1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/acct.c 4 * 5 * BSD Process Accounting for Linux 6 * 7 * Author: Marco van Wieringen <mvw@planets.elm.net> 8 * 9 * Some code based on ideas and code from: 10 * Thomas K. Dyas <tdyas@eden.rutgers.edu> 11 * 12 * This file implements BSD-style process accounting. Whenever any 13 * process exits, an accounting record of type "struct acct" is 14 * written to the file specified with the acct() system call. It is 15 * up to user-level programs to do useful things with the accounting 16 * log. The kernel just provides the raw accounting information. 17 * 18 * (C) Copyright 1995 - 1997 Marco van Wieringen - ELM Consultancy B.V. 19 * 20 * Plugged two leaks. 1) It didn't return acct_file into the free_filps if 21 * the file happened to be read-only. 2) If the accounting was suspended 22 * due to the lack of space it happily allowed to reopen it and completely 23 * lost the old acct_file. 3/10/98, Al Viro. 24 * 25 * Now we silently close acct_file on attempt to reopen. Cleaned sys_acct(). 26 * XTerms and EMACS are manifestations of pure evil. 21/10/98, AV. 27 * 28 * Fixed a nasty interaction with sys_umount(). If the accounting 29 * was suspeneded we failed to stop it on umount(). Messy. 30 * Another one: remount to readonly didn't stop accounting. 31 * Question: what should we do if we have CAP_SYS_ADMIN but not 32 * CAP_SYS_PACCT? Current code does the following: umount returns -EBUSY 33 * unless we are messing with the root. In that case we are getting a 34 * real mess with do_remount_sb(). 9/11/98, AV. 35 * 36 * Fixed a bunch of races (and pair of leaks). Probably not the best way, 37 * but this one obviously doesn't introduce deadlocks. Later. BTW, found 38 * one race (and leak) in BSD implementation. 39 * OK, that's better. ANOTHER race and leak in BSD variant. There always 40 * is one more bug... 10/11/98, AV. 41 * 42 * Oh, fsck... Oopsable SMP race in do_process_acct() - we must hold 43 * ->mmap_lock to walk the vma list of current->mm. Nasty, since it leaks 44 * a struct file opened for write. Fixed. 2/6/2000, AV. 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/slab.h> 49 #include <linux/acct.h> 50 #include <linux/capability.h> 51 #include <linux/file.h> 52 #include <linux/tty.h> 53 #include <linux/security.h> 54 #include <linux/vfs.h> 55 #include <linux/jiffies.h> 56 #include <linux/times.h> 57 #include <linux/syscalls.h> 58 #include <linux/mount.h> 59 #include <linux/uaccess.h> 60 #include <linux/sched/cputime.h> 61 62 #include <asm/div64.h> 63 #include <linux/pid_namespace.h> 64 #include <linux/fs_pin.h> 65 66 /* 67 * These constants control the amount of freespace that suspend and 68 * resume the process accounting system, and the time delay between 69 * each check. 70 * Turned into sysctl-controllable parameters. AV, 12/11/98 71 */ 72 73 static int acct_parm[3] = {4, 2, 30}; 74 #define RESUME (acct_parm[0]) /* >foo% free space - resume */ 75 #define SUSPEND (acct_parm[1]) /* <foo% free space - suspend */ 76 #define ACCT_TIMEOUT (acct_parm[2]) /* foo second timeout between checks */ 77 78 #ifdef CONFIG_SYSCTL 79 static const struct ctl_table kern_acct_table[] = { 80 { 81 .procname = "acct", 82 .data = &acct_parm, 83 .maxlen = 3*sizeof(int), 84 .mode = 0644, 85 .proc_handler = proc_dointvec, 86 }, 87 }; 88 89 static __init int kernel_acct_sysctls_init(void) 90 { 91 register_sysctl_init("kernel", kern_acct_table); 92 return 0; 93 } 94 late_initcall(kernel_acct_sysctls_init); 95 #endif /* CONFIG_SYSCTL */ 96 97 /* 98 * External references and all of the globals. 99 */ 100 101 struct bsd_acct_struct { 102 struct fs_pin pin; 103 atomic_long_t count; 104 struct rcu_head rcu; 105 struct mutex lock; 106 bool active; 107 bool check_space; 108 unsigned long needcheck; 109 struct file *file; 110 struct pid_namespace *ns; 111 struct work_struct work; 112 struct completion done; 113 acct_t ac; 114 }; 115 116 static void fill_ac(struct bsd_acct_struct *acct); 117 static void acct_write_process(struct bsd_acct_struct *acct); 118 119 /* 120 * Check the amount of free space and suspend/resume accordingly. 121 */ 122 static bool check_free_space(struct bsd_acct_struct *acct) 123 { 124 struct kstatfs sbuf; 125 126 if (!acct->check_space) 127 return acct->active; 128 129 /* May block */ 130 if (vfs_statfs(&acct->file->f_path, &sbuf)) 131 return acct->active; 132 133 if (acct->active) { 134 u64 suspend = sbuf.f_blocks * SUSPEND; 135 do_div(suspend, 100); 136 if (sbuf.f_bavail <= suspend) { 137 acct->active = false; 138 pr_info("Process accounting paused\n"); 139 } 140 } else { 141 u64 resume = sbuf.f_blocks * RESUME; 142 do_div(resume, 100); 143 if (sbuf.f_bavail >= resume) { 144 acct->active = true; 145 pr_info("Process accounting resumed\n"); 146 } 147 } 148 149 acct->needcheck = jiffies + ACCT_TIMEOUT*HZ; 150 return acct->active; 151 } 152 153 static void acct_put(struct bsd_acct_struct *p) 154 { 155 if (atomic_long_dec_and_test(&p->count)) 156 kfree_rcu(p, rcu); 157 } 158 159 static inline struct bsd_acct_struct *to_acct(struct fs_pin *p) 160 { 161 return p ? container_of(p, struct bsd_acct_struct, pin) : NULL; 162 } 163 164 static struct bsd_acct_struct *acct_get(struct pid_namespace *ns) 165 { 166 struct bsd_acct_struct *res; 167 again: 168 smp_rmb(); 169 rcu_read_lock(); 170 res = to_acct(READ_ONCE(ns->bacct)); 171 if (!res) { 172 rcu_read_unlock(); 173 return NULL; 174 } 175 if (!atomic_long_inc_not_zero(&res->count)) { 176 rcu_read_unlock(); 177 cpu_relax(); 178 goto again; 179 } 180 rcu_read_unlock(); 181 mutex_lock(&res->lock); 182 if (res != to_acct(READ_ONCE(ns->bacct))) { 183 mutex_unlock(&res->lock); 184 acct_put(res); 185 goto again; 186 } 187 return res; 188 } 189 190 static void acct_pin_kill(struct fs_pin *pin) 191 { 192 struct bsd_acct_struct *acct = to_acct(pin); 193 mutex_lock(&acct->lock); 194 /* 195 * Fill the accounting struct with the exiting task's info 196 * before punting to the workqueue. 197 */ 198 fill_ac(acct); 199 schedule_work(&acct->work); 200 wait_for_completion(&acct->done); 201 cmpxchg(&acct->ns->bacct, pin, NULL); 202 mutex_unlock(&acct->lock); 203 pin_remove(pin); 204 acct_put(acct); 205 } 206 207 static void close_work(struct work_struct *work) 208 { 209 struct bsd_acct_struct *acct = container_of(work, struct bsd_acct_struct, work); 210 struct file *file = acct->file; 211 212 /* We were fired by acct_pin_kill() which holds acct->lock. */ 213 acct_write_process(acct); 214 if (file->f_op->flush) 215 file->f_op->flush(file, NULL); 216 __fput_sync(file); 217 complete(&acct->done); 218 } 219 220 static int acct_on(struct filename *pathname) 221 { 222 struct file *file; 223 struct vfsmount *mnt, *internal; 224 struct pid_namespace *ns = task_active_pid_ns(current); 225 struct bsd_acct_struct *acct; 226 struct fs_pin *old; 227 int err; 228 229 acct = kzalloc(sizeof(struct bsd_acct_struct), GFP_KERNEL); 230 if (!acct) 231 return -ENOMEM; 232 233 /* Difference from BSD - they don't do O_APPEND */ 234 file = file_open_name(pathname, O_WRONLY|O_APPEND|O_LARGEFILE, 0); 235 if (IS_ERR(file)) { 236 kfree(acct); 237 return PTR_ERR(file); 238 } 239 240 if (!S_ISREG(file_inode(file)->i_mode)) { 241 kfree(acct); 242 filp_close(file, NULL); 243 return -EACCES; 244 } 245 246 /* Exclude kernel kernel internal filesystems. */ 247 if (file_inode(file)->i_sb->s_flags & (SB_NOUSER | SB_KERNMOUNT)) { 248 kfree(acct); 249 filp_close(file, NULL); 250 return -EINVAL; 251 } 252 253 /* Exclude procfs and sysfs. */ 254 if (file_inode(file)->i_sb->s_iflags & SB_I_USERNS_VISIBLE) { 255 kfree(acct); 256 filp_close(file, NULL); 257 return -EINVAL; 258 } 259 260 if (!(file->f_mode & FMODE_CAN_WRITE)) { 261 kfree(acct); 262 filp_close(file, NULL); 263 return -EIO; 264 } 265 internal = mnt_clone_internal(&file->f_path); 266 if (IS_ERR(internal)) { 267 kfree(acct); 268 filp_close(file, NULL); 269 return PTR_ERR(internal); 270 } 271 err = mnt_get_write_access(internal); 272 if (err) { 273 mntput(internal); 274 kfree(acct); 275 filp_close(file, NULL); 276 return err; 277 } 278 mnt = file->f_path.mnt; 279 file->f_path.mnt = internal; 280 281 atomic_long_set(&acct->count, 1); 282 init_fs_pin(&acct->pin, acct_pin_kill); 283 acct->file = file; 284 acct->needcheck = jiffies; 285 acct->ns = ns; 286 mutex_init(&acct->lock); 287 INIT_WORK(&acct->work, close_work); 288 init_completion(&acct->done); 289 mutex_lock_nested(&acct->lock, 1); /* nobody has seen it yet */ 290 pin_insert(&acct->pin, mnt); 291 292 rcu_read_lock(); 293 old = xchg(&ns->bacct, &acct->pin); 294 mutex_unlock(&acct->lock); 295 pin_kill(old); 296 mnt_put_write_access(mnt); 297 mntput(mnt); 298 return 0; 299 } 300 301 static DEFINE_MUTEX(acct_on_mutex); 302 303 /** 304 * sys_acct - enable/disable process accounting 305 * @name: file name for accounting records or NULL to shutdown accounting 306 * 307 * sys_acct() is the only system call needed to implement process 308 * accounting. It takes the name of the file where accounting records 309 * should be written. If the filename is NULL, accounting will be 310 * shutdown. 311 * 312 * Returns: 0 for success or negative errno values for failure. 313 */ 314 SYSCALL_DEFINE1(acct, const char __user *, name) 315 { 316 int error = 0; 317 318 if (!capable(CAP_SYS_PACCT)) 319 return -EPERM; 320 321 if (name) { 322 struct filename *tmp = getname(name); 323 324 if (IS_ERR(tmp)) 325 return PTR_ERR(tmp); 326 mutex_lock(&acct_on_mutex); 327 error = acct_on(tmp); 328 mutex_unlock(&acct_on_mutex); 329 putname(tmp); 330 } else { 331 rcu_read_lock(); 332 pin_kill(task_active_pid_ns(current)->bacct); 333 } 334 335 return error; 336 } 337 338 void acct_exit_ns(struct pid_namespace *ns) 339 { 340 rcu_read_lock(); 341 pin_kill(ns->bacct); 342 } 343 344 /* 345 * encode an u64 into a comp_t 346 * 347 * This routine has been adopted from the encode_comp_t() function in 348 * the kern_acct.c file of the FreeBSD operating system. The encoding 349 * is a 13-bit fraction with a 3-bit (base 8) exponent. 350 */ 351 352 #define MANTSIZE 13 /* 13 bit mantissa. */ 353 #define EXPSIZE 3 /* Base 8 (3 bit) exponent. */ 354 #define MAXFRACT ((1 << MANTSIZE) - 1) /* Maximum fractional value. */ 355 356 static comp_t encode_comp_t(u64 value) 357 { 358 int exp, rnd; 359 360 exp = rnd = 0; 361 while (value > MAXFRACT) { 362 rnd = value & (1 << (EXPSIZE - 1)); /* Round up? */ 363 value >>= EXPSIZE; /* Base 8 exponent == 3 bit shift. */ 364 exp++; 365 } 366 367 /* 368 * If we need to round up, do it (and handle overflow correctly). 369 */ 370 if (rnd && (++value > MAXFRACT)) { 371 value >>= EXPSIZE; 372 exp++; 373 } 374 375 if (exp > (((comp_t) ~0U) >> MANTSIZE)) 376 return (comp_t) ~0U; 377 /* 378 * Clean it up and polish it off. 379 */ 380 exp <<= MANTSIZE; /* Shift the exponent into place */ 381 exp += value; /* and add on the mantissa. */ 382 return exp; 383 } 384 385 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 386 /* 387 * encode an u64 into a comp2_t (24 bits) 388 * 389 * Format: 5 bit base 2 exponent, 20 bits mantissa. 390 * The leading bit of the mantissa is not stored, but implied for 391 * non-zero exponents. 392 * Largest encodable value is 50 bits. 393 */ 394 395 #define MANTSIZE2 20 /* 20 bit mantissa. */ 396 #define EXPSIZE2 5 /* 5 bit base 2 exponent. */ 397 #define MAXFRACT2 ((1ul << MANTSIZE2) - 1) /* Maximum fractional value. */ 398 #define MAXEXP2 ((1 << EXPSIZE2) - 1) /* Maximum exponent. */ 399 400 static comp2_t encode_comp2_t(u64 value) 401 { 402 int exp, rnd; 403 404 exp = (value > (MAXFRACT2>>1)); 405 rnd = 0; 406 while (value > MAXFRACT2) { 407 rnd = value & 1; 408 value >>= 1; 409 exp++; 410 } 411 412 /* 413 * If we need to round up, do it (and handle overflow correctly). 414 */ 415 if (rnd && (++value > MAXFRACT2)) { 416 value >>= 1; 417 exp++; 418 } 419 420 if (exp > MAXEXP2) { 421 /* Overflow. Return largest representable number instead. */ 422 return (1ul << (MANTSIZE2+EXPSIZE2-1)) - 1; 423 } else { 424 return (value & (MAXFRACT2>>1)) | (exp << (MANTSIZE2-1)); 425 } 426 } 427 #elif ACCT_VERSION == 3 428 /* 429 * encode an u64 into a 32 bit IEEE float 430 */ 431 static u32 encode_float(u64 value) 432 { 433 unsigned exp = 190; 434 unsigned u; 435 436 if (value == 0) 437 return 0; 438 while ((s64)value > 0) { 439 value <<= 1; 440 exp--; 441 } 442 u = (u32)(value >> 40) & 0x7fffffu; 443 return u | (exp << 23); 444 } 445 #endif 446 447 /* 448 * Write an accounting entry for an exiting process 449 * 450 * The acct_process() call is the workhorse of the process 451 * accounting system. The struct acct is built here and then written 452 * into the accounting file. This function should only be called from 453 * do_exit() or when switching to a different output file. 454 */ 455 456 static void fill_ac(struct bsd_acct_struct *acct) 457 { 458 struct pacct_struct *pacct = ¤t->signal->pacct; 459 struct file *file = acct->file; 460 acct_t *ac = &acct->ac; 461 u64 elapsed, run_time; 462 time64_t btime; 463 struct tty_struct *tty; 464 465 lockdep_assert_held(&acct->lock); 466 467 if (time_is_after_jiffies(acct->needcheck)) { 468 acct->check_space = false; 469 470 /* Don't fill in @ac if nothing will be written. */ 471 if (!acct->active) 472 return; 473 } else { 474 acct->check_space = true; 475 } 476 477 /* 478 * Fill the accounting struct with the needed info as recorded 479 * by the different kernel functions. 480 */ 481 memset(ac, 0, sizeof(acct_t)); 482 483 ac->ac_version = ACCT_VERSION | ACCT_BYTEORDER; 484 strscpy(ac->ac_comm, current->comm, sizeof(ac->ac_comm)); 485 486 /* calculate run_time in nsec*/ 487 run_time = ktime_get_ns(); 488 run_time -= current->group_leader->start_time; 489 /* convert nsec -> AHZ */ 490 elapsed = nsec_to_AHZ(run_time); 491 #if ACCT_VERSION == 3 492 ac->ac_etime = encode_float(elapsed); 493 #else 494 ac->ac_etime = encode_comp_t(elapsed < (unsigned long) -1l ? 495 (unsigned long) elapsed : (unsigned long) -1l); 496 #endif 497 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 498 { 499 /* new enlarged etime field */ 500 comp2_t etime = encode_comp2_t(elapsed); 501 502 ac->ac_etime_hi = etime >> 16; 503 ac->ac_etime_lo = (u16) etime; 504 } 505 #endif 506 do_div(elapsed, AHZ); 507 btime = ktime_get_real_seconds() - elapsed; 508 ac->ac_btime = clamp_t(time64_t, btime, 0, U32_MAX); 509 #if ACCT_VERSION == 2 510 ac->ac_ahz = AHZ; 511 #endif 512 513 spin_lock_irq(¤t->sighand->siglock); 514 tty = current->signal->tty; /* Safe as we hold the siglock */ 515 ac->ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0; 516 ac->ac_utime = encode_comp_t(nsec_to_AHZ(pacct->ac_utime)); 517 ac->ac_stime = encode_comp_t(nsec_to_AHZ(pacct->ac_stime)); 518 ac->ac_flag = pacct->ac_flag; 519 ac->ac_mem = encode_comp_t(pacct->ac_mem); 520 ac->ac_minflt = encode_comp_t(pacct->ac_minflt); 521 ac->ac_majflt = encode_comp_t(pacct->ac_majflt); 522 ac->ac_exitcode = pacct->ac_exitcode; 523 spin_unlock_irq(¤t->sighand->siglock); 524 525 /* we really need to bite the bullet and change layout */ 526 ac->ac_uid = from_kuid_munged(file->f_cred->user_ns, current_uid()); 527 ac->ac_gid = from_kgid_munged(file->f_cred->user_ns, current_gid()); 528 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 529 /* backward-compatible 16 bit fields */ 530 ac->ac_uid16 = ac->ac_uid; 531 ac->ac_gid16 = ac->ac_gid; 532 #elif ACCT_VERSION == 3 533 { 534 struct pid_namespace *ns = acct->ns; 535 536 ac->ac_pid = task_tgid_nr_ns(current, ns); 537 rcu_read_lock(); 538 ac->ac_ppid = task_tgid_nr_ns(rcu_dereference(current->real_parent), ns); 539 rcu_read_unlock(); 540 } 541 #endif 542 } 543 544 static void acct_write_process(struct bsd_acct_struct *acct) 545 { 546 struct file *file = acct->file; 547 const struct cred *cred; 548 acct_t *ac = &acct->ac; 549 550 /* Perform file operations on behalf of whoever enabled accounting */ 551 cred = override_creds(file->f_cred); 552 553 /* 554 * First check to see if there is enough free_space to continue 555 * the process accounting system. Then get freeze protection. If 556 * the fs is frozen, just skip the write as we could deadlock 557 * the system otherwise. 558 */ 559 if (check_free_space(acct) && file_start_write_trylock(file)) { 560 /* it's been opened O_APPEND, so position is irrelevant */ 561 loff_t pos = 0; 562 __kernel_write(file, ac, sizeof(acct_t), &pos); 563 file_end_write(file); 564 } 565 566 revert_creds(cred); 567 } 568 569 static void do_acct_process(struct bsd_acct_struct *acct) 570 { 571 unsigned long flim; 572 573 /* Accounting records are not subject to resource limits. */ 574 flim = rlimit(RLIMIT_FSIZE); 575 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY; 576 fill_ac(acct); 577 acct_write_process(acct); 578 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; 579 } 580 581 /** 582 * acct_collect - collect accounting information into pacct_struct 583 * @exitcode: task exit code 584 * @group_dead: not 0, if this thread is the last one in the process. 585 */ 586 void acct_collect(long exitcode, int group_dead) 587 { 588 struct pacct_struct *pacct = ¤t->signal->pacct; 589 u64 utime, stime; 590 unsigned long vsize = 0; 591 592 if (group_dead && current->mm) { 593 struct mm_struct *mm = current->mm; 594 VMA_ITERATOR(vmi, mm, 0); 595 struct vm_area_struct *vma; 596 597 mmap_read_lock(mm); 598 for_each_vma(vmi, vma) 599 vsize += vma->vm_end - vma->vm_start; 600 mmap_read_unlock(mm); 601 } 602 603 spin_lock_irq(¤t->sighand->siglock); 604 if (group_dead) 605 pacct->ac_mem = vsize / 1024; 606 if (thread_group_leader(current)) { 607 pacct->ac_exitcode = exitcode; 608 if (current->flags & PF_FORKNOEXEC) 609 pacct->ac_flag |= AFORK; 610 } 611 if (current->flags & PF_SUPERPRIV) 612 pacct->ac_flag |= ASU; 613 if (current->flags & PF_DUMPCORE) 614 pacct->ac_flag |= ACORE; 615 if (current->flags & PF_SIGNALED) 616 pacct->ac_flag |= AXSIG; 617 618 task_cputime(current, &utime, &stime); 619 pacct->ac_utime += utime; 620 pacct->ac_stime += stime; 621 pacct->ac_minflt += current->min_flt; 622 pacct->ac_majflt += current->maj_flt; 623 spin_unlock_irq(¤t->sighand->siglock); 624 } 625 626 static void slow_acct_process(struct pid_namespace *ns) 627 { 628 for ( ; ns; ns = ns->parent) { 629 struct bsd_acct_struct *acct = acct_get(ns); 630 if (acct) { 631 do_acct_process(acct); 632 mutex_unlock(&acct->lock); 633 acct_put(acct); 634 } 635 } 636 } 637 638 /** 639 * acct_process - handles process accounting for an exiting task 640 */ 641 void acct_process(void) 642 { 643 struct pid_namespace *ns; 644 645 /* 646 * This loop is safe lockless, since current is still 647 * alive and holds its namespace, which in turn holds 648 * its parent. 649 */ 650 for (ns = task_active_pid_ns(current); ns != NULL; ns = ns->parent) { 651 if (ns->bacct) 652 break; 653 } 654 if (unlikely(ns)) 655 slow_acct_process(ns); 656 } 657