1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 58 #include <linux/audit.h> 59 60 #include <net/sock.h> 61 #include <net/netlink.h> 62 #include <linux/skbuff.h> 63 #ifdef CONFIG_SECURITY 64 #include <linux/security.h> 65 #endif 66 #include <linux/freezer.h> 67 #include <linux/tty.h> 68 #include <linux/pid_namespace.h> 69 #include <net/netns/generic.h> 70 71 #include "audit.h" 72 73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 74 * (Initialization happens after skb_init is called.) */ 75 #define AUDIT_DISABLED -1 76 #define AUDIT_UNINITIALIZED 0 77 #define AUDIT_INITIALIZED 1 78 static int audit_initialized; 79 80 #define AUDIT_OFF 0 81 #define AUDIT_ON 1 82 #define AUDIT_LOCKED 2 83 u32 audit_enabled; 84 u32 audit_ever_enabled; 85 86 EXPORT_SYMBOL_GPL(audit_enabled); 87 88 /* Default state when kernel boots without any parameters. */ 89 static u32 audit_default; 90 91 /* If auditing cannot proceed, audit_failure selects what happens. */ 92 static u32 audit_failure = AUDIT_FAIL_PRINTK; 93 94 /* 95 * If audit records are to be written to the netlink socket, audit_pid 96 * contains the pid of the auditd process and audit_nlk_portid contains 97 * the portid to use to send netlink messages to that process. 98 */ 99 int audit_pid; 100 static __u32 audit_nlk_portid; 101 102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 103 * to that number per second. This prevents DoS attacks, but results in 104 * audit records being dropped. */ 105 static u32 audit_rate_limit; 106 107 /* Number of outstanding audit_buffers allowed. 108 * When set to zero, this means unlimited. */ 109 static u32 audit_backlog_limit = 64; 110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME; 112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 113 114 /* The identity of the user shutting down the audit system. */ 115 kuid_t audit_sig_uid = INVALID_UID; 116 pid_t audit_sig_pid = -1; 117 u32 audit_sig_sid = 0; 118 119 /* Records can be lost in several ways: 120 0) [suppressed in audit_alloc] 121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 122 2) out of memory in audit_log_move [alloc_skb] 123 3) suppressed due to audit_rate_limit 124 4) suppressed due to audit_backlog_limit 125 */ 126 static atomic_t audit_lost = ATOMIC_INIT(0); 127 128 /* The netlink socket. */ 129 static struct sock *audit_sock; 130 static int audit_net_id; 131 132 /* Hash for inode-based rules */ 133 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 134 135 /* The audit_freelist is a list of pre-allocated audit buffers (if more 136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 137 * being placed on the freelist). */ 138 static DEFINE_SPINLOCK(audit_freelist_lock); 139 static int audit_freelist_count; 140 static LIST_HEAD(audit_freelist); 141 142 static struct sk_buff_head audit_skb_queue; 143 /* queue of skbs to send to auditd when/if it comes back */ 144 static struct sk_buff_head audit_skb_hold_queue; 145 static struct task_struct *kauditd_task; 146 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 147 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 148 149 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 150 .mask = -1, 151 .features = 0, 152 .lock = 0,}; 153 154 static char *audit_feature_names[2] = { 155 "only_unset_loginuid", 156 "loginuid_immutable", 157 }; 158 159 160 /* Serialize requests from userspace. */ 161 DEFINE_MUTEX(audit_cmd_mutex); 162 163 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 164 * audit records. Since printk uses a 1024 byte buffer, this buffer 165 * should be at least that large. */ 166 #define AUDIT_BUFSIZ 1024 167 168 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 170 #define AUDIT_MAXFREE (2*NR_CPUS) 171 172 /* The audit_buffer is used when formatting an audit record. The caller 173 * locks briefly to get the record off the freelist or to allocate the 174 * buffer, and locks briefly to send the buffer to the netlink layer or 175 * to place it on a transmit queue. Multiple audit_buffers can be in 176 * use simultaneously. */ 177 struct audit_buffer { 178 struct list_head list; 179 struct sk_buff *skb; /* formatted skb ready to send */ 180 struct audit_context *ctx; /* NULL or associated context */ 181 gfp_t gfp_mask; 182 }; 183 184 struct audit_reply { 185 __u32 portid; 186 struct net *net; 187 struct sk_buff *skb; 188 }; 189 190 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 191 { 192 if (ab) { 193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 194 nlh->nlmsg_pid = portid; 195 } 196 } 197 198 void audit_panic(const char *message) 199 { 200 switch (audit_failure) { 201 case AUDIT_FAIL_SILENT: 202 break; 203 case AUDIT_FAIL_PRINTK: 204 if (printk_ratelimit()) 205 pr_err("%s\n", message); 206 break; 207 case AUDIT_FAIL_PANIC: 208 /* test audit_pid since printk is always losey, why bother? */ 209 if (audit_pid) 210 panic("audit: %s\n", message); 211 break; 212 } 213 } 214 215 static inline int audit_rate_check(void) 216 { 217 static unsigned long last_check = 0; 218 static int messages = 0; 219 static DEFINE_SPINLOCK(lock); 220 unsigned long flags; 221 unsigned long now; 222 unsigned long elapsed; 223 int retval = 0; 224 225 if (!audit_rate_limit) return 1; 226 227 spin_lock_irqsave(&lock, flags); 228 if (++messages < audit_rate_limit) { 229 retval = 1; 230 } else { 231 now = jiffies; 232 elapsed = now - last_check; 233 if (elapsed > HZ) { 234 last_check = now; 235 messages = 0; 236 retval = 1; 237 } 238 } 239 spin_unlock_irqrestore(&lock, flags); 240 241 return retval; 242 } 243 244 /** 245 * audit_log_lost - conditionally log lost audit message event 246 * @message: the message stating reason for lost audit message 247 * 248 * Emit at least 1 message per second, even if audit_rate_check is 249 * throttling. 250 * Always increment the lost messages counter. 251 */ 252 void audit_log_lost(const char *message) 253 { 254 static unsigned long last_msg = 0; 255 static DEFINE_SPINLOCK(lock); 256 unsigned long flags; 257 unsigned long now; 258 int print; 259 260 atomic_inc(&audit_lost); 261 262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 263 264 if (!print) { 265 spin_lock_irqsave(&lock, flags); 266 now = jiffies; 267 if (now - last_msg > HZ) { 268 print = 1; 269 last_msg = now; 270 } 271 spin_unlock_irqrestore(&lock, flags); 272 } 273 274 if (print) { 275 if (printk_ratelimit()) 276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 277 atomic_read(&audit_lost), 278 audit_rate_limit, 279 audit_backlog_limit); 280 audit_panic(message); 281 } 282 } 283 284 static int audit_log_config_change(char *function_name, u32 new, u32 old, 285 int allow_changes) 286 { 287 struct audit_buffer *ab; 288 int rc = 0; 289 290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 291 if (unlikely(!ab)) 292 return rc; 293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 294 audit_log_session_info(ab); 295 rc = audit_log_task_context(ab); 296 if (rc) 297 allow_changes = 0; /* Something weird, deny request */ 298 audit_log_format(ab, " res=%d", allow_changes); 299 audit_log_end(ab); 300 return rc; 301 } 302 303 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 304 { 305 int allow_changes, rc = 0; 306 u32 old = *to_change; 307 308 /* check if we are locked */ 309 if (audit_enabled == AUDIT_LOCKED) 310 allow_changes = 0; 311 else 312 allow_changes = 1; 313 314 if (audit_enabled != AUDIT_OFF) { 315 rc = audit_log_config_change(function_name, new, old, allow_changes); 316 if (rc) 317 allow_changes = 0; 318 } 319 320 /* If we are allowed, make the change */ 321 if (allow_changes == 1) 322 *to_change = new; 323 /* Not allowed, update reason */ 324 else if (rc == 0) 325 rc = -EPERM; 326 return rc; 327 } 328 329 static int audit_set_rate_limit(u32 limit) 330 { 331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 332 } 333 334 static int audit_set_backlog_limit(u32 limit) 335 { 336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 337 } 338 339 static int audit_set_backlog_wait_time(u32 timeout) 340 { 341 return audit_do_config_change("audit_backlog_wait_time", 342 &audit_backlog_wait_time_master, timeout); 343 } 344 345 static int audit_set_enabled(u32 state) 346 { 347 int rc; 348 if (state > AUDIT_LOCKED) 349 return -EINVAL; 350 351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 352 if (!rc) 353 audit_ever_enabled |= !!state; 354 355 return rc; 356 } 357 358 static int audit_set_failure(u32 state) 359 { 360 if (state != AUDIT_FAIL_SILENT 361 && state != AUDIT_FAIL_PRINTK 362 && state != AUDIT_FAIL_PANIC) 363 return -EINVAL; 364 365 return audit_do_config_change("audit_failure", &audit_failure, state); 366 } 367 368 /* 369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 370 * already have been sent via prink/syslog and so if these messages are dropped 371 * it is not a huge concern since we already passed the audit_log_lost() 372 * notification and stuff. This is just nice to get audit messages during 373 * boot before auditd is running or messages generated while auditd is stopped. 374 * This only holds messages is audit_default is set, aka booting with audit=1 375 * or building your kernel that way. 376 */ 377 static void audit_hold_skb(struct sk_buff *skb) 378 { 379 if (audit_default && 380 (!audit_backlog_limit || 381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 382 skb_queue_tail(&audit_skb_hold_queue, skb); 383 else 384 kfree_skb(skb); 385 } 386 387 /* 388 * For one reason or another this nlh isn't getting delivered to the userspace 389 * audit daemon, just send it to printk. 390 */ 391 static void audit_printk_skb(struct sk_buff *skb) 392 { 393 struct nlmsghdr *nlh = nlmsg_hdr(skb); 394 char *data = nlmsg_data(nlh); 395 396 if (nlh->nlmsg_type != AUDIT_EOE) { 397 if (printk_ratelimit()) 398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 399 else 400 audit_log_lost("printk limit exceeded"); 401 } 402 403 audit_hold_skb(skb); 404 } 405 406 static void kauditd_send_skb(struct sk_buff *skb) 407 { 408 int err; 409 int attempts = 0; 410 #define AUDITD_RETRIES 5 411 412 restart: 413 /* take a reference in case we can't send it and we want to hold it */ 414 skb_get(skb); 415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 416 if (err < 0) { 417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n", 418 audit_pid, err); 419 if (audit_pid) { 420 if (err == -ECONNREFUSED || err == -EPERM 421 || ++attempts >= AUDITD_RETRIES) { 422 char s[32]; 423 424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid); 425 audit_log_lost(s); 426 audit_pid = 0; 427 audit_sock = NULL; 428 } else { 429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n", 430 attempts, audit_pid); 431 set_current_state(TASK_INTERRUPTIBLE); 432 schedule(); 433 __set_current_state(TASK_RUNNING); 434 goto restart; 435 } 436 } 437 /* we might get lucky and get this in the next auditd */ 438 audit_hold_skb(skb); 439 } else 440 /* drop the extra reference if sent ok */ 441 consume_skb(skb); 442 } 443 444 /* 445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners 446 * 447 * This function doesn't consume an skb as might be expected since it has to 448 * copy it anyways. 449 */ 450 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask) 451 { 452 struct sk_buff *copy; 453 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 454 struct sock *sock = aunet->nlsk; 455 456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 457 return; 458 459 /* 460 * The seemingly wasteful skb_copy() rather than bumping the refcount 461 * using skb_get() is necessary because non-standard mods are made to 462 * the skb by the original kaudit unicast socket send routine. The 463 * existing auditd daemon assumes this breakage. Fixing this would 464 * require co-ordinating a change in the established protocol between 465 * the kaudit kernel subsystem and the auditd userspace code. There is 466 * no reason for new multicast clients to continue with this 467 * non-compliance. 468 */ 469 copy = skb_copy(skb, gfp_mask); 470 if (!copy) 471 return; 472 473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask); 474 } 475 476 /* 477 * flush_hold_queue - empty the hold queue if auditd appears 478 * 479 * If auditd just started, drain the queue of messages already 480 * sent to syslog/printk. Remember loss here is ok. We already 481 * called audit_log_lost() if it didn't go out normally. so the 482 * race between the skb_dequeue and the next check for audit_pid 483 * doesn't matter. 484 * 485 * If you ever find kauditd to be too slow we can get a perf win 486 * by doing our own locking and keeping better track if there 487 * are messages in this queue. I don't see the need now, but 488 * in 5 years when I want to play with this again I'll see this 489 * note and still have no friggin idea what i'm thinking today. 490 */ 491 static void flush_hold_queue(void) 492 { 493 struct sk_buff *skb; 494 495 if (!audit_default || !audit_pid) 496 return; 497 498 skb = skb_dequeue(&audit_skb_hold_queue); 499 if (likely(!skb)) 500 return; 501 502 while (skb && audit_pid) { 503 kauditd_send_skb(skb); 504 skb = skb_dequeue(&audit_skb_hold_queue); 505 } 506 507 /* 508 * if auditd just disappeared but we 509 * dequeued an skb we need to drop ref 510 */ 511 consume_skb(skb); 512 } 513 514 static int kauditd_thread(void *dummy) 515 { 516 set_freezable(); 517 while (!kthread_should_stop()) { 518 struct sk_buff *skb; 519 520 flush_hold_queue(); 521 522 skb = skb_dequeue(&audit_skb_queue); 523 524 if (skb) { 525 if (!audit_backlog_limit || 526 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)) 527 wake_up(&audit_backlog_wait); 528 if (audit_pid) 529 kauditd_send_skb(skb); 530 else 531 audit_printk_skb(skb); 532 continue; 533 } 534 535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue)); 536 } 537 return 0; 538 } 539 540 int audit_send_list(void *_dest) 541 { 542 struct audit_netlink_list *dest = _dest; 543 struct sk_buff *skb; 544 struct net *net = dest->net; 545 struct audit_net *aunet = net_generic(net, audit_net_id); 546 547 /* wait for parent to finish and send an ACK */ 548 mutex_lock(&audit_cmd_mutex); 549 mutex_unlock(&audit_cmd_mutex); 550 551 while ((skb = __skb_dequeue(&dest->q)) != NULL) 552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 553 554 put_net(net); 555 kfree(dest); 556 557 return 0; 558 } 559 560 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 561 int multi, const void *payload, int size) 562 { 563 struct sk_buff *skb; 564 struct nlmsghdr *nlh; 565 void *data; 566 int flags = multi ? NLM_F_MULTI : 0; 567 int t = done ? NLMSG_DONE : type; 568 569 skb = nlmsg_new(size, GFP_KERNEL); 570 if (!skb) 571 return NULL; 572 573 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 574 if (!nlh) 575 goto out_kfree_skb; 576 data = nlmsg_data(nlh); 577 memcpy(data, payload, size); 578 return skb; 579 580 out_kfree_skb: 581 kfree_skb(skb); 582 return NULL; 583 } 584 585 static int audit_send_reply_thread(void *arg) 586 { 587 struct audit_reply *reply = (struct audit_reply *)arg; 588 struct net *net = reply->net; 589 struct audit_net *aunet = net_generic(net, audit_net_id); 590 591 mutex_lock(&audit_cmd_mutex); 592 mutex_unlock(&audit_cmd_mutex); 593 594 /* Ignore failure. It'll only happen if the sender goes away, 595 because our timeout is set to infinite. */ 596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 597 put_net(net); 598 kfree(reply); 599 return 0; 600 } 601 /** 602 * audit_send_reply - send an audit reply message via netlink 603 * @request_skb: skb of request we are replying to (used to target the reply) 604 * @seq: sequence number 605 * @type: audit message type 606 * @done: done (last) flag 607 * @multi: multi-part message flag 608 * @payload: payload data 609 * @size: payload size 610 * 611 * Allocates an skb, builds the netlink message, and sends it to the port id. 612 * No failure notifications. 613 */ 614 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 615 int multi, const void *payload, int size) 616 { 617 u32 portid = NETLINK_CB(request_skb).portid; 618 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 619 struct sk_buff *skb; 620 struct task_struct *tsk; 621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 622 GFP_KERNEL); 623 624 if (!reply) 625 return; 626 627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 628 if (!skb) 629 goto out; 630 631 reply->net = get_net(net); 632 reply->portid = portid; 633 reply->skb = skb; 634 635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 636 if (!IS_ERR(tsk)) 637 return; 638 kfree_skb(skb); 639 out: 640 kfree(reply); 641 } 642 643 /* 644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 645 * control messages. 646 */ 647 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 648 { 649 int err = 0; 650 651 /* Only support initial user namespace for now. */ 652 /* 653 * We return ECONNREFUSED because it tricks userspace into thinking 654 * that audit was not configured into the kernel. Lots of users 655 * configure their PAM stack (because that's what the distro does) 656 * to reject login if unable to send messages to audit. If we return 657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 658 * configured in and will let login proceed. If we return EPERM 659 * userspace will reject all logins. This should be removed when we 660 * support non init namespaces!! 661 */ 662 if (current_user_ns() != &init_user_ns) 663 return -ECONNREFUSED; 664 665 switch (msg_type) { 666 case AUDIT_LIST: 667 case AUDIT_ADD: 668 case AUDIT_DEL: 669 return -EOPNOTSUPP; 670 case AUDIT_GET: 671 case AUDIT_SET: 672 case AUDIT_GET_FEATURE: 673 case AUDIT_SET_FEATURE: 674 case AUDIT_LIST_RULES: 675 case AUDIT_ADD_RULE: 676 case AUDIT_DEL_RULE: 677 case AUDIT_SIGNAL_INFO: 678 case AUDIT_TTY_GET: 679 case AUDIT_TTY_SET: 680 case AUDIT_TRIM: 681 case AUDIT_MAKE_EQUIV: 682 /* Only support auditd and auditctl in initial pid namespace 683 * for now. */ 684 if (task_active_pid_ns(current) != &init_pid_ns) 685 return -EPERM; 686 687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 688 err = -EPERM; 689 break; 690 case AUDIT_USER: 691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 693 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 694 err = -EPERM; 695 break; 696 default: /* bad msg */ 697 err = -EINVAL; 698 } 699 700 return err; 701 } 702 703 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 704 { 705 uid_t uid = from_kuid(&init_user_ns, current_uid()); 706 pid_t pid = task_tgid_nr(current); 707 708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 709 *ab = NULL; 710 return; 711 } 712 713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 714 if (unlikely(!*ab)) 715 return; 716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 717 audit_log_session_info(*ab); 718 audit_log_task_context(*ab); 719 } 720 721 int is_audit_feature_set(int i) 722 { 723 return af.features & AUDIT_FEATURE_TO_MASK(i); 724 } 725 726 727 static int audit_get_feature(struct sk_buff *skb) 728 { 729 u32 seq; 730 731 seq = nlmsg_hdr(skb)->nlmsg_seq; 732 733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 734 735 return 0; 736 } 737 738 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 739 u32 old_lock, u32 new_lock, int res) 740 { 741 struct audit_buffer *ab; 742 743 if (audit_enabled == AUDIT_OFF) 744 return; 745 746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 747 audit_log_task_info(ab, current); 748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 749 audit_feature_names[which], !!old_feature, !!new_feature, 750 !!old_lock, !!new_lock, res); 751 audit_log_end(ab); 752 } 753 754 static int audit_set_feature(struct sk_buff *skb) 755 { 756 struct audit_features *uaf; 757 int i; 758 759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 760 uaf = nlmsg_data(nlmsg_hdr(skb)); 761 762 /* if there is ever a version 2 we should handle that here */ 763 764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 765 u32 feature = AUDIT_FEATURE_TO_MASK(i); 766 u32 old_feature, new_feature, old_lock, new_lock; 767 768 /* if we are not changing this feature, move along */ 769 if (!(feature & uaf->mask)) 770 continue; 771 772 old_feature = af.features & feature; 773 new_feature = uaf->features & feature; 774 new_lock = (uaf->lock | af.lock) & feature; 775 old_lock = af.lock & feature; 776 777 /* are we changing a locked feature? */ 778 if (old_lock && (new_feature != old_feature)) { 779 audit_log_feature_change(i, old_feature, new_feature, 780 old_lock, new_lock, 0); 781 return -EPERM; 782 } 783 } 784 /* nothing invalid, do the changes */ 785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 786 u32 feature = AUDIT_FEATURE_TO_MASK(i); 787 u32 old_feature, new_feature, old_lock, new_lock; 788 789 /* if we are not changing this feature, move along */ 790 if (!(feature & uaf->mask)) 791 continue; 792 793 old_feature = af.features & feature; 794 new_feature = uaf->features & feature; 795 old_lock = af.lock & feature; 796 new_lock = (uaf->lock | af.lock) & feature; 797 798 if (new_feature != old_feature) 799 audit_log_feature_change(i, old_feature, new_feature, 800 old_lock, new_lock, 1); 801 802 if (new_feature) 803 af.features |= feature; 804 else 805 af.features &= ~feature; 806 af.lock |= new_lock; 807 } 808 809 return 0; 810 } 811 812 static int audit_replace(pid_t pid) 813 { 814 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, 815 &pid, sizeof(pid)); 816 817 if (!skb) 818 return -ENOMEM; 819 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 820 } 821 822 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 823 { 824 u32 seq; 825 void *data; 826 int err; 827 struct audit_buffer *ab; 828 u16 msg_type = nlh->nlmsg_type; 829 struct audit_sig_info *sig_data; 830 char *ctx = NULL; 831 u32 len; 832 833 err = audit_netlink_ok(skb, msg_type); 834 if (err) 835 return err; 836 837 /* As soon as there's any sign of userspace auditd, 838 * start kauditd to talk to it */ 839 if (!kauditd_task) { 840 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 841 if (IS_ERR(kauditd_task)) { 842 err = PTR_ERR(kauditd_task); 843 kauditd_task = NULL; 844 return err; 845 } 846 } 847 seq = nlh->nlmsg_seq; 848 data = nlmsg_data(nlh); 849 850 switch (msg_type) { 851 case AUDIT_GET: { 852 struct audit_status s; 853 memset(&s, 0, sizeof(s)); 854 s.enabled = audit_enabled; 855 s.failure = audit_failure; 856 s.pid = audit_pid; 857 s.rate_limit = audit_rate_limit; 858 s.backlog_limit = audit_backlog_limit; 859 s.lost = atomic_read(&audit_lost); 860 s.backlog = skb_queue_len(&audit_skb_queue); 861 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 862 s.backlog_wait_time = audit_backlog_wait_time_master; 863 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 864 break; 865 } 866 case AUDIT_SET: { 867 struct audit_status s; 868 memset(&s, 0, sizeof(s)); 869 /* guard against past and future API changes */ 870 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 871 if (s.mask & AUDIT_STATUS_ENABLED) { 872 err = audit_set_enabled(s.enabled); 873 if (err < 0) 874 return err; 875 } 876 if (s.mask & AUDIT_STATUS_FAILURE) { 877 err = audit_set_failure(s.failure); 878 if (err < 0) 879 return err; 880 } 881 if (s.mask & AUDIT_STATUS_PID) { 882 int new_pid = s.pid; 883 pid_t requesting_pid = task_tgid_vnr(current); 884 885 if ((!new_pid) && (requesting_pid != audit_pid)) { 886 audit_log_config_change("audit_pid", new_pid, audit_pid, 0); 887 return -EACCES; 888 } 889 if (audit_pid && new_pid && 890 audit_replace(requesting_pid) != -ECONNREFUSED) { 891 audit_log_config_change("audit_pid", new_pid, audit_pid, 0); 892 return -EEXIST; 893 } 894 if (audit_enabled != AUDIT_OFF) 895 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 896 audit_pid = new_pid; 897 audit_nlk_portid = NETLINK_CB(skb).portid; 898 audit_sock = skb->sk; 899 } 900 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 901 err = audit_set_rate_limit(s.rate_limit); 902 if (err < 0) 903 return err; 904 } 905 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 906 err = audit_set_backlog_limit(s.backlog_limit); 907 if (err < 0) 908 return err; 909 } 910 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 911 if (sizeof(s) > (size_t)nlh->nlmsg_len) 912 return -EINVAL; 913 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 914 return -EINVAL; 915 err = audit_set_backlog_wait_time(s.backlog_wait_time); 916 if (err < 0) 917 return err; 918 } 919 break; 920 } 921 case AUDIT_GET_FEATURE: 922 err = audit_get_feature(skb); 923 if (err) 924 return err; 925 break; 926 case AUDIT_SET_FEATURE: 927 err = audit_set_feature(skb); 928 if (err) 929 return err; 930 break; 931 case AUDIT_USER: 932 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 933 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 934 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 935 return 0; 936 937 err = audit_filter_user(msg_type); 938 if (err == 1) { /* match or error */ 939 err = 0; 940 if (msg_type == AUDIT_USER_TTY) { 941 err = tty_audit_push(); 942 if (err) 943 break; 944 } 945 mutex_unlock(&audit_cmd_mutex); 946 audit_log_common_recv_msg(&ab, msg_type); 947 if (msg_type != AUDIT_USER_TTY) 948 audit_log_format(ab, " msg='%.*s'", 949 AUDIT_MESSAGE_TEXT_MAX, 950 (char *)data); 951 else { 952 int size; 953 954 audit_log_format(ab, " data="); 955 size = nlmsg_len(nlh); 956 if (size > 0 && 957 ((unsigned char *)data)[size - 1] == '\0') 958 size--; 959 audit_log_n_untrustedstring(ab, data, size); 960 } 961 audit_set_portid(ab, NETLINK_CB(skb).portid); 962 audit_log_end(ab); 963 mutex_lock(&audit_cmd_mutex); 964 } 965 break; 966 case AUDIT_ADD_RULE: 967 case AUDIT_DEL_RULE: 968 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 969 return -EINVAL; 970 if (audit_enabled == AUDIT_LOCKED) { 971 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 972 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 973 audit_log_end(ab); 974 return -EPERM; 975 } 976 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 977 seq, data, nlmsg_len(nlh)); 978 break; 979 case AUDIT_LIST_RULES: 980 err = audit_list_rules_send(skb, seq); 981 break; 982 case AUDIT_TRIM: 983 audit_trim_trees(); 984 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 985 audit_log_format(ab, " op=trim res=1"); 986 audit_log_end(ab); 987 break; 988 case AUDIT_MAKE_EQUIV: { 989 void *bufp = data; 990 u32 sizes[2]; 991 size_t msglen = nlmsg_len(nlh); 992 char *old, *new; 993 994 err = -EINVAL; 995 if (msglen < 2 * sizeof(u32)) 996 break; 997 memcpy(sizes, bufp, 2 * sizeof(u32)); 998 bufp += 2 * sizeof(u32); 999 msglen -= 2 * sizeof(u32); 1000 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1001 if (IS_ERR(old)) { 1002 err = PTR_ERR(old); 1003 break; 1004 } 1005 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1006 if (IS_ERR(new)) { 1007 err = PTR_ERR(new); 1008 kfree(old); 1009 break; 1010 } 1011 /* OK, here comes... */ 1012 err = audit_tag_tree(old, new); 1013 1014 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1015 1016 audit_log_format(ab, " op=make_equiv old="); 1017 audit_log_untrustedstring(ab, old); 1018 audit_log_format(ab, " new="); 1019 audit_log_untrustedstring(ab, new); 1020 audit_log_format(ab, " res=%d", !err); 1021 audit_log_end(ab); 1022 kfree(old); 1023 kfree(new); 1024 break; 1025 } 1026 case AUDIT_SIGNAL_INFO: 1027 len = 0; 1028 if (audit_sig_sid) { 1029 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1030 if (err) 1031 return err; 1032 } 1033 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1034 if (!sig_data) { 1035 if (audit_sig_sid) 1036 security_release_secctx(ctx, len); 1037 return -ENOMEM; 1038 } 1039 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1040 sig_data->pid = audit_sig_pid; 1041 if (audit_sig_sid) { 1042 memcpy(sig_data->ctx, ctx, len); 1043 security_release_secctx(ctx, len); 1044 } 1045 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1046 sig_data, sizeof(*sig_data) + len); 1047 kfree(sig_data); 1048 break; 1049 case AUDIT_TTY_GET: { 1050 struct audit_tty_status s; 1051 unsigned int t; 1052 1053 t = READ_ONCE(current->signal->audit_tty); 1054 s.enabled = t & AUDIT_TTY_ENABLE; 1055 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1056 1057 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1058 break; 1059 } 1060 case AUDIT_TTY_SET: { 1061 struct audit_tty_status s, old; 1062 struct audit_buffer *ab; 1063 unsigned int t; 1064 1065 memset(&s, 0, sizeof(s)); 1066 /* guard against past and future API changes */ 1067 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1068 /* check if new data is valid */ 1069 if ((s.enabled != 0 && s.enabled != 1) || 1070 (s.log_passwd != 0 && s.log_passwd != 1)) 1071 err = -EINVAL; 1072 1073 if (err) 1074 t = READ_ONCE(current->signal->audit_tty); 1075 else { 1076 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1077 t = xchg(¤t->signal->audit_tty, t); 1078 } 1079 old.enabled = t & AUDIT_TTY_ENABLE; 1080 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1081 1082 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1083 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1084 " old-log_passwd=%d new-log_passwd=%d res=%d", 1085 old.enabled, s.enabled, old.log_passwd, 1086 s.log_passwd, !err); 1087 audit_log_end(ab); 1088 break; 1089 } 1090 default: 1091 err = -EINVAL; 1092 break; 1093 } 1094 1095 return err < 0 ? err : 0; 1096 } 1097 1098 /* 1099 * Get message from skb. Each message is processed by audit_receive_msg. 1100 * Malformed skbs with wrong length are discarded silently. 1101 */ 1102 static void audit_receive_skb(struct sk_buff *skb) 1103 { 1104 struct nlmsghdr *nlh; 1105 /* 1106 * len MUST be signed for nlmsg_next to be able to dec it below 0 1107 * if the nlmsg_len was not aligned 1108 */ 1109 int len; 1110 int err; 1111 1112 nlh = nlmsg_hdr(skb); 1113 len = skb->len; 1114 1115 while (nlmsg_ok(nlh, len)) { 1116 err = audit_receive_msg(skb, nlh); 1117 /* if err or if this message says it wants a response */ 1118 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1119 netlink_ack(skb, nlh, err); 1120 1121 nlh = nlmsg_next(nlh, &len); 1122 } 1123 } 1124 1125 /* Receive messages from netlink socket. */ 1126 static void audit_receive(struct sk_buff *skb) 1127 { 1128 mutex_lock(&audit_cmd_mutex); 1129 audit_receive_skb(skb); 1130 mutex_unlock(&audit_cmd_mutex); 1131 } 1132 1133 /* Run custom bind function on netlink socket group connect or bind requests. */ 1134 static int audit_bind(struct net *net, int group) 1135 { 1136 if (!capable(CAP_AUDIT_READ)) 1137 return -EPERM; 1138 1139 return 0; 1140 } 1141 1142 static int __net_init audit_net_init(struct net *net) 1143 { 1144 struct netlink_kernel_cfg cfg = { 1145 .input = audit_receive, 1146 .bind = audit_bind, 1147 .flags = NL_CFG_F_NONROOT_RECV, 1148 .groups = AUDIT_NLGRP_MAX, 1149 }; 1150 1151 struct audit_net *aunet = net_generic(net, audit_net_id); 1152 1153 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1154 if (aunet->nlsk == NULL) { 1155 audit_panic("cannot initialize netlink socket in namespace"); 1156 return -ENOMEM; 1157 } 1158 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1159 return 0; 1160 } 1161 1162 static void __net_exit audit_net_exit(struct net *net) 1163 { 1164 struct audit_net *aunet = net_generic(net, audit_net_id); 1165 struct sock *sock = aunet->nlsk; 1166 if (sock == audit_sock) { 1167 audit_pid = 0; 1168 audit_sock = NULL; 1169 } 1170 1171 RCU_INIT_POINTER(aunet->nlsk, NULL); 1172 synchronize_net(); 1173 netlink_kernel_release(sock); 1174 } 1175 1176 static struct pernet_operations audit_net_ops __net_initdata = { 1177 .init = audit_net_init, 1178 .exit = audit_net_exit, 1179 .id = &audit_net_id, 1180 .size = sizeof(struct audit_net), 1181 }; 1182 1183 /* Initialize audit support at boot time. */ 1184 static int __init audit_init(void) 1185 { 1186 int i; 1187 1188 if (audit_initialized == AUDIT_DISABLED) 1189 return 0; 1190 1191 pr_info("initializing netlink subsys (%s)\n", 1192 audit_default ? "enabled" : "disabled"); 1193 register_pernet_subsys(&audit_net_ops); 1194 1195 skb_queue_head_init(&audit_skb_queue); 1196 skb_queue_head_init(&audit_skb_hold_queue); 1197 audit_initialized = AUDIT_INITIALIZED; 1198 audit_enabled = audit_default; 1199 audit_ever_enabled |= !!audit_default; 1200 1201 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1202 1203 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1204 INIT_LIST_HEAD(&audit_inode_hash[i]); 1205 1206 return 0; 1207 } 1208 __initcall(audit_init); 1209 1210 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1211 static int __init audit_enable(char *str) 1212 { 1213 audit_default = !!simple_strtol(str, NULL, 0); 1214 if (!audit_default) 1215 audit_initialized = AUDIT_DISABLED; 1216 1217 pr_info("%s\n", audit_default ? 1218 "enabled (after initialization)" : "disabled (until reboot)"); 1219 1220 return 1; 1221 } 1222 __setup("audit=", audit_enable); 1223 1224 /* Process kernel command-line parameter at boot time. 1225 * audit_backlog_limit=<n> */ 1226 static int __init audit_backlog_limit_set(char *str) 1227 { 1228 u32 audit_backlog_limit_arg; 1229 1230 pr_info("audit_backlog_limit: "); 1231 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1232 pr_cont("using default of %u, unable to parse %s\n", 1233 audit_backlog_limit, str); 1234 return 1; 1235 } 1236 1237 audit_backlog_limit = audit_backlog_limit_arg; 1238 pr_cont("%d\n", audit_backlog_limit); 1239 1240 return 1; 1241 } 1242 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1243 1244 static void audit_buffer_free(struct audit_buffer *ab) 1245 { 1246 unsigned long flags; 1247 1248 if (!ab) 1249 return; 1250 1251 kfree_skb(ab->skb); 1252 spin_lock_irqsave(&audit_freelist_lock, flags); 1253 if (audit_freelist_count > AUDIT_MAXFREE) 1254 kfree(ab); 1255 else { 1256 audit_freelist_count++; 1257 list_add(&ab->list, &audit_freelist); 1258 } 1259 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1260 } 1261 1262 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1263 gfp_t gfp_mask, int type) 1264 { 1265 unsigned long flags; 1266 struct audit_buffer *ab = NULL; 1267 struct nlmsghdr *nlh; 1268 1269 spin_lock_irqsave(&audit_freelist_lock, flags); 1270 if (!list_empty(&audit_freelist)) { 1271 ab = list_entry(audit_freelist.next, 1272 struct audit_buffer, list); 1273 list_del(&ab->list); 1274 --audit_freelist_count; 1275 } 1276 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1277 1278 if (!ab) { 1279 ab = kmalloc(sizeof(*ab), gfp_mask); 1280 if (!ab) 1281 goto err; 1282 } 1283 1284 ab->ctx = ctx; 1285 ab->gfp_mask = gfp_mask; 1286 1287 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1288 if (!ab->skb) 1289 goto err; 1290 1291 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1292 if (!nlh) 1293 goto out_kfree_skb; 1294 1295 return ab; 1296 1297 out_kfree_skb: 1298 kfree_skb(ab->skb); 1299 ab->skb = NULL; 1300 err: 1301 audit_buffer_free(ab); 1302 return NULL; 1303 } 1304 1305 /** 1306 * audit_serial - compute a serial number for the audit record 1307 * 1308 * Compute a serial number for the audit record. Audit records are 1309 * written to user-space as soon as they are generated, so a complete 1310 * audit record may be written in several pieces. The timestamp of the 1311 * record and this serial number are used by the user-space tools to 1312 * determine which pieces belong to the same audit record. The 1313 * (timestamp,serial) tuple is unique for each syscall and is live from 1314 * syscall entry to syscall exit. 1315 * 1316 * NOTE: Another possibility is to store the formatted records off the 1317 * audit context (for those records that have a context), and emit them 1318 * all at syscall exit. However, this could delay the reporting of 1319 * significant errors until syscall exit (or never, if the system 1320 * halts). 1321 */ 1322 unsigned int audit_serial(void) 1323 { 1324 static atomic_t serial = ATOMIC_INIT(0); 1325 1326 return atomic_add_return(1, &serial); 1327 } 1328 1329 static inline void audit_get_stamp(struct audit_context *ctx, 1330 struct timespec *t, unsigned int *serial) 1331 { 1332 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1333 *t = CURRENT_TIME; 1334 *serial = audit_serial(); 1335 } 1336 } 1337 1338 /* 1339 * Wait for auditd to drain the queue a little 1340 */ 1341 static long wait_for_auditd(long sleep_time) 1342 { 1343 DECLARE_WAITQUEUE(wait, current); 1344 set_current_state(TASK_UNINTERRUPTIBLE); 1345 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1346 1347 if (audit_backlog_limit && 1348 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1349 sleep_time = schedule_timeout(sleep_time); 1350 1351 __set_current_state(TASK_RUNNING); 1352 remove_wait_queue(&audit_backlog_wait, &wait); 1353 1354 return sleep_time; 1355 } 1356 1357 /** 1358 * audit_log_start - obtain an audit buffer 1359 * @ctx: audit_context (may be NULL) 1360 * @gfp_mask: type of allocation 1361 * @type: audit message type 1362 * 1363 * Returns audit_buffer pointer on success or NULL on error. 1364 * 1365 * Obtain an audit buffer. This routine does locking to obtain the 1366 * audit buffer, but then no locking is required for calls to 1367 * audit_log_*format. If the task (ctx) is a task that is currently in a 1368 * syscall, then the syscall is marked as auditable and an audit record 1369 * will be written at syscall exit. If there is no associated task, then 1370 * task context (ctx) should be NULL. 1371 */ 1372 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1373 int type) 1374 { 1375 struct audit_buffer *ab = NULL; 1376 struct timespec t; 1377 unsigned int uninitialized_var(serial); 1378 int reserve = 5; /* Allow atomic callers to go up to five 1379 entries over the normal backlog limit */ 1380 unsigned long timeout_start = jiffies; 1381 1382 if (audit_initialized != AUDIT_INITIALIZED) 1383 return NULL; 1384 1385 if (unlikely(audit_filter_type(type))) 1386 return NULL; 1387 1388 if (gfp_mask & __GFP_DIRECT_RECLAIM) { 1389 if (audit_pid && audit_pid == current->tgid) 1390 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 1391 else 1392 reserve = 0; 1393 } 1394 1395 while (audit_backlog_limit 1396 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1397 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) { 1398 long sleep_time; 1399 1400 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1401 if (sleep_time > 0) { 1402 sleep_time = wait_for_auditd(sleep_time); 1403 if (sleep_time > 0) 1404 continue; 1405 } 1406 } 1407 if (audit_rate_check() && printk_ratelimit()) 1408 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1409 skb_queue_len(&audit_skb_queue), 1410 audit_backlog_limit); 1411 audit_log_lost("backlog limit exceeded"); 1412 audit_backlog_wait_time = 0; 1413 wake_up(&audit_backlog_wait); 1414 return NULL; 1415 } 1416 1417 if (!reserve && !audit_backlog_wait_time) 1418 audit_backlog_wait_time = audit_backlog_wait_time_master; 1419 1420 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1421 if (!ab) { 1422 audit_log_lost("out of memory in audit_log_start"); 1423 return NULL; 1424 } 1425 1426 audit_get_stamp(ab->ctx, &t, &serial); 1427 1428 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1429 t.tv_sec, t.tv_nsec/1000000, serial); 1430 return ab; 1431 } 1432 1433 /** 1434 * audit_expand - expand skb in the audit buffer 1435 * @ab: audit_buffer 1436 * @extra: space to add at tail of the skb 1437 * 1438 * Returns 0 (no space) on failed expansion, or available space if 1439 * successful. 1440 */ 1441 static inline int audit_expand(struct audit_buffer *ab, int extra) 1442 { 1443 struct sk_buff *skb = ab->skb; 1444 int oldtail = skb_tailroom(skb); 1445 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1446 int newtail = skb_tailroom(skb); 1447 1448 if (ret < 0) { 1449 audit_log_lost("out of memory in audit_expand"); 1450 return 0; 1451 } 1452 1453 skb->truesize += newtail - oldtail; 1454 return newtail; 1455 } 1456 1457 /* 1458 * Format an audit message into the audit buffer. If there isn't enough 1459 * room in the audit buffer, more room will be allocated and vsnprint 1460 * will be called a second time. Currently, we assume that a printk 1461 * can't format message larger than 1024 bytes, so we don't either. 1462 */ 1463 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1464 va_list args) 1465 { 1466 int len, avail; 1467 struct sk_buff *skb; 1468 va_list args2; 1469 1470 if (!ab) 1471 return; 1472 1473 BUG_ON(!ab->skb); 1474 skb = ab->skb; 1475 avail = skb_tailroom(skb); 1476 if (avail == 0) { 1477 avail = audit_expand(ab, AUDIT_BUFSIZ); 1478 if (!avail) 1479 goto out; 1480 } 1481 va_copy(args2, args); 1482 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1483 if (len >= avail) { 1484 /* The printk buffer is 1024 bytes long, so if we get 1485 * here and AUDIT_BUFSIZ is at least 1024, then we can 1486 * log everything that printk could have logged. */ 1487 avail = audit_expand(ab, 1488 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1489 if (!avail) 1490 goto out_va_end; 1491 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1492 } 1493 if (len > 0) 1494 skb_put(skb, len); 1495 out_va_end: 1496 va_end(args2); 1497 out: 1498 return; 1499 } 1500 1501 /** 1502 * audit_log_format - format a message into the audit buffer. 1503 * @ab: audit_buffer 1504 * @fmt: format string 1505 * @...: optional parameters matching @fmt string 1506 * 1507 * All the work is done in audit_log_vformat. 1508 */ 1509 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1510 { 1511 va_list args; 1512 1513 if (!ab) 1514 return; 1515 va_start(args, fmt); 1516 audit_log_vformat(ab, fmt, args); 1517 va_end(args); 1518 } 1519 1520 /** 1521 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1522 * @ab: the audit_buffer 1523 * @buf: buffer to convert to hex 1524 * @len: length of @buf to be converted 1525 * 1526 * No return value; failure to expand is silently ignored. 1527 * 1528 * This function will take the passed buf and convert it into a string of 1529 * ascii hex digits. The new string is placed onto the skb. 1530 */ 1531 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1532 size_t len) 1533 { 1534 int i, avail, new_len; 1535 unsigned char *ptr; 1536 struct sk_buff *skb; 1537 1538 if (!ab) 1539 return; 1540 1541 BUG_ON(!ab->skb); 1542 skb = ab->skb; 1543 avail = skb_tailroom(skb); 1544 new_len = len<<1; 1545 if (new_len >= avail) { 1546 /* Round the buffer request up to the next multiple */ 1547 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1548 avail = audit_expand(ab, new_len); 1549 if (!avail) 1550 return; 1551 } 1552 1553 ptr = skb_tail_pointer(skb); 1554 for (i = 0; i < len; i++) 1555 ptr = hex_byte_pack_upper(ptr, buf[i]); 1556 *ptr = 0; 1557 skb_put(skb, len << 1); /* new string is twice the old string */ 1558 } 1559 1560 /* 1561 * Format a string of no more than slen characters into the audit buffer, 1562 * enclosed in quote marks. 1563 */ 1564 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1565 size_t slen) 1566 { 1567 int avail, new_len; 1568 unsigned char *ptr; 1569 struct sk_buff *skb; 1570 1571 if (!ab) 1572 return; 1573 1574 BUG_ON(!ab->skb); 1575 skb = ab->skb; 1576 avail = skb_tailroom(skb); 1577 new_len = slen + 3; /* enclosing quotes + null terminator */ 1578 if (new_len > avail) { 1579 avail = audit_expand(ab, new_len); 1580 if (!avail) 1581 return; 1582 } 1583 ptr = skb_tail_pointer(skb); 1584 *ptr++ = '"'; 1585 memcpy(ptr, string, slen); 1586 ptr += slen; 1587 *ptr++ = '"'; 1588 *ptr = 0; 1589 skb_put(skb, slen + 2); /* don't include null terminator */ 1590 } 1591 1592 /** 1593 * audit_string_contains_control - does a string need to be logged in hex 1594 * @string: string to be checked 1595 * @len: max length of the string to check 1596 */ 1597 bool audit_string_contains_control(const char *string, size_t len) 1598 { 1599 const unsigned char *p; 1600 for (p = string; p < (const unsigned char *)string + len; p++) { 1601 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1602 return true; 1603 } 1604 return false; 1605 } 1606 1607 /** 1608 * audit_log_n_untrustedstring - log a string that may contain random characters 1609 * @ab: audit_buffer 1610 * @len: length of string (not including trailing null) 1611 * @string: string to be logged 1612 * 1613 * This code will escape a string that is passed to it if the string 1614 * contains a control character, unprintable character, double quote mark, 1615 * or a space. Unescaped strings will start and end with a double quote mark. 1616 * Strings that are escaped are printed in hex (2 digits per char). 1617 * 1618 * The caller specifies the number of characters in the string to log, which may 1619 * or may not be the entire string. 1620 */ 1621 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1622 size_t len) 1623 { 1624 if (audit_string_contains_control(string, len)) 1625 audit_log_n_hex(ab, string, len); 1626 else 1627 audit_log_n_string(ab, string, len); 1628 } 1629 1630 /** 1631 * audit_log_untrustedstring - log a string that may contain random characters 1632 * @ab: audit_buffer 1633 * @string: string to be logged 1634 * 1635 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1636 * determine string length. 1637 */ 1638 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1639 { 1640 audit_log_n_untrustedstring(ab, string, strlen(string)); 1641 } 1642 1643 /* This is a helper-function to print the escaped d_path */ 1644 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1645 const struct path *path) 1646 { 1647 char *p, *pathname; 1648 1649 if (prefix) 1650 audit_log_format(ab, "%s", prefix); 1651 1652 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1653 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1654 if (!pathname) { 1655 audit_log_string(ab, "<no_memory>"); 1656 return; 1657 } 1658 p = d_path(path, pathname, PATH_MAX+11); 1659 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1660 /* FIXME: can we save some information here? */ 1661 audit_log_string(ab, "<too_long>"); 1662 } else 1663 audit_log_untrustedstring(ab, p); 1664 kfree(pathname); 1665 } 1666 1667 void audit_log_session_info(struct audit_buffer *ab) 1668 { 1669 unsigned int sessionid = audit_get_sessionid(current); 1670 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1671 1672 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1673 } 1674 1675 void audit_log_key(struct audit_buffer *ab, char *key) 1676 { 1677 audit_log_format(ab, " key="); 1678 if (key) 1679 audit_log_untrustedstring(ab, key); 1680 else 1681 audit_log_format(ab, "(null)"); 1682 } 1683 1684 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1685 { 1686 int i; 1687 1688 audit_log_format(ab, " %s=", prefix); 1689 CAP_FOR_EACH_U32(i) { 1690 audit_log_format(ab, "%08x", 1691 cap->cap[CAP_LAST_U32 - i]); 1692 } 1693 } 1694 1695 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1696 { 1697 kernel_cap_t *perm = &name->fcap.permitted; 1698 kernel_cap_t *inh = &name->fcap.inheritable; 1699 int log = 0; 1700 1701 if (!cap_isclear(*perm)) { 1702 audit_log_cap(ab, "cap_fp", perm); 1703 log = 1; 1704 } 1705 if (!cap_isclear(*inh)) { 1706 audit_log_cap(ab, "cap_fi", inh); 1707 log = 1; 1708 } 1709 1710 if (log) 1711 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1712 name->fcap.fE, name->fcap_ver); 1713 } 1714 1715 static inline int audit_copy_fcaps(struct audit_names *name, 1716 const struct dentry *dentry) 1717 { 1718 struct cpu_vfs_cap_data caps; 1719 int rc; 1720 1721 if (!dentry) 1722 return 0; 1723 1724 rc = get_vfs_caps_from_disk(dentry, &caps); 1725 if (rc) 1726 return rc; 1727 1728 name->fcap.permitted = caps.permitted; 1729 name->fcap.inheritable = caps.inheritable; 1730 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1731 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1732 VFS_CAP_REVISION_SHIFT; 1733 1734 return 0; 1735 } 1736 1737 /* Copy inode data into an audit_names. */ 1738 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1739 struct inode *inode) 1740 { 1741 name->ino = inode->i_ino; 1742 name->dev = inode->i_sb->s_dev; 1743 name->mode = inode->i_mode; 1744 name->uid = inode->i_uid; 1745 name->gid = inode->i_gid; 1746 name->rdev = inode->i_rdev; 1747 security_inode_getsecid(inode, &name->osid); 1748 audit_copy_fcaps(name, dentry); 1749 } 1750 1751 /** 1752 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1753 * @context: audit_context for the task 1754 * @n: audit_names structure with reportable details 1755 * @path: optional path to report instead of audit_names->name 1756 * @record_num: record number to report when handling a list of names 1757 * @call_panic: optional pointer to int that will be updated if secid fails 1758 */ 1759 void audit_log_name(struct audit_context *context, struct audit_names *n, 1760 struct path *path, int record_num, int *call_panic) 1761 { 1762 struct audit_buffer *ab; 1763 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1764 if (!ab) 1765 return; 1766 1767 audit_log_format(ab, "item=%d", record_num); 1768 1769 if (path) 1770 audit_log_d_path(ab, " name=", path); 1771 else if (n->name) { 1772 switch (n->name_len) { 1773 case AUDIT_NAME_FULL: 1774 /* log the full path */ 1775 audit_log_format(ab, " name="); 1776 audit_log_untrustedstring(ab, n->name->name); 1777 break; 1778 case 0: 1779 /* name was specified as a relative path and the 1780 * directory component is the cwd */ 1781 audit_log_d_path(ab, " name=", &context->pwd); 1782 break; 1783 default: 1784 /* log the name's directory component */ 1785 audit_log_format(ab, " name="); 1786 audit_log_n_untrustedstring(ab, n->name->name, 1787 n->name_len); 1788 } 1789 } else 1790 audit_log_format(ab, " name=(null)"); 1791 1792 if (n->ino != AUDIT_INO_UNSET) 1793 audit_log_format(ab, " inode=%lu" 1794 " dev=%02x:%02x mode=%#ho" 1795 " ouid=%u ogid=%u rdev=%02x:%02x", 1796 n->ino, 1797 MAJOR(n->dev), 1798 MINOR(n->dev), 1799 n->mode, 1800 from_kuid(&init_user_ns, n->uid), 1801 from_kgid(&init_user_ns, n->gid), 1802 MAJOR(n->rdev), 1803 MINOR(n->rdev)); 1804 if (n->osid != 0) { 1805 char *ctx = NULL; 1806 u32 len; 1807 if (security_secid_to_secctx( 1808 n->osid, &ctx, &len)) { 1809 audit_log_format(ab, " osid=%u", n->osid); 1810 if (call_panic) 1811 *call_panic = 2; 1812 } else { 1813 audit_log_format(ab, " obj=%s", ctx); 1814 security_release_secctx(ctx, len); 1815 } 1816 } 1817 1818 /* log the audit_names record type */ 1819 audit_log_format(ab, " nametype="); 1820 switch(n->type) { 1821 case AUDIT_TYPE_NORMAL: 1822 audit_log_format(ab, "NORMAL"); 1823 break; 1824 case AUDIT_TYPE_PARENT: 1825 audit_log_format(ab, "PARENT"); 1826 break; 1827 case AUDIT_TYPE_CHILD_DELETE: 1828 audit_log_format(ab, "DELETE"); 1829 break; 1830 case AUDIT_TYPE_CHILD_CREATE: 1831 audit_log_format(ab, "CREATE"); 1832 break; 1833 default: 1834 audit_log_format(ab, "UNKNOWN"); 1835 break; 1836 } 1837 1838 audit_log_fcaps(ab, n); 1839 audit_log_end(ab); 1840 } 1841 1842 int audit_log_task_context(struct audit_buffer *ab) 1843 { 1844 char *ctx = NULL; 1845 unsigned len; 1846 int error; 1847 u32 sid; 1848 1849 security_task_getsecid(current, &sid); 1850 if (!sid) 1851 return 0; 1852 1853 error = security_secid_to_secctx(sid, &ctx, &len); 1854 if (error) { 1855 if (error != -EINVAL) 1856 goto error_path; 1857 return 0; 1858 } 1859 1860 audit_log_format(ab, " subj=%s", ctx); 1861 security_release_secctx(ctx, len); 1862 return 0; 1863 1864 error_path: 1865 audit_panic("error in audit_log_task_context"); 1866 return error; 1867 } 1868 EXPORT_SYMBOL(audit_log_task_context); 1869 1870 void audit_log_d_path_exe(struct audit_buffer *ab, 1871 struct mm_struct *mm) 1872 { 1873 struct file *exe_file; 1874 1875 if (!mm) 1876 goto out_null; 1877 1878 exe_file = get_mm_exe_file(mm); 1879 if (!exe_file) 1880 goto out_null; 1881 1882 audit_log_d_path(ab, " exe=", &exe_file->f_path); 1883 fput(exe_file); 1884 return; 1885 out_null: 1886 audit_log_format(ab, " exe=(null)"); 1887 } 1888 1889 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1890 { 1891 const struct cred *cred; 1892 char comm[sizeof(tsk->comm)]; 1893 char *tty; 1894 1895 if (!ab) 1896 return; 1897 1898 /* tsk == current */ 1899 cred = current_cred(); 1900 1901 spin_lock_irq(&tsk->sighand->siglock); 1902 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1903 tty = tsk->signal->tty->name; 1904 else 1905 tty = "(none)"; 1906 spin_unlock_irq(&tsk->sighand->siglock); 1907 1908 audit_log_format(ab, 1909 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1910 " euid=%u suid=%u fsuid=%u" 1911 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1912 task_ppid_nr(tsk), 1913 task_pid_nr(tsk), 1914 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1915 from_kuid(&init_user_ns, cred->uid), 1916 from_kgid(&init_user_ns, cred->gid), 1917 from_kuid(&init_user_ns, cred->euid), 1918 from_kuid(&init_user_ns, cred->suid), 1919 from_kuid(&init_user_ns, cred->fsuid), 1920 from_kgid(&init_user_ns, cred->egid), 1921 from_kgid(&init_user_ns, cred->sgid), 1922 from_kgid(&init_user_ns, cred->fsgid), 1923 tty, audit_get_sessionid(tsk)); 1924 1925 audit_log_format(ab, " comm="); 1926 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 1927 1928 audit_log_d_path_exe(ab, tsk->mm); 1929 audit_log_task_context(ab); 1930 } 1931 EXPORT_SYMBOL(audit_log_task_info); 1932 1933 /** 1934 * audit_log_link_denied - report a link restriction denial 1935 * @operation: specific link operation 1936 * @link: the path that triggered the restriction 1937 */ 1938 void audit_log_link_denied(const char *operation, struct path *link) 1939 { 1940 struct audit_buffer *ab; 1941 struct audit_names *name; 1942 1943 name = kzalloc(sizeof(*name), GFP_NOFS); 1944 if (!name) 1945 return; 1946 1947 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1948 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1949 AUDIT_ANOM_LINK); 1950 if (!ab) 1951 goto out; 1952 audit_log_format(ab, "op=%s", operation); 1953 audit_log_task_info(ab, current); 1954 audit_log_format(ab, " res=0"); 1955 audit_log_end(ab); 1956 1957 /* Generate AUDIT_PATH record with object. */ 1958 name->type = AUDIT_TYPE_NORMAL; 1959 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 1960 audit_log_name(current->audit_context, name, link, 0, NULL); 1961 out: 1962 kfree(name); 1963 } 1964 1965 /** 1966 * audit_log_end - end one audit record 1967 * @ab: the audit_buffer 1968 * 1969 * netlink_unicast() cannot be called inside an irq context because it blocks 1970 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed 1971 * on a queue and a tasklet is scheduled to remove them from the queue outside 1972 * the irq context. May be called in any context. 1973 */ 1974 void audit_log_end(struct audit_buffer *ab) 1975 { 1976 if (!ab) 1977 return; 1978 if (!audit_rate_check()) { 1979 audit_log_lost("rate limit exceeded"); 1980 } else { 1981 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1982 1983 nlh->nlmsg_len = ab->skb->len; 1984 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask); 1985 1986 /* 1987 * The original kaudit unicast socket sends up messages with 1988 * nlmsg_len set to the payload length rather than the entire 1989 * message length. This breaks the standard set by netlink. 1990 * The existing auditd daemon assumes this breakage. Fixing 1991 * this would require co-ordinating a change in the established 1992 * protocol between the kaudit kernel subsystem and the auditd 1993 * userspace code. 1994 */ 1995 nlh->nlmsg_len -= NLMSG_HDRLEN; 1996 1997 if (audit_pid) { 1998 skb_queue_tail(&audit_skb_queue, ab->skb); 1999 wake_up_interruptible(&kauditd_wait); 2000 } else { 2001 audit_printk_skb(ab->skb); 2002 } 2003 ab->skb = NULL; 2004 } 2005 audit_buffer_free(ab); 2006 } 2007 2008 /** 2009 * audit_log - Log an audit record 2010 * @ctx: audit context 2011 * @gfp_mask: type of allocation 2012 * @type: audit message type 2013 * @fmt: format string to use 2014 * @...: variable parameters matching the format string 2015 * 2016 * This is a convenience function that calls audit_log_start, 2017 * audit_log_vformat, and audit_log_end. It may be called 2018 * in any context. 2019 */ 2020 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2021 const char *fmt, ...) 2022 { 2023 struct audit_buffer *ab; 2024 va_list args; 2025 2026 ab = audit_log_start(ctx, gfp_mask, type); 2027 if (ab) { 2028 va_start(args, fmt); 2029 audit_log_vformat(ab, fmt, args); 2030 va_end(args); 2031 audit_log_end(ab); 2032 } 2033 } 2034 2035 #ifdef CONFIG_SECURITY 2036 /** 2037 * audit_log_secctx - Converts and logs SELinux context 2038 * @ab: audit_buffer 2039 * @secid: security number 2040 * 2041 * This is a helper function that calls security_secid_to_secctx to convert 2042 * secid to secctx and then adds the (converted) SELinux context to the audit 2043 * log by calling audit_log_format, thus also preventing leak of internal secid 2044 * to userspace. If secid cannot be converted audit_panic is called. 2045 */ 2046 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2047 { 2048 u32 len; 2049 char *secctx; 2050 2051 if (security_secid_to_secctx(secid, &secctx, &len)) { 2052 audit_panic("Cannot convert secid to context"); 2053 } else { 2054 audit_log_format(ab, " obj=%s", secctx); 2055 security_release_secctx(secctx, len); 2056 } 2057 } 2058 EXPORT_SYMBOL(audit_log_secctx); 2059 #endif 2060 2061 EXPORT_SYMBOL(audit_log_start); 2062 EXPORT_SYMBOL(audit_log_end); 2063 EXPORT_SYMBOL(audit_log_format); 2064 EXPORT_SYMBOL(audit_log); 2065