1 /* 2 * async.c: Asynchronous function calls for boot performance 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Arjan van de Ven <arjan@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 14 /* 15 16 Goals and Theory of Operation 17 18 The primary goal of this feature is to reduce the kernel boot time, 19 by doing various independent hardware delays and discovery operations 20 decoupled and not strictly serialized. 21 22 More specifically, the asynchronous function call concept allows 23 certain operations (primarily during system boot) to happen 24 asynchronously, out of order, while these operations still 25 have their externally visible parts happen sequentially and in-order. 26 (not unlike how out-of-order CPUs retire their instructions in order) 27 28 Key to the asynchronous function call implementation is the concept of 29 a "sequence cookie" (which, although it has an abstracted type, can be 30 thought of as a monotonically incrementing number). 31 32 The async core will assign each scheduled event such a sequence cookie and 33 pass this to the called functions. 34 35 The asynchronously called function should before doing a globally visible 36 operation, such as registering device numbers, call the 37 async_synchronize_cookie() function and pass in its own cookie. The 38 async_synchronize_cookie() function will make sure that all asynchronous 39 operations that were scheduled prior to the operation corresponding with the 40 cookie have completed. 41 42 Subsystem/driver initialization code that scheduled asynchronous probe 43 functions, but which shares global resources with other drivers/subsystems 44 that do not use the asynchronous call feature, need to do a full 45 synchronization with the async_synchronize_full() function, before returning 46 from their init function. This is to maintain strict ordering between the 47 asynchronous and synchronous parts of the kernel. 48 49 */ 50 51 #include <linux/async.h> 52 #include <linux/bug.h> 53 #include <linux/module.h> 54 #include <linux/wait.h> 55 #include <linux/sched.h> 56 #include <linux/init.h> 57 #include <linux/kthread.h> 58 #include <linux/delay.h> 59 #include <linux/slab.h> 60 #include <asm/atomic.h> 61 62 static async_cookie_t next_cookie = 1; 63 64 #define MAX_THREADS 256 65 #define MAX_WORK 32768 66 67 static LIST_HEAD(async_pending); 68 static LIST_HEAD(async_running); 69 static DEFINE_SPINLOCK(async_lock); 70 71 static int async_enabled = 0; 72 73 struct async_entry { 74 struct list_head list; 75 async_cookie_t cookie; 76 async_func_ptr *func; 77 void *data; 78 struct list_head *running; 79 }; 80 81 static DECLARE_WAIT_QUEUE_HEAD(async_done); 82 static DECLARE_WAIT_QUEUE_HEAD(async_new); 83 84 static atomic_t entry_count; 85 static atomic_t thread_count; 86 87 extern int initcall_debug; 88 89 90 /* 91 * MUST be called with the lock held! 92 */ 93 static async_cookie_t __lowest_in_progress(struct list_head *running) 94 { 95 struct async_entry *entry; 96 97 if (!list_empty(running)) { 98 entry = list_first_entry(running, 99 struct async_entry, list); 100 return entry->cookie; 101 } 102 103 list_for_each_entry(entry, &async_pending, list) 104 if (entry->running == running) 105 return entry->cookie; 106 107 return next_cookie; /* "infinity" value */ 108 } 109 110 static async_cookie_t lowest_in_progress(struct list_head *running) 111 { 112 unsigned long flags; 113 async_cookie_t ret; 114 115 spin_lock_irqsave(&async_lock, flags); 116 ret = __lowest_in_progress(running); 117 spin_unlock_irqrestore(&async_lock, flags); 118 return ret; 119 } 120 /* 121 * pick the first pending entry and run it 122 */ 123 static void run_one_entry(void) 124 { 125 unsigned long flags; 126 struct async_entry *entry; 127 ktime_t calltime, delta, rettime; 128 129 /* 1) pick one task from the pending queue */ 130 131 spin_lock_irqsave(&async_lock, flags); 132 if (list_empty(&async_pending)) 133 goto out; 134 entry = list_first_entry(&async_pending, struct async_entry, list); 135 136 /* 2) move it to the running queue */ 137 list_move_tail(&entry->list, entry->running); 138 spin_unlock_irqrestore(&async_lock, flags); 139 140 /* 3) run it (and print duration)*/ 141 if (initcall_debug && system_state == SYSTEM_BOOTING) { 142 printk("calling %lli_%pF @ %i\n", (long long)entry->cookie, 143 entry->func, task_pid_nr(current)); 144 calltime = ktime_get(); 145 } 146 entry->func(entry->data, entry->cookie); 147 if (initcall_debug && system_state == SYSTEM_BOOTING) { 148 rettime = ktime_get(); 149 delta = ktime_sub(rettime, calltime); 150 printk("initcall %lli_%pF returned 0 after %lld usecs\n", 151 (long long)entry->cookie, 152 entry->func, 153 (long long)ktime_to_ns(delta) >> 10); 154 } 155 156 /* 4) remove it from the running queue */ 157 spin_lock_irqsave(&async_lock, flags); 158 list_del(&entry->list); 159 160 /* 5) free the entry */ 161 kfree(entry); 162 atomic_dec(&entry_count); 163 164 spin_unlock_irqrestore(&async_lock, flags); 165 166 /* 6) wake up any waiters. */ 167 wake_up(&async_done); 168 return; 169 170 out: 171 spin_unlock_irqrestore(&async_lock, flags); 172 } 173 174 175 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running) 176 { 177 struct async_entry *entry; 178 unsigned long flags; 179 async_cookie_t newcookie; 180 181 182 /* allow irq-off callers */ 183 entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); 184 185 /* 186 * If we're out of memory or if there's too much work 187 * pending already, we execute synchronously. 188 */ 189 if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) { 190 kfree(entry); 191 spin_lock_irqsave(&async_lock, flags); 192 newcookie = next_cookie++; 193 spin_unlock_irqrestore(&async_lock, flags); 194 195 /* low on memory.. run synchronously */ 196 ptr(data, newcookie); 197 return newcookie; 198 } 199 entry->func = ptr; 200 entry->data = data; 201 entry->running = running; 202 203 spin_lock_irqsave(&async_lock, flags); 204 newcookie = entry->cookie = next_cookie++; 205 list_add_tail(&entry->list, &async_pending); 206 atomic_inc(&entry_count); 207 spin_unlock_irqrestore(&async_lock, flags); 208 wake_up(&async_new); 209 return newcookie; 210 } 211 212 /** 213 * async_schedule - schedule a function for asynchronous execution 214 * @ptr: function to execute asynchronously 215 * @data: data pointer to pass to the function 216 * 217 * Returns an async_cookie_t that may be used for checkpointing later. 218 * Note: This function may be called from atomic or non-atomic contexts. 219 */ 220 async_cookie_t async_schedule(async_func_ptr *ptr, void *data) 221 { 222 return __async_schedule(ptr, data, &async_running); 223 } 224 EXPORT_SYMBOL_GPL(async_schedule); 225 226 /** 227 * async_schedule_domain - schedule a function for asynchronous execution within a certain domain 228 * @ptr: function to execute asynchronously 229 * @data: data pointer to pass to the function 230 * @running: running list for the domain 231 * 232 * Returns an async_cookie_t that may be used for checkpointing later. 233 * @running may be used in the async_synchronize_*_domain() functions 234 * to wait within a certain synchronization domain rather than globally. 235 * A synchronization domain is specified via the running queue @running to use. 236 * Note: This function may be called from atomic or non-atomic contexts. 237 */ 238 async_cookie_t async_schedule_domain(async_func_ptr *ptr, void *data, 239 struct list_head *running) 240 { 241 return __async_schedule(ptr, data, running); 242 } 243 EXPORT_SYMBOL_GPL(async_schedule_domain); 244 245 /** 246 * async_synchronize_full - synchronize all asynchronous function calls 247 * 248 * This function waits until all asynchronous function calls have been done. 249 */ 250 void async_synchronize_full(void) 251 { 252 do { 253 async_synchronize_cookie(next_cookie); 254 } while (!list_empty(&async_running) || !list_empty(&async_pending)); 255 } 256 EXPORT_SYMBOL_GPL(async_synchronize_full); 257 258 /** 259 * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain 260 * @list: running list to synchronize on 261 * 262 * This function waits until all asynchronous function calls for the 263 * synchronization domain specified by the running list @list have been done. 264 */ 265 void async_synchronize_full_domain(struct list_head *list) 266 { 267 async_synchronize_cookie_domain(next_cookie, list); 268 } 269 EXPORT_SYMBOL_GPL(async_synchronize_full_domain); 270 271 /** 272 * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing 273 * @cookie: async_cookie_t to use as checkpoint 274 * @running: running list to synchronize on 275 * 276 * This function waits until all asynchronous function calls for the 277 * synchronization domain specified by the running list @list submitted 278 * prior to @cookie have been done. 279 */ 280 void async_synchronize_cookie_domain(async_cookie_t cookie, 281 struct list_head *running) 282 { 283 ktime_t starttime, delta, endtime; 284 285 if (initcall_debug && system_state == SYSTEM_BOOTING) { 286 printk("async_waiting @ %i\n", task_pid_nr(current)); 287 starttime = ktime_get(); 288 } 289 290 wait_event(async_done, lowest_in_progress(running) >= cookie); 291 292 if (initcall_debug && system_state == SYSTEM_BOOTING) { 293 endtime = ktime_get(); 294 delta = ktime_sub(endtime, starttime); 295 296 printk("async_continuing @ %i after %lli usec\n", 297 task_pid_nr(current), 298 (long long)ktime_to_ns(delta) >> 10); 299 } 300 } 301 EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain); 302 303 /** 304 * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing 305 * @cookie: async_cookie_t to use as checkpoint 306 * 307 * This function waits until all asynchronous function calls prior to @cookie 308 * have been done. 309 */ 310 void async_synchronize_cookie(async_cookie_t cookie) 311 { 312 async_synchronize_cookie_domain(cookie, &async_running); 313 } 314 EXPORT_SYMBOL_GPL(async_synchronize_cookie); 315 316 317 static int async_thread(void *unused) 318 { 319 DECLARE_WAITQUEUE(wq, current); 320 add_wait_queue(&async_new, &wq); 321 322 while (!kthread_should_stop()) { 323 int ret = HZ; 324 set_current_state(TASK_INTERRUPTIBLE); 325 /* 326 * check the list head without lock.. false positives 327 * are dealt with inside run_one_entry() while holding 328 * the lock. 329 */ 330 rmb(); 331 if (!list_empty(&async_pending)) 332 run_one_entry(); 333 else 334 ret = schedule_timeout(HZ); 335 336 if (ret == 0) { 337 /* 338 * we timed out, this means we as thread are redundant. 339 * we sign off and die, but we to avoid any races there 340 * is a last-straw check to see if work snuck in. 341 */ 342 atomic_dec(&thread_count); 343 wmb(); /* manager must see our departure first */ 344 if (list_empty(&async_pending)) 345 break; 346 /* 347 * woops work came in between us timing out and us 348 * signing off; we need to stay alive and keep working. 349 */ 350 atomic_inc(&thread_count); 351 } 352 } 353 remove_wait_queue(&async_new, &wq); 354 355 return 0; 356 } 357 358 static int async_manager_thread(void *unused) 359 { 360 DECLARE_WAITQUEUE(wq, current); 361 add_wait_queue(&async_new, &wq); 362 363 while (!kthread_should_stop()) { 364 int tc, ec; 365 366 set_current_state(TASK_INTERRUPTIBLE); 367 368 tc = atomic_read(&thread_count); 369 rmb(); 370 ec = atomic_read(&entry_count); 371 372 while (tc < ec && tc < MAX_THREADS) { 373 if (IS_ERR(kthread_run(async_thread, NULL, "async/%i", 374 tc))) { 375 msleep(100); 376 continue; 377 } 378 atomic_inc(&thread_count); 379 tc++; 380 } 381 382 schedule(); 383 } 384 remove_wait_queue(&async_new, &wq); 385 386 return 0; 387 } 388 389 static int __init async_init(void) 390 { 391 async_enabled = 392 !IS_ERR(kthread_run(async_manager_thread, NULL, "async/mgr")); 393 394 WARN_ON(!async_enabled); 395 return 0; 396 } 397 398 core_initcall(async_init); 399