xref: /linux/kernel/async.c (revision 08df80a3c51674ab73ae770885a383ca553fbbbf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * async.c: Asynchronous function calls for boot performance
4  *
5  * (C) Copyright 2009 Intel Corporation
6  * Author: Arjan van de Ven <arjan@linux.intel.com>
7  */
8 
9 
10 /*
11 
12 Goals and Theory of Operation
13 
14 The primary goal of this feature is to reduce the kernel boot time,
15 by doing various independent hardware delays and discovery operations
16 decoupled and not strictly serialized.
17 
18 More specifically, the asynchronous function call concept allows
19 certain operations (primarily during system boot) to happen
20 asynchronously, out of order, while these operations still
21 have their externally visible parts happen sequentially and in-order.
22 (not unlike how out-of-order CPUs retire their instructions in order)
23 
24 Key to the asynchronous function call implementation is the concept of
25 a "sequence cookie" (which, although it has an abstracted type, can be
26 thought of as a monotonically incrementing number).
27 
28 The async core will assign each scheduled event such a sequence cookie and
29 pass this to the called functions.
30 
31 The asynchronously called function should before doing a globally visible
32 operation, such as registering device numbers, call the
33 async_synchronize_cookie() function and pass in its own cookie. The
34 async_synchronize_cookie() function will make sure that all asynchronous
35 operations that were scheduled prior to the operation corresponding with the
36 cookie have completed.
37 
38 Subsystem/driver initialization code that scheduled asynchronous probe
39 functions, but which shares global resources with other drivers/subsystems
40 that do not use the asynchronous call feature, need to do a full
41 synchronization with the async_synchronize_full() function, before returning
42 from their init function. This is to maintain strict ordering between the
43 asynchronous and synchronous parts of the kernel.
44 
45 */
46 
47 #include <linux/async.h>
48 #include <linux/atomic.h>
49 #include <linux/export.h>
50 #include <linux/ktime.h>
51 #include <linux/pid.h>
52 #include <linux/sched.h>
53 #include <linux/slab.h>
54 #include <linux/wait.h>
55 #include <linux/workqueue.h>
56 
57 #include "workqueue_internal.h"
58 
59 static async_cookie_t next_cookie = 1;
60 
61 #define MAX_WORK		32768
62 #define ASYNC_COOKIE_MAX	ULLONG_MAX	/* infinity cookie */
63 
64 static LIST_HEAD(async_global_pending);	/* pending from all registered doms */
65 static ASYNC_DOMAIN(async_dfl_domain);
66 static DEFINE_SPINLOCK(async_lock);
67 
68 struct async_entry {
69 	struct list_head	domain_list;
70 	struct list_head	global_list;
71 	struct work_struct	work;
72 	async_cookie_t		cookie;
73 	async_func_t		func;
74 	void			*data;
75 	struct async_domain	*domain;
76 };
77 
78 static DECLARE_WAIT_QUEUE_HEAD(async_done);
79 
80 static atomic_t entry_count;
81 
82 static long long microseconds_since(ktime_t start)
83 {
84 	ktime_t now = ktime_get();
85 	return ktime_to_ns(ktime_sub(now, start)) >> 10;
86 }
87 
88 static async_cookie_t lowest_in_progress(struct async_domain *domain)
89 {
90 	struct async_entry *first = NULL;
91 	async_cookie_t ret = ASYNC_COOKIE_MAX;
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&async_lock, flags);
95 
96 	if (domain) {
97 		if (!list_empty(&domain->pending))
98 			first = list_first_entry(&domain->pending,
99 					struct async_entry, domain_list);
100 	} else {
101 		if (!list_empty(&async_global_pending))
102 			first = list_first_entry(&async_global_pending,
103 					struct async_entry, global_list);
104 	}
105 
106 	if (first)
107 		ret = first->cookie;
108 
109 	spin_unlock_irqrestore(&async_lock, flags);
110 	return ret;
111 }
112 
113 /*
114  * pick the first pending entry and run it
115  */
116 static void async_run_entry_fn(struct work_struct *work)
117 {
118 	struct async_entry *entry =
119 		container_of(work, struct async_entry, work);
120 	unsigned long flags;
121 	ktime_t calltime;
122 
123 	/* 1) run (and print duration) */
124 	pr_debug("calling  %lli_%pS @ %i\n", (long long)entry->cookie,
125 		 entry->func, task_pid_nr(current));
126 	calltime = ktime_get();
127 
128 	entry->func(entry->data, entry->cookie);
129 
130 	pr_debug("initcall %lli_%pS returned after %lld usecs\n",
131 		 (long long)entry->cookie, entry->func,
132 		 microseconds_since(calltime));
133 
134 	/* 2) remove self from the pending queues */
135 	spin_lock_irqsave(&async_lock, flags);
136 	list_del_init(&entry->domain_list);
137 	list_del_init(&entry->global_list);
138 
139 	/* 3) free the entry */
140 	kfree(entry);
141 	atomic_dec(&entry_count);
142 
143 	spin_unlock_irqrestore(&async_lock, flags);
144 
145 	/* 4) wake up any waiters */
146 	wake_up(&async_done);
147 }
148 
149 static async_cookie_t __async_schedule_node_domain(async_func_t func,
150 						   void *data, int node,
151 						   struct async_domain *domain,
152 						   struct async_entry *entry)
153 {
154 	async_cookie_t newcookie;
155 	unsigned long flags;
156 
157 	INIT_LIST_HEAD(&entry->domain_list);
158 	INIT_LIST_HEAD(&entry->global_list);
159 	INIT_WORK(&entry->work, async_run_entry_fn);
160 	entry->func = func;
161 	entry->data = data;
162 	entry->domain = domain;
163 
164 	spin_lock_irqsave(&async_lock, flags);
165 
166 	/* allocate cookie and queue */
167 	newcookie = entry->cookie = next_cookie++;
168 
169 	list_add_tail(&entry->domain_list, &domain->pending);
170 	if (domain->registered)
171 		list_add_tail(&entry->global_list, &async_global_pending);
172 
173 	atomic_inc(&entry_count);
174 	spin_unlock_irqrestore(&async_lock, flags);
175 
176 	/* schedule for execution */
177 	queue_work_node(node, system_unbound_wq, &entry->work);
178 
179 	return newcookie;
180 }
181 
182 /**
183  * async_schedule_node_domain - NUMA specific version of async_schedule_domain
184  * @func: function to execute asynchronously
185  * @data: data pointer to pass to the function
186  * @node: NUMA node that we want to schedule this on or close to
187  * @domain: the domain
188  *
189  * Returns an async_cookie_t that may be used for checkpointing later.
190  * @domain may be used in the async_synchronize_*_domain() functions to
191  * wait within a certain synchronization domain rather than globally.
192  *
193  * Note: This function may be called from atomic or non-atomic contexts.
194  *
195  * The node requested will be honored on a best effort basis. If the node
196  * has no CPUs associated with it then the work is distributed among all
197  * available CPUs.
198  */
199 async_cookie_t async_schedule_node_domain(async_func_t func, void *data,
200 					  int node, struct async_domain *domain)
201 {
202 	struct async_entry *entry;
203 	unsigned long flags;
204 	async_cookie_t newcookie;
205 
206 	/* allow irq-off callers */
207 	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
208 
209 	/*
210 	 * If we're out of memory or if there's too much work
211 	 * pending already, we execute synchronously.
212 	 */
213 	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
214 		kfree(entry);
215 		spin_lock_irqsave(&async_lock, flags);
216 		newcookie = next_cookie++;
217 		spin_unlock_irqrestore(&async_lock, flags);
218 
219 		/* low on memory.. run synchronously */
220 		func(data, newcookie);
221 		return newcookie;
222 	}
223 
224 	return __async_schedule_node_domain(func, data, node, domain, entry);
225 }
226 EXPORT_SYMBOL_GPL(async_schedule_node_domain);
227 
228 /**
229  * async_schedule_node - NUMA specific version of async_schedule
230  * @func: function to execute asynchronously
231  * @data: data pointer to pass to the function
232  * @node: NUMA node that we want to schedule this on or close to
233  *
234  * Returns an async_cookie_t that may be used for checkpointing later.
235  * Note: This function may be called from atomic or non-atomic contexts.
236  *
237  * The node requested will be honored on a best effort basis. If the node
238  * has no CPUs associated with it then the work is distributed among all
239  * available CPUs.
240  */
241 async_cookie_t async_schedule_node(async_func_t func, void *data, int node)
242 {
243 	return async_schedule_node_domain(func, data, node, &async_dfl_domain);
244 }
245 EXPORT_SYMBOL_GPL(async_schedule_node);
246 
247 /**
248  * async_schedule_dev_nocall - A simplified variant of async_schedule_dev()
249  * @func: function to execute asynchronously
250  * @dev: device argument to be passed to function
251  *
252  * @dev is used as both the argument for the function and to provide NUMA
253  * context for where to run the function.
254  *
255  * If the asynchronous execution of @func is scheduled successfully, return
256  * true. Otherwise, do nothing and return false, unlike async_schedule_dev()
257  * that will run the function synchronously then.
258  */
259 bool async_schedule_dev_nocall(async_func_t func, struct device *dev)
260 {
261 	struct async_entry *entry;
262 
263 	entry = kzalloc(sizeof(struct async_entry), GFP_KERNEL);
264 
265 	/* Give up if there is no memory or too much work. */
266 	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
267 		kfree(entry);
268 		return false;
269 	}
270 
271 	__async_schedule_node_domain(func, dev, dev_to_node(dev),
272 				     &async_dfl_domain, entry);
273 	return true;
274 }
275 
276 /**
277  * async_synchronize_full - synchronize all asynchronous function calls
278  *
279  * This function waits until all asynchronous function calls have been done.
280  */
281 void async_synchronize_full(void)
282 {
283 	async_synchronize_full_domain(NULL);
284 }
285 EXPORT_SYMBOL_GPL(async_synchronize_full);
286 
287 /**
288  * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain
289  * @domain: the domain to synchronize
290  *
291  * This function waits until all asynchronous function calls for the
292  * synchronization domain specified by @domain have been done.
293  */
294 void async_synchronize_full_domain(struct async_domain *domain)
295 {
296 	async_synchronize_cookie_domain(ASYNC_COOKIE_MAX, domain);
297 }
298 EXPORT_SYMBOL_GPL(async_synchronize_full_domain);
299 
300 /**
301  * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing
302  * @cookie: async_cookie_t to use as checkpoint
303  * @domain: the domain to synchronize (%NULL for all registered domains)
304  *
305  * This function waits until all asynchronous function calls for the
306  * synchronization domain specified by @domain submitted prior to @cookie
307  * have been done.
308  */
309 void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain)
310 {
311 	ktime_t starttime;
312 
313 	pr_debug("async_waiting @ %i\n", task_pid_nr(current));
314 	starttime = ktime_get();
315 
316 	wait_event(async_done, lowest_in_progress(domain) >= cookie);
317 
318 	pr_debug("async_continuing @ %i after %lli usec\n", task_pid_nr(current),
319 		 microseconds_since(starttime));
320 }
321 EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain);
322 
323 /**
324  * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
325  * @cookie: async_cookie_t to use as checkpoint
326  *
327  * This function waits until all asynchronous function calls prior to @cookie
328  * have been done.
329  */
330 void async_synchronize_cookie(async_cookie_t cookie)
331 {
332 	async_synchronize_cookie_domain(cookie, &async_dfl_domain);
333 }
334 EXPORT_SYMBOL_GPL(async_synchronize_cookie);
335 
336 /**
337  * current_is_async - is %current an async worker task?
338  *
339  * Returns %true if %current is an async worker task.
340  */
341 bool current_is_async(void)
342 {
343 	struct worker *worker = current_wq_worker();
344 
345 	return worker && worker->current_func == async_run_entry_fn;
346 }
347 EXPORT_SYMBOL_GPL(current_is_async);
348