1 /* 2 * linux/ipc/util.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * 5 * Sep 1997 - Call suser() last after "normal" permission checks so we 6 * get BSD style process accounting right. 7 * Occurs in several places in the IPC code. 8 * Chris Evans, <chris@ferret.lmh.ox.ac.uk> 9 * Nov 1999 - ipc helper functions, unified SMP locking 10 * Manfred Spraul <manfred@colorfullife.com> 11 * Oct 2002 - One lock per IPC id. RCU ipc_free for lock-free grow_ary(). 12 * Mingming Cao <cmm@us.ibm.com> 13 * Mar 2006 - support for audit of ipc object properties 14 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 15 * Jun 2006 - namespaces ssupport 16 * OpenVZ, SWsoft Inc. 17 * Pavel Emelianov <xemul@openvz.org> 18 */ 19 20 #include <linux/mm.h> 21 #include <linux/shm.h> 22 #include <linux/init.h> 23 #include <linux/msg.h> 24 #include <linux/smp_lock.h> 25 #include <linux/vmalloc.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/highuid.h> 29 #include <linux/security.h> 30 #include <linux/rcupdate.h> 31 #include <linux/workqueue.h> 32 #include <linux/seq_file.h> 33 #include <linux/proc_fs.h> 34 #include <linux/audit.h> 35 #include <linux/nsproxy.h> 36 37 #include <asm/unistd.h> 38 39 #include "util.h" 40 41 struct ipc_proc_iface { 42 const char *path; 43 const char *header; 44 int ids; 45 int (*show)(struct seq_file *, void *); 46 }; 47 48 struct ipc_namespace init_ipc_ns = { 49 .kref = { 50 .refcount = ATOMIC_INIT(2), 51 }, 52 }; 53 54 #ifdef CONFIG_IPC_NS 55 static struct ipc_namespace *clone_ipc_ns(struct ipc_namespace *old_ns) 56 { 57 int err; 58 struct ipc_namespace *ns; 59 60 err = -ENOMEM; 61 ns = kmalloc(sizeof(struct ipc_namespace), GFP_KERNEL); 62 if (ns == NULL) 63 goto err_mem; 64 65 err = sem_init_ns(ns); 66 if (err) 67 goto err_sem; 68 err = msg_init_ns(ns); 69 if (err) 70 goto err_msg; 71 err = shm_init_ns(ns); 72 if (err) 73 goto err_shm; 74 75 kref_init(&ns->kref); 76 return ns; 77 78 err_shm: 79 msg_exit_ns(ns); 80 err_msg: 81 sem_exit_ns(ns); 82 err_sem: 83 kfree(ns); 84 err_mem: 85 return ERR_PTR(err); 86 } 87 88 struct ipc_namespace *copy_ipcs(unsigned long flags, struct ipc_namespace *ns) 89 { 90 struct ipc_namespace *new_ns; 91 92 BUG_ON(!ns); 93 get_ipc_ns(ns); 94 95 if (!(flags & CLONE_NEWIPC)) 96 return ns; 97 98 new_ns = clone_ipc_ns(ns); 99 100 put_ipc_ns(ns); 101 return new_ns; 102 } 103 104 void free_ipc_ns(struct kref *kref) 105 { 106 struct ipc_namespace *ns; 107 108 ns = container_of(kref, struct ipc_namespace, kref); 109 sem_exit_ns(ns); 110 msg_exit_ns(ns); 111 shm_exit_ns(ns); 112 kfree(ns); 113 } 114 #else 115 struct ipc_namespace *copy_ipcs(unsigned long flags, struct ipc_namespace *ns) 116 { 117 if (flags & CLONE_NEWIPC) 118 return ERR_PTR(-EINVAL); 119 return ns; 120 } 121 #endif 122 123 /** 124 * ipc_init - initialise IPC subsystem 125 * 126 * The various system5 IPC resources (semaphores, messages and shared 127 * memory) are initialised 128 */ 129 130 static int __init ipc_init(void) 131 { 132 sem_init(); 133 msg_init(); 134 shm_init(); 135 return 0; 136 } 137 __initcall(ipc_init); 138 139 /** 140 * ipc_init_ids - initialise IPC identifiers 141 * @ids: Identifier set 142 * @size: Number of identifiers 143 * 144 * Given a size for the ipc identifier range (limited below IPCMNI) 145 * set up the sequence range to use then allocate and initialise the 146 * array itself. 147 */ 148 149 void __ipc_init ipc_init_ids(struct ipc_ids* ids, int size) 150 { 151 int i; 152 153 mutex_init(&ids->mutex); 154 155 if(size > IPCMNI) 156 size = IPCMNI; 157 ids->in_use = 0; 158 ids->max_id = -1; 159 ids->seq = 0; 160 { 161 int seq_limit = INT_MAX/SEQ_MULTIPLIER; 162 if(seq_limit > USHRT_MAX) 163 ids->seq_max = USHRT_MAX; 164 else 165 ids->seq_max = seq_limit; 166 } 167 168 ids->entries = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*size + 169 sizeof(struct ipc_id_ary)); 170 171 if(ids->entries == NULL) { 172 printk(KERN_ERR "ipc_init_ids() failed, ipc service disabled.\n"); 173 size = 0; 174 ids->entries = &ids->nullentry; 175 } 176 ids->entries->size = size; 177 for(i=0;i<size;i++) 178 ids->entries->p[i] = NULL; 179 } 180 181 #ifdef CONFIG_PROC_FS 182 static const struct file_operations sysvipc_proc_fops; 183 /** 184 * ipc_init_proc_interface - Create a proc interface for sysipc types using a seq_file interface. 185 * @path: Path in procfs 186 * @header: Banner to be printed at the beginning of the file. 187 * @ids: ipc id table to iterate. 188 * @show: show routine. 189 */ 190 void __init ipc_init_proc_interface(const char *path, const char *header, 191 int ids, int (*show)(struct seq_file *, void *)) 192 { 193 struct proc_dir_entry *pde; 194 struct ipc_proc_iface *iface; 195 196 iface = kmalloc(sizeof(*iface), GFP_KERNEL); 197 if (!iface) 198 return; 199 iface->path = path; 200 iface->header = header; 201 iface->ids = ids; 202 iface->show = show; 203 204 pde = create_proc_entry(path, 205 S_IRUGO, /* world readable */ 206 NULL /* parent dir */); 207 if (pde) { 208 pde->data = iface; 209 pde->proc_fops = &sysvipc_proc_fops; 210 } else { 211 kfree(iface); 212 } 213 } 214 #endif 215 216 /** 217 * ipc_findkey - find a key in an ipc identifier set 218 * @ids: Identifier set 219 * @key: The key to find 220 * 221 * Requires ipc_ids.mutex locked. 222 * Returns the identifier if found or -1 if not. 223 */ 224 225 int ipc_findkey(struct ipc_ids* ids, key_t key) 226 { 227 int id; 228 struct kern_ipc_perm* p; 229 int max_id = ids->max_id; 230 231 /* 232 * rcu_dereference() is not needed here 233 * since ipc_ids.mutex is held 234 */ 235 for (id = 0; id <= max_id; id++) { 236 p = ids->entries->p[id]; 237 if(p==NULL) 238 continue; 239 if (key == p->key) 240 return id; 241 } 242 return -1; 243 } 244 245 /* 246 * Requires ipc_ids.mutex locked 247 */ 248 static int grow_ary(struct ipc_ids* ids, int newsize) 249 { 250 struct ipc_id_ary* new; 251 struct ipc_id_ary* old; 252 int i; 253 int size = ids->entries->size; 254 255 if(newsize > IPCMNI) 256 newsize = IPCMNI; 257 if(newsize <= size) 258 return newsize; 259 260 new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize + 261 sizeof(struct ipc_id_ary)); 262 if(new == NULL) 263 return size; 264 new->size = newsize; 265 memcpy(new->p, ids->entries->p, sizeof(struct kern_ipc_perm *)*size); 266 for(i=size;i<newsize;i++) { 267 new->p[i] = NULL; 268 } 269 old = ids->entries; 270 271 /* 272 * Use rcu_assign_pointer() to make sure the memcpyed contents 273 * of the new array are visible before the new array becomes visible. 274 */ 275 rcu_assign_pointer(ids->entries, new); 276 277 __ipc_fini_ids(ids, old); 278 return newsize; 279 } 280 281 /** 282 * ipc_addid - add an IPC identifier 283 * @ids: IPC identifier set 284 * @new: new IPC permission set 285 * @size: new size limit for the id array 286 * 287 * Add an entry 'new' to the IPC arrays. The permissions object is 288 * initialised and the first free entry is set up and the id assigned 289 * is returned. The list is returned in a locked state on success. 290 * On failure the list is not locked and -1 is returned. 291 * 292 * Called with ipc_ids.mutex held. 293 */ 294 295 int ipc_addid(struct ipc_ids* ids, struct kern_ipc_perm* new, int size) 296 { 297 int id; 298 299 size = grow_ary(ids,size); 300 301 /* 302 * rcu_dereference()() is not needed here since 303 * ipc_ids.mutex is held 304 */ 305 for (id = 0; id < size; id++) { 306 if(ids->entries->p[id] == NULL) 307 goto found; 308 } 309 return -1; 310 found: 311 ids->in_use++; 312 if (id > ids->max_id) 313 ids->max_id = id; 314 315 new->cuid = new->uid = current->euid; 316 new->gid = new->cgid = current->egid; 317 318 new->seq = ids->seq++; 319 if(ids->seq > ids->seq_max) 320 ids->seq = 0; 321 322 spin_lock_init(&new->lock); 323 new->deleted = 0; 324 rcu_read_lock(); 325 spin_lock(&new->lock); 326 ids->entries->p[id] = new; 327 return id; 328 } 329 330 /** 331 * ipc_rmid - remove an IPC identifier 332 * @ids: identifier set 333 * @id: Identifier to remove 334 * 335 * The identifier must be valid, and in use. The kernel will panic if 336 * fed an invalid identifier. The entry is removed and internal 337 * variables recomputed. The object associated with the identifier 338 * is returned. 339 * ipc_ids.mutex and the spinlock for this ID is hold before this function 340 * is called, and remain locked on the exit. 341 */ 342 343 struct kern_ipc_perm* ipc_rmid(struct ipc_ids* ids, int id) 344 { 345 struct kern_ipc_perm* p; 346 int lid = id % SEQ_MULTIPLIER; 347 BUG_ON(lid >= ids->entries->size); 348 349 /* 350 * do not need a rcu_dereference()() here to force ordering 351 * on Alpha, since the ipc_ids.mutex is held. 352 */ 353 p = ids->entries->p[lid]; 354 ids->entries->p[lid] = NULL; 355 BUG_ON(p==NULL); 356 ids->in_use--; 357 358 if (lid == ids->max_id) { 359 do { 360 lid--; 361 if(lid == -1) 362 break; 363 } while (ids->entries->p[lid] == NULL); 364 ids->max_id = lid; 365 } 366 p->deleted = 1; 367 return p; 368 } 369 370 /** 371 * ipc_alloc - allocate ipc space 372 * @size: size desired 373 * 374 * Allocate memory from the appropriate pools and return a pointer to it. 375 * NULL is returned if the allocation fails 376 */ 377 378 void* ipc_alloc(int size) 379 { 380 void* out; 381 if(size > PAGE_SIZE) 382 out = vmalloc(size); 383 else 384 out = kmalloc(size, GFP_KERNEL); 385 return out; 386 } 387 388 /** 389 * ipc_free - free ipc space 390 * @ptr: pointer returned by ipc_alloc 391 * @size: size of block 392 * 393 * Free a block created with ipc_alloc(). The caller must know the size 394 * used in the allocation call. 395 */ 396 397 void ipc_free(void* ptr, int size) 398 { 399 if(size > PAGE_SIZE) 400 vfree(ptr); 401 else 402 kfree(ptr); 403 } 404 405 /* 406 * rcu allocations: 407 * There are three headers that are prepended to the actual allocation: 408 * - during use: ipc_rcu_hdr. 409 * - during the rcu grace period: ipc_rcu_grace. 410 * - [only if vmalloc]: ipc_rcu_sched. 411 * Their lifetime doesn't overlap, thus the headers share the same memory. 412 * Unlike a normal union, they are right-aligned, thus some container_of 413 * forward/backward casting is necessary: 414 */ 415 struct ipc_rcu_hdr 416 { 417 int refcount; 418 int is_vmalloc; 419 void *data[0]; 420 }; 421 422 423 struct ipc_rcu_grace 424 { 425 struct rcu_head rcu; 426 /* "void *" makes sure alignment of following data is sane. */ 427 void *data[0]; 428 }; 429 430 struct ipc_rcu_sched 431 { 432 struct work_struct work; 433 /* "void *" makes sure alignment of following data is sane. */ 434 void *data[0]; 435 }; 436 437 #define HDRLEN_KMALLOC (sizeof(struct ipc_rcu_grace) > sizeof(struct ipc_rcu_hdr) ? \ 438 sizeof(struct ipc_rcu_grace) : sizeof(struct ipc_rcu_hdr)) 439 #define HDRLEN_VMALLOC (sizeof(struct ipc_rcu_sched) > HDRLEN_KMALLOC ? \ 440 sizeof(struct ipc_rcu_sched) : HDRLEN_KMALLOC) 441 442 static inline int rcu_use_vmalloc(int size) 443 { 444 /* Too big for a single page? */ 445 if (HDRLEN_KMALLOC + size > PAGE_SIZE) 446 return 1; 447 return 0; 448 } 449 450 /** 451 * ipc_rcu_alloc - allocate ipc and rcu space 452 * @size: size desired 453 * 454 * Allocate memory for the rcu header structure + the object. 455 * Returns the pointer to the object. 456 * NULL is returned if the allocation fails. 457 */ 458 459 void* ipc_rcu_alloc(int size) 460 { 461 void* out; 462 /* 463 * We prepend the allocation with the rcu struct, and 464 * workqueue if necessary (for vmalloc). 465 */ 466 if (rcu_use_vmalloc(size)) { 467 out = vmalloc(HDRLEN_VMALLOC + size); 468 if (out) { 469 out += HDRLEN_VMALLOC; 470 container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 1; 471 container_of(out, struct ipc_rcu_hdr, data)->refcount = 1; 472 } 473 } else { 474 out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL); 475 if (out) { 476 out += HDRLEN_KMALLOC; 477 container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 0; 478 container_of(out, struct ipc_rcu_hdr, data)->refcount = 1; 479 } 480 } 481 482 return out; 483 } 484 485 void ipc_rcu_getref(void *ptr) 486 { 487 container_of(ptr, struct ipc_rcu_hdr, data)->refcount++; 488 } 489 490 static void ipc_do_vfree(struct work_struct *work) 491 { 492 vfree(container_of(work, struct ipc_rcu_sched, work)); 493 } 494 495 /** 496 * ipc_schedule_free - free ipc + rcu space 497 * @head: RCU callback structure for queued work 498 * 499 * Since RCU callback function is called in bh, 500 * we need to defer the vfree to schedule_work(). 501 */ 502 static void ipc_schedule_free(struct rcu_head *head) 503 { 504 struct ipc_rcu_grace *grace = 505 container_of(head, struct ipc_rcu_grace, rcu); 506 struct ipc_rcu_sched *sched = 507 container_of(&(grace->data[0]), struct ipc_rcu_sched, data[0]); 508 509 INIT_WORK(&sched->work, ipc_do_vfree); 510 schedule_work(&sched->work); 511 } 512 513 /** 514 * ipc_immediate_free - free ipc + rcu space 515 * @head: RCU callback structure that contains pointer to be freed 516 * 517 * Free from the RCU callback context. 518 */ 519 static void ipc_immediate_free(struct rcu_head *head) 520 { 521 struct ipc_rcu_grace *free = 522 container_of(head, struct ipc_rcu_grace, rcu); 523 kfree(free); 524 } 525 526 void ipc_rcu_putref(void *ptr) 527 { 528 if (--container_of(ptr, struct ipc_rcu_hdr, data)->refcount > 0) 529 return; 530 531 if (container_of(ptr, struct ipc_rcu_hdr, data)->is_vmalloc) { 532 call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu, 533 ipc_schedule_free); 534 } else { 535 call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu, 536 ipc_immediate_free); 537 } 538 } 539 540 /** 541 * ipcperms - check IPC permissions 542 * @ipcp: IPC permission set 543 * @flag: desired permission set. 544 * 545 * Check user, group, other permissions for access 546 * to ipc resources. return 0 if allowed 547 */ 548 549 int ipcperms (struct kern_ipc_perm *ipcp, short flag) 550 { /* flag will most probably be 0 or S_...UGO from <linux/stat.h> */ 551 int requested_mode, granted_mode, err; 552 553 if (unlikely((err = audit_ipc_obj(ipcp)))) 554 return err; 555 requested_mode = (flag >> 6) | (flag >> 3) | flag; 556 granted_mode = ipcp->mode; 557 if (current->euid == ipcp->cuid || current->euid == ipcp->uid) 558 granted_mode >>= 6; 559 else if (in_group_p(ipcp->cgid) || in_group_p(ipcp->gid)) 560 granted_mode >>= 3; 561 /* is there some bit set in requested_mode but not in granted_mode? */ 562 if ((requested_mode & ~granted_mode & 0007) && 563 !capable(CAP_IPC_OWNER)) 564 return -1; 565 566 return security_ipc_permission(ipcp, flag); 567 } 568 569 /* 570 * Functions to convert between the kern_ipc_perm structure and the 571 * old/new ipc_perm structures 572 */ 573 574 /** 575 * kernel_to_ipc64_perm - convert kernel ipc permissions to user 576 * @in: kernel permissions 577 * @out: new style IPC permissions 578 * 579 * Turn the kernel object @in into a set of permissions descriptions 580 * for returning to userspace (@out). 581 */ 582 583 584 void kernel_to_ipc64_perm (struct kern_ipc_perm *in, struct ipc64_perm *out) 585 { 586 out->key = in->key; 587 out->uid = in->uid; 588 out->gid = in->gid; 589 out->cuid = in->cuid; 590 out->cgid = in->cgid; 591 out->mode = in->mode; 592 out->seq = in->seq; 593 } 594 595 /** 596 * ipc64_perm_to_ipc_perm - convert old ipc permissions to new 597 * @in: new style IPC permissions 598 * @out: old style IPC permissions 599 * 600 * Turn the new style permissions object @in into a compatibility 601 * object and store it into the @out pointer. 602 */ 603 604 void ipc64_perm_to_ipc_perm (struct ipc64_perm *in, struct ipc_perm *out) 605 { 606 out->key = in->key; 607 SET_UID(out->uid, in->uid); 608 SET_GID(out->gid, in->gid); 609 SET_UID(out->cuid, in->cuid); 610 SET_GID(out->cgid, in->cgid); 611 out->mode = in->mode; 612 out->seq = in->seq; 613 } 614 615 /* 616 * So far only shm_get_stat() calls ipc_get() via shm_get(), so ipc_get() 617 * is called with shm_ids.mutex locked. Since grow_ary() is also called with 618 * shm_ids.mutex down(for Shared Memory), there is no need to add read 619 * barriers here to gurantee the writes in grow_ary() are seen in order 620 * here (for Alpha). 621 * 622 * However ipc_get() itself does not necessary require ipc_ids.mutex down. So 623 * if in the future ipc_get() is used by other places without ipc_ids.mutex 624 * down, then ipc_get() needs read memery barriers as ipc_lock() does. 625 */ 626 struct kern_ipc_perm* ipc_get(struct ipc_ids* ids, int id) 627 { 628 struct kern_ipc_perm* out; 629 int lid = id % SEQ_MULTIPLIER; 630 if(lid >= ids->entries->size) 631 return NULL; 632 out = ids->entries->p[lid]; 633 return out; 634 } 635 636 struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id) 637 { 638 struct kern_ipc_perm* out; 639 int lid = id % SEQ_MULTIPLIER; 640 struct ipc_id_ary* entries; 641 642 rcu_read_lock(); 643 entries = rcu_dereference(ids->entries); 644 if(lid >= entries->size) { 645 rcu_read_unlock(); 646 return NULL; 647 } 648 out = entries->p[lid]; 649 if(out == NULL) { 650 rcu_read_unlock(); 651 return NULL; 652 } 653 spin_lock(&out->lock); 654 655 /* ipc_rmid() may have already freed the ID while ipc_lock 656 * was spinning: here verify that the structure is still valid 657 */ 658 if (out->deleted) { 659 spin_unlock(&out->lock); 660 rcu_read_unlock(); 661 return NULL; 662 } 663 return out; 664 } 665 666 void ipc_lock_by_ptr(struct kern_ipc_perm *perm) 667 { 668 rcu_read_lock(); 669 spin_lock(&perm->lock); 670 } 671 672 void ipc_unlock(struct kern_ipc_perm* perm) 673 { 674 spin_unlock(&perm->lock); 675 rcu_read_unlock(); 676 } 677 678 int ipc_buildid(struct ipc_ids* ids, int id, int seq) 679 { 680 return SEQ_MULTIPLIER*seq + id; 681 } 682 683 int ipc_checkid(struct ipc_ids* ids, struct kern_ipc_perm* ipcp, int uid) 684 { 685 if(uid/SEQ_MULTIPLIER != ipcp->seq) 686 return 1; 687 return 0; 688 } 689 690 #ifdef __ARCH_WANT_IPC_PARSE_VERSION 691 692 693 /** 694 * ipc_parse_version - IPC call version 695 * @cmd: pointer to command 696 * 697 * Return IPC_64 for new style IPC and IPC_OLD for old style IPC. 698 * The @cmd value is turned from an encoding command and version into 699 * just the command code. 700 */ 701 702 int ipc_parse_version (int *cmd) 703 { 704 if (*cmd & IPC_64) { 705 *cmd ^= IPC_64; 706 return IPC_64; 707 } else { 708 return IPC_OLD; 709 } 710 } 711 712 #endif /* __ARCH_WANT_IPC_PARSE_VERSION */ 713 714 #ifdef CONFIG_PROC_FS 715 struct ipc_proc_iter { 716 struct ipc_namespace *ns; 717 struct ipc_proc_iface *iface; 718 }; 719 720 static void *sysvipc_proc_next(struct seq_file *s, void *it, loff_t *pos) 721 { 722 struct ipc_proc_iter *iter = s->private; 723 struct ipc_proc_iface *iface = iter->iface; 724 struct kern_ipc_perm *ipc = it; 725 loff_t p; 726 struct ipc_ids *ids; 727 728 ids = iter->ns->ids[iface->ids]; 729 730 /* If we had an ipc id locked before, unlock it */ 731 if (ipc && ipc != SEQ_START_TOKEN) 732 ipc_unlock(ipc); 733 734 /* 735 * p = *pos - 1 (because id 0 starts at position 1) 736 * + 1 (because we increment the position by one) 737 */ 738 for (p = *pos; p <= ids->max_id; p++) { 739 if ((ipc = ipc_lock(ids, p)) != NULL) { 740 *pos = p + 1; 741 return ipc; 742 } 743 } 744 745 /* Out of range - return NULL to terminate iteration */ 746 return NULL; 747 } 748 749 /* 750 * File positions: pos 0 -> header, pos n -> ipc id + 1. 751 * SeqFile iterator: iterator value locked shp or SEQ_TOKEN_START. 752 */ 753 static void *sysvipc_proc_start(struct seq_file *s, loff_t *pos) 754 { 755 struct ipc_proc_iter *iter = s->private; 756 struct ipc_proc_iface *iface = iter->iface; 757 struct kern_ipc_perm *ipc; 758 loff_t p; 759 struct ipc_ids *ids; 760 761 ids = iter->ns->ids[iface->ids]; 762 763 /* 764 * Take the lock - this will be released by the corresponding 765 * call to stop(). 766 */ 767 mutex_lock(&ids->mutex); 768 769 /* pos < 0 is invalid */ 770 if (*pos < 0) 771 return NULL; 772 773 /* pos == 0 means header */ 774 if (*pos == 0) 775 return SEQ_START_TOKEN; 776 777 /* Find the (pos-1)th ipc */ 778 for (p = *pos - 1; p <= ids->max_id; p++) { 779 if ((ipc = ipc_lock(ids, p)) != NULL) { 780 *pos = p + 1; 781 return ipc; 782 } 783 } 784 return NULL; 785 } 786 787 static void sysvipc_proc_stop(struct seq_file *s, void *it) 788 { 789 struct kern_ipc_perm *ipc = it; 790 struct ipc_proc_iter *iter = s->private; 791 struct ipc_proc_iface *iface = iter->iface; 792 struct ipc_ids *ids; 793 794 /* If we had a locked segment, release it */ 795 if (ipc && ipc != SEQ_START_TOKEN) 796 ipc_unlock(ipc); 797 798 ids = iter->ns->ids[iface->ids]; 799 /* Release the lock we took in start() */ 800 mutex_unlock(&ids->mutex); 801 } 802 803 static int sysvipc_proc_show(struct seq_file *s, void *it) 804 { 805 struct ipc_proc_iter *iter = s->private; 806 struct ipc_proc_iface *iface = iter->iface; 807 808 if (it == SEQ_START_TOKEN) 809 return seq_puts(s, iface->header); 810 811 return iface->show(s, it); 812 } 813 814 static struct seq_operations sysvipc_proc_seqops = { 815 .start = sysvipc_proc_start, 816 .stop = sysvipc_proc_stop, 817 .next = sysvipc_proc_next, 818 .show = sysvipc_proc_show, 819 }; 820 821 static int sysvipc_proc_open(struct inode *inode, struct file *file) 822 { 823 int ret; 824 struct seq_file *seq; 825 struct ipc_proc_iter *iter; 826 827 ret = -ENOMEM; 828 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 829 if (!iter) 830 goto out; 831 832 ret = seq_open(file, &sysvipc_proc_seqops); 833 if (ret) 834 goto out_kfree; 835 836 seq = file->private_data; 837 seq->private = iter; 838 839 iter->iface = PDE(inode)->data; 840 iter->ns = get_ipc_ns(current->nsproxy->ipc_ns); 841 out: 842 return ret; 843 out_kfree: 844 kfree(iter); 845 goto out; 846 } 847 848 static int sysvipc_proc_release(struct inode *inode, struct file *file) 849 { 850 struct seq_file *seq = file->private_data; 851 struct ipc_proc_iter *iter = seq->private; 852 put_ipc_ns(iter->ns); 853 return seq_release_private(inode, file); 854 } 855 856 static const struct file_operations sysvipc_proc_fops = { 857 .open = sysvipc_proc_open, 858 .read = seq_read, 859 .llseek = seq_lseek, 860 .release = sysvipc_proc_release, 861 }; 862 #endif /* CONFIG_PROC_FS */ 863