1 /* 2 * linux/ipc/util.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * 5 * Sep 1997 - Call suser() last after "normal" permission checks so we 6 * get BSD style process accounting right. 7 * Occurs in several places in the IPC code. 8 * Chris Evans, <chris@ferret.lmh.ox.ac.uk> 9 * Nov 1999 - ipc helper functions, unified SMP locking 10 * Manfred Spraul <manfred@colorfullife.com> 11 * Oct 2002 - One lock per IPC id. RCU ipc_free for lock-free grow_ary(). 12 * Mingming Cao <cmm@us.ibm.com> 13 * Mar 2006 - support for audit of ipc object properties 14 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/shm.h> 19 #include <linux/init.h> 20 #include <linux/msg.h> 21 #include <linux/smp_lock.h> 22 #include <linux/vmalloc.h> 23 #include <linux/slab.h> 24 #include <linux/capability.h> 25 #include <linux/highuid.h> 26 #include <linux/security.h> 27 #include <linux/rcupdate.h> 28 #include <linux/workqueue.h> 29 #include <linux/seq_file.h> 30 #include <linux/proc_fs.h> 31 #include <linux/audit.h> 32 33 #include <asm/unistd.h> 34 35 #include "util.h" 36 37 struct ipc_proc_iface { 38 const char *path; 39 const char *header; 40 struct ipc_ids *ids; 41 int (*show)(struct seq_file *, void *); 42 }; 43 44 /** 45 * ipc_init - initialise IPC subsystem 46 * 47 * The various system5 IPC resources (semaphores, messages and shared 48 * memory are initialised 49 */ 50 51 static int __init ipc_init(void) 52 { 53 sem_init(); 54 msg_init(); 55 shm_init(); 56 return 0; 57 } 58 __initcall(ipc_init); 59 60 /** 61 * ipc_init_ids - initialise IPC identifiers 62 * @ids: Identifier set 63 * @size: Number of identifiers 64 * 65 * Given a size for the ipc identifier range (limited below IPCMNI) 66 * set up the sequence range to use then allocate and initialise the 67 * array itself. 68 */ 69 70 void __init ipc_init_ids(struct ipc_ids* ids, int size) 71 { 72 int i; 73 74 mutex_init(&ids->mutex); 75 76 if(size > IPCMNI) 77 size = IPCMNI; 78 ids->in_use = 0; 79 ids->max_id = -1; 80 ids->seq = 0; 81 { 82 int seq_limit = INT_MAX/SEQ_MULTIPLIER; 83 if(seq_limit > USHRT_MAX) 84 ids->seq_max = USHRT_MAX; 85 else 86 ids->seq_max = seq_limit; 87 } 88 89 ids->entries = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*size + 90 sizeof(struct ipc_id_ary)); 91 92 if(ids->entries == NULL) { 93 printk(KERN_ERR "ipc_init_ids() failed, ipc service disabled.\n"); 94 size = 0; 95 ids->entries = &ids->nullentry; 96 } 97 ids->entries->size = size; 98 for(i=0;i<size;i++) 99 ids->entries->p[i] = NULL; 100 } 101 102 #ifdef CONFIG_PROC_FS 103 static struct file_operations sysvipc_proc_fops; 104 /** 105 * ipc_init_proc_interface - Create a proc interface for sysipc types 106 * using a seq_file interface. 107 * @path: Path in procfs 108 * @header: Banner to be printed at the beginning of the file. 109 * @ids: ipc id table to iterate. 110 * @show: show routine. 111 */ 112 void __init ipc_init_proc_interface(const char *path, const char *header, 113 struct ipc_ids *ids, 114 int (*show)(struct seq_file *, void *)) 115 { 116 struct proc_dir_entry *pde; 117 struct ipc_proc_iface *iface; 118 119 iface = kmalloc(sizeof(*iface), GFP_KERNEL); 120 if (!iface) 121 return; 122 iface->path = path; 123 iface->header = header; 124 iface->ids = ids; 125 iface->show = show; 126 127 pde = create_proc_entry(path, 128 S_IRUGO, /* world readable */ 129 NULL /* parent dir */); 130 if (pde) { 131 pde->data = iface; 132 pde->proc_fops = &sysvipc_proc_fops; 133 } else { 134 kfree(iface); 135 } 136 } 137 #endif 138 139 /** 140 * ipc_findkey - find a key in an ipc identifier set 141 * @ids: Identifier set 142 * @key: The key to find 143 * 144 * Requires ipc_ids.mutex locked. 145 * Returns the identifier if found or -1 if not. 146 */ 147 148 int ipc_findkey(struct ipc_ids* ids, key_t key) 149 { 150 int id; 151 struct kern_ipc_perm* p; 152 int max_id = ids->max_id; 153 154 /* 155 * rcu_dereference() is not needed here 156 * since ipc_ids.mutex is held 157 */ 158 for (id = 0; id <= max_id; id++) { 159 p = ids->entries->p[id]; 160 if(p==NULL) 161 continue; 162 if (key == p->key) 163 return id; 164 } 165 return -1; 166 } 167 168 /* 169 * Requires ipc_ids.mutex locked 170 */ 171 static int grow_ary(struct ipc_ids* ids, int newsize) 172 { 173 struct ipc_id_ary* new; 174 struct ipc_id_ary* old; 175 int i; 176 int size = ids->entries->size; 177 178 if(newsize > IPCMNI) 179 newsize = IPCMNI; 180 if(newsize <= size) 181 return newsize; 182 183 new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize + 184 sizeof(struct ipc_id_ary)); 185 if(new == NULL) 186 return size; 187 new->size = newsize; 188 memcpy(new->p, ids->entries->p, sizeof(struct kern_ipc_perm *)*size); 189 for(i=size;i<newsize;i++) { 190 new->p[i] = NULL; 191 } 192 old = ids->entries; 193 194 /* 195 * Use rcu_assign_pointer() to make sure the memcpyed contents 196 * of the new array are visible before the new array becomes visible. 197 */ 198 rcu_assign_pointer(ids->entries, new); 199 200 ipc_rcu_putref(old); 201 return newsize; 202 } 203 204 /** 205 * ipc_addid - add an IPC identifier 206 * @ids: IPC identifier set 207 * @new: new IPC permission set 208 * @size: new size limit for the id array 209 * 210 * Add an entry 'new' to the IPC arrays. The permissions object is 211 * initialised and the first free entry is set up and the id assigned 212 * is returned. The list is returned in a locked state on success. 213 * On failure the list is not locked and -1 is returned. 214 * 215 * Called with ipc_ids.mutex held. 216 */ 217 218 int ipc_addid(struct ipc_ids* ids, struct kern_ipc_perm* new, int size) 219 { 220 int id; 221 222 size = grow_ary(ids,size); 223 224 /* 225 * rcu_dereference()() is not needed here since 226 * ipc_ids.mutex is held 227 */ 228 for (id = 0; id < size; id++) { 229 if(ids->entries->p[id] == NULL) 230 goto found; 231 } 232 return -1; 233 found: 234 ids->in_use++; 235 if (id > ids->max_id) 236 ids->max_id = id; 237 238 new->cuid = new->uid = current->euid; 239 new->gid = new->cgid = current->egid; 240 241 new->seq = ids->seq++; 242 if(ids->seq > ids->seq_max) 243 ids->seq = 0; 244 245 spin_lock_init(&new->lock); 246 new->deleted = 0; 247 rcu_read_lock(); 248 spin_lock(&new->lock); 249 ids->entries->p[id] = new; 250 return id; 251 } 252 253 /** 254 * ipc_rmid - remove an IPC identifier 255 * @ids: identifier set 256 * @id: Identifier to remove 257 * 258 * The identifier must be valid, and in use. The kernel will panic if 259 * fed an invalid identifier. The entry is removed and internal 260 * variables recomputed. The object associated with the identifier 261 * is returned. 262 * ipc_ids.mutex and the spinlock for this ID is hold before this function 263 * is called, and remain locked on the exit. 264 */ 265 266 struct kern_ipc_perm* ipc_rmid(struct ipc_ids* ids, int id) 267 { 268 struct kern_ipc_perm* p; 269 int lid = id % SEQ_MULTIPLIER; 270 BUG_ON(lid >= ids->entries->size); 271 272 /* 273 * do not need a rcu_dereference()() here to force ordering 274 * on Alpha, since the ipc_ids.mutex is held. 275 */ 276 p = ids->entries->p[lid]; 277 ids->entries->p[lid] = NULL; 278 BUG_ON(p==NULL); 279 ids->in_use--; 280 281 if (lid == ids->max_id) { 282 do { 283 lid--; 284 if(lid == -1) 285 break; 286 } while (ids->entries->p[lid] == NULL); 287 ids->max_id = lid; 288 } 289 p->deleted = 1; 290 return p; 291 } 292 293 /** 294 * ipc_alloc - allocate ipc space 295 * @size: size desired 296 * 297 * Allocate memory from the appropriate pools and return a pointer to it. 298 * NULL is returned if the allocation fails 299 */ 300 301 void* ipc_alloc(int size) 302 { 303 void* out; 304 if(size > PAGE_SIZE) 305 out = vmalloc(size); 306 else 307 out = kmalloc(size, GFP_KERNEL); 308 return out; 309 } 310 311 /** 312 * ipc_free - free ipc space 313 * @ptr: pointer returned by ipc_alloc 314 * @size: size of block 315 * 316 * Free a block created with ipc_alloc. The caller must know the size 317 * used in the allocation call. 318 */ 319 320 void ipc_free(void* ptr, int size) 321 { 322 if(size > PAGE_SIZE) 323 vfree(ptr); 324 else 325 kfree(ptr); 326 } 327 328 /* 329 * rcu allocations: 330 * There are three headers that are prepended to the actual allocation: 331 * - during use: ipc_rcu_hdr. 332 * - during the rcu grace period: ipc_rcu_grace. 333 * - [only if vmalloc]: ipc_rcu_sched. 334 * Their lifetime doesn't overlap, thus the headers share the same memory. 335 * Unlike a normal union, they are right-aligned, thus some container_of 336 * forward/backward casting is necessary: 337 */ 338 struct ipc_rcu_hdr 339 { 340 int refcount; 341 int is_vmalloc; 342 void *data[0]; 343 }; 344 345 346 struct ipc_rcu_grace 347 { 348 struct rcu_head rcu; 349 /* "void *" makes sure alignment of following data is sane. */ 350 void *data[0]; 351 }; 352 353 struct ipc_rcu_sched 354 { 355 struct work_struct work; 356 /* "void *" makes sure alignment of following data is sane. */ 357 void *data[0]; 358 }; 359 360 #define HDRLEN_KMALLOC (sizeof(struct ipc_rcu_grace) > sizeof(struct ipc_rcu_hdr) ? \ 361 sizeof(struct ipc_rcu_grace) : sizeof(struct ipc_rcu_hdr)) 362 #define HDRLEN_VMALLOC (sizeof(struct ipc_rcu_sched) > HDRLEN_KMALLOC ? \ 363 sizeof(struct ipc_rcu_sched) : HDRLEN_KMALLOC) 364 365 static inline int rcu_use_vmalloc(int size) 366 { 367 /* Too big for a single page? */ 368 if (HDRLEN_KMALLOC + size > PAGE_SIZE) 369 return 1; 370 return 0; 371 } 372 373 /** 374 * ipc_rcu_alloc - allocate ipc and rcu space 375 * @size: size desired 376 * 377 * Allocate memory for the rcu header structure + the object. 378 * Returns the pointer to the object. 379 * NULL is returned if the allocation fails. 380 */ 381 382 void* ipc_rcu_alloc(int size) 383 { 384 void* out; 385 /* 386 * We prepend the allocation with the rcu struct, and 387 * workqueue if necessary (for vmalloc). 388 */ 389 if (rcu_use_vmalloc(size)) { 390 out = vmalloc(HDRLEN_VMALLOC + size); 391 if (out) { 392 out += HDRLEN_VMALLOC; 393 container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 1; 394 container_of(out, struct ipc_rcu_hdr, data)->refcount = 1; 395 } 396 } else { 397 out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL); 398 if (out) { 399 out += HDRLEN_KMALLOC; 400 container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 0; 401 container_of(out, struct ipc_rcu_hdr, data)->refcount = 1; 402 } 403 } 404 405 return out; 406 } 407 408 void ipc_rcu_getref(void *ptr) 409 { 410 container_of(ptr, struct ipc_rcu_hdr, data)->refcount++; 411 } 412 413 /** 414 * ipc_schedule_free - free ipc + rcu space 415 * @head: RCU callback structure for queued work 416 * 417 * Since RCU callback function is called in bh, 418 * we need to defer the vfree to schedule_work 419 */ 420 static void ipc_schedule_free(struct rcu_head *head) 421 { 422 struct ipc_rcu_grace *grace = 423 container_of(head, struct ipc_rcu_grace, rcu); 424 struct ipc_rcu_sched *sched = 425 container_of(&(grace->data[0]), struct ipc_rcu_sched, data[0]); 426 427 INIT_WORK(&sched->work, vfree, sched); 428 schedule_work(&sched->work); 429 } 430 431 /** 432 * ipc_immediate_free - free ipc + rcu space 433 * @head: RCU callback structure that contains pointer to be freed 434 * 435 * Free from the RCU callback context 436 */ 437 static void ipc_immediate_free(struct rcu_head *head) 438 { 439 struct ipc_rcu_grace *free = 440 container_of(head, struct ipc_rcu_grace, rcu); 441 kfree(free); 442 } 443 444 void ipc_rcu_putref(void *ptr) 445 { 446 if (--container_of(ptr, struct ipc_rcu_hdr, data)->refcount > 0) 447 return; 448 449 if (container_of(ptr, struct ipc_rcu_hdr, data)->is_vmalloc) { 450 call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu, 451 ipc_schedule_free); 452 } else { 453 call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu, 454 ipc_immediate_free); 455 } 456 } 457 458 /** 459 * ipcperms - check IPC permissions 460 * @ipcp: IPC permission set 461 * @flag: desired permission set. 462 * 463 * Check user, group, other permissions for access 464 * to ipc resources. return 0 if allowed 465 */ 466 467 int ipcperms (struct kern_ipc_perm *ipcp, short flag) 468 { /* flag will most probably be 0 or S_...UGO from <linux/stat.h> */ 469 int requested_mode, granted_mode, err; 470 471 if (unlikely((err = audit_ipc_obj(ipcp)))) 472 return err; 473 requested_mode = (flag >> 6) | (flag >> 3) | flag; 474 granted_mode = ipcp->mode; 475 if (current->euid == ipcp->cuid || current->euid == ipcp->uid) 476 granted_mode >>= 6; 477 else if (in_group_p(ipcp->cgid) || in_group_p(ipcp->gid)) 478 granted_mode >>= 3; 479 /* is there some bit set in requested_mode but not in granted_mode? */ 480 if ((requested_mode & ~granted_mode & 0007) && 481 !capable(CAP_IPC_OWNER)) 482 return -1; 483 484 return security_ipc_permission(ipcp, flag); 485 } 486 487 /* 488 * Functions to convert between the kern_ipc_perm structure and the 489 * old/new ipc_perm structures 490 */ 491 492 /** 493 * kernel_to_ipc64_perm - convert kernel ipc permissions to user 494 * @in: kernel permissions 495 * @out: new style IPC permissions 496 * 497 * Turn the kernel object 'in' into a set of permissions descriptions 498 * for returning to userspace (out). 499 */ 500 501 502 void kernel_to_ipc64_perm (struct kern_ipc_perm *in, struct ipc64_perm *out) 503 { 504 out->key = in->key; 505 out->uid = in->uid; 506 out->gid = in->gid; 507 out->cuid = in->cuid; 508 out->cgid = in->cgid; 509 out->mode = in->mode; 510 out->seq = in->seq; 511 } 512 513 /** 514 * ipc64_perm_to_ipc_perm - convert old ipc permissions to new 515 * @in: new style IPC permissions 516 * @out: old style IPC permissions 517 * 518 * Turn the new style permissions object in into a compatibility 519 * object and store it into the 'out' pointer. 520 */ 521 522 void ipc64_perm_to_ipc_perm (struct ipc64_perm *in, struct ipc_perm *out) 523 { 524 out->key = in->key; 525 SET_UID(out->uid, in->uid); 526 SET_GID(out->gid, in->gid); 527 SET_UID(out->cuid, in->cuid); 528 SET_GID(out->cgid, in->cgid); 529 out->mode = in->mode; 530 out->seq = in->seq; 531 } 532 533 /* 534 * So far only shm_get_stat() calls ipc_get() via shm_get(), so ipc_get() 535 * is called with shm_ids.mutex locked. Since grow_ary() is also called with 536 * shm_ids.mutex down(for Shared Memory), there is no need to add read 537 * barriers here to gurantee the writes in grow_ary() are seen in order 538 * here (for Alpha). 539 * 540 * However ipc_get() itself does not necessary require ipc_ids.mutex down. So 541 * if in the future ipc_get() is used by other places without ipc_ids.mutex 542 * down, then ipc_get() needs read memery barriers as ipc_lock() does. 543 */ 544 struct kern_ipc_perm* ipc_get(struct ipc_ids* ids, int id) 545 { 546 struct kern_ipc_perm* out; 547 int lid = id % SEQ_MULTIPLIER; 548 if(lid >= ids->entries->size) 549 return NULL; 550 out = ids->entries->p[lid]; 551 return out; 552 } 553 554 struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id) 555 { 556 struct kern_ipc_perm* out; 557 int lid = id % SEQ_MULTIPLIER; 558 struct ipc_id_ary* entries; 559 560 rcu_read_lock(); 561 entries = rcu_dereference(ids->entries); 562 if(lid >= entries->size) { 563 rcu_read_unlock(); 564 return NULL; 565 } 566 out = entries->p[lid]; 567 if(out == NULL) { 568 rcu_read_unlock(); 569 return NULL; 570 } 571 spin_lock(&out->lock); 572 573 /* ipc_rmid() may have already freed the ID while ipc_lock 574 * was spinning: here verify that the structure is still valid 575 */ 576 if (out->deleted) { 577 spin_unlock(&out->lock); 578 rcu_read_unlock(); 579 return NULL; 580 } 581 return out; 582 } 583 584 void ipc_lock_by_ptr(struct kern_ipc_perm *perm) 585 { 586 rcu_read_lock(); 587 spin_lock(&perm->lock); 588 } 589 590 void ipc_unlock(struct kern_ipc_perm* perm) 591 { 592 spin_unlock(&perm->lock); 593 rcu_read_unlock(); 594 } 595 596 int ipc_buildid(struct ipc_ids* ids, int id, int seq) 597 { 598 return SEQ_MULTIPLIER*seq + id; 599 } 600 601 int ipc_checkid(struct ipc_ids* ids, struct kern_ipc_perm* ipcp, int uid) 602 { 603 if(uid/SEQ_MULTIPLIER != ipcp->seq) 604 return 1; 605 return 0; 606 } 607 608 #ifdef __ARCH_WANT_IPC_PARSE_VERSION 609 610 611 /** 612 * ipc_parse_version - IPC call version 613 * @cmd: pointer to command 614 * 615 * Return IPC_64 for new style IPC and IPC_OLD for old style IPC. 616 * The cmd value is turned from an encoding command and version into 617 * just the command code. 618 */ 619 620 int ipc_parse_version (int *cmd) 621 { 622 if (*cmd & IPC_64) { 623 *cmd ^= IPC_64; 624 return IPC_64; 625 } else { 626 return IPC_OLD; 627 } 628 } 629 630 #endif /* __ARCH_WANT_IPC_PARSE_VERSION */ 631 632 #ifdef CONFIG_PROC_FS 633 static void *sysvipc_proc_next(struct seq_file *s, void *it, loff_t *pos) 634 { 635 struct ipc_proc_iface *iface = s->private; 636 struct kern_ipc_perm *ipc = it; 637 loff_t p; 638 639 /* If we had an ipc id locked before, unlock it */ 640 if (ipc && ipc != SEQ_START_TOKEN) 641 ipc_unlock(ipc); 642 643 /* 644 * p = *pos - 1 (because id 0 starts at position 1) 645 * + 1 (because we increment the position by one) 646 */ 647 for (p = *pos; p <= iface->ids->max_id; p++) { 648 if ((ipc = ipc_lock(iface->ids, p)) != NULL) { 649 *pos = p + 1; 650 return ipc; 651 } 652 } 653 654 /* Out of range - return NULL to terminate iteration */ 655 return NULL; 656 } 657 658 /* 659 * File positions: pos 0 -> header, pos n -> ipc id + 1. 660 * SeqFile iterator: iterator value locked shp or SEQ_TOKEN_START. 661 */ 662 static void *sysvipc_proc_start(struct seq_file *s, loff_t *pos) 663 { 664 struct ipc_proc_iface *iface = s->private; 665 struct kern_ipc_perm *ipc; 666 loff_t p; 667 668 /* 669 * Take the lock - this will be released by the corresponding 670 * call to stop(). 671 */ 672 mutex_lock(&iface->ids->mutex); 673 674 /* pos < 0 is invalid */ 675 if (*pos < 0) 676 return NULL; 677 678 /* pos == 0 means header */ 679 if (*pos == 0) 680 return SEQ_START_TOKEN; 681 682 /* Find the (pos-1)th ipc */ 683 for (p = *pos - 1; p <= iface->ids->max_id; p++) { 684 if ((ipc = ipc_lock(iface->ids, p)) != NULL) { 685 *pos = p + 1; 686 return ipc; 687 } 688 } 689 return NULL; 690 } 691 692 static void sysvipc_proc_stop(struct seq_file *s, void *it) 693 { 694 struct kern_ipc_perm *ipc = it; 695 struct ipc_proc_iface *iface = s->private; 696 697 /* If we had a locked segment, release it */ 698 if (ipc && ipc != SEQ_START_TOKEN) 699 ipc_unlock(ipc); 700 701 /* Release the lock we took in start() */ 702 mutex_unlock(&iface->ids->mutex); 703 } 704 705 static int sysvipc_proc_show(struct seq_file *s, void *it) 706 { 707 struct ipc_proc_iface *iface = s->private; 708 709 if (it == SEQ_START_TOKEN) 710 return seq_puts(s, iface->header); 711 712 return iface->show(s, it); 713 } 714 715 static struct seq_operations sysvipc_proc_seqops = { 716 .start = sysvipc_proc_start, 717 .stop = sysvipc_proc_stop, 718 .next = sysvipc_proc_next, 719 .show = sysvipc_proc_show, 720 }; 721 722 static int sysvipc_proc_open(struct inode *inode, struct file *file) { 723 int ret; 724 struct seq_file *seq; 725 726 ret = seq_open(file, &sysvipc_proc_seqops); 727 if (!ret) { 728 seq = file->private_data; 729 seq->private = PDE(inode)->data; 730 } 731 return ret; 732 } 733 734 static struct file_operations sysvipc_proc_fops = { 735 .open = sysvipc_proc_open, 736 .read = seq_read, 737 .llseek = seq_lseek, 738 .release = seq_release, 739 }; 740 #endif /* CONFIG_PROC_FS */ 741