xref: /linux/kernel/async.c (revision e190bfe56841551b1ad5abb42ebd0c4798cc8c01)
1 /*
2  * async.c: Asynchronous function calls for boot performance
3  *
4  * (C) Copyright 2009 Intel Corporation
5  * Author: Arjan van de Ven <arjan@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 
14 /*
15 
16 Goals and Theory of Operation
17 
18 The primary goal of this feature is to reduce the kernel boot time,
19 by doing various independent hardware delays and discovery operations
20 decoupled and not strictly serialized.
21 
22 More specifically, the asynchronous function call concept allows
23 certain operations (primarily during system boot) to happen
24 asynchronously, out of order, while these operations still
25 have their externally visible parts happen sequentially and in-order.
26 (not unlike how out-of-order CPUs retire their instructions in order)
27 
28 Key to the asynchronous function call implementation is the concept of
29 a "sequence cookie" (which, although it has an abstracted type, can be
30 thought of as a monotonically incrementing number).
31 
32 The async core will assign each scheduled event such a sequence cookie and
33 pass this to the called functions.
34 
35 The asynchronously called function should before doing a globally visible
36 operation, such as registering device numbers, call the
37 async_synchronize_cookie() function and pass in its own cookie. The
38 async_synchronize_cookie() function will make sure that all asynchronous
39 operations that were scheduled prior to the operation corresponding with the
40 cookie have completed.
41 
42 Subsystem/driver initialization code that scheduled asynchronous probe
43 functions, but which shares global resources with other drivers/subsystems
44 that do not use the asynchronous call feature, need to do a full
45 synchronization with the async_synchronize_full() function, before returning
46 from their init function. This is to maintain strict ordering between the
47 asynchronous and synchronous parts of the kernel.
48 
49 */
50 
51 #include <linux/async.h>
52 #include <linux/bug.h>
53 #include <linux/module.h>
54 #include <linux/wait.h>
55 #include <linux/sched.h>
56 #include <linux/init.h>
57 #include <linux/kthread.h>
58 #include <linux/delay.h>
59 #include <linux/slab.h>
60 #include <asm/atomic.h>
61 
62 static async_cookie_t next_cookie = 1;
63 
64 #define MAX_THREADS	256
65 #define MAX_WORK	32768
66 
67 static LIST_HEAD(async_pending);
68 static LIST_HEAD(async_running);
69 static DEFINE_SPINLOCK(async_lock);
70 
71 static int async_enabled = 0;
72 
73 struct async_entry {
74 	struct list_head list;
75 	async_cookie_t   cookie;
76 	async_func_ptr	 *func;
77 	void             *data;
78 	struct list_head *running;
79 };
80 
81 static DECLARE_WAIT_QUEUE_HEAD(async_done);
82 static DECLARE_WAIT_QUEUE_HEAD(async_new);
83 
84 static atomic_t entry_count;
85 static atomic_t thread_count;
86 
87 extern int initcall_debug;
88 
89 
90 /*
91  * MUST be called with the lock held!
92  */
93 static async_cookie_t  __lowest_in_progress(struct list_head *running)
94 {
95 	struct async_entry *entry;
96 
97 	if (!list_empty(running)) {
98 		entry = list_first_entry(running,
99 			struct async_entry, list);
100 		return entry->cookie;
101 	}
102 
103 	list_for_each_entry(entry, &async_pending, list)
104 		if (entry->running == running)
105 			return entry->cookie;
106 
107 	return next_cookie;	/* "infinity" value */
108 }
109 
110 static async_cookie_t  lowest_in_progress(struct list_head *running)
111 {
112 	unsigned long flags;
113 	async_cookie_t ret;
114 
115 	spin_lock_irqsave(&async_lock, flags);
116 	ret = __lowest_in_progress(running);
117 	spin_unlock_irqrestore(&async_lock, flags);
118 	return ret;
119 }
120 /*
121  * pick the first pending entry and run it
122  */
123 static void run_one_entry(void)
124 {
125 	unsigned long flags;
126 	struct async_entry *entry;
127 	ktime_t calltime, delta, rettime;
128 
129 	/* 1) pick one task from the pending queue */
130 
131 	spin_lock_irqsave(&async_lock, flags);
132 	if (list_empty(&async_pending))
133 		goto out;
134 	entry = list_first_entry(&async_pending, struct async_entry, list);
135 
136 	/* 2) move it to the running queue */
137 	list_move_tail(&entry->list, entry->running);
138 	spin_unlock_irqrestore(&async_lock, flags);
139 
140 	/* 3) run it (and print duration)*/
141 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
142 		printk("calling  %lli_%pF @ %i\n", (long long)entry->cookie,
143 			entry->func, task_pid_nr(current));
144 		calltime = ktime_get();
145 	}
146 	entry->func(entry->data, entry->cookie);
147 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
148 		rettime = ktime_get();
149 		delta = ktime_sub(rettime, calltime);
150 		printk("initcall %lli_%pF returned 0 after %lld usecs\n",
151 			(long long)entry->cookie,
152 			entry->func,
153 			(long long)ktime_to_ns(delta) >> 10);
154 	}
155 
156 	/* 4) remove it from the running queue */
157 	spin_lock_irqsave(&async_lock, flags);
158 	list_del(&entry->list);
159 
160 	/* 5) free the entry  */
161 	kfree(entry);
162 	atomic_dec(&entry_count);
163 
164 	spin_unlock_irqrestore(&async_lock, flags);
165 
166 	/* 6) wake up any waiters. */
167 	wake_up(&async_done);
168 	return;
169 
170 out:
171 	spin_unlock_irqrestore(&async_lock, flags);
172 }
173 
174 
175 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running)
176 {
177 	struct async_entry *entry;
178 	unsigned long flags;
179 	async_cookie_t newcookie;
180 
181 
182 	/* allow irq-off callers */
183 	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
184 
185 	/*
186 	 * If we're out of memory or if there's too much work
187 	 * pending already, we execute synchronously.
188 	 */
189 	if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) {
190 		kfree(entry);
191 		spin_lock_irqsave(&async_lock, flags);
192 		newcookie = next_cookie++;
193 		spin_unlock_irqrestore(&async_lock, flags);
194 
195 		/* low on memory.. run synchronously */
196 		ptr(data, newcookie);
197 		return newcookie;
198 	}
199 	entry->func = ptr;
200 	entry->data = data;
201 	entry->running = running;
202 
203 	spin_lock_irqsave(&async_lock, flags);
204 	newcookie = entry->cookie = next_cookie++;
205 	list_add_tail(&entry->list, &async_pending);
206 	atomic_inc(&entry_count);
207 	spin_unlock_irqrestore(&async_lock, flags);
208 	wake_up(&async_new);
209 	return newcookie;
210 }
211 
212 /**
213  * async_schedule - schedule a function for asynchronous execution
214  * @ptr: function to execute asynchronously
215  * @data: data pointer to pass to the function
216  *
217  * Returns an async_cookie_t that may be used for checkpointing later.
218  * Note: This function may be called from atomic or non-atomic contexts.
219  */
220 async_cookie_t async_schedule(async_func_ptr *ptr, void *data)
221 {
222 	return __async_schedule(ptr, data, &async_running);
223 }
224 EXPORT_SYMBOL_GPL(async_schedule);
225 
226 /**
227  * async_schedule_domain - schedule a function for asynchronous execution within a certain domain
228  * @ptr: function to execute asynchronously
229  * @data: data pointer to pass to the function
230  * @running: running list for the domain
231  *
232  * Returns an async_cookie_t that may be used for checkpointing later.
233  * @running may be used in the async_synchronize_*_domain() functions
234  * to wait within a certain synchronization domain rather than globally.
235  * A synchronization domain is specified via the running queue @running to use.
236  * Note: This function may be called from atomic or non-atomic contexts.
237  */
238 async_cookie_t async_schedule_domain(async_func_ptr *ptr, void *data,
239 				     struct list_head *running)
240 {
241 	return __async_schedule(ptr, data, running);
242 }
243 EXPORT_SYMBOL_GPL(async_schedule_domain);
244 
245 /**
246  * async_synchronize_full - synchronize all asynchronous function calls
247  *
248  * This function waits until all asynchronous function calls have been done.
249  */
250 void async_synchronize_full(void)
251 {
252 	do {
253 		async_synchronize_cookie(next_cookie);
254 	} while (!list_empty(&async_running) || !list_empty(&async_pending));
255 }
256 EXPORT_SYMBOL_GPL(async_synchronize_full);
257 
258 /**
259  * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain
260  * @list: running list to synchronize on
261  *
262  * This function waits until all asynchronous function calls for the
263  * synchronization domain specified by the running list @list have been done.
264  */
265 void async_synchronize_full_domain(struct list_head *list)
266 {
267 	async_synchronize_cookie_domain(next_cookie, list);
268 }
269 EXPORT_SYMBOL_GPL(async_synchronize_full_domain);
270 
271 /**
272  * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing
273  * @cookie: async_cookie_t to use as checkpoint
274  * @running: running list to synchronize on
275  *
276  * This function waits until all asynchronous function calls for the
277  * synchronization domain specified by the running list @list submitted
278  * prior to @cookie have been done.
279  */
280 void async_synchronize_cookie_domain(async_cookie_t cookie,
281 				     struct list_head *running)
282 {
283 	ktime_t starttime, delta, endtime;
284 
285 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
286 		printk("async_waiting @ %i\n", task_pid_nr(current));
287 		starttime = ktime_get();
288 	}
289 
290 	wait_event(async_done, lowest_in_progress(running) >= cookie);
291 
292 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
293 		endtime = ktime_get();
294 		delta = ktime_sub(endtime, starttime);
295 
296 		printk("async_continuing @ %i after %lli usec\n",
297 			task_pid_nr(current),
298 			(long long)ktime_to_ns(delta) >> 10);
299 	}
300 }
301 EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain);
302 
303 /**
304  * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
305  * @cookie: async_cookie_t to use as checkpoint
306  *
307  * This function waits until all asynchronous function calls prior to @cookie
308  * have been done.
309  */
310 void async_synchronize_cookie(async_cookie_t cookie)
311 {
312 	async_synchronize_cookie_domain(cookie, &async_running);
313 }
314 EXPORT_SYMBOL_GPL(async_synchronize_cookie);
315 
316 
317 static int async_thread(void *unused)
318 {
319 	DECLARE_WAITQUEUE(wq, current);
320 	add_wait_queue(&async_new, &wq);
321 
322 	while (!kthread_should_stop()) {
323 		int ret = HZ;
324 		set_current_state(TASK_INTERRUPTIBLE);
325 		/*
326 		 * check the list head without lock.. false positives
327 		 * are dealt with inside run_one_entry() while holding
328 		 * the lock.
329 		 */
330 		rmb();
331 		if (!list_empty(&async_pending))
332 			run_one_entry();
333 		else
334 			ret = schedule_timeout(HZ);
335 
336 		if (ret == 0) {
337 			/*
338 			 * we timed out, this means we as thread are redundant.
339 			 * we sign off and die, but we to avoid any races there
340 			 * is a last-straw check to see if work snuck in.
341 			 */
342 			atomic_dec(&thread_count);
343 			wmb(); /* manager must see our departure first */
344 			if (list_empty(&async_pending))
345 				break;
346 			/*
347 			 * woops work came in between us timing out and us
348 			 * signing off; we need to stay alive and keep working.
349 			 */
350 			atomic_inc(&thread_count);
351 		}
352 	}
353 	remove_wait_queue(&async_new, &wq);
354 
355 	return 0;
356 }
357 
358 static int async_manager_thread(void *unused)
359 {
360 	DECLARE_WAITQUEUE(wq, current);
361 	add_wait_queue(&async_new, &wq);
362 
363 	while (!kthread_should_stop()) {
364 		int tc, ec;
365 
366 		set_current_state(TASK_INTERRUPTIBLE);
367 
368 		tc = atomic_read(&thread_count);
369 		rmb();
370 		ec = atomic_read(&entry_count);
371 
372 		while (tc < ec && tc < MAX_THREADS) {
373 			if (IS_ERR(kthread_run(async_thread, NULL, "async/%i",
374 					       tc))) {
375 				msleep(100);
376 				continue;
377 			}
378 			atomic_inc(&thread_count);
379 			tc++;
380 		}
381 
382 		schedule();
383 	}
384 	remove_wait_queue(&async_new, &wq);
385 
386 	return 0;
387 }
388 
389 static int __init async_init(void)
390 {
391 	async_enabled =
392 		!IS_ERR(kthread_run(async_manager_thread, NULL, "async/mgr"));
393 
394 	WARN_ON(!async_enabled);
395 	return 0;
396 }
397 
398 core_initcall(async_init);
399