xref: /linux/kernel/async.c (revision f30d5b307c694e03368ab55f2f96b0ca4131e775)
1 /*
2  * async.c: Asynchronous function calls for boot performance
3  *
4  * (C) Copyright 2009 Intel Corporation
5  * Author: Arjan van de Ven <arjan@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 
14 /*
15 
16 Goals and Theory of Operation
17 
18 The primary goal of this feature is to reduce the kernel boot time,
19 by doing various independent hardware delays and discovery operations
20 decoupled and not strictly serialized.
21 
22 More specifically, the asynchronous function call concept allows
23 certain operations (primarily during system boot) to happen
24 asynchronously, out of order, while these operations still
25 have their externally visible parts happen sequentially and in-order.
26 (not unlike how out-of-order CPUs retire their instructions in order)
27 
28 Key to the asynchronous function call implementation is the concept of
29 a "sequence cookie" (which, although it has an abstracted type, can be
30 thought of as a monotonically incrementing number).
31 
32 The async core will assign each scheduled event such a sequence cookie and
33 pass this to the called functions.
34 
35 The asynchronously called function should before doing a globally visible
36 operation, such as registering device numbers, call the
37 async_synchronize_cookie() function and pass in its own cookie. The
38 async_synchronize_cookie() function will make sure that all asynchronous
39 operations that were scheduled prior to the operation corresponding with the
40 cookie have completed.
41 
42 Subsystem/driver initialization code that scheduled asynchronous probe
43 functions, but which shares global resources with other drivers/subsystems
44 that do not use the asynchronous call feature, need to do a full
45 synchronization with the async_synchronize_full() function, before returning
46 from their init function. This is to maintain strict ordering between the
47 asynchronous and synchronous parts of the kernel.
48 
49 */
50 
51 #include <linux/async.h>
52 #include <linux/module.h>
53 #include <linux/wait.h>
54 #include <linux/sched.h>
55 #include <linux/init.h>
56 #include <linux/kthread.h>
57 #include <linux/delay.h>
58 #include <asm/atomic.h>
59 
60 static async_cookie_t next_cookie = 1;
61 
62 #define MAX_THREADS	256
63 #define MAX_WORK	32768
64 
65 static LIST_HEAD(async_pending);
66 static LIST_HEAD(async_running);
67 static DEFINE_SPINLOCK(async_lock);
68 
69 static int async_enabled = 0;
70 
71 struct async_entry {
72 	struct list_head list;
73 	async_cookie_t   cookie;
74 	async_func_ptr	 *func;
75 	void             *data;
76 	struct list_head *running;
77 };
78 
79 static DECLARE_WAIT_QUEUE_HEAD(async_done);
80 static DECLARE_WAIT_QUEUE_HEAD(async_new);
81 
82 static atomic_t entry_count;
83 static atomic_t thread_count;
84 
85 extern int initcall_debug;
86 
87 
88 /*
89  * MUST be called with the lock held!
90  */
91 static async_cookie_t  __lowest_in_progress(struct list_head *running)
92 {
93 	struct async_entry *entry;
94 	if (!list_empty(running)) {
95 		entry = list_first_entry(running,
96 			struct async_entry, list);
97 		return entry->cookie;
98 	} else if (!list_empty(&async_pending)) {
99 		entry = list_first_entry(&async_pending,
100 			struct async_entry, list);
101 		return entry->cookie;
102 	} else {
103 		/* nothing in progress... next_cookie is "infinity" */
104 		return next_cookie;
105 	}
106 
107 }
108 
109 static async_cookie_t  lowest_in_progress(struct list_head *running)
110 {
111 	unsigned long flags;
112 	async_cookie_t ret;
113 
114 	spin_lock_irqsave(&async_lock, flags);
115 	ret = __lowest_in_progress(running);
116 	spin_unlock_irqrestore(&async_lock, flags);
117 	return ret;
118 }
119 /*
120  * pick the first pending entry and run it
121  */
122 static void run_one_entry(void)
123 {
124 	unsigned long flags;
125 	struct async_entry *entry;
126 	ktime_t calltime, delta, rettime;
127 
128 	/* 1) pick one task from the pending queue */
129 
130 	spin_lock_irqsave(&async_lock, flags);
131 	if (list_empty(&async_pending))
132 		goto out;
133 	entry = list_first_entry(&async_pending, struct async_entry, list);
134 
135 	/* 2) move it to the running queue */
136 	list_del(&entry->list);
137 	list_add_tail(&entry->list, entry->running);
138 	spin_unlock_irqrestore(&async_lock, flags);
139 
140 	/* 3) run it (and print duration)*/
141 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
142 		printk("calling  %lli_%pF @ %i\n", (long long)entry->cookie,
143 			entry->func, task_pid_nr(current));
144 		calltime = ktime_get();
145 	}
146 	entry->func(entry->data, entry->cookie);
147 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
148 		rettime = ktime_get();
149 		delta = ktime_sub(rettime, calltime);
150 		printk("initcall %lli_%pF returned 0 after %lld usecs\n",
151 			(long long)entry->cookie,
152 			entry->func,
153 			(long long)ktime_to_ns(delta) >> 10);
154 	}
155 
156 	/* 4) remove it from the running queue */
157 	spin_lock_irqsave(&async_lock, flags);
158 	list_del(&entry->list);
159 
160 	/* 5) free the entry  */
161 	kfree(entry);
162 	atomic_dec(&entry_count);
163 
164 	spin_unlock_irqrestore(&async_lock, flags);
165 
166 	/* 6) wake up any waiters. */
167 	wake_up(&async_done);
168 	return;
169 
170 out:
171 	spin_unlock_irqrestore(&async_lock, flags);
172 }
173 
174 
175 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running)
176 {
177 	struct async_entry *entry;
178 	unsigned long flags;
179 	async_cookie_t newcookie;
180 
181 
182 	/* allow irq-off callers */
183 	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
184 
185 	/*
186 	 * If we're out of memory or if there's too much work
187 	 * pending already, we execute synchronously.
188 	 */
189 	if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) {
190 		kfree(entry);
191 		spin_lock_irqsave(&async_lock, flags);
192 		newcookie = next_cookie++;
193 		spin_unlock_irqrestore(&async_lock, flags);
194 
195 		/* low on memory.. run synchronously */
196 		ptr(data, newcookie);
197 		return newcookie;
198 	}
199 	entry->func = ptr;
200 	entry->data = data;
201 	entry->running = running;
202 
203 	spin_lock_irqsave(&async_lock, flags);
204 	newcookie = entry->cookie = next_cookie++;
205 	list_add_tail(&entry->list, &async_pending);
206 	atomic_inc(&entry_count);
207 	spin_unlock_irqrestore(&async_lock, flags);
208 	wake_up(&async_new);
209 	return newcookie;
210 }
211 
212 /**
213  * async_schedule - schedule a function for asynchronous execution
214  * @ptr: function to execute asynchronously
215  * @data: data pointer to pass to the function
216  *
217  * Returns an async_cookie_t that may be used for checkpointing later.
218  * Note: This function may be called from atomic or non-atomic contexts.
219  */
220 async_cookie_t async_schedule(async_func_ptr *ptr, void *data)
221 {
222 	return __async_schedule(ptr, data, &async_running);
223 }
224 EXPORT_SYMBOL_GPL(async_schedule);
225 
226 /**
227  * async_schedule_special - schedule a function for asynchronous execution with a special running queue
228  * @ptr: function to execute asynchronously
229  * @data: data pointer to pass to the function
230  * @running: list head to add to while running
231  *
232  * Returns an async_cookie_t that may be used for checkpointing later.
233  * @running may be used in the async_synchronize_*_special() functions
234  * to wait on a special running queue rather than on the global running
235  * queue.
236  * Note: This function may be called from atomic or non-atomic contexts.
237  */
238 async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running)
239 {
240 	return __async_schedule(ptr, data, running);
241 }
242 EXPORT_SYMBOL_GPL(async_schedule_special);
243 
244 /**
245  * async_synchronize_full - synchronize all asynchronous function calls
246  *
247  * This function waits until all asynchronous function calls have been done.
248  */
249 void async_synchronize_full(void)
250 {
251 	do {
252 		async_synchronize_cookie(next_cookie);
253 	} while (!list_empty(&async_running) || !list_empty(&async_pending));
254 }
255 EXPORT_SYMBOL_GPL(async_synchronize_full);
256 
257 /**
258  * async_synchronize_full_special - synchronize all asynchronous function calls for a running list
259  * @list: running list to synchronize on
260  *
261  * This function waits until all asynchronous function calls for the running
262  * list @list have been done.
263  */
264 void async_synchronize_full_special(struct list_head *list)
265 {
266 	async_synchronize_cookie_special(next_cookie, list);
267 }
268 EXPORT_SYMBOL_GPL(async_synchronize_full_special);
269 
270 /**
271  * async_synchronize_cookie_special - synchronize asynchronous function calls on a running list with cookie checkpointing
272  * @cookie: async_cookie_t to use as checkpoint
273  * @running: running list to synchronize on
274  *
275  * This function waits until all asynchronous function calls for the running
276  * list @list submitted prior to @cookie have been done.
277  */
278 void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running)
279 {
280 	ktime_t starttime, delta, endtime;
281 
282 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
283 		printk("async_waiting @ %i\n", task_pid_nr(current));
284 		starttime = ktime_get();
285 	}
286 
287 	wait_event(async_done, lowest_in_progress(running) >= cookie);
288 
289 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
290 		endtime = ktime_get();
291 		delta = ktime_sub(endtime, starttime);
292 
293 		printk("async_continuing @ %i after %lli usec\n",
294 			task_pid_nr(current),
295 			(long long)ktime_to_ns(delta) >> 10);
296 	}
297 }
298 EXPORT_SYMBOL_GPL(async_synchronize_cookie_special);
299 
300 /**
301  * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
302  * @cookie: async_cookie_t to use as checkpoint
303  *
304  * This function waits until all asynchronous function calls prior to @cookie
305  * have been done.
306  */
307 void async_synchronize_cookie(async_cookie_t cookie)
308 {
309 	async_synchronize_cookie_special(cookie, &async_running);
310 }
311 EXPORT_SYMBOL_GPL(async_synchronize_cookie);
312 
313 
314 static int async_thread(void *unused)
315 {
316 	DECLARE_WAITQUEUE(wq, current);
317 	add_wait_queue(&async_new, &wq);
318 
319 	while (!kthread_should_stop()) {
320 		int ret = HZ;
321 		set_current_state(TASK_INTERRUPTIBLE);
322 		/*
323 		 * check the list head without lock.. false positives
324 		 * are dealt with inside run_one_entry() while holding
325 		 * the lock.
326 		 */
327 		rmb();
328 		if (!list_empty(&async_pending))
329 			run_one_entry();
330 		else
331 			ret = schedule_timeout(HZ);
332 
333 		if (ret == 0) {
334 			/*
335 			 * we timed out, this means we as thread are redundant.
336 			 * we sign off and die, but we to avoid any races there
337 			 * is a last-straw check to see if work snuck in.
338 			 */
339 			atomic_dec(&thread_count);
340 			wmb(); /* manager must see our departure first */
341 			if (list_empty(&async_pending))
342 				break;
343 			/*
344 			 * woops work came in between us timing out and us
345 			 * signing off; we need to stay alive and keep working.
346 			 */
347 			atomic_inc(&thread_count);
348 		}
349 	}
350 	remove_wait_queue(&async_new, &wq);
351 
352 	return 0;
353 }
354 
355 static int async_manager_thread(void *unused)
356 {
357 	DECLARE_WAITQUEUE(wq, current);
358 	add_wait_queue(&async_new, &wq);
359 
360 	while (!kthread_should_stop()) {
361 		int tc, ec;
362 
363 		set_current_state(TASK_INTERRUPTIBLE);
364 
365 		tc = atomic_read(&thread_count);
366 		rmb();
367 		ec = atomic_read(&entry_count);
368 
369 		while (tc < ec && tc < MAX_THREADS) {
370 			if (IS_ERR(kthread_run(async_thread, NULL, "async/%i",
371 					       tc))) {
372 				msleep(100);
373 				continue;
374 			}
375 			atomic_inc(&thread_count);
376 			tc++;
377 		}
378 
379 		schedule();
380 	}
381 	remove_wait_queue(&async_new, &wq);
382 
383 	return 0;
384 }
385 
386 static int __init async_init(void)
387 {
388 	if (async_enabled)
389 		if (IS_ERR(kthread_run(async_manager_thread, NULL,
390 				       "async/mgr")))
391 			async_enabled = 0;
392 	return 0;
393 }
394 
395 static int __init setup_async(char *str)
396 {
397 	async_enabled = 1;
398 	return 1;
399 }
400 
401 __setup("fastboot", setup_async);
402 
403 
404 core_initcall(async_init);
405