1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/acct.c 4 * 5 * BSD Process Accounting for Linux 6 * 7 * Author: Marco van Wieringen <mvw@planets.elm.net> 8 * 9 * Some code based on ideas and code from: 10 * Thomas K. Dyas <tdyas@eden.rutgers.edu> 11 * 12 * This file implements BSD-style process accounting. Whenever any 13 * process exits, an accounting record of type "struct acct" is 14 * written to the file specified with the acct() system call. It is 15 * up to user-level programs to do useful things with the accounting 16 * log. The kernel just provides the raw accounting information. 17 * 18 * (C) Copyright 1995 - 1997 Marco van Wieringen - ELM Consultancy B.V. 19 * 20 * Plugged two leaks. 1) It didn't return acct_file into the free_filps if 21 * the file happened to be read-only. 2) If the accounting was suspended 22 * due to the lack of space it happily allowed to reopen it and completely 23 * lost the old acct_file. 3/10/98, Al Viro. 24 * 25 * Now we silently close acct_file on attempt to reopen. Cleaned sys_acct(). 26 * XTerms and EMACS are manifestations of pure evil. 21/10/98, AV. 27 * 28 * Fixed a nasty interaction with sys_umount(). If the accounting 29 * was suspeneded we failed to stop it on umount(). Messy. 30 * Another one: remount to readonly didn't stop accounting. 31 * Question: what should we do if we have CAP_SYS_ADMIN but not 32 * CAP_SYS_PACCT? Current code does the following: umount returns -EBUSY 33 * unless we are messing with the root. In that case we are getting a 34 * real mess with do_remount_sb(). 9/11/98, AV. 35 * 36 * Fixed a bunch of races (and pair of leaks). Probably not the best way, 37 * but this one obviously doesn't introduce deadlocks. Later. BTW, found 38 * one race (and leak) in BSD implementation. 39 * OK, that's better. ANOTHER race and leak in BSD variant. There always 40 * is one more bug... 10/11/98, AV. 41 * 42 * Oh, fsck... Oopsable SMP race in do_process_acct() - we must hold 43 * ->mmap_lock to walk the vma list of current->mm. Nasty, since it leaks 44 * a struct file opened for write. Fixed. 2/6/2000, AV. 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/slab.h> 49 #include <linux/acct.h> 50 #include <linux/capability.h> 51 #include <linux/file.h> 52 #include <linux/tty.h> 53 #include <linux/security.h> 54 #include <linux/vfs.h> 55 #include <linux/jiffies.h> 56 #include <linux/times.h> 57 #include <linux/syscalls.h> 58 #include <linux/mount.h> 59 #include <linux/uaccess.h> 60 #include <linux/sched/cputime.h> 61 62 #include <asm/div64.h> 63 #include <linux/pid_namespace.h> 64 #include <linux/fs_pin.h> 65 66 /* 67 * These constants control the amount of freespace that suspend and 68 * resume the process accounting system, and the time delay between 69 * each check. 70 * Turned into sysctl-controllable parameters. AV, 12/11/98 71 */ 72 73 static int acct_parm[3] = {4, 2, 30}; 74 #define RESUME (acct_parm[0]) /* >foo% free space - resume */ 75 #define SUSPEND (acct_parm[1]) /* <foo% free space - suspend */ 76 #define ACCT_TIMEOUT (acct_parm[2]) /* foo second timeout between checks */ 77 78 #ifdef CONFIG_SYSCTL 79 static struct ctl_table kern_acct_table[] = { 80 { 81 .procname = "acct", 82 .data = &acct_parm, 83 .maxlen = 3*sizeof(int), 84 .mode = 0644, 85 .proc_handler = proc_dointvec, 86 }, 87 { } 88 }; 89 90 static __init int kernel_acct_sysctls_init(void) 91 { 92 register_sysctl_init("kernel", kern_acct_table); 93 return 0; 94 } 95 late_initcall(kernel_acct_sysctls_init); 96 #endif /* CONFIG_SYSCTL */ 97 98 /* 99 * External references and all of the globals. 100 */ 101 102 struct bsd_acct_struct { 103 struct fs_pin pin; 104 atomic_long_t count; 105 struct rcu_head rcu; 106 struct mutex lock; 107 int active; 108 unsigned long needcheck; 109 struct file *file; 110 struct pid_namespace *ns; 111 struct work_struct work; 112 struct completion done; 113 }; 114 115 static void do_acct_process(struct bsd_acct_struct *acct); 116 117 /* 118 * Check the amount of free space and suspend/resume accordingly. 119 */ 120 static int check_free_space(struct bsd_acct_struct *acct) 121 { 122 struct kstatfs sbuf; 123 124 if (time_is_after_jiffies(acct->needcheck)) 125 goto out; 126 127 /* May block */ 128 if (vfs_statfs(&acct->file->f_path, &sbuf)) 129 goto out; 130 131 if (acct->active) { 132 u64 suspend = sbuf.f_blocks * SUSPEND; 133 do_div(suspend, 100); 134 if (sbuf.f_bavail <= suspend) { 135 acct->active = 0; 136 pr_info("Process accounting paused\n"); 137 } 138 } else { 139 u64 resume = sbuf.f_blocks * RESUME; 140 do_div(resume, 100); 141 if (sbuf.f_bavail >= resume) { 142 acct->active = 1; 143 pr_info("Process accounting resumed\n"); 144 } 145 } 146 147 acct->needcheck = jiffies + ACCT_TIMEOUT*HZ; 148 out: 149 return acct->active; 150 } 151 152 static void acct_put(struct bsd_acct_struct *p) 153 { 154 if (atomic_long_dec_and_test(&p->count)) 155 kfree_rcu(p, rcu); 156 } 157 158 static inline struct bsd_acct_struct *to_acct(struct fs_pin *p) 159 { 160 return p ? container_of(p, struct bsd_acct_struct, pin) : NULL; 161 } 162 163 static struct bsd_acct_struct *acct_get(struct pid_namespace *ns) 164 { 165 struct bsd_acct_struct *res; 166 again: 167 smp_rmb(); 168 rcu_read_lock(); 169 res = to_acct(READ_ONCE(ns->bacct)); 170 if (!res) { 171 rcu_read_unlock(); 172 return NULL; 173 } 174 if (!atomic_long_inc_not_zero(&res->count)) { 175 rcu_read_unlock(); 176 cpu_relax(); 177 goto again; 178 } 179 rcu_read_unlock(); 180 mutex_lock(&res->lock); 181 if (res != to_acct(READ_ONCE(ns->bacct))) { 182 mutex_unlock(&res->lock); 183 acct_put(res); 184 goto again; 185 } 186 return res; 187 } 188 189 static void acct_pin_kill(struct fs_pin *pin) 190 { 191 struct bsd_acct_struct *acct = to_acct(pin); 192 mutex_lock(&acct->lock); 193 do_acct_process(acct); 194 schedule_work(&acct->work); 195 wait_for_completion(&acct->done); 196 cmpxchg(&acct->ns->bacct, pin, NULL); 197 mutex_unlock(&acct->lock); 198 pin_remove(pin); 199 acct_put(acct); 200 } 201 202 static void close_work(struct work_struct *work) 203 { 204 struct bsd_acct_struct *acct = container_of(work, struct bsd_acct_struct, work); 205 struct file *file = acct->file; 206 if (file->f_op->flush) 207 file->f_op->flush(file, NULL); 208 __fput_sync(file); 209 complete(&acct->done); 210 } 211 212 static int acct_on(struct filename *pathname) 213 { 214 struct file *file; 215 struct vfsmount *mnt, *internal; 216 struct pid_namespace *ns = task_active_pid_ns(current); 217 struct bsd_acct_struct *acct; 218 struct fs_pin *old; 219 int err; 220 221 acct = kzalloc(sizeof(struct bsd_acct_struct), GFP_KERNEL); 222 if (!acct) 223 return -ENOMEM; 224 225 /* Difference from BSD - they don't do O_APPEND */ 226 file = file_open_name(pathname, O_WRONLY|O_APPEND|O_LARGEFILE, 0); 227 if (IS_ERR(file)) { 228 kfree(acct); 229 return PTR_ERR(file); 230 } 231 232 if (!S_ISREG(file_inode(file)->i_mode)) { 233 kfree(acct); 234 filp_close(file, NULL); 235 return -EACCES; 236 } 237 238 if (!(file->f_mode & FMODE_CAN_WRITE)) { 239 kfree(acct); 240 filp_close(file, NULL); 241 return -EIO; 242 } 243 internal = mnt_clone_internal(&file->f_path); 244 if (IS_ERR(internal)) { 245 kfree(acct); 246 filp_close(file, NULL); 247 return PTR_ERR(internal); 248 } 249 err = __mnt_want_write(internal); 250 if (err) { 251 mntput(internal); 252 kfree(acct); 253 filp_close(file, NULL); 254 return err; 255 } 256 mnt = file->f_path.mnt; 257 file->f_path.mnt = internal; 258 259 atomic_long_set(&acct->count, 1); 260 init_fs_pin(&acct->pin, acct_pin_kill); 261 acct->file = file; 262 acct->needcheck = jiffies; 263 acct->ns = ns; 264 mutex_init(&acct->lock); 265 INIT_WORK(&acct->work, close_work); 266 init_completion(&acct->done); 267 mutex_lock_nested(&acct->lock, 1); /* nobody has seen it yet */ 268 pin_insert(&acct->pin, mnt); 269 270 rcu_read_lock(); 271 old = xchg(&ns->bacct, &acct->pin); 272 mutex_unlock(&acct->lock); 273 pin_kill(old); 274 __mnt_drop_write(mnt); 275 mntput(mnt); 276 return 0; 277 } 278 279 static DEFINE_MUTEX(acct_on_mutex); 280 281 /** 282 * sys_acct - enable/disable process accounting 283 * @name: file name for accounting records or NULL to shutdown accounting 284 * 285 * sys_acct() is the only system call needed to implement process 286 * accounting. It takes the name of the file where accounting records 287 * should be written. If the filename is NULL, accounting will be 288 * shutdown. 289 * 290 * Returns: 0 for success or negative errno values for failure. 291 */ 292 SYSCALL_DEFINE1(acct, const char __user *, name) 293 { 294 int error = 0; 295 296 if (!capable(CAP_SYS_PACCT)) 297 return -EPERM; 298 299 if (name) { 300 struct filename *tmp = getname(name); 301 302 if (IS_ERR(tmp)) 303 return PTR_ERR(tmp); 304 mutex_lock(&acct_on_mutex); 305 error = acct_on(tmp); 306 mutex_unlock(&acct_on_mutex); 307 putname(tmp); 308 } else { 309 rcu_read_lock(); 310 pin_kill(task_active_pid_ns(current)->bacct); 311 } 312 313 return error; 314 } 315 316 void acct_exit_ns(struct pid_namespace *ns) 317 { 318 rcu_read_lock(); 319 pin_kill(ns->bacct); 320 } 321 322 /* 323 * encode an unsigned long into a comp_t 324 * 325 * This routine has been adopted from the encode_comp_t() function in 326 * the kern_acct.c file of the FreeBSD operating system. The encoding 327 * is a 13-bit fraction with a 3-bit (base 8) exponent. 328 */ 329 330 #define MANTSIZE 13 /* 13 bit mantissa. */ 331 #define EXPSIZE 3 /* Base 8 (3 bit) exponent. */ 332 #define MAXFRACT ((1 << MANTSIZE) - 1) /* Maximum fractional value. */ 333 334 static comp_t encode_comp_t(unsigned long value) 335 { 336 int exp, rnd; 337 338 exp = rnd = 0; 339 while (value > MAXFRACT) { 340 rnd = value & (1 << (EXPSIZE - 1)); /* Round up? */ 341 value >>= EXPSIZE; /* Base 8 exponent == 3 bit shift. */ 342 exp++; 343 } 344 345 /* 346 * If we need to round up, do it (and handle overflow correctly). 347 */ 348 if (rnd && (++value > MAXFRACT)) { 349 value >>= EXPSIZE; 350 exp++; 351 } 352 353 /* 354 * Clean it up and polish it off. 355 */ 356 exp <<= MANTSIZE; /* Shift the exponent into place */ 357 exp += value; /* and add on the mantissa. */ 358 return exp; 359 } 360 361 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 362 /* 363 * encode an u64 into a comp2_t (24 bits) 364 * 365 * Format: 5 bit base 2 exponent, 20 bits mantissa. 366 * The leading bit of the mantissa is not stored, but implied for 367 * non-zero exponents. 368 * Largest encodable value is 50 bits. 369 */ 370 371 #define MANTSIZE2 20 /* 20 bit mantissa. */ 372 #define EXPSIZE2 5 /* 5 bit base 2 exponent. */ 373 #define MAXFRACT2 ((1ul << MANTSIZE2) - 1) /* Maximum fractional value. */ 374 #define MAXEXP2 ((1 << EXPSIZE2) - 1) /* Maximum exponent. */ 375 376 static comp2_t encode_comp2_t(u64 value) 377 { 378 int exp, rnd; 379 380 exp = (value > (MAXFRACT2>>1)); 381 rnd = 0; 382 while (value > MAXFRACT2) { 383 rnd = value & 1; 384 value >>= 1; 385 exp++; 386 } 387 388 /* 389 * If we need to round up, do it (and handle overflow correctly). 390 */ 391 if (rnd && (++value > MAXFRACT2)) { 392 value >>= 1; 393 exp++; 394 } 395 396 if (exp > MAXEXP2) { 397 /* Overflow. Return largest representable number instead. */ 398 return (1ul << (MANTSIZE2+EXPSIZE2-1)) - 1; 399 } else { 400 return (value & (MAXFRACT2>>1)) | (exp << (MANTSIZE2-1)); 401 } 402 } 403 #elif ACCT_VERSION == 3 404 /* 405 * encode an u64 into a 32 bit IEEE float 406 */ 407 static u32 encode_float(u64 value) 408 { 409 unsigned exp = 190; 410 unsigned u; 411 412 if (value == 0) 413 return 0; 414 while ((s64)value > 0) { 415 value <<= 1; 416 exp--; 417 } 418 u = (u32)(value >> 40) & 0x7fffffu; 419 return u | (exp << 23); 420 } 421 #endif 422 423 /* 424 * Write an accounting entry for an exiting process 425 * 426 * The acct_process() call is the workhorse of the process 427 * accounting system. The struct acct is built here and then written 428 * into the accounting file. This function should only be called from 429 * do_exit() or when switching to a different output file. 430 */ 431 432 static void fill_ac(acct_t *ac) 433 { 434 struct pacct_struct *pacct = ¤t->signal->pacct; 435 u64 elapsed, run_time; 436 time64_t btime; 437 struct tty_struct *tty; 438 439 /* 440 * Fill the accounting struct with the needed info as recorded 441 * by the different kernel functions. 442 */ 443 memset(ac, 0, sizeof(acct_t)); 444 445 ac->ac_version = ACCT_VERSION | ACCT_BYTEORDER; 446 strlcpy(ac->ac_comm, current->comm, sizeof(ac->ac_comm)); 447 448 /* calculate run_time in nsec*/ 449 run_time = ktime_get_ns(); 450 run_time -= current->group_leader->start_time; 451 /* convert nsec -> AHZ */ 452 elapsed = nsec_to_AHZ(run_time); 453 #if ACCT_VERSION == 3 454 ac->ac_etime = encode_float(elapsed); 455 #else 456 ac->ac_etime = encode_comp_t(elapsed < (unsigned long) -1l ? 457 (unsigned long) elapsed : (unsigned long) -1l); 458 #endif 459 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 460 { 461 /* new enlarged etime field */ 462 comp2_t etime = encode_comp2_t(elapsed); 463 464 ac->ac_etime_hi = etime >> 16; 465 ac->ac_etime_lo = (u16) etime; 466 } 467 #endif 468 do_div(elapsed, AHZ); 469 btime = ktime_get_real_seconds() - elapsed; 470 ac->ac_btime = clamp_t(time64_t, btime, 0, U32_MAX); 471 #if ACCT_VERSION==2 472 ac->ac_ahz = AHZ; 473 #endif 474 475 spin_lock_irq(¤t->sighand->siglock); 476 tty = current->signal->tty; /* Safe as we hold the siglock */ 477 ac->ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0; 478 ac->ac_utime = encode_comp_t(nsec_to_AHZ(pacct->ac_utime)); 479 ac->ac_stime = encode_comp_t(nsec_to_AHZ(pacct->ac_stime)); 480 ac->ac_flag = pacct->ac_flag; 481 ac->ac_mem = encode_comp_t(pacct->ac_mem); 482 ac->ac_minflt = encode_comp_t(pacct->ac_minflt); 483 ac->ac_majflt = encode_comp_t(pacct->ac_majflt); 484 ac->ac_exitcode = pacct->ac_exitcode; 485 spin_unlock_irq(¤t->sighand->siglock); 486 } 487 /* 488 * do_acct_process does all actual work. Caller holds the reference to file. 489 */ 490 static void do_acct_process(struct bsd_acct_struct *acct) 491 { 492 acct_t ac; 493 unsigned long flim; 494 const struct cred *orig_cred; 495 struct file *file = acct->file; 496 497 /* 498 * Accounting records are not subject to resource limits. 499 */ 500 flim = rlimit(RLIMIT_FSIZE); 501 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY; 502 /* Perform file operations on behalf of whoever enabled accounting */ 503 orig_cred = override_creds(file->f_cred); 504 505 /* 506 * First check to see if there is enough free_space to continue 507 * the process accounting system. 508 */ 509 if (!check_free_space(acct)) 510 goto out; 511 512 fill_ac(&ac); 513 /* we really need to bite the bullet and change layout */ 514 ac.ac_uid = from_kuid_munged(file->f_cred->user_ns, orig_cred->uid); 515 ac.ac_gid = from_kgid_munged(file->f_cred->user_ns, orig_cred->gid); 516 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 517 /* backward-compatible 16 bit fields */ 518 ac.ac_uid16 = ac.ac_uid; 519 ac.ac_gid16 = ac.ac_gid; 520 #elif ACCT_VERSION == 3 521 { 522 struct pid_namespace *ns = acct->ns; 523 524 ac.ac_pid = task_tgid_nr_ns(current, ns); 525 rcu_read_lock(); 526 ac.ac_ppid = task_tgid_nr_ns(rcu_dereference(current->real_parent), 527 ns); 528 rcu_read_unlock(); 529 } 530 #endif 531 /* 532 * Get freeze protection. If the fs is frozen, just skip the write 533 * as we could deadlock the system otherwise. 534 */ 535 if (file_start_write_trylock(file)) { 536 /* it's been opened O_APPEND, so position is irrelevant */ 537 loff_t pos = 0; 538 __kernel_write(file, &ac, sizeof(acct_t), &pos); 539 file_end_write(file); 540 } 541 out: 542 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; 543 revert_creds(orig_cred); 544 } 545 546 /** 547 * acct_collect - collect accounting information into pacct_struct 548 * @exitcode: task exit code 549 * @group_dead: not 0, if this thread is the last one in the process. 550 */ 551 void acct_collect(long exitcode, int group_dead) 552 { 553 struct pacct_struct *pacct = ¤t->signal->pacct; 554 u64 utime, stime; 555 unsigned long vsize = 0; 556 557 if (group_dead && current->mm) { 558 struct vm_area_struct *vma; 559 560 mmap_read_lock(current->mm); 561 vma = current->mm->mmap; 562 while (vma) { 563 vsize += vma->vm_end - vma->vm_start; 564 vma = vma->vm_next; 565 } 566 mmap_read_unlock(current->mm); 567 } 568 569 spin_lock_irq(¤t->sighand->siglock); 570 if (group_dead) 571 pacct->ac_mem = vsize / 1024; 572 if (thread_group_leader(current)) { 573 pacct->ac_exitcode = exitcode; 574 if (current->flags & PF_FORKNOEXEC) 575 pacct->ac_flag |= AFORK; 576 } 577 if (current->flags & PF_SUPERPRIV) 578 pacct->ac_flag |= ASU; 579 if (current->flags & PF_DUMPCORE) 580 pacct->ac_flag |= ACORE; 581 if (current->flags & PF_SIGNALED) 582 pacct->ac_flag |= AXSIG; 583 584 task_cputime(current, &utime, &stime); 585 pacct->ac_utime += utime; 586 pacct->ac_stime += stime; 587 pacct->ac_minflt += current->min_flt; 588 pacct->ac_majflt += current->maj_flt; 589 spin_unlock_irq(¤t->sighand->siglock); 590 } 591 592 static void slow_acct_process(struct pid_namespace *ns) 593 { 594 for ( ; ns; ns = ns->parent) { 595 struct bsd_acct_struct *acct = acct_get(ns); 596 if (acct) { 597 do_acct_process(acct); 598 mutex_unlock(&acct->lock); 599 acct_put(acct); 600 } 601 } 602 } 603 604 /** 605 * acct_process - handles process accounting for an exiting task 606 */ 607 void acct_process(void) 608 { 609 struct pid_namespace *ns; 610 611 /* 612 * This loop is safe lockless, since current is still 613 * alive and holds its namespace, which in turn holds 614 * its parent. 615 */ 616 for (ns = task_active_pid_ns(current); ns != NULL; ns = ns->parent) { 617 if (ns->bacct) 618 break; 619 } 620 if (unlikely(ns)) 621 slow_acct_process(ns); 622 } 623