are replying to (used to target the reply)
604  * @seq: sequence number
605  * @type: audit message type
606  * @done: done (last) flag
607  * @multi: multi-part message flag
608  * @payload: payload data
609  * @size: payload size
610  *
611  * Allocates an skb, builds the netlink message, and sends it to the port id.
612  * No failure notifications.
613  */
614 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
615 			     int multi, const void *payload, int size)
616 {
617 	u32 portid = NETLINK_CB(request_skb).portid;
618 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
619 	struct sk_buff *skb;
620 	struct task_struct *tsk;
621 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 					    GFP_KERNEL);
623 
624 	if (!reply)
625 		return;
626 
627 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
628 	if (!skb)
629 		goto out;
630 
631 	reply->net = get_net(net);
632 	reply->portid = portid;
633 	reply->skb = skb;
634 
635 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
636 	if (!IS_ERR(tsk))
637 		return;
638 	kfree_skb(skb);
639 out:
640 	kfree(reply);
641 }
642 
643 /*
644  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645  * control messages.
646  */
647 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
648 {
649 	int err = 0;
650 
651 	/* Only support initial user namespace for now. */
652 	/*
653 	 * We return ECONNREFUSED because it tricks userspace into thinking
654 	 * that audit was not configured into the kernel.  Lots of users
655 	 * configure their PAM stack (because that's what the distro does)
656 	 * to reject login if unable to send messages to audit.  If we return
657 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 	 * configured in and will let login proceed.  If we return EPERM
659 	 * userspace will reject all logins.  This should be removed when we
660 	 * support non init namespaces!!
661 	 */
662 	if (current_user_ns() != &init_user_ns)
663 		return -ECONNREFUSED;
664 
665 	switch (msg_type) {
666 	case AUDIT_LIST:
667 	case AUDIT_ADD:
668 	case AUDIT_DEL:
669 		return -EOPNOTSUPP;
670 	case AUDIT_GET:
671 	case AUDIT_SET:
672 	case AUDIT_GET_FEATURE:
673 	case AUDIT_SET_FEATURE:
674 	case AUDIT_LIST_RULES:
675 	case AUDIT_ADD_RULE:
676 	case AUDIT_DEL_RULE:
677 	case AUDIT_SIGNAL_INFO:
678 	case AUDIT_TTY_GET:
679 	case AUDIT_TTY_SET:
680 	case AUDIT_TRIM:
681 	case AUDIT_MAKE_EQUIV:
682 		/* Only support auditd and auditctl in initial pid namespace
683 		 * for now. */
684 		if (task_active_pid_ns(current) != &init_pid_ns)
685 			return -EPERM;
686 
687 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
688 			err = -EPERM;
689 		break;
690 	case AUDIT_USER:
691 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
693 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
694 			err = -EPERM;
695 		break;
696 	default:  /* bad msg */
697 		err = -EINVAL;
698 	}
699 
700 	return err;
701 }
702 
703 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
704 {
705 	uid_t uid = from_kuid(&init_user_ns, current_uid());
706 	pid_t pid = task_tgid_nr(current);
707 
708 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
709 		*ab = NULL;
710 		return;
711 	}
712 
713 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
714 	if (unlikely(!*ab))
715 		return;
716 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
717 	audit_log_session_info(*ab);
718 	audit_log_task_context(*ab);
719 }
720 
721 int is_audit_feature_set(int i)
722 {
723 	return af.features & AUDIT_FEATURE_TO_MASK(i);
724 }
725 
726 
727 static int audit_get_feature(struct sk_buff *skb)
728 {
729 	u32 seq;
730 
731 	seq = nlmsg_hdr(skb)->nlmsg_seq;
732 
733 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
734 
735 	return 0;
736 }
737 
738 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 				     u32 old_lock, u32 new_lock, int res)
740 {
741 	struct audit_buffer *ab;
742 
743 	if (audit_enabled == AUDIT_OFF)
744 		return;
745 
746 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
747 	audit_log_task_info(ab, current);
748 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
749 			 audit_feature_names[which], !!old_feature, !!new_feature,
750 			 !!old_lock, !!new_lock, res);
751 	audit_log_end(ab);
752 }
753 
754 static int audit_set_feature(struct sk_buff *skb)
755 {
756 	struct audit_features *uaf;
757 	int i;
758 
759 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
760 	uaf = nlmsg_data(nlmsg_hdr(skb));
761 
762 	/* if there is ever a version 2 we should handle that here */
763 
764 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 		u32 old_feature, new_feature, old_lock, new_lock;
767 
768 		/* if we are not changing this feature, move along */
769 		if (!(feature & uaf->mask))
770 			continue;
771 
772 		old_feature = af.features & feature;
773 		new_feature = uaf->features & feature;
774 		new_lock = (uaf->lock | af.lock) & feature;
775 		old_lock = af.lock & feature;
776 
777 		/* are we changing a locked feature? */
778 		if (old_lock && (new_feature != old_feature)) {
779 			audit_log_feature_change(i, old_feature, new_feature,
780 						 old_lock, new_lock, 0);
781 			return -EPERM;
782 		}
783 	}
784 	/* nothing invalid, do the changes */
785 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 		u32 old_feature, new_feature, old_lock, new_lock;
788 
789 		/* if we are not changing this feature, move along */
790 		if (!(feature & uaf->mask))
791 			continue;
792 
793 		old_feature = af.features & feature;
794 		new_feature = uaf->features & feature;
795 		old_lock = af.lock & feature;
796 		new_lock = (uaf->lock | af.lock) & feature;
797 
798 		if (new_feature != old_feature)
799 			audit_log_feature_change(i, old_feature, new_feature,
800 						 old_lock, new_lock, 1);
801 
802 		if (new_feature)
803 			af.features |= feature;
804 		else
805 			af.features &= ~feature;
806 		af.lock |= new_lock;
807 	}
808 
809 	return 0;
810 }
811 
812 static int audit_replace(pid_t pid)
813 {
814 	struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
815 					       &pid, sizeof(pid));
816 
817 	if (!skb)
818 		return -ENOMEM;
819 	return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
820 }
821 
822 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
823 {
824 	u32			seq;
825 	void			*data;
826 	int			err;
827 	struct audit_buffer	*ab;
828 	u16			msg_type = nlh->nlmsg_type;
829 	struct audit_sig_info   *sig_data;
830 	char			*ctx = NULL;
831 	u32			len;
832 
833 	err = audit_netlink_ok(skb, msg_type);
834 	if (err)
835 		return err;
836 
837 	/* As soon as there's any sign of userspace auditd,
838 	 * start kauditd to talk to it */
839 	if (!kauditd_task) {
840 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
841 		if (IS_ERR(kauditd_task)) {
842 			err = PTR_ERR(kauditd_task);
843 			kauditd_task = NULL;
844 			return err;
845 		}
846 	}
847 	seq  = nlh->nlmsg_seq;
848 	data = nlmsg_data(nlh);
849 
850 	switch (msg_type) {
851 	case AUDIT_GET: {
852 		struct audit_status	s;
853 		memset(&s, 0, sizeof(s));
854 		s.enabled		= audit_enabled;
855 		s.failure		= audit_failure;
856 		s.pid			= audit_pid;
857 		s.rate_limit		= audit_rate_limit;
858 		s.backlog_limit		= audit_backlog_limit;
859 		s.lost			= atomic_read(&audit_lost);
860 		s.backlog		= skb_queue_len(&audit_skb_queue);
861 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
862 		s.backlog_wait_time	= audit_backlog_wait_time_master;
863 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
864 		break;
865 	}
866 	case AUDIT_SET: {
867 		struct audit_status	s;
868 		memset(&s, 0, sizeof(s));
869 		/* guard against past and future API changes */
870 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
871 		if (s.mask & AUDIT_STATUS_ENABLED) {
872 			err = audit_set_enabled(s.enabled);
873 			if (err < 0)
874 				return err;
875 		}
876 		if (s.mask & AUDIT_STATUS_FAILURE) {
877 			err = audit_set_failure(s.failure);
878 			if (err < 0)
879 				return err;
880 		}
881 		if (s.mask & AUDIT_STATUS_PID) {
882 			int new_pid = s.pid;
883 			pid_t requesting_pid = task_tgid_vnr(current);
884 
885 			if ((!new_pid) && (requesting_pid != audit_pid)) {
886 				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
887 				return -EACCES;
888 			}
889 			if (audit_pid && new_pid &&
890 			    audit_replace(requesting_pid) != -ECONNREFUSED) {
891 				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
892 				return -EEXIST;
893 			}
894 			if (audit_enabled != AUDIT_OFF)
895 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
896 			audit_pid = new_pid;
897 			audit_nlk_portid = NETLINK_CB(skb).portid;
898 			audit_sock = skb->sk;
899 		}
900 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
901 			err = audit_set_rate_limit(s.rate_limit);
902 			if (err < 0)
903 				return err;
904 		}
905 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
906 			err = audit_set_backlog_limit(s.backlog_limit);
907 			if (err < 0)
908 				return err;
909 		}
910 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
911 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
912 				return -EINVAL;
913 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
914 				return -EINVAL;
915 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
916 			if (err < 0)
917 				return err;
918 		}
919 		break;
920 	}
921 	case AUDIT_GET_FEATURE:
922 		err = audit_get_feature(skb);
923 		if (err)
924 			return err;
925 		break;
926 	case AUDIT_SET_FEATURE:
927 		err = audit_set_feature(skb);
928 		if (err)
929 			return err;
930 		break;
931 	case AUDIT_USER:
932 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
933 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
934 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
935 			return 0;
936 
937 		err = audit_filter_user(msg_type);
938 		if (err == 1) { /* match or error */
939 			err = 0;
940 			if (msg_type == AUDIT_USER_TTY) {
941 				err = tty_audit_push();
942 				if (err)
943 					break;
944 			}
945 			mutex_unlock(&audit_cmd_mutex);
946 			audit_log_common_recv_msg(&ab, msg_type);
947 			if (msg_type != AUDIT_USER_TTY)
948 				audit_log_format(ab, " msg='%.*s'",
949 						 AUDIT_MESSAGE_TEXT_MAX,
950 						 (char *)data);
951 			else {
952 				int size;
953 
954 				audit_log_format(ab, " data=");
955 				size = nlmsg_len(nlh);
956 				if (size > 0 &&
957 				    ((unsigned char *)data)[size - 1] == '\0')
958 					size--;
959 				audit_log_n_untrustedstring(ab, data, size);
960 			}
961 			audit_set_portid(ab, NETLINK_CB(skb).portid);
962 			audit_log_end(ab);
963 			mutex_lock(&audit_cmd_mutex);
964 		}
965 		break;
966 	case AUDIT_ADD_RULE:
967 	case AUDIT_DEL_RULE:
968 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
969 			return -EINVAL;
970 		if (audit_enabled == AUDIT_LOCKED) {
971 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
972 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
973 			audit_log_end(ab);
974 			return -EPERM;
975 		}
976 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
977 					   seq, data, nlmsg_len(nlh));
978 		break;
979 	case AUDIT_LIST_RULES:
980 		err = audit_list_rules_send(skb, seq);
981 		break;
982 	case AUDIT_TRIM:
983 		audit_trim_trees();
984 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
985 		audit_log_format(ab, " op=trim res=1");
986 		audit_log_end(ab);
987 		break;
988 	case AUDIT_MAKE_EQUIV: {
989 		void *bufp = data;
990 		u32 sizes[2];
991 		size_t msglen = nlmsg_len(nlh);
992 		char *old, *new;
993 
994 		err = -EINVAL;
995 		if (msglen < 2 * sizeof(u32))
996 			break;
997 		memcpy(sizes, bufp, 2 * sizeof(u32));
998 		bufp += 2 * sizeof(u32);
999 		msglen -= 2 * sizeof(u32);
1000 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1001 		if (IS_ERR(old)) {
1002 			err = PTR_ERR(old);
1003 			break;
1004 		}
1005 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1006 		if (IS_ERR(new)) {
1007 			err = PTR_ERR(new);
1008 			kfree(old);
1009 			break;
1010 		}
1011 		/* OK, here comes... */
1012 		err = audit_tag_tree(old, new);
1013 
1014 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015 
1016 		audit_log_format(ab, " op=make_equiv old=");
1017 		audit_log_untrustedstring(ab, old);
1018 		audit_log_format(ab, " new=");
1019 		audit_log_untrustedstring(ab, new);
1020 		audit_log_format(ab, " res=%d", !err);
1021 		audit_log_end(ab);
1022 		kfree(old);
1023 		kfree(new);
1024 		break;
1025 	}
1026 	case AUDIT_SIGNAL_INFO:
1027 		len = 0;
1028 		if (audit_sig_sid) {
1029 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1030 			if (err)
1031 				return err;
1032 		}
1033 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1034 		if (!sig_data) {
1035 			if (audit_sig_sid)
1036 				security_release_secctx(ctx, len);
1037 			return -ENOMEM;
1038 		}
1039 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1040 		sig_data->pid = audit_sig_pid;
1041 		if (audit_sig_sid) {
1042 			memcpy(sig_data->ctx, ctx, len);
1043 			security_release_secctx(ctx, len);
1044 		}
1045 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1046 				 sig_data, sizeof(*sig_data) + len);
1047 		kfree(sig_data);
1048 		break;
1049 	case AUDIT_TTY_GET: {
1050 		struct audit_tty_status s;
1051 		unsigned int t;
1052 
1053 		t = READ_ONCE(current->signal->audit_tty);
1054 		s.enabled = t & AUDIT_TTY_ENABLE;
1055 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1056 
1057 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1058 		break;
1059 	}
1060 	case AUDIT_TTY_SET: {
1061 		struct audit_tty_status s, old;
1062 		struct audit_buffer	*ab;
1063 		unsigned int t;
1064 
1065 		memset(&s, 0, sizeof(s));
1066 		/* guard against past and future API changes */
1067 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1068 		/* check if new data is valid */
1069 		if ((s.enabled != 0 && s.enabled != 1) ||
1070 		    (s.log_passwd != 0 && s.log_passwd != 1))
1071 			err = -EINVAL;
1072 
1073 		if (err)
1074 			t = READ_ONCE(current->signal->audit_tty);
1075 		else {
1076 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1077 			t = xchg(&current->signal->audit_tty, t);
1078 		}
1079 		old.enabled = t & AUDIT_TTY_ENABLE;
1080 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1081 
1082 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1083 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1084 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1085 				 old.enabled, s.enabled, old.log_passwd,
1086 				 s.log_passwd, !err);
1087 		audit_log_end(ab);
1088 		break;
1089 	}
1090 	default:
1091 		err = -EINVAL;
1092 		break;
1093 	}
1094 
1095 	return err < 0 ? err : 0;
1096 }
1097 
1098 /*
1099  * Get message from skb.  Each message is processed by audit_receive_msg.
1100  * Malformed skbs with wrong length are discarded silently.
1101  */
1102 static void audit_receive_skb(struct sk_buff *skb)
1103 {
1104 	struct nlmsghdr *nlh;
1105 	/*
1106 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1107 	 * if the nlmsg_len was not aligned
1108 	 */
1109 	int len;
1110 	int err;
1111 
1112 	nlh = nlmsg_hdr(skb);
1113 	len = skb->len;
1114 
1115 	while (nlmsg_ok(nlh, len)) {
1116 		err = audit_receive_msg(skb, nlh);
1117 		/* if err or if this message says it wants a response */
1118 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1119 			netlink_ack(skb, nlh, err);
1120 
1121 		nlh = nlmsg_next(nlh, &len);
1122 	}
1123 }
1124 
1125 /* Receive messages from netlink socket. */
1126 static void audit_receive(struct sk_buff  *skb)
1127 {
1128 	mutex_lock(&audit_cmd_mutex);
1129 	audit_receive_skb(skb);
1130 	mutex_unlock(&audit_cmd_mutex);
1131 }
1132 
1133 /* Run custom bind function on netlink socket group connect or bind requests. */
1134 static int audit_bind(struct net *net, int group)
1135 {
1136 	if (!capable(CAP_AUDIT_READ))
1137 		return -EPERM;
1138 
1139 	return 0;
1140 }
1141 
1142 static int __net_init audit_net_init(struct net *net)
1143 {
1144 	struct netlink_kernel_cfg cfg = {
1145 		.input	= audit_receive,
1146 		.bind	= audit_bind,
1147 		.flags	= NL_CFG_F_NONROOT_RECV,
1148 		.groups	= AUDIT_NLGRP_MAX,
1149 	};
1150 
1151 	struct audit_net *aunet = net_generic(net, audit_net_id);
1152 
1153 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1154 	if (aunet->nlsk == NULL) {
1155 		audit_panic("cannot initialize netlink socket in namespace");
1156 		return -ENOMEM;
1157 	}
1158 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1159 	return 0;
1160 }
1161 
1162 static void __net_exit audit_net_exit(struct net *net)
1163 {
1164 	struct audit_net *aunet = net_generic(net, audit_net_id);
1165 	struct sock *sock = aunet->nlsk;
1166 	if (sock == audit_sock) {
1167 		audit_pid = 0;
1168 		audit_sock = NULL;
1169 	}
1170 
1171 	RCU_INIT_POINTER(aunet->nlsk, NULL);
1172 	synchronize_net();
1173 	netlink_kernel_release(sock);
1174 }
1175 
1176 static struct pernet_operations audit_net_ops __net_initdata = {
1177 	.init = audit_net_init,
1178 	.exit = audit_net_exit,
1179 	.id = &audit_net_id,
1180 	.size = sizeof(struct audit_net),
1181 };
1182 
1183 /* Initialize audit support at boot time. */
1184 static int __init audit_init(void)
1185 {
1186 	int i;
1187 
1188 	if (audit_initialized == AUDIT_DISABLED)
1189 		return 0;
1190 
1191 	pr_info("initializing netlink subsys (%s)\n",
1192 		audit_default ? "enabled" : "disabled");
1193 	register_pernet_subsys(&audit_net_ops);
1194 
1195 	skb_queue_head_init(&audit_skb_queue);
1196 	skb_queue_head_init(&audit_skb_hold_queue);
1197 	audit_initialized = AUDIT_INITIALIZED;
1198 	audit_enabled = audit_default;
1199 	audit_ever_enabled |= !!audit_default;
1200 
1201 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1202 
1203 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1204 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1205 
1206 	return 0;
1207 }
1208 __initcall(audit_init);
1209 
1210 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1211 static int __init audit_enable(char *str)
1212 {
1213 	audit_default = !!simple_strtol(str, NULL, 0);
1214 	if (!audit_default)
1215 		audit_initialized = AUDIT_DISABLED;
1216 
1217 	pr_info("%s\n", audit_default ?
1218 		"enabled (after initialization)" : "disabled (until reboot)");
1219 
1220 	return 1;
1221 }
1222 __setup("audit=", audit_enable);
1223 
1224 /* Process kernel command-line parameter at boot time.
1225  * audit_backlog_limit=<n> */
1226 static int __init audit_backlog_limit_set(char *str)
1227 {
1228 	u32 audit_backlog_limit_arg;
1229 
1230 	pr_info("audit_backlog_limit: ");
1231 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1232 		pr_cont("using default of %u, unable to parse %s\n",
1233 			audit_backlog_limit, str);
1234 		return 1;
1235 	}
1236 
1237 	audit_backlog_limit = audit_backlog_limit_arg;
1238 	pr_cont("%d\n", audit_backlog_limit);
1239 
1240 	return 1;
1241 }
1242 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1243 
1244 static void audit_buffer_free(struct audit_buffer *ab)
1245 {
1246 	unsigned long flags;
1247 
1248 	if (!ab)
1249 		return;
1250 
1251 	kfree_skb(ab->skb);
1252 	spin_lock_irqsave(&audit_freelist_lock, flags);
1253 	if (audit_freelist_count > AUDIT_MAXFREE)
1254 		kfree(ab);
1255 	else {
1256 		audit_freelist_count++;
1257 		list_add(&ab->list, &audit_freelist);
1258 	}
1259 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1260 }
1261 
1262 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1263 						gfp_t gfp_mask, int type)
1264 {
1265 	unsigned long flags;
1266 	struct audit_buffer *ab = NULL;
1267 	struct nlmsghdr *nlh;
1268 
1269 	spin_lock_irqsave(&audit_freelist_lock, flags);
1270 	if (!list_empty(&audit_freelist)) {
1271 		ab = list_entry(audit_freelist.next,
1272 				struct audit_buffer, list);
1273 		list_del(&ab->list);
1274 		--audit_freelist_count;
1275 	}
1276 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1277 
1278 	if (!ab) {
1279 		ab = kmalloc(sizeof(*ab), gfp_mask);
1280 		if (!ab)
1281 			goto err;
1282 	}
1283 
1284 	ab->ctx = ctx;
1285 	ab->gfp_mask = gfp_mask;
1286 
1287 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1288 	if (!ab->skb)
1289 		goto err;
1290 
1291 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1292 	if (!nlh)
1293 		goto out_kfree_skb;
1294 
1295 	return ab;
1296 
1297 out_kfree_skb:
1298 	kfree_skb(ab->skb);
1299 	ab->skb = NULL;
1300 err:
1301 	audit_buffer_free(ab);
1302 	return NULL;
1303 }
1304 
1305 /**
1306  * audit_serial - compute a serial number for the audit record
1307  *
1308  * Compute a serial number for the audit record.  Audit records are
1309  * written to user-space as soon as they are generated, so a complete
1310  * audit record may be written in several pieces.  The timestamp of the
1311  * record and this serial number are used by the user-space tools to
1312  * determine which pieces belong to the same audit record.  The
1313  * (timestamp,serial) tuple is unique for each syscall and is live from
1314  * syscall entry to syscall exit.
1315  *
1316  * NOTE: Another possibility is to store the formatted records off the
1317  * audit context (for those records that have a context), and emit them
1318  * all at syscall exit.  However, this could delay the reporting of
1319  * significant errors until syscall exit (or never, if the system
1320  * halts).
1321  */
1322 unsigned int audit_serial(void)
1323 {
1324 	static atomic_t serial = ATOMIC_INIT(0);
1325 
1326 	return atomic_add_return(1, &serial);
1327 }
1328 
1329 static inline void audit_get_stamp(struct audit_context *ctx,
1330 				   struct timespec *t, unsigned int *serial)
1331 {
1332 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1333 		*t = CURRENT_TIME;
1334 		*serial = audit_serial();
1335 	}
1336 }
1337 
1338 /*
1339  * Wait for auditd to drain the queue a little
1340  */
1341 static long wait_for_auditd(long sleep_time)
1342 {
1343 	DECLARE_WAITQUEUE(wait, current);
1344 	set_current_state(TASK_UNINTERRUPTIBLE);
1345 	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346 
1347 	if (audit_backlog_limit &&
1348 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1349 		sleep_time = schedule_timeout(sleep_time);
1350 
1351 	__set_current_state(TASK_RUNNING);
1352 	remove_wait_queue(&audit_backlog_wait, &wait);
1353 
1354 	return sleep_time;
1355 }
1356 
1357 /**
1358  * audit_log_start - obtain an audit buffer
1359  * @ctx: audit_context (may be NULL)
1360  * @gfp_mask: type of allocation
1361  * @type: audit message type
1362  *
1363  * Returns audit_buffer pointer on success or NULL on error.
1364  *
1365  * Obtain an audit buffer.  This routine does locking to obtain the
1366  * audit buffer, but then no locking is required for calls to
1367  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1368  * syscall, then the syscall is marked as auditable and an audit record
1369  * will be written at syscall exit.  If there is no associated task, then
1370  * task context (ctx) should be NULL.
1371  */
1372 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1373 				     int type)
1374 {
1375 	struct audit_buffer	*ab	= NULL;
1376 	struct timespec		t;
1377 	unsigned int		uninitialized_var(serial);
1378 	int reserve = 5; /* Allow atomic callers to go up to five
1379 			    entries over the normal backlog limit */
1380 	unsigned long timeout_start = jiffies;
1381 
1382 	if (audit_initialized != AUDIT_INITIALIZED)
1383 		return NULL;
1384 
1385 	if (unlikely(audit_filter_type(type)))
1386 		return NULL;
1387 
1388 	if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1389 		if (audit_pid && audit_pid == current->tgid)
1390 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1391 		else
1392 			reserve = 0;
1393 	}
1394 
1395 	while (audit_backlog_limit
1396 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1397 		if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1398 			long sleep_time;
1399 
1400 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1401 			if (sleep_time > 0) {
1402 				sleep_time = wait_for_auditd(sleep_time);
1403 				if (sleep_time > 0)
1404 					continue;
1405 			}
1406 		}
1407 		if (audit_rate_check() && printk_ratelimit())
1408 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1409 				skb_queue_len(&audit_skb_queue),
1410 				audit_backlog_limit);
1411 		audit_log_lost("backlog limit exceeded");
1412 		audit_backlog_wait_time = 0;
1413 		wake_up(&audit_backlog_wait);
1414 		return NULL;
1415 	}
1416 
1417 	if (!reserve && !audit_backlog_wait_time)
1418 		audit_backlog_wait_time = audit_backlog_wait_time_master;
1419 
1420 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1421 	if (!ab) {
1422 		audit_log_lost("out of memory in audit_log_start");
1423 		return NULL;
1424 	}
1425 
1426 	audit_get_stamp(ab->ctx, &t, &serial);
1427 
1428 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1429 			 t.tv_sec, t.tv_nsec/1000000, serial);
1430 	return ab;
1431 }
1432 
1433 /**
1434  * audit_expand - expand skb in the audit buffer
1435  * @ab: audit_buffer
1436  * @extra: space to add at tail of the skb
1437  *
1438  * Returns 0 (no space) on failed expansion, or available space if
1439  * successful.
1440  */
1441 static inline int audit_expand(struct audit_buffer *ab, int extra)
1442 {
1443 	struct sk_buff *skb = ab->skb;
1444 	int oldtail = skb_tailroom(skb);
1445 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1446 	int newtail = skb_tailroom(skb);
1447 
1448 	if (ret < 0) {
1449 		audit_log_lost("out of memory in audit_expand");
1450 		return 0;
1451 	}
1452 
1453 	skb->truesize += newtail - oldtail;
1454 	return newtail;
1455 }
1456 
1457 /*
1458  * Format an audit message into the audit buffer.  If there isn't enough
1459  * room in the audit buffer, more room will be allocated and vsnprint
1460  * will be called a second time.  Currently, we assume that a printk
1461  * can't format message larger than 1024 bytes, so we don't either.
1462  */
1463 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1464 			      va_list args)
1465 {
1466 	int len, avail;
1467 	struct sk_buff *skb;
1468 	va_list args2;
1469 
1470 	if (!ab)
1471 		return;
1472 
1473 	BUG_ON(!ab->skb);
1474 	skb = ab->skb;
1475 	avail = skb_tailroom(skb);
1476 	if (avail == 0) {
1477 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1478 		if (!avail)
1479 			goto out;
1480 	}
1481 	va_copy(args2, args);
1482 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1483 	if (len >= avail) {
1484 		/* The printk buffer is 1024 bytes long, so if we get
1485 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1486 		 * log everything that printk could have logged. */
1487 		avail = audit_expand(ab,
1488 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1489 		if (!avail)
1490 			goto out_va_end;
1491 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1492 	}
1493 	if (len > 0)
1494 		skb_put(skb, len);
1495 out_va_end:
1496 	va_end(args2);
1497 out:
1498 	return;
1499 }
1500 
1501 /**
1502  * audit_log_format - format a message into the audit buffer.
1503  * @ab: audit_buffer
1504  * @fmt: format string
1505  * @...: optional parameters matching @fmt string
1506  *
1507  * All the work is done in audit_log_vformat.
1508  */
1509 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1510 {
1511 	va_list args;
1512 
1513 	if (!ab)
1514 		return;
1515 	va_start(args, fmt);
1516 	audit_log_vformat(ab, fmt, args);
1517 	va_end(args);
1518 }
1519 
1520 /**
1521  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1522  * @ab: the audit_buffer
1523  * @buf: buffer to convert to hex
1524  * @len: length of @buf to be converted
1525  *
1526  * No return value; failure to expand is silently ignored.
1527  *
1528  * This function will take the passed buf and convert it into a string of
1529  * ascii hex digits. The new string is placed onto the skb.
1530  */
1531 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1532 		size_t len)
1533 {
1534 	int i, avail, new_len;
1535 	unsigned char *ptr;
1536 	struct sk_buff *skb;
1537 
1538 	if (!ab)
1539 		return;
1540 
1541 	BUG_ON(!ab->skb);
1542 	skb = ab->skb;
1543 	avail = skb_tailroom(skb);
1544 	new_len = len<<1;
1545 	if (new_len >= avail) {
1546 		/* Round the buffer request up to the next multiple */
1547 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1548 		avail = audit_expand(ab, new_len);
1549 		if (!avail)
1550 			return;
1551 	}
1552 
1553 	ptr = skb_tail_pointer(skb);
1554 	for (i = 0; i < len; i++)
1555 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1556 	*ptr = 0;
1557 	skb_put(skb, len << 1); /* new string is twice the old string */
1558 }
1559 
1560 /*
1561  * Format a string of no more than slen characters into the audit buffer,
1562  * enclosed in quote marks.
1563  */
1564 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1565 			size_t slen)
1566 {
1567 	int avail, new_len;
1568 	unsigned char *ptr;
1569 	struct sk_buff *skb;
1570 
1571 	if (!ab)
1572 		return;
1573 
1574 	BUG_ON(!ab->skb);
1575 	skb = ab->skb;
1576 	avail = skb_tailroom(skb);
1577 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1578 	if (new_len > avail) {
1579 		avail = audit_expand(ab, new_len);
1580 		if (!avail)
1581 			return;
1582 	}
1583 	ptr = skb_tail_pointer(skb);
1584 	*ptr++ = '"';
1585 	memcpy(ptr, string, slen);
1586 	ptr += slen;
1587 	*ptr++ = '"';
1588 	*ptr = 0;
1589 	skb_put(skb, slen + 2);	/* don't include null terminator */
1590 }
1591 
1592 /**
1593  * audit_string_contains_control - does a string need to be logged in hex
1594  * @string: string to be checked
1595  * @len: max length of the string to check
1596  */
1597 bool audit_string_contains_control(const char *string, size_t len)
1598 {
1599 	const unsigned char *p;
1600 	for (p = string; p < (const unsigned char *)string + len; p++) {
1601 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1602 			return true;
1603 	}
1604 	return false;
1605 }
1606 
1607 /**
1608  * audit_log_n_untrustedstring - log a string that may contain random characters
1609  * @ab: audit_buffer
1610  * @len: length of string (not including trailing null)
1611  * @string: string to be logged
1612  *
1613  * This code will escape a string that is passed to it if the string
1614  * contains a control character, unprintable character, double quote mark,
1615  * or a space. Unescaped strings will start and end with a double quote mark.
1616  * Strings that are escaped are printed in hex (2 digits per char).
1617  *
1618  * The caller specifies the number of characters in the string to log, which may
1619  * or may not be the entire string.
1620  */
1621 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1622 				 size_t len)
1623 {
1624 	if (audit_string_contains_control(string, len))
1625 		audit_log_n_hex(ab, string, len);
1626 	else
1627 		audit_log_n_string(ab, string, len);
1628 }
1629 
1630 /**
1631  * audit_log_untrustedstring - log a string that may contain random characters
1632  * @ab: audit_buffer
1633  * @string: string to be logged
1634  *
1635  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1636  * determine string length.
1637  */
1638 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1639 {
1640 	audit_log_n_untrustedstring(ab, string, strlen(string));
1641 }
1642 
1643 /* This is a helper-function to print the escaped d_path */
1644 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1645 		      const struct path *path)
1646 {
1647 	char *p, *pathname;
1648 
1649 	if (prefix)
1650 		audit_log_format(ab, "%s", prefix);
1651 
1652 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1653 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1654 	if (!pathname) {
1655 		audit_log_string(ab, "<no_memory>");
1656 		return;
1657 	}
1658 	p = d_path(path, pathname, PATH_MAX+11);
1659 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1660 		/* FIXME: can we save some information here? */
1661 		audit_log_string(ab, "<too_long>");
1662 	} else
1663 		audit_log_untrustedstring(ab, p);
1664 	kfree(pathname);
1665 }
1666 
1667 void audit_log_session_info(struct audit_buffer *ab)
1668 {
1669 	unsigned int sessionid = audit_get_sessionid(current);
1670 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1671 
1672 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1673 }
1674 
1675 void audit_log_key(struct audit_buffer *ab, char *key)
1676 {
1677 	audit_log_format(ab, " key=");
1678 	if (key)
1679 		audit_log_untrustedstring(ab, key);
1680 	else
1681 		audit_log_format(ab, "(null)");
1682 }
1683 
1684 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1685 {
1686 	int i;
1687 
1688 	audit_log_format(ab, " %s=", prefix);
1689 	CAP_FOR_EACH_U32(i) {
1690 		audit_log_format(ab, "%08x",
1691 				 cap->cap[CAP_LAST_U32 - i]);
1692 	}
1693 }
1694 
1695 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1696 {
1697 	kernel_cap_t *perm = &name->fcap.permitted;
1698 	kernel_cap_t *inh = &name->fcap.inheritable;
1699 	int log = 0;
1700 
1701 	if (!cap_isclear(*perm)) {
1702 		audit_log_cap(ab, "cap_fp", perm);
1703 		log = 1;
1704 	}
1705 	if (!cap_isclear(*inh)) {
1706 		audit_log_cap(ab, "cap_fi", inh);
1707 		log = 1;
1708 	}
1709 
1710 	if (log)
1711 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1712 				 name->fcap.fE, name->fcap_ver);
1713 }
1714 
1715 static inline int audit_copy_fcaps(struct audit_names *name,
1716 				   const struct dentry *dentry)
1717 {
1718 	struct cpu_vfs_cap_data caps;
1719 	int rc;
1720 
1721 	if (!dentry)
1722 		return 0;
1723 
1724 	rc = get_vfs_caps_from_disk(dentry, &caps);
1725 	if (rc)
1726 		return rc;
1727 
1728 	name->fcap.permitted = caps.permitted;
1729 	name->fcap.inheritable = caps.inheritable;
1730 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1731 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1732 				VFS_CAP_REVISION_SHIFT;
1733 
1734 	return 0;
1735 }
1736 
1737 /* Copy inode data into an audit_names. */
1738 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1739 		      struct inode *inode)
1740 {
1741 	name->ino   = inode->i_ino;
1742 	name->dev   = inode->i_sb->s_dev;
1743 	name->mode  = inode->i_mode;
1744 	name->uid   = inode->i_uid;
1745 	name->gid   = inode->i_gid;
1746 	name->rdev  = inode->i_rdev;
1747 	security_inode_getsecid(inode, &name->osid);
1748 	audit_copy_fcaps(name, dentry);
1749 }
1750 
1751 /**
1752  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1753  * @context: audit_context for the task
1754  * @n: audit_names structure with reportable details
1755  * @path: optional path to report instead of audit_names->name
1756  * @record_num: record number to report when handling a list of names
1757  * @call_panic: optional pointer to int that will be updated if secid fails
1758  */
1759 void audit_log_name(struct audit_context *context, struct audit_names *n,
1760 		    struct path *path, int record_num, int *call_panic)
1761 {
1762 	struct audit_buffer *ab;
1763 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1764 	if (!ab)
1765 		return;
1766 
1767 	audit_log_format(ab, "item=%d", record_num);
1768 
1769 	if (path)
1770 		audit_log_d_path(ab, " name=", path);
1771 	else if (n->name) {
1772 		switch (n->name_len) {
1773 		case AUDIT_NAME_FULL:
1774 			/* log the full path */
1775 			audit_log_format(ab, " name=");
1776 			audit_log_untrustedstring(ab, n->name->name);
1777 			break;
1778 		case 0:
1779 			/* name was specified as a relative path and the
1780 			 * directory component is the cwd */
1781 			audit_log_d_path(ab, " name=", &context->pwd);
1782 			break;
1783 		default:
1784 			/* log the name's directory component */
1785 			audit_log_format(ab, " name=");
1786 			audit_log_n_untrustedstring(ab, n->name->name,
1787 						    n->name_len);
1788 		}
1789 	} else
1790 		audit_log_format(ab, " name=(null)");
1791 
1792 	if (n->ino != AUDIT_INO_UNSET)
1793 		audit_log_format(ab, " inode=%lu"
1794 				 " dev=%02x:%02x mode=%#ho"
1795 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1796 				 n->ino,
1797 				 MAJOR(n->dev),
1798 				 MINOR(n->dev),
1799 				 n->mode,
1800 				 from_kuid(&init_user_ns, n->uid),
1801 				 from_kgid(&init_user_ns, n->gid),
1802 				 MAJOR(n->rdev),
1803 				 MINOR(n->rdev));
1804 	if (n->osid != 0) {
1805 		char *ctx = NULL;
1806 		u32 len;
1807 		if (security_secid_to_secctx(
1808 			n->osid, &ctx, &len)) {
1809 			audit_log_format(ab, " osid=%u", n->osid);
1810 			if (call_panic)
1811 				*call_panic = 2;
1812 		} else {
1813 			audit_log_format(ab, " obj=%s", ctx);
1814 			security_release_secctx(ctx, len);
1815 		}
1816 	}
1817 
1818 	/* log the audit_names record type */
1819 	audit_log_format(ab, " nametype=");
1820 	switch(n->type) {
1821 	case AUDIT_TYPE_NORMAL:
1822 		audit_log_format(ab, "NORMAL");
1823 		break;
1824 	case AUDIT_TYPE_PARENT:
1825 		audit_log_format(ab, "PARENT");
1826 		break;
1827 	case AUDIT_TYPE_CHILD_DELETE:
1828 		audit_log_format(ab, "DELETE");
1829 		break;
1830 	case AUDIT_TYPE_CHILD_CREATE:
1831 		audit_log_format(ab, "CREATE");
1832 		break;
1833 	default:
1834 		audit_log_format(ab, "UNKNOWN");
1835 		break;
1836 	}
1837 
1838 	audit_log_fcaps(ab, n);
1839 	audit_log_end(ab);
1840 }
1841 
1842 int audit_log_task_context(struct audit_buffer *ab)
1843 {
1844 	char *ctx = NULL;
1845 	unsigned len;
1846 	int error;
1847 	u32 sid;
1848 
1849 	security_task_getsecid(current, &sid);
1850 	if (!sid)
1851 		return 0;
1852 
1853 	error = security_secid_to_secctx(sid, &ctx, &len);
1854 	if (error) {
1855 		if (error != -EINVAL)
1856 			goto error_path;
1857 		return 0;
1858 	}
1859 
1860 	audit_log_format(ab, " subj=%s", ctx);
1861 	security_release_secctx(ctx, len);
1862 	return 0;
1863 
1864 error_path:
1865 	audit_panic("error in audit_log_task_context");
1866 	return error;
1867 }
1868 EXPORT_SYMBOL(audit_log_task_context);
1869 
1870 void audit_log_d_path_exe(struct audit_buffer *ab,
1871 			  struct mm_struct *mm)
1872 {
1873 	struct file *exe_file;
1874 
1875 	if (!mm)
1876 		goto out_null;
1877 
1878 	exe_file = get_mm_exe_file(mm);
1879 	if (!exe_file)
1880 		goto out_null;
1881 
1882 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
1883 	fput(exe_file);
1884 	return;
1885 out_null:
1886 	audit_log_format(ab, " exe=(null)");
1887 }
1888 
1889 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1890 {
1891 	const struct cred *cred;
1892 	char comm[sizeof(tsk->comm)];
1893 	char *tty;
1894 
1895 	if (!ab)
1896 		return;
1897 
1898 	/* tsk == current */
1899 	cred = current_cred();
1900 
1901 	spin_lock_irq(&tsk->sighand->siglock);
1902 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1903 		tty = tsk->signal->tty->name;
1904 	else
1905 		tty = "(none)";
1906 	spin_unlock_irq(&tsk->sighand->siglock);
1907 
1908 	audit_log_format(ab,
1909 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1910 			 " euid=%u suid=%u fsuid=%u"
1911 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1912 			 task_ppid_nr(tsk),
1913 			 task_pid_nr(tsk),
1914 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1915 			 from_kuid(&init_user_ns, cred->uid),
1916 			 from_kgid(&init_user_ns, cred->gid),
1917 			 from_kuid(&init_user_ns, cred->euid),
1918 			 from_kuid(&init_user_ns, cred->suid),
1919 			 from_kuid(&init_user_ns, cred->fsuid),
1920 			 from_kgid(&init_user_ns, cred->egid),
1921 			 from_kgid(&init_user_ns, cred->sgid),
1922 			 from_kgid(&init_user_ns, cred->fsgid),
1923 			 tty, audit_get_sessionid(tsk));
1924 
1925 	audit_log_format(ab, " comm=");
1926 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1927 
1928 	audit_log_d_path_exe(ab, tsk->mm);
1929 	audit_log_task_context(ab);
1930 }
1931 EXPORT_SYMBOL(audit_log_task_info);
1932 
1933 /**
1934  * audit_log_link_denied - report a link restriction denial
1935  * @operation: specific link operation
1936  * @link: the path that triggered the restriction
1937  */
1938 void audit_log_link_denied(const char *operation, struct path *link)
1939 {
1940 	struct audit_buffer *ab;
1941 	struct audit_names *name;
1942 
1943 	name = kzalloc(sizeof(*name), GFP_NOFS);
1944 	if (!name)
1945 		return;
1946 
1947 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1948 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1949 			     AUDIT_ANOM_LINK);
1950 	if (!ab)
1951 		goto out;
1952 	audit_log_format(ab, "op=%s", operation);
1953 	audit_log_task_info(ab, current);
1954 	audit_log_format(ab, " res=0");
1955 	audit_log_end(ab);
1956 
1957 	/* Generate AUDIT_PATH record with object. */
1958 	name->type = AUDIT_TYPE_NORMAL;
1959 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1960 	audit_log_name(current->audit_context, name, link, 0, NULL);
1961 out:
1962 	kfree(name);
1963 }
1964 
1965 /**
1966  * audit_log_end - end one audit record
1967  * @ab: the audit_buffer
1968  *
1969  * netlink_unicast() cannot be called inside an irq context because it blocks
1970  * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1971  * on a queue and a tasklet is scheduled to remove them from the queue outside
1972  * the irq context.  May be called in any context.
1973  */
1974 void audit_log_end(struct audit_buffer *ab)
1975 {
1976 	if (!ab)
1977 		return;
1978 	if (!audit_rate_check()) {
1979 		audit_log_lost("rate limit exceeded");
1980 	} else {
1981 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1982 
1983 		nlh->nlmsg_len = ab->skb->len;
1984 		kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1985 
1986 		/*
1987 		 * The original kaudit unicast socket sends up messages with
1988 		 * nlmsg_len set to the payload length rather than the entire
1989 		 * message length.  This breaks the standard set by netlink.
1990 		 * The existing auditd daemon assumes this breakage.  Fixing
1991 		 * this would require co-ordinating a change in the established
1992 		 * protocol between the kaudit kernel subsystem and the auditd
1993 		 * userspace code.
1994 		 */
1995 		nlh->nlmsg_len -= NLMSG_HDRLEN;
1996 
1997 		if (audit_pid) {
1998 			skb_queue_tail(&audit_skb_queue, ab->skb);
1999 			wake_up_interruptible(&kauditd_wait);
2000 		} else {
2001 			audit_printk_skb(ab->skb);
2002 		}
2003 		ab->skb = NULL;
2004 	}
2005 	audit_buffer_free(ab);
2006 }
2007 
2008 /**
2009  * audit_log - Log an audit record
2010  * @ctx: audit context
2011  * @gfp_mask: type of allocation
2012  * @type: audit message type
2013  * @fmt: format string to use
2014  * @...: variable parameters matching the format string
2015  *
2016  * This is a convenience function that calls audit_log_start,
2017  * audit_log_vformat, and audit_log_end.  It may be called
2018  * in any context.
2019  */
2020 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2021 	       const char *fmt, ...)
2022 {
2023 	struct audit_buffer *ab;
2024 	va_list args;
2025 
2026 	ab = audit_log_start(ctx, gfp_mask, type);
2027 	if (ab) {
2028 		va_start(args, fmt);
2029 		audit_log_vformat(ab, fmt, args);
2030 		va_end(args);
2031 		audit_log_end(ab);
2032 	}
2033 }
2034 
2035 #ifdef CONFIG_SECURITY
2036 /**
2037  * audit_log_secctx - Converts and logs SELinux context
2038  * @ab: audit_buffer
2039  * @secid: security number
2040  *
2041  * This is a helper function that calls security_secid_to_secctx to convert
2042  * secid to secctx and then adds the (converted) SELinux context to the audit
2043  * log by calling audit_log_format, thus also preventing leak of internal secid
2044  * to userspace. If secid cannot be converted audit_panic is called.
2045  */
2046 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2047 {
2048 	u32 len;
2049 	char *secctx;
2050 
2051 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2052 		audit_panic("Cannot convert secid to context");
2053 	} else {
2054 		audit_log_format(ab, " obj=%s", secctx);
2055 		security_release_secctx(secctx, len);
2056 	}
2057 }
2058 EXPORT_SYMBOL(audit_log_secctx);
2059 #endif
2060 
2061 EXPORT_SYMBOL(audit_log_start);
2062 EXPORT_SYMBOL(audit_log_end);
2063 EXPORT_SYMBOL(audit_log_format);
2064 EXPORT_SYMBOL(audit_log);
2065